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Abstract

Traditional fully homomorphic encryption (FHE) schemes only allow computation on data encrypted
under a single key. López-Alt, Tromer, and Vaikuntanathan (STOC 2012) proposed the notion of multi-key
FHE, which allows homomorphic computation on ciphertexts encrypted under different keys, and also
gave a construction based on a (somewhat nonstandard) assumption related to NTRU. More recently, Clear
and McGoldrick (CRYPTO 2015), followed by Mukherjee and Wichs (EUROCRYPT 2016), proposed
a multi-key FHE based on learning with errors (LWE). However, unlike the original construction of
López-Alt et al., these later LWE-based schemes have the somewhat undesirable property of being
“single-hop” with respect to keys, i.e., all relevant keys must be known at the start of the homomorphic
computation, and the output cannot be usefully combined with ciphertexts encrypted under other keys
(unless an expensive “bootstrapping” step is performed).

In this work we construct two multi-key FHE schemes, based on LWE assumptions, which are
multi-hop with respect to keys: the output of a homomorphic computation on ciphertexts encrypted under
a set of keys can be used in further homomorphic computation involving additional keys, and so on.
Our systems also have smaller ciphertexts than the previous LWE-based ones; indeed, ciphertexts in our
second construction are simply GSW ciphertexts with no auxiliary data.
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1 Introduction

Secure multiparty computation (MPC) is an important and well-studied problem in cryptography. In MPC,
multiple users want to jointly perform a computation on their respective inputs via an interactive protocol.
Informally, the goal is for the protocol to reveal nothing more than the output of the computation.

Fully homomorphic encryption (FHE) is a powerful tool for constructing secure MPC protocols. One
approach suggested in Gentry’s seminal work [Gen09], and later optimized by Asharov et al. [AJL+12], is
to have an initial phase in which all parties run a protocol to generate a sharing of an FHE secret key, then
use the public key to encrypt their inputs and publish the ciphertexts. The parties then locally compute an
encryption of the output using homomorphic operations. Finally, they run a protocol to decrypt the encrypted
output, using their secret key shares. Overall, this approach requires the set of involved parties to be known
in advance, and for them to run interactive protocols both before and after their local computation.

López-Alt et al. [LTV12] (hereafter LTV) introduced the interesting notion of on-the-fly MPC, in which
the set of parties who contribute inputs to the computation, and even the computation itself, need not be
fixed in advance, and can even be chosen adaptively. In addition, there is no interaction among the parties at
the outset: any user whose data might potentially be used simply uploads her encrypted input to a central
server in advance, and can then go offline. The server then uses the uploaded data to compute (or continue
computing) a desired function, and when finished, outputs an encrypted output. Finally, the parties whose
inputs were used in the computation—and only those parties—run an interactive protocol to jointly decrypt
the ciphertext.

Multi-key FHE. Traditional FHE schemes only allow computation on data encrypted under a single key,
and therefore are not suitable for on-the-fly MPC, where users’ inputs must be encrypted under different keys.
As a tool for constructing on-the-fly protocols, LTV proposed a new type of FHE scheme, which they called
multi-key FHE (MK-FHE). Such a scheme extends the FHE functionality to allow homomorphic computation
on ciphertexts encrypted under different, independent keys. Decrypting the result of such a computation
necessarily requires all of the corresponding secret keys.

In [LTV12], LTV constructed an MK-FHE scheme based on a variant of the NTRU cryptosystem [HPS98].
The security of this scheme was based on a new and somewhat non-standard assumption on polynomial
rings, which, unlike the commonly used learning with errors (LWE) assumption [Reg05] (or its ring-based
analogue [LPR10]), is not currently supported by a worst-case hardness theorem. (They also constructed
MK-FHE based on ring-LWE, but limited only to a logarithmic number of keys and circuit depth.) Recently,
Clear and McGoldrick [CM15] gave an LWE-based construction for an unlimited number of keys, using a
variant of the FHE scheme of Gentry et al. [GSW13] (hereafter GSW). Later, Mukherjee and Wichs [MW15]
provided another exposition of the Clear-McGoldrick scheme, and built a two-round (plain) MPC protocol
upon it.

How many hops? We observe that the multi-key FHE constructed by LTV is, to extend the terminology
of [GHV10], “multi-hop with respect to keys:” one can perform a homomorphic computation on a collection
of ciphertexts encrypted under some set of keys, then use the resulting ciphertext as an input to further homo-
morphic computation on ciphertexts encrypted under additional keys, and so on. (Multi-hop homomorphic
computation is supported by essentially all natural single-key FHE schemes as well.) The on-the-fly MPC
protocol of [LTV12] naturally inherits this multi-hop flavor, which is very much in the spirit of “on the fly”
computation, since it allows reusing encrypted results across different computations.

By contrast, it turns out that neither of the MK-FHE constructions from [CM15, MW15] appear to be
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multi-hop with respect to keys, but are instead only single-hop: once a homomorphic computation has been
performed on a collection of ciphertexts encrypted under some set of keys, the output cannot easily be used in
further computation involving additional keys. Instead, one must restart the whole computation from scratch
(incorporating all the relevant keys from the very beginning), or perform an expensive “bootstrapping” step
(which may be even more costly). This rules out a multi-hop computation, since all involved parties must be
known before the computation begins. In summary, existing constructions of MK-FHE and on-the-fly MPC
from standard (worst-case) lattice assumptions still lack basic functionality that has been obtained from more
heuristic assumptions.

1.1 Our Results

In this work we construct two (leveled) multi-key FHE schemes, for any number of keys, from LWE
assumptions. Like the original MK-FHE scheme of [LTV12] (and unlike those of [CM15, MW15]), both of
our schemes are “multi-hop with respect to keys,” and hence are suitable for multi-hop on-the-fly MPC. That
is, one can homomorphically compute on ciphertexts encrypted under several keys, then use the result in
further homomorphic computation on ciphertexts encrypted under additional keys, and so on.

We now describe our two systems in more detail, and discuss their different efficiency and security
tradeoffs.

Scheme #1: large ciphertexts, standard LWE. The security of our first scheme, which is described in
Section 3, is based on the standard n-dimensional decision-LWE assumption (appropriately parameterized),
but has rather large ciphertexts and correspondingly slow homomorphic operations. Actually, the ciphertexts
are about an n factor smaller than fresh ciphertexts in the systems from [CM15, MW15], but unlike in those
systems, our ciphertexts remain rather large even after multi-key homomorphic operations. Essentially, this
is the price of being multi-hop w.r.t. keys—indeed, it is possible at any point to “downgrade” our ciphertexts
to ordinary GSW ciphertexts, by giving up the ability to extend ciphertexts to additional keys.

Scheme #2: small ciphertexts, circular LWE. In our second scheme, which is described in Section 4,
ciphertexts are simply GSW ciphertexts, and are therefore (relatively) small and admit correspondingly
efficient homomorphic operations. This efficiency comes at the price of rather large public keys (which are
comparable to fresh ciphertexts in the systems from [CM15, MW15]) and a correspondingly slow algorithm
for extending ciphertexts to additional keys. This profile seems preferable to our first scheme’s, because
applications of MK-FHE would typically involve many more homomorphic operations than extensions to
new keys. Therefore, we consider this scheme to be our main contribution.

Interestingly, the security of our second scheme appears to require a natural circular security assumption
for LWE. Despite some positive results for circular security of LWE-based encryption [ACPS09], we do
not yet see a way to prove security under standard LWE. We point out, however, that our assumption is no
stronger than the circular-security assumptions that are used to “bootstrap” FHE, because any circular-secure
FHE is itself fully key-dependent message secure [Gen09]. So in a context where our system is bootstrapped
to obtain unbounded FHE, we actually incur no additional assumption.

1.2 Technical Overview

For context, we start with a brief overview of the prior (single-hop w.r.t. keys) MK-FHE constructions
of [CM15, MW15], and the challenge in making them multi-hop. In these systems, a fresh ciphertext that
decrypts under secret key t ∈ Zn is a GSW ciphertext C ∈ Zn×mq encrypted to the corresponding public
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key P, along with an encryption D of the encryption randomness used to produce C from P. (Specifically,
each entry of the randomness matrix is encrypted as a separate GSW ciphertext.)

To perform a homomorphic computation on fresh ciphertexts (Ci,Di) that are respectively encrypted
under secret keys ti for (say) i = 1, 2, we first extend each ciphertext to an ordinary GSW ciphertext

Ĉi =

[
Ci Xi

Ci

]
∈ Z2n×2m

q (1.1)

that decrypts to the same message under the concatenated key (t1, t2), and then perform normal GSW
homomorphic operations on these extended ciphertexts. Essentially, extending C1 is done by considering the
extra “junk” term (t2− t1) ·C1 that arises from decrypting C1 under the wrong secret key t2, and cancelling
it out via a ciphertext X1 that “decrypts” under t1 to (the negation of) the same junk term. To produce X1

we use linearly homomorphic operations on D1 (the encryption of C1’s randomness relative to P1), along
with some additional information about t1 relative to a shared public parameter.

We point out that in the above scheme, it is not clear how to obtain an encryption of Ĉi’s underlying
encryption randomness—indeed, it is not even clear what composite public key P̂ the ciphertext Ĉi would be
relative to, nor whether valid encryption randomness for Ĉi exists at all! (Indeed, for certain natural ways of
combining the public keys Pi, valid encryption randomness is not likely to exist.) This is what prevents the
extended ciphertexts from satisfying the same invariant that fresh ciphertexts satisfy, which makes the scheme
only single-hop with respect to keys. Moreover, even if we could produce an encryption of the ciphertext
randomness (assuming it exists), it is not clear whether we could later re-extend an arbitrary ciphertext
C ∈ Z2n×2m

q that decrypts under (t1, t2) to an additional key t3: the block upper-triangular structure from
Equation (1.1) would produce a 4n-by-4m matrix, which is too large.

1.2.1 Our Approach

To overcome the above difficulties, our ciphertexts and/or public keys consist of different information,
whose invariants can be maintained after extension to additional keys. In particular, we forego maintaining
encryption randomness relative to a varying public key, and instead only maintain commitment randomness
relative to a fixed public parameter, along with an encryption of that randomness.1 Concretely, this works in
two different ways in our two schemes, as we now explain.

Scheme #1. In our first system, a ciphertext under a secret key t ∈ Zkn—which would typically be the
concatenation of k ≥ 1 individual secret keys—consists of three components:

1. a (symmetric-key) GSW ciphertext C ∈ Zkn×kmq that decrypts under t,

2. a GSW-style homomorphic commitment (à la [GVW15]) F ∈ Zn×mq to the same message, relative to a
public parameter, and

3. a special encryption D under t of the commitment randomness underlying F.

To extend such a ciphertext to a new secret key t∗ ∈ Zn, we simply extend the GSW ciphertext C to some

C′ =

[
C X

F

]
∈ Z(k+1)n×(k+1)m

q ,

1We note that the previous constructions from [CM15, MW15] also require a public parameter, so we are not changing the model.
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where X is produced from D (in much the same way as above) to cancel out the “junk” term that comes from
“decrypting” F with t∗. The commitment F and its encrypted randomness D remain unchanged, except that
we need to pad D with zeros to make it valid under (t, t∗).

Finally, it is not too hard to design homomorphic addition and multiplication operations for ciphertexts
having the above form: as shown in [GVW15], GSW commitments admit exactly the same homomorphic
operations as GSW encryption, so we can maintain a proper commitment. The homomorphic operations also
have a natural, predictable effect on the underlying commitment randomness, so we can use the encrypted
randomness Di along with the GSW ciphertexts Ci to maintain correct encrypted commitment randomness.

Scheme #2. Our second system works differently from all the previous ones. In it, ciphertexts are simply
GSW ciphertexts, with no extra components, so they support the standard homomorphic operations. To
support extending ciphertexts to additional keys, each public key contains a commitment to its secret key t,
along with an appropriate encryption under t of the commitment randomness. (This cyclical relation between
secret key and commitment randomness is what leads to our circular-security assumption.) We show how
to combine two public keys to get a ciphertext, under the concatenation of their secret keys t1, t2, that
encrypts the tensor product t1 ⊗ t2 of those keys. By applying homomorphic operations, it is then fairly
straightforward to extend a ciphertext that decrypts under one of the keys to a ciphertext that decrypts under
their concatenation.

2 Preliminaries

In this work, vectors are denoted by lower-case bold letters (e.g., a), and are row vectors unless otherwise
indicated. Matrices are denoted by upper-case bold letters (e.g., A). We define [k] := {1, . . . , k} for any
non-negative integer k.

Approximations. As in many works in lattice cryptography, we work with “noisy equations” and must
quantify the quality of the approximation. For this purpose we use the notation ≈ to indicate that the two
sides are approximately equal up to some additive error, and we always include a bound on the magnitude of
this error. For example,

x ≈ y (error E)

means that x = y + e for some e ∈ [−E,E]. In the case of vectors or matrices, the error bound applies to
every entry of the error term, i.e., it is an `∞ bound.

For simplicity of analysis, in this work we use the following rather crude “expansion” bounds to quantify
error growth. (Sharper bounds can be obtained using more sophisticated tools like subgaussian random
variables.) Because ‖x · yt‖∞ ≤ ‖x‖∞ · ‖y‖1 and ‖y‖1 ≤ dim(y) · ‖y‖∞, we have implications like

X ≈ Y (error E)

=⇒ X ·R ≈ Y ·R. (error height(R) · ‖R‖∞ · E)

for any X,Y,R.
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Tensor products. The tensor (or Kronecker) product A⊗B of an m1-by-n1 matrix A with an m2-by-n2

matrix B, both over a common ringR, is the m1m2-by-n1n2 matrix consisting of m2-by-n2 blocks, whose
(i, j)th block is ai,j ·B, where ai,j denotes the (i, j)th entry of A.

It is clear that
r(A⊗B) = (rA)⊗B = A⊗ (rB)

for any scalar r ∈ R. We extensively use the mixed-product property of tensor products, which says that

(A⊗B) · (C⊗D) = (AC)⊗ (BD)

for any matrices A,B,C,D of compatible dimensions. In particular,

(A⊗B) = (A⊗ Iheight(B)) · (Iwidth(A) ⊗B) = (Iheight(A)⊗B) · (A⊗ Iwidth(B)).

2.1 Cryptographic Definitions

Definition 2.1. A leveled multi-hop, multi-key FHE scheme is a tuple of efficient randomized algorithms
(Setup,Gen,Enc,Dec,EvalNAND) having the following properties:

• Setup(1λ, 1k, 1d), given the security parameter λ, a bound k on the number of keys, and a bound d on
the circuit depth, outputs a public parameter pp. (All the following algorithms implicitly take pp as an
input.)

• Gen() outputs a public key pk and secret key sk.

• Enc(pk, µ), given a public key pk and a message µ ∈ {0, 1}, outputs a ciphertext c. For convenience,
we assume that c implicitly contains a reference to pk.

• Dec((sk1, sk2, . . . , skt), c), given a tuple of secret keys sk1, . . . , skt and a ciphertext c, outputs a bit.

• EvalNAND(c1, c2), given two ciphertexts c1, c2, outputs a ciphertext ĉ. For convenience, we assume
that ĉ implicitly contains a reference to each public key associated with either c1 or c2 (or both).

These algorithms should satisfy correctness and compactness functionality properties, as defined below.

We now describe how to homomorphically evaluate a given boolean circuit composed of NAND gates
and having one output wire, which is without loss of generality. The algorithm Eval(C, (c1, . . . , cN )),
given a circuit C having N input wires, first associates ci with the ith input wire for each i = 1, . . . , N .
Then for each gate (in some topological order) having input wires i, j and output wire k, it computes
ck ← EvalNAND(ci, cj). Finally, it outputs the ciphertext associated with the output wire.

We stress that the above homomorphic evaluation process is qualitatively different from the ones defined
in [LTV12, MW15], because when homomorphically evaluating each gate we can only use the key(s)
associated with the input ciphertexts for that gate alone; this is what makes the computation multi-hop. By
contrast, homomorphic evaluation in [LTV12, MW15] is given all the input ciphertexts and public keys from
the start, so it can (and does, in the case of [MW15]) use this knowledge before evaluating any gates.

Definition 2.2 (Correctness). A leveled multi-hop, multi-key FHE scheme is correct if for all positive
integers λ, k, d, for every circuit C of depth at most d having N input wires, for every function π : [N ]→ [k]
(which associates each input wire with a key pair), and for every x ∈ {0, 1}N , the following experiment
succeeds with 1− negl(λ) probability: generate a public parameter pp← Setup(1λ, 1k, 1d), generate key
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pairs (pkj , skj) ← Gen() for each j ∈ [k], generate ciphertexts ci ← Enc(pkπ(i), xi) for each i ∈ [N ], let
ĉ← Eval(C, (c1, . . . , cN )), and finally test whether

Dec((skj), ĉ) = C(x1, . . . , xN ),

where Dec is given those secret keys skj corresponding to the public keys referenced by ĉ.

Definition 2.3 (Compactness). A leveled multi-hop, multi-key FHE scheme is compact if there exists a
polynomial p(·, ·, ·) such that in the experiment from Definition 2.2, |ĉ| ≤ p(λ, k, d). In other words, the
length of ĉ is independent of C and N , but can depend polynomially on λ, k, and d.

2.2 Learning With Errors

For a positive integer dimension n and modulus q, and an error distribution χ over Z, the LWE distribution
and decision problem are defined as follows. For an s ∈ Zn, the LWE distribution As,χ is sampled by
choosing a uniformly random a← Znq and an error term e← χ, and outputting (a, b = 〈s,a〉+ e) ∈ Zn+1

q .

Definition 2.4. The decision-LWEn,q,χ problem is to distinguish, with non-negligible advantage, between
any desired (but polynomially bounded) number of independent samples drawn from As,χ for a single
s← χn, and the same number of uniformly random and independent samples over Zn+1

q .2

A standard instantiation of LWE is to let χ be a discrete Gaussian distribution (over Z) with parameter
r = 2

√
n. A sample drawn from this distribution has magnitude bounded by, say, r

√
n = Θ(n) except with

probability at most 2−n. For this parameterization, it is known that LWE is at least as hard as quantumly
approximating certain “short vector” problems on n-dimensional lattices, in the worst case, to within Õ(q

√
n)

factors [Reg05]. Classical reductions are also known for different parameterizations [Pei09, BLP+13].
In this work it will be convenient to use a form of LWE that is somewhat syntactically different from, but

computationally equivalent to, the one defined above. Letting s = (−s̄, 1) ∈ Zn where s̄ ← χn−1, notice
that an LWE sample b = (a, b = 〈s,a〉+ e) ∈ Znq drawn from As̄,χ is simply a uniformly random vector
satisfying

〈s,b〉 = s · bt = e ≈ 0. (2.1)

Therefore, decision-LWEn−1,q,χ is equivalent to the problem of distinguishing samples having the above
form (and in particular, satisfying Equation (2.1)) from uniformly random ones.

More generally, for s ∈ Zn as above and some t = poly(n), we will need to generate uniformly random
vectors b ∈ Ztnq that satisfy

(It ⊗ s) · b = e ≈ 0,

for some e← χt. This is easily done by concatenating t independent samples from As̄,χ; clearly, the result is
indistinguishable from uniform assuming the hardness of decision-LWEn,q,χ.

2.3 Gadgets and Decomposition

Here we recall the notion of a “gadget” [MP12], which is used for decomposing Zq-elements—or more
generally, vectors or matrices over Zq—into short vectors or matrices over Z. We also define some new
notation that will be convenient for our application.

2Notice that in the above definition, the coordinates of s are drawn from the error distribution χ; as shown in [ACPS09], this
form of the problem is equivalent to the one where s← Zn

q is drawn uniformly at random.
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For simplicity, throughout this work we use the standard “powers of two” gadget vector

g = (1, 2, 4, 8, . . . , 2`−1) ∈ Z`q, where ` = dlg qe.

The “bit decomposition” function g−1 : Zq → {0, 1}` outputs a binary column vector (over Z) consisting of
the binary representation of (the canonical representative in {0, 1, . . . , q − 1} of) its argument. As such, it
satisfies the identity g · g−1[a] = a. (This identity explains the choice of notation g−1; we stress that g−1 is
a function, not a vector itself.) Symmetrically, we define the notation

[a]g−t := g−1[a]t,

which outputs a binary row vector and satisfies the identity [a]g−t · gt = a. (This identity explains why we
place the bracketed argument to the left of g−t.)

More generally, we define the operation denoted by (In ⊗ g−1)[·], which applies g−1 entrywise to a
height-n vector/matrix, and thereby produces a height-n` binary output that satisfies the convenient identity

(In ⊗ g) · (In ⊗ g−1)[A] = A.

Similarly, we define [·](In ⊗ g−t) to apply g−t entrywise to a width-n vector/matrix, thereby producing a
width-n` output that satisfies

[A](In ⊗ g−t) · (In ⊗ gt) = A.

For the reader who is familiar with previous works that use gadget techniques, the matrix In⊗g is exactly
the n-row gadget matrix G, and (In ⊗ g−1)[·] is exactly the bit-decomposition operation G−1 on height-n
vectors/matrices. In this work we adopt the present notation because we use several different dimensions n,
and because it interacts cleanly with tensor products of vectors and matrices, which we use extensively in
what follows.

3 Large-Ciphertext Construction

In this section we describe our first construction of a multi-hop, multi-key FHE, which has small keys but
rather large ciphertexts (although fresh ciphertexts are still smaller than in prior constructions). For simplicity,
we describe the scheme in the symmetric-key setting, but then note how to obtain a public-key scheme using
a standard transformation.

The system is parameterized by a dimension n, modulus q, and error distribution χ for the underlying
LWE problem; we also let m = d2n log qe. For concreteness, we let χ be the standard discrete Gaussian
error distribution with parameter 2

√
n; to recall, the samples it produces have magnitudes bounded by some

E = Θ(n) except with exponentially small 2−Ω(n) probability. The modulus q is instantiated in Section 3.3
below, based on a desired depth of homomorphic computation and number of distinct keys. The scheme is
defined as follows.

• Setup: output a uniformly random A ∈ Zn×mq .

• Gen(A): choose t̄← χn−1 and define t := (−t̄, 1) ∈ Zn. Choose e← χm and define

b := tA + e

≈ tA ∈ Zmq . (error E) (3.1)

Output t as the secret key and b as the associated public extension key.
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• Enc(t, µ ∈ {0, 1}): do the following, outputting (C,F,D) as the ciphertext.

1. As described in Section 2.2, choose an LWE matrix C̄ ∈ Zn×n`q that satisfies tC̄ ≈ 0, and define

C := C̄ + µ(In ⊗ g) ∈ Zn×n`q .

Notice that C is simply a GSW ciphertext encrypting µ under secret key t:

tC = tC̄ + µ(t⊗ 1) · (In ⊗ g) ≈ µ(t⊗ g). (error EC) (3.2)

2. In addition, choose a uniformly random R ∈ {0, 1}m×n` and define

F := AR + µ(In ⊗ g) ∈ Zn×n`q . (3.3)

We view F as a commitment to the message µ under randomness R.
3. Finally, choose (as described in Section 2.2) an LWE matrix D̄ ∈ Znm`×n`q that satisfies

(Im` ⊗ t) · D̄ ≈ 0,

and define D := D̄ + (R ⊗ gt ⊗ etn), where en ∈ Zn is the nth standard basis vector (so
t · et = 1). We therefore have

(Im` ⊗ t) ·D ≈ R⊗ gt. (error ED) (3.4)

We view D as a kind of encryption of the commitment randomness R.

• Dec(t, (C,F,D)): this is standard GSW decryption of C under t, which works due to Equation (3.2).

Remark 3.1. The above scheme is defined in the symmetric-key setting, i.e., Enc uses the secret key t to
generate LWE samples. We can obtain a public-key scheme using a standard technique, namely, have the
encryption algorithm rerandomize some public LWE samples to generate as many additional samples as
needed. More formally, we define B := A− etn ⊗ b. Then because t · etn = 1, we have

tB ≈ 0. (error E)

The public-key encryption algorithm then constructs C̄, D̄ by generating fresh samples as B · x for fresh
uniformly random x ∈ {0, 1}m. It is easy to verify that t(Bx) ≈ 0 with error m ·E. Security follows from
a standard argument, using the LWE assumption to make b (and thereby B) uniformly random, and then the
leftover hash lemma to argue that the distribution of the fresh samples is negligibly far from uniform.

Theorem 3.2. The above scheme is IND-CPA secure assuming the hardness of the decision-LWEn−1,q,χ

problem.

Proof. We prove that the view of an attacker in the real game is indistinguishable from its view in a game in
which the public extension key and every ciphertext are uniformly random and independent of the message;
this clearly suffices for IND-CPA security. We proceed by a considering the following sequence of hybrid
experiments:

Game 0: This is the real IND-CPA game.
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Game 1: In this game the public extension key and the C,D components of every ciphertext are uniformly
random and independent (but F is constructed in the same way). More precisely:

1. Choose uniformly random public parameter A and extension key b, and give them to the
adversary.

2. For each encryption query, choose uniformly random and independent C ∈ Zn×n`q and D ∈
Znm`×n`q , construct F exactly as in Enc, and give ciphertext (C,F,D) to the adversary.

Game 2: This is the ideal game; the only change from the previous game is that each F is chosen uniformly
at random.

We claim that Games 0 and 1 are computationally indistinguishable under the LWE hypothesis. To prove
this we describe a simulator S that is given an unbounded source of samples; when they are LWE samples it
simulates Game 0, and when they are uniformly random samples it simulates Game 1. It works as follows:

• Draw m samples and form a matrix Ā ∈ Zn×mq with the samples as its columns. Choose a uniformly
random extension key b ∈ Zmq , and let the public parameter A = Ā + etn · b.

• On encryption query µ, draw samples to construct matrices C̄ and D̄, and define C,D from these as
in Enc. Also construct F exactly as in Enc.

If the simulator’s input distribution is At̄,χ for some t̄ ← χn−1, then the first n − 1 rows of Ā are
uniformly random, hence A is uniformly random by construction. Moreover, b ≈ (−t̄, 1) ·A has the same
distribution as in the real game. Finally, C̄ and D̄ are constructed exactly as in the real game, so S perfectly
simulates Game 0.

By contrast, if the simulator’s input distribution is uniform, then A and b are uniformly random and
independent. Similarly, because C̄ and D̄ are uniform and independent of everything else, so are C and D.
Therefore, S perfectly simulates Game 1. This proves the first claim.

Finally, we claim that Games 1 and 2 are statistically indistinguishable. This follows directly from the
leftover hash lemma. This concludes the proof.

3.1 Extending Ciphertexts

We first describe how to extend a ciphertext to an additional secret key t∗, using the associated public
extension key b∗ ≈ t∗A ∈ Zmq . More precisely, suppose we have a ciphertext that encrypts µ under secret
key t ∈ Zn′ . (Here the dimension n′ can be arbitrary, but typically n′ = nk for some positive integer k, and t
is the concatenation of k individual secret keys, each of dimension n.) The ciphertext therefore consists of
component matrices

C ∈ Zn
′×n′`
q , F ∈ Zn×n`q , D ∈ Zn

′m`×n`
q

that satisfy Equations (3.2), (3.3), and (3.4) for some short commitment randomness R ∈ Zm×n`. (Notice
that the dimensions of F and the width of D do not depend on n′.)

Our goal is to extend (C,F,D) to a new ciphertext (C′,F′,D′) that satisfies Equations (3.2), (3.3),
and (3.4) with respect to the concatenated secret key t′ = (t, t∗) ∈ Zn′+n and some short commitment
randomness R′. We do so as follows.

• The commitment and its randomness are unchanged: we define F′ := F and R′ := R. This clearly
preserves Equation (3.3).
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• Similarly, the encrypted randomness also is essentially unchanged, up to some padding by zeros: we
define

D′ := (Im` ⊗
(

In′

0n×n′

)
) ·D ∈ Z(n′+n)m`×n`

q .

Then Equation (3.4) is preserved: (Im` ⊗ t′) ·D′ = (Im` ⊗ t) ·D ≈ R⊗ gt = R′ ⊗ gt.

• Lastly, we define

C′ :=

(
C X

F

)
∈ Z(n′+n)×(n′+n)`

q

where X is defined as follows:

s := [−b∗](Im ⊗ g−t) ∈ {0, 1}m`, (3.5)

X := (s⊗ In′) ·D ∈ Zn
′×n`
q .

We now do the error analysis for ciphertext extension. Notice that by construction,

tX = (1⊗ t) · (s⊗ In′) ·D
= (s⊗ 1) · (Im` ⊗ t) ·D
≈ s · (R⊗ gt) (Equation (3.4), error m` · ED)

= −b∗R. (Equation (3.5))

Putting everything together, we see that Equation (3.2) is preserved:

t′C′ ≈
(
µ(t⊗ g) tX + t∗F

)
(Equation (3.2); error EC)

=
(
µ(t⊗ g) tX + t∗AR + µ(t∗ ⊗ g)

)
(Equation (3.3))

≈
(
µ(t⊗ g) tX + b∗R + µ(t∗ ⊗ g)

)
(Equation (3.1); error m‖R‖∞ · E)

≈ µ(t′ ⊗ g). (error m` · ED)

In total, the error in the new ciphertext C′ is

EC′ = EC +m‖R‖∞ · E +m` · ED.

3.2 Homomorphic Operations

We now describe homomorphic addition and multiplication for the above cryptosystem. Suppose we have
two ciphertexts (C1,F1,D1) and (C2,F2,D2) that respectively encrypt µ1 and µ2, with commitment
randomness R1 and R2, under a common secret key t ∈ Zn′ . (As in the previous subsection, everything
below works for arbitrary dimension n′ and key t, but typically n′ = nk for some positive integer k, and t is
the concatenation of k individual secret keys.) Recall that the ciphertext components

Ci ∈ Zn
′×n′`
q , Fi ∈ Zn×n`q , Di ∈ Zn

′m`×n`
q

satisfy Equations (3.2), (3.3), and (3.4) for some short commitment randomness Ri ∈ Zm×n`.
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• Negation and scalar addition. (These are used to homomorphically compute NAND(µ1, µ2) =
1 − µ1µ2 for µi ∈ {0, 1}.) To homomorphically negate a message for a ciphertext (C,F,D), just
negate each of the components. It is clear that this has the desired effect, and that the associated
commitment randomness and error terms are also negated. To homomorphically add a constant c ∈ Z
to a message, just add c(In′ ⊗ g) to both C and F. It is clear that this has the desired effect, and leaves
the commitment randomness and error terms unchanged.

• Addition. To homomorphically add, we simply add the corresponding matrices, outputting

(Cadd,Fadd,Dadd) := (C1 + C2,F1 + F2,D1 + D2).

It is easy to verify that Equations (3.2), (3.3), and (3.4) hold for the new ciphertext with message
µadd = µ1 +µ2 and commitment randomness Radd = R1 +R2, where the errors in the approximations
are also added.

• Multiplication. To homomorphically multiply, we define the short matrices

Sc := (In′ ⊗ g−1)[C2] ∈ {0, 1}n
′`×n′`, (3.6)

Sf := (In ⊗ g−1)[F2] ∈ {0, 1}n`×n`, (3.7)

Sd := (In′m` ⊗ g−1)[D2] ∈ {0, 1}n
′m`2×n`, (3.8)

and output the ciphertext consisting of

Cmul := C1 · Sc
Fmul := F1 · Sf
Dmul := D1 · Sf + (Im` ⊗C1) · Sd.

The associated commitment randomness is defined as

Rmul := R1 · Sf + µ1R2.

We now show that the ciphertext output by homomorphic multiplication satisfies Equations (3.2), (3.3),
and (3.4) for key t, message µmul = µ1µ2, and commitment randomness Rmul. We already know that
Equation (3.2), the GSW ciphertext relation, is satisfied by construction of Cmul as the homomorphic product
of GSW ciphertexts C1,C2. Specifically:

tCmult = tC1 · Sc
≈ µ1(t⊗ g) · Sc (error n′` · EC1)

= µ1tC2 (Equation (3.6))

≈ µ1µ2(t⊗ g). (error µ1EC2)

Similarly, Equation (3.3) is satisfied by construction of Fmul as the homomorphic product of commitments
F1,F2:

Fmul = F1 · Sf
= (AR1 + µ1(In ⊗ g)) · Sf
= AR1 · Sf + µ1F2 (Equation (3.7))

= AR1 · Sf + µ1AR2 + µ1µ2(In ⊗ g)

= ARmult + µ1µ2(In ⊗ g).
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Finally, to see that Equation (3.4) holds for Dmul, first notice that

(Im` ⊗ t) ·D1 · Sf ≈ (R1 ⊗ gt) · (Sf ⊗ 1) (Equations (3.4); error n` · ED1)

= (R1 · Sf )⊗ gt. (3.9)

In addition,

(Im` ⊗ t) · (Im` ⊗C1) · Sd = (Im` ⊗ tC1) · Sd
≈ µ1(Im` ⊗ t⊗ g) · Sd (Equation (3.2); error n′` · EC1)

= µ1(Im` ⊗ t) ·D2 (Equation (3.8))

≈ (µ1R2)⊗ gt (Equation (3.4); error µ1 · ED2) (3.10)

Summing Equations (3.9) and (3.10) yields

(Im` ⊗ t) ·Dmul ≈ Rmul ⊗ gt

with error n` · ED1 + n′` · EC1 + µ1 · ED2 as desired.

3.3 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating a depth-d circuit of NAND
gates for up to k individual keys. As above, let n′ = nk. For a ciphertext (C,F,D) with commitment
randomness R, define the “max error”

E∗ := max(EC, ED, E · ‖R‖∞).

By the bounds from the previous subsection, for two ciphertexts with max error at mostE∗, their homomorphic
NAND has max error at most (n(k + 1)` + 1) · E∗ = poly(n, k, `) · E∗. Similarly, when we extend a
ciphertext with max error at most E∗, the result has max error at most (m(`+ 1) + 1) ·E∗ = poly(n, `) ·E∗.
Therefore, for any depth-d homomorphic computation on fresh ciphertexts encrypted under k keys, the result
has max error at most

poly(n, k, `)k+d.

The GSW decryption algorithm works correctly on a ciphertext as long as its error is smaller than q/4,
hence it suffices to choose a modulus q that exceeds the above quantity by a factor of four. Recalling that
` = Θ(log q) = Õ(k + d), this corresponds to a worst-case approximation factor of poly(n, k, d)k+d for
n-dimensional lattice problems.

4 Small-Ciphertext Construction

In this section we describe a multi-hop, multi-key FHE having smaller ciphertexts and more efficient
homomorphic operations than the one in Section 3. Indeed, ciphertexts in this system are simply GSW
ciphertexts (with no additional information), which admit the usual homomorphic operations. These efficiency
improvements come at the cost of larger public extension keys, as well as a circular-security assumption.

Recall that in the scheme from the previous section, a ciphertext includes a commitment to the message,
along with a special encryption of the commitment randomness. By contrast, in the scheme described below,
the extension key contains a commitment to the secret key, along with an encryption (under the secret key)
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of the commitment randomness. (Using the commitment randomness to hide the secret key, and using the
secret key to hide the commitment randomness, is what leads to a circular-security assumption.) We show
how to combine two extension keys to get an encryption, under the concatenation of the secret keys, of the
tensor product of those keys; this in turn lets us extend a ciphertext encrypted under one of the keys to their
concatenation. We now describe the construction.

As in the previous section, the scheme is parameterized by LWE parameters n and q, the standard error
distribution χ (which is E-bounded for E = Θ(n)), and m = d2n log qe. The system is defined as follows.

• Setup: output a uniformly random A ∈ Zn×mq .

• Gen(A): do the following, outputting t as the secret key and (b,P,D) as the public extension key.

1. Choose t̄← χn−1 and define t := (−t̄, 1) ∈ Zn. Choose e← χm and define

b := tA + e

≈ tA ∈ Zmq . (error E)

2. Choose a uniformly random R← {0, 1}m×n
2` and define

P := AR + (In ⊗ t⊗ g) ∈ Zn×n
2`

q .

3. As described in Section 2.2, choose an LWE matrix D̄ ∈ Znm`×n2`
q that satisfies (Im`⊗t)·D̄ ≈ 0

(with errorE), and define D := D̄+(R⊗gt⊗etn), where en ∈ {0, 1}n denotes the nth standard
basis vector. Notice that, because t · etn = 1, we have

(Im` ⊗ t) ·D ≈ R⊗ gt. (error E)

• Enc(t, µ ∈ {0, 1}): This is standard GSW encryption. Specifically, as described in Section 2.2, choose
an LWE matrix C̄ ∈ Zn×n`q that satisfies tC̄ ≈ 0, and output the ciphertext C := C̄ + µ(In ⊗ g).
Notice that t, C satisfy the GSW relation

tC = tC̄ + µ(t⊗ 1) · (In ⊗ g) ≈ µ(t⊗ g). (error EC)

• Dec(t,C): this is standard GSW decryption.

We again stress that ciphertexts in the above system are just GSW ciphertexts (with no auxiliary infor-
mation), so homomorphic addition and multiplication work as usual (and as in Section 3). The IND-CPA
security of the system follows immediately from the circular-security assumption that LWE samples for
secret t are indistinguishable from uniform, given (A,b,P,D) as constructed above.

4.1 Extending a Ciphertext to a New Key

We now show how to extend a (potentially multi-key) ciphertext to an additional key, so as to preserve the
GSW relation for the concatenation of the secret keys. Specifically, suppose we have a ciphertext C ∈ Zn′×n′`q

that encrypts µ under a key t ∈ Zn′ , i.e.,

tC ≈ µ(t⊗ g). (error EC)
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In this setting, n′ = nk for some positive integer k ≥ 1, and t = (t1, . . . , tk) is the concatenation of k
individual secret keys ti ∈ Zn for which we know the associated vector bi ≈ tiA ∈ Zmq (with error E) from
the public extension key. (We will not need the extension key’s other components P, D.)

We wish to extend C to an additional secret key t∗ for which we know the associated matrices P∗, D∗

from the public extension key (we will not need the associated b∗). More precisely, we want to generate a
ciphertext C′ that encrypts µ under t′ = (t, t∗) ∈ Zn(k+1), i.e., we want

t′C′ ≈ µ(t′ ⊗ g) = µ
(
t⊗ g t∗ ⊗ g

)
.

To do this, we output

C′ :=

(
C X

X∗

)
where X′ =

(
X
X∗

)
is as defined below. Notice that by construction,

t′C′ ≈
(
µ(t⊗ g) t′X′

)
. (error EC)

Below we show how to satisfy

t′X′ = tX + t∗X∗ ≈ µ(t∗ ⊗ g) (4.1)

with error
EX′ = (n2 · (k`+ 1)2 ·m+ EC) · E,

which yields t′C′ ≈ µ(t′ ⊗ g) with error max{EC, EX′} = EX′ , as desired.

Constructing X′. We construct X′ in two steps:

1. Using just the bi and P∗, D∗ (but not the ciphertext C), we construct Y′ =
(

Y
Y∗

)
that satisfies

t′Y′ = tY + t∗Y∗ ≈ (t⊗ t∗ ⊗ g) (4.2)

with error EY′ = (k`+ 1) ·m · E. This construction is described below.

2. We then obtain X′ by multiplying Y′ by a certain binary matrix that is derived from the ciphertext C.
Essentially, this step just replaces t with µg in the right-hand side of Equation (4.2) (while consuming
the existing g).

Let C̄ := C · (etn ⊗ I`) ∈ Znk×`q consist of the last ` columns of C, so that

tC̄ ≈ µ(t⊗ g) · (etn ⊗ I`) = µg. (error EC) (4.3)

Define the binary matrix

S := (Ink ⊗ In ⊗ g−1)
[
C̄⊗ In

]
∈ {0, 1}n

2k`×`, (4.4)

and observe that

t′Y′ · S ≈ (t⊗ t∗ ⊗ g) · S (Equation (4.2); error n2k` · EY′)

= (t⊗ t∗) · (C̄⊗ In) (Equation (4.4))

= (tC̄)⊗ t∗

≈ µ(g ⊗ t∗). (Equation (4.3), ‖t∗‖∞ ≤ E, so error EC · E) (4.5)
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Notice that the right-hand side of Equation (4.5) is exactly the desired right-hand side of Equation (4.1),
but permuted (because the arguments of the Kronecker product are swapped). So let Π be the
permutation matrix for which (g ⊗ t∗)Π = (t∗ ⊗ g) for any t∗, and define

X′ := Y′ · S ·Π,

which by the above satisfies Equation (4.1), as desired.

Constructing Y′. We now describe the construction of Y′ =
(

Y
Y∗

)
to satisfy Equation (4.2). To do this

we use the public matrices P∗,D∗ associated with t∗, which by construction satisfy

P∗ = AR∗ + (In ⊗ t∗ ⊗ g)

(Im` ⊗ t∗) ·D∗ ≈ R∗ ⊗ gt (error E) (4.6)

for some binary matrix R∗ ∈ {0, 1}m×n
2`. Recalling that t ∈ Znk is the concatenation of k individual secret

keys ti ∈ Zn, we also define b ∈ Zmkq to be the concatenation of the associated bi ≈ tiA ∈ Zmq (all with
error E), so

b ≈ t · (Ik ⊗A). (error E) (4.7)

First, we define
Y := Ik ⊗P∗ = (Ik ⊗AR∗) + (Ink ⊗ t∗ ⊗ g).

Observe that

tY = t · (Ik ⊗AR∗) + (t⊗ 1⊗ 1) · (Ink ⊗ t∗ ⊗ g)

= t · (Ik ⊗A) · (Ik ⊗R∗) + (t⊗ t∗ ⊗ g)

≈ b · (Ik ⊗R∗) + (t⊗ t∗ ⊗ g). (Equation (4.7); error m · E.)

Therefore, in order to satisfy Equation (4.2), it suffices to construct Y∗ to satisfy

t∗Y∗ ≈ −b · (Ik ⊗R∗).

with error km` · E. To do this, we define

s := −[b](Ik ⊗ Im ⊗ g−t) ∈ {0, 1}km` (4.8)

Y∗ := (s⊗ In) · (Ik ⊗D∗).

Then observe that

t∗Y∗ = (1⊗ t∗) · (s⊗ In) · (Ik ⊗D∗)

= (s⊗ 1) · (Ikm` ⊗ t∗) · (Ik ⊗D∗)

≈ s · (Ik ⊗R∗ ⊗ gt) (Equation (4.6); error km` · E)

= −b · (Ik ⊗R∗) (Equation (4.8))

as desired. This completes the construction and analysis.
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4.2 Instantiating the Parameters

We now bound the worst-case error growth when homomorphically evaluating a depth-d circuit of NAND
gates for up to k individual keys. As above, let n′ = nk. For two ciphertexts with error bounded by E∗, their
homomorphic NAND has error bounded by (n′`+ 1) · E∗ = poly(n, k, `) · E∗. Similarly, when we extend
a ciphertext with error bounded by E∗, the result has error bounded by (n2 · (k` + 1)2 ·m + E∗) · E =
poly(n, k, `) · E∗. Therefore, for any depth-d homomorphic computation on fresh ciphertexts encrypted
under k keys, the result has error bounded by poly(n, k, `)k+d. Therefore, it suffices to choose a modulus q
that exceeds four times this bound. Recalling that ` = Θ(log q) = Õ(k+ d), this corresponds to a worst-case
approximation factor of poly(n, k, d)k+d for n-dimensional lattice problems.
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