
Optimizing S-box Implementations for Several
Criteria using SAT Solvers

Ko Stoffelen

Radboud University, Digital Security,
Nijmegen, The Netherlands
k.stoffelen@cs.ru.nl

Abstract. We explore the feasibility of applying SAT solvers to opti-
mizing implementations of small functions such as S-boxes for multiple
optimization criteria, e.g., the number of nonlinear gates and the number
of gates. We provide optimized implementations for the S-boxes used in
Ascon, ICEPOLE, Joltik/Piccolo, Keccak/Ketje/Keyak, LAC, Minalpher,
PRIMATEs, Prøst, and RECTANGLE, most of which are candidates in
the secound round of the CAESAR competition. We then suggest a new
method to optimize for circuit depth and we make tooling publicly avail-
able to find efficient implementations for several criteria. Furthermore, we
illustrate with the 5-bit S-box of PRIMATEs how multiple optimization
criteria can be combined.

Keywords: S-box, SAT solvers, implementation optimization, multi-
plicative complexity, circuit depth complexity, shortest linear straight-line
program.

1 Introduction

Implementations of cryptographic algorithms are typically optimized for one
or multiple criteria, such as latency, throughput, power consumption, memory
consumption, etc., but also criteria such as the cost of adding masking counter-
measures to protect against side-channel attacks. It is worthwhile to spend time
on this optimization, as the implementations are typically used many times. It
is usually a hard problem to find an implementation that is actually theoreti-
cally minimal with respect to the criteria, e.g., general circuit minimization is∑P

2 -complete [10]. However, for small functions this is still possible, using, for
instance, SAT solvers. Especially for building blocks that can be used in multiple
cryptographic algorithms, such as S-boxes, it is useful to look at methods for
finding minimal implementations with respect to some given criteria.

In Section 2, we first discuss the simpler problem of finding minimal imple-
mentations of linear functions. We give a brief overview of methods for finding
the shortest linear straight-line program.

We then move towards S-boxes and in Section 3 we consider known meth-
ods [13,20] that manage to find minimal implementations for the relevant opti-
mization criteria of multiplicative complexity [9], bitslice gate complexity [12],



and gate complexity. The definitions of these criteria are given in Section 3. We
study how feasible the methods actually are by applying them to S-boxes that
are used in recent cryptographic algorithms, such as several candidates in the
CAESAR competition and lightweight block ciphers. Additionally, we provide
tools that allow anyone to conveniently do the same to other small S-boxes.

Then we look at another optimization criterion: the circuit depth complexity.
This is relevant in hardware implementations to decrease the delay and to be
able to increase the clock frequency. We suggest a new method for encoding the
circuit depth complexity decision problem in SAT and we show how feasible this
method is in practice by providing efficient low-depth S-box implementations
for Joltik [17], Piccolo [22], LAC [23], Prøst [18], and RECTANGLE [24] in
Section 3.5.

Finally, in Section 4 it is discussed how several optimization criteria can
be combined, by first optimizing the S-box used by the PRIMATEs [2] for
multiplicative complexity and then for gate complexity. This is done by taking
the intermediate result after optimizing for multiplicative complexity, identifying
the linear parts of this, and by treating these as instances of the shortest linear
straight-line program problem.

Contributions of this paper. To summarize, the contributions of this paper
are

– implementations of the S-boxes in Ascon, ICEPOLE, Joltik/Piccolo, Kec-
cak/Ketje/Keyak, LAC, Minalpher, Prøst, and RECTANGLE with a provably
minimal number of nonlinear gates;

– a new method for encoding the circuit depth complexity decision problem as
an instance of SAT;

– optimized and sometimes even provably minimal implementations of the
S-boxes in Joltik/Piccolo, LAC, Prøst, and RECTANGLE with respect to
bitslice gate complexity, gate complexity, and circuit depth complexity;

– a method to combine multiple optimization criteria;
– an implementation of the S-box used by the PRIMATEs that is first optimized

for multiplicative complexity and then for (bitslice) gate complexity;
– tools and documentation to optimize implementations of small nonlinear

functions such as S-boxes using SAT solvers, with respect to multiplica-
tive complexity, bitslice gate complexity, gate complexity, or circuit depth
complexity, are put into the public domain. These tools are available online.

2 The Shortest Linear Straight-Line Program Problem

Before tackling the optimization of S-boxes, let us restrict ourselves to linear
functions and let us consider the Shortest Linear Program (SLP) problem over
GF (2). Let A be an m×n matrix of constants over GF (2) and let x be a vector
of n variables over GF (2). The SLP problem is to find the program with the
smallest number of lines that computes Ax, where every program line is of a
certain form.
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Let Z be a set of variables over GF (2), that initially contains the input
variables {x0, . . . , xn−1}. Let zi, zj ∈ Z. Then every program line is of the form

z′ := zi + zj .

After executing this program line, the new variable z′ is added to the set, Z :=
Z ∪{z′}. The new variable z′ can therefore be used in the next program line. The
program is said to compute Ax when ∃(z1, . . . , zm) ∈ Zm {Ax = (z1, . . . , zm)ᵀ}
holds.

Being able to find the shortest straight-line linear program has obvious
applications to cryptology. Solving the SLP over GF (2) is equivalent to finding
the shortest circuit to compute a function using only XOR gates. Optimizing
implementations of linear operations, such as MixColumns in AES and the linear
transformation in certain implementations of SubBytes, can therefore be seen
as instances of the SLP problem over GF (2). However, this method does not
apply to nonlinear operations such as S-boxes. We show in Section 3 what kind
of methods can be used in such cases.

Solving the SLP problem. Boyar, Matthews, and Peralta showed in [7] that
the SLP problem over GF (2) is NP-hard. Off-the-shelf SAT solvers can be used
to find solutions for small instances of this problem. Fuhs and Schneider-Kamp
presented a method [16] to encode the SLP problem as an instance of SAT and
they show how this can be used to optimize the affine transformation of AES’s
SubBytes [15,16].

For larger instances, exact methods will quickly become infeasible. Alterna-
tively, Boyar and Peralta published an approach to solve the SLP problem over
GF (2) based on a heuristic [8]. In short, the heuristic method uses a base vector
set S, initialized with unit vectors for all variables in x, and a distance vector
Dist [] that keeps track of the minimal Hamming distance to S for each row in
A. Repeatedly, the sum of the pair of base vectors in S that minimizes the sum
of Dist [] is added to S and Dist [] is updated, until Dist [] is the all-zero vector.
If there is a tie between two pairs of base vectors, the pair that maximizes the
Euclidean length of the new Dist [] vector is chosen. This algorithm makes it
possible to find solutions to larger instances of the SLP problem.

3 Optimizing S-box Implementations using SAT-solvers

For nonlinear functions such as S-boxes, known approaches based on heuristics [8]
all exploit additional algebraic structure that may be available, e.g., as for the
S-box of AES. However, in general this additional structure may not exist and
one may need to fall back to generic methods such as SAT solvers.

S-box implementations in both software and hardware can be optimized with
SAT solvers according to several criteria. In this paper we consider the following
optimization goals:
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Multiplicative complexity The multiplicative complexity of a function [9] is
defined as the smallest number of nonlinear gates with fan-in 2 required
to compute this function. If we restrict our S-box implementations to the
{AND, OR, XOR, NOT} operations, we only need to consider the number of ANDs
and ORs. Optimizing for this goal is useful in the case of protecting against side-
channel attacks using random masks, where nonlinear gates are typically more
expensive to mask. There are also applications in multi-party computation
and fully homomorphic encryption, where the cost of nonlinear operations is
even more significant [1].

Bitslice gate complexity The bitslice gate complexity of a function [12] is
defined as the smallest number of operations in {AND, OR, XOR, NOT} required
to compute this function. This translates directly to efficient bitsliced soft-
ware implementations, as on most common CPU architectures, there are no
instructions for computing NAND, NOR, or XNOR immediately.

Gate complexity The gate complexity of a function is defined as the smallest
number of logic gates required to compute this function. Unlike for bitslice gate
complexity, NAND, NOR, and XNOR gates are now also allowed. This translates
to efficient hardware implementations, although the different amounts of area
required by these types of gates and the different delays still need to be taken
into account. Note that we only consider gates with a fan-in of at most 2.

Circuit depth complexity The depth of a circuit is defined as the length of
the longest paths from an input gate to an output gate. Every function can
be computed by a circuit with depth 2, e.g., by expressing the function in
conjunctive or disjunctive normal form. However, this can lead to very wide
circuits with a lot of gates, which is typically not desirable. There is somewhat
of a trade-off between circuit depth and number of gates. Still, optimizing
for this goal is useful in the case of hardware implementations, to be able
to decrease the total delay and therefore to be able to increase the clock
frequency. Again, only gates with a fan-in of at most 2 are considered.

These criteria come with corresponding decision problems. For example,
given a function f and some positive integer k, the multiplicative complexity
decision problem is defined as:

“Is there a circuit that implements f and that uses at most k nonlinear
operations?”

The decision problems for the other three optimization goals can be defined
analogously. Off-the-shelf SAT solvers can be used to solve these decision problems.
When a SAT solver successfully finds a circuit for some value k but outputs
UNSAT for k− 1, it is proven that k is the minimum value. Note that when a SAT
solver outputs SAT for some value k, it also provides a satisfying valuation that
can be used to reconstruct an implementation of f .

In order to use SAT solvers to solve these decision problems, the problems
first have to be encoded in logical formulas in conjunctive normal form (CNF),
because that is the input format that the SAT solver requires.
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3.1 Notation

For the encoding, we use the notation of [20]. We consider systems of multivariate
equations over GF (2). In these equations, let:

– xi be variables representing S-box inputs;
– yi be variables representing S-box outputs;
– qi be variables representing gate inputs;
– ti be variables representing gate outputs;
– ai be variables representing wiring between gates;
– bi be variables representing wiring ‘inside’ gates. This will become more clear

when they are first used in Section 3.3.

In the implementations the logical connectives are used to denote the types
of operations, i.e., let ∧, ∨, ⊕, ¬ denote AND, OR, XOR, NOT, respectively, and let
↑, ↓, ↔ denote NAND, NOR, XNOR, respectively.

3.2 Optimizing for Multiplicative Complexity

Courtois, Mourouzis and Hulme [13,20] suggested a method to encode the multi-
plicative complexity decision problem. Let f : Fn

2 → Fm
2 be an S-box and let k

be the multiplicative complexity that we want to test for. Then first create a set
of equations C in ANF consisting of:

– ∀i ∈ {0, . . . , k − 1}: ti = q2i · q2i+1, to encode the k AND gates.

– ∀i ∈ {0, . . . , 2k−1}: qi = al+
(∑n−1

j=0 al+j+1 · xj

)
+

(∑b i
2c−1

j=0 al+n+j+1 · tj
)

,

where l = i(n + 1) +
⌊
i2−2i+1

4

⌋
, to encode that the inputs of the AND gates

can be any linear combination of S-box inputs and previous AND gate outputs.
The single a represents an optional NOT gate.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+
(∑k−1

j=0 as+n+j · tj
)

, where

s = 2k(n + 1) + k(k− 1) + i(n + k), to encode that the S-box outputs can be
any linear combination of S-box inputs and AND gate outputs.

For example, when n = m = 4 and k = 3, this leads to the following set of
equations C:

q0 = a0 + a1 · x0 + a2 · x1 + a3 · x2 + a4 · x3

q1 = a5 + a6 · x0 + a7 · x1 + a8 · x2 + a9 · x3

t0 = q0 · q1
q2 = a10 + a11 · x0 + a12 · x1 + a13 · x2 + a14 · x3 + a15 · t0
q3 = a16 + a17 · x0 + a18 · x1 + a19 · x2 + a20 · x3 + a21 · t0
t1 = q2 · q3
q4 = a22 + a23 · x0 + a24 · x1 + a25 · x2 + a26 · x3 + a27 · t0 + a28 · t1
q5 = a29 + a30 · x0 + a31 · x1 + a32 · x2 + a33 · x3 + a34 · t0 + a35 · t1
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t2 = q4 · q5
y0 = a36 · x0 + a37 · x1 + a38 · x2 + a39 · x3 + a40 · t0 + a41 · t1 + a42 · t2
y1 = a43 · x0 + a44 · x1 + a45 · x2 + a46 · x3 + a47 · t0 + a48 · t1 + a49 · t2
y2 = a50 · x0 + a51 · x1 + a52 · x2 + a53 · x3 + a54 · t0 + a55 · t1 + a56 · t2
y3 = a57 · x0 + a58 · x1 + a59 · x2 + a60 · x3 + a61 · t0 + a62 · t1 + a63 · t2

This set of equations does not depend on f yet, but only on the values of
n and m. The equations in C have to be satisfied for all possible S-box inputs.
An equation set C ′ is created that contains 2n copies of the equations in C, in
which all xi, yi, qi, ti are renumbered, but in which all ai, bi remain the same. f
is ‘bound’ to the problem description by adding its truth table as 2n(n + m)
constant equations, i.e., one for every bit in both the S-box input and the S-box
output, to C ′.

C ′ is in ANF. The method by Bard, Courtois, and Jefferson [3] for converting
sparse systems of low-degree multivariate polynomials over GF (2) is used to
convert C ′ to CNF, such that it is understood by the SAT solver.

Results. This method makes it feasible to find the multiplicative complexity
of several 4-bit and 5-bit S-boxes. Finding the multiplicative complexity comes
with an actual implementation that uses this minimal number of nonlinear gates.
After Courtois, Hulme, and Mourouzis applied this method to the S-boxes of
PRESENT and GOST [12], we show that we can also find results for more
recently introduced 4-bit and 5-bit S-boxes.

We consider the S-boxes, and if applicable, their inverses (denoted by −1), in
Ascon [14], ICEPOLE [19], Keccak [4]/Ketje [5]/Keyak [6], all PRIMATEs [2],
Joltik [17]/Piccolo [22], LAC [23], Minalpher [21], Prøst [18], and RECTAN-
GLE [24]. Minalpher’s and Prøst’s S-boxes are involutory, which is why their
inverses are not listed separately. The inverse S-boxes in Ascon, ICEPOLE, Kec-
cak, Ketje, and Keyak are not actually used in decryption and are therefore not
considered.

For all S-boxes except the one used by the PRIMATEs we are able to prove
the multiplicative complexity. The results are summarized in Table 1. The actual
implementations can be found in Appendix A, but note that these should not
be used by themselves as we are being very generous with XOR gates. The linear
parts should be optimized separately, as we will demonstrate in Section 4.

These and subsequent results are obtained using MiniSat 2.2.01 and Cryp-
toMiniSat 2.9.102 using default parameters on a single core of an Intel Xeon
E7-4870 v2 running at 2.30 GHz.

For the PRIMATEs S-box and inverse S-box, we find solutions for k = 7 and
k = 10, respectively. Furthermore, we find for both S-boxes that the case for

1 http://www.minisat.se/MiniSat.html
2 http://www.msoos.org/cryptominisat2/
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S-box Size nxm Multiplicative complexity

Ascon 5x5 5
ICEPOLE 5x5 6
Keccak/Ketje/Keyak 5x5 5
PRIMATEs 5x5 ∈ {6, 7}
PRIMATEs−1 5x5 ∈ {6, 7, 8, 9, 10}
Joltik/Piccolo 4x4 4
Joltik−1/Piccolo−1 4x4 4
LAC 4x4 4
Minalpher 4x4 5
Prøst 4x4 4
RECTANGLE 4x4 4
RECTANGLE−1 4x4 4

Table 1. Multiplicative complexity of S-boxes

k = 5 yields UNSAT. We have started several attempts to find a decisive answer
for k = 6, including

– reducing the CNF, e.g., using NICESAT [11];
– fine-tuning SAT solver parameters;
– trying other SAT solvers;
– trying other SAT solvers that can run in parallel on many cores, such as

Plingeling and Treengeling3; and
– letting all of this run for several months on a machine with 120 cores and 3

TB of RAM.

Unfortunately, none of these attempts resulted in an answer as no solver
instance has terminated yet. As these SAT solvers typically have much more
difficulty with proving the UNSAT case than proving the SAT case, and as the
SAT proof for k = 7 was found in less than 40 hours, we expect the k = 6 case
to yield UNSAT and we therefore conjecture the multiplicative complexity of the
PRIMATEs S-box to be 7. In Section 4 we go into more detail on optimizing the
PRIMATEs S-box. For the inverse S-box, we did not manage to find solutions
for k ∈ {6, 7, 8, 9}.

3.3 Optimizing for Bitslice Gate Complexity

In [13,20], a method is also given to optimize for bitslice gate complexity. However,
it is only applied on the small CTC2 toy cipher and therefore it remains unclear
how practical this method is for real-world ciphers. We investigate this by applying
the method to the same S-boxes as in the previous section.

The encoding scheme for the bitslice gate complexity decision problem is
slightly different compared to the multiplicative complexity decision problem.
Let f : Fn

2 → Fm
2 again be an S-box and let k now be the bitslice gate complexity

that we want to test for. Then our first set of equations C in ANF consists of:

3 http://fmv.jku.at/lingeling/
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– ∀i ∈ {0, . . . , k−1}: ti = b3i·q2i·q2i+1+b3i+1·q2i+b3i+1·q2i+1+b3i+2+b3i+2·q2i,
to encode the k AND, OR, XOR or NOT gates. The bi determine what kind of
gate this will represent, as can be seen in Table 2.

– ∀i ∈ {0, . . . , k − 1}: 0 = b3i · b3i+2 and 0 = b3i+1 · b3i+2, to make sure that
the gate is either a unary NOT or a binary AND/OR/XOR, but not the XOR of
them. This excludes NAND/NOR/XNOR gates.

– ∀i ∈ {0, . . . , 2k − 1}: qi =
(∑n−1

j=0 al+j · xj

)
+

(∑b i
2c−1

j=0 al+n+j · tj
)

, where

l = in +
⌊
i2−2i+1

4

⌋
, to encode that the inputs of the gates can be any S-box

input bit or any previously computed bit.
– ∀i ∈ {0, . . . , 2k−1}, ∀j ∈ {l, . . . , l+n+

⌊
i
2

⌋
−2},∀u ∈ {j+1, . . . , l+n+

⌊
i
2

⌋
−1}:

0 = aj · au, to encode an ‘at most one’ constraint on the gate inputs.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+
(∑k−1

j=0 as+n+j · tj
)

, where

s = 2kn + k(k − 1) + i(n + k), to encode that the S-box output bit can be
any S-box input bit or any gate output.

– ∀i ∈ {0, . . . ,m−1}, ∀j ∈ {s, . . . , s+n+k−2}, ∀u ∈ {j+1, . . . , s+n+k−1}:
0 = aj · au, to encode an ‘at most one’ constraint on the S-box outputs.

b3ib3i+1b3i+2 Gate ti function

000 0
001 ¬q2i
010 q2i ⊕ q2i+1

011 Prevented by constraint on b3i+2

100 q2i ∧ q2i+1

101 Prevented by constraint on b3i+2

110 q2i ∨ q2i+1

111 Prevented by constraint on b3i+2

Table 2.

Converting C to C ′ and then to CNF is the same process as with the
multiplicative complexity decision problem. Note that the ‘constraint equations’
on ai and bj do not have to be duplicated 2n times for C ′, as they are not
renumbered. This saves a lot of redundant clauses.

Results. As the amount of CNF clauses that is necessary to describe the
bitslice gate complexity decision problem becomes much larger compared to the
multiplicative complexity decision problem, it can take much more time for a
SAT solver to actually solve a problem instance. Still, for some 4-bit and 5-bit
S-boxes results can be obtained within minutes or within a few hours. Table 3
contains some examples. If a bitslice gate complexity is listed as ≤ k, a solution
was found for k, but we were unable to prove that this is the minimum because
the SAT solver did not terminate within a reasonable amount of time for k − 1.
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The actual implementations with the given number of operations can be found
in Appendix A.

S-box Size nxm Bitslice gate complexity Implementation

Keccak/Ketje/Keyak 5x5 ≤ 13 3 AND, 2 OR, 5 XOR, 3 NOT

Joltik/Piccolo 4x4 10 1 AND, 3 OR, 4 XOR, 2 NOT

Joltik−1/Piccolo−1 4x4 10 1 AND, 3 OR, 4 XOR, 2 NOT

LAC 4x4 11 2 AND, 2 OR, 6 XOR, 1 NOT

Minalpher 4x4 ≥ 11
Prøst 4x4 8 4 AND, 4 XOR

RECTANGLE 4x4 ∈ {11, 12} 1 AND, 3 OR, 7 XOR, 1 NOT

RECTANGLE−1 4x4 ∈ {10, 11, 12} 4 OR, 7 XOR, 1 NOT

Table 3. Bitslice gate complexity of S-boxes

For Prøst and the (forward) S-box of RECTANGLE, it is interesting to
note that the SAT solvers are able to find the same implementations as the
corresponding authors already suggested. We have proven that their bitsliced
implementations are indeed minimal.

3.4 Optimizing for Gate Complexity

A method to encode the gate complexity decision problem was also provided
in [13,20], but again, actual results were only given for the CTC2 toy cipher.
We show that it is feasible to compute the gate complexity for real-world 4-bit
S-boxes as well.

The encoding is very similar to the bitslice gate complexity decision problem.
The first set of equations C in ANF only differs in two places:

– Instead of the previous rule for ti, the gates are encoded differently:
∀i ∈ {0, . . . , k − 1}: ti = b3i · q2i · q2i+1 + b3i+1 · q2i + b3i+1 · q2i+1 + b3i+2, to
encode the k gates. The bi determine what kind of gate this will represent,
as can be seen in Table 4.

– The additional constraints on the bi are completely omitted.

Converting C to C ′ and then to CNF is similar to the previous optimization
goals.

Results. Our results on real-world 4-bit S-boxes are summarized in Table 5.
The full implementations can be found in Appendix A. For our 5-bit S-boxes
we did not manage to retrieve results. Note that all types of logic gates are
considered equally expensive. There is no type of gate that is preferred over the
other, because information such as differences in area consumption or time delay
are not taken into account. The implementations found by the SAT solver should
therefore not be used directly for hardware implementations. However, they serve
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b3ib3i+1b3i+2 Gate ti function

000 0
001 1
010 q2i ⊕ q2i+1

011 q2i ↔ q2i+1

100 q2i ∧ q2i+1

101 q2i ↑ q2i+1

110 q2i ∨ q2i+1

111 q2i ↓ q2i+1

Table 4.

as an optimal starting point from where to swap ‘expensive’ gates for cheaper
ones, depending on the specific technology that is to be used. For example, the
designers of Piccolo suggested a hardware implementation [22] of their S-box that
may or may not be more efficient than the implementation given here, depending
on the specific technology.

S-box Gate
complexity

Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

Joltik−1/Piccolo−1 8 2 OR, 1 XOR, 2 NOR, 3 XNOR

LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR

Prøst 8 4 AND, 4 XOR

RECTANGLE ∈ {10, 11} 1 AND, 1 OR, 2 XOR, 1 NAND, 1 NOR, 5 XNOR

RECTANGLE−1 ∈ {10, 11} 1 AND, 1 OR, 6 XOR, 1 NAND, 1 NOR, 1 XNOR

Table 5. Gate complexity of S-boxes

3.5 Optimizing for Depth Complexity

There are many situations in high-speed hardware implementations where the
implementer wants to keep the depth of the circuit as low as possible, in order
to be able to increase the clock frequency, without having to use significantly
more gates. We provide a novel method to find low-depth implementations of
small functions such as S-boxes using SAT solvers. This method is inspired by
the encoding of the gate complexity decision problem, but modified in some
important ways.

In the encoding of the gate complexity decision problem, we expressed that
every gate can use the S-box input and the outputs of previous gates as its input.
The key idea here is to divide the circuit into depth layers and to encode the
notion that a gate can only use the S-box input and the output of gates in the
previous layers as its input. This is made more precise later.
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First we note that it is necessary to limit the potential increase of the number
of gates when reducing the depth of a circuit. We introduce a fixed maximum
layer width w to address this, so we allow at most w gates to be executed in
parallel. For some function f , we want to be able to answer questions such as:
“is there a circuit implementing f with depth k and with at most w gates on each
depth layer?”.

Using this fixed maximum layer width, we make our encoding method more
precise by once more creating a set C of multivariate equations over GF (2) in
ANF that consists of:

– ∀i ∈ {0, . . . , kw− 1}: ti = b3i · q2i · q2i+1 + b3i+1 · q2i + b3i+1 · q2i+1 + b3i+2, to
encode the kw gates. The bi determine what kind of gate this will represent,
as can be seen in Table 4.

– ∀i ∈ {0, . . . , 2kw − 1}: qi =
(∑n−1

j=0 al+j · xj

)
+
(∑v−1

j=0 al+n+j · tj
)

, where

v =
⌊

i
2w

⌋
w and l = in+ v (i− v − w), to encode that the inputs of the gates

can be any S-box input bit or any previously computed bit.
– ∀i ∈ {0, . . . , 2kw−1}, ∀j ∈ {l, . . . , l+n+v−2}, ∀u ∈ {j+1, . . . , l+n+v−1}:

0 = aj · au, to encode an ‘at most one’ constraint on the gate inputs.

– ∀i ∈ {0, . . . ,m − 1}: yi =
(∑n−1

j=0 as+j · xj

)
+
(∑kw−1

j=0 as+n+j · tj
)

, where

s = kw(2n + kw − w) + i(n + kw), to encode that the S-box output bit can
be any S-box input bit or any gate output.

– ∀i ∈ {0, . . . ,m−1}, ∀j ∈ {s, . . . , s+n+kw−2}, ∀u ∈ {j+1, . . . , s+n+kw−1}:
0 = aj · au, to encode an ‘at most one’ constraint on the S-box outputs.

Converting C to C ′ and subsequently expressing this in CNF is again the
same process as before.

Results. Using our method, we are able to find low-depth implementations for
our 4-bit S-boxes. The results are summarized in Table 6 and the corresponding
implementations can be found in Appendix A. The last column in Table 6 lists
scenarios that yield UNSAT, to show boundaries on what is possible. The trade-off
between circuit depth and the number of gates is made here in such a way that
reducing the depth by 1 would imply the implementation to have at least twice
as many gates as is required by the gate complexity.

4 Combining Criteria: Optimizing the PRIMATEs S-box

So far, we have seen how to optimize for one specific goal. However, a result that
is optimized for multiplicative complexity may contain more XOR gates than is
desired, and a result that is optimized for gate complexity may contain more
nonlinear gates than is desired for a masked implementation. Here we show how
multiple optimization goals can be combined by looking at the 5-bit PRIMATEs
S-box. We first optimize for multiplicative complexity to have a minimal number
of nonlinear gates, and subsequently we minimize the number of linear gates.
The result is an implementation that has 4 AND, 3 OR, 31 XOR, and 5 NOT gates.
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S-box Depth
complexity

w Implementation UNSAT boundaries

Joltik/Piccolo 4 2 2 OR, 1 XOR,
2 NOR, 3 XNOR

k = 4, w = 1
k = 3, w = 10

Joltik−1/Piccolo−1 4 3 3 OR, 5 XOR,
1 NOR, 3 XNOR

k = 4, w = 2
k = 3, w = 10

LAC 3 6 3 OR, 4 XOR,
4 NAND, 4 XNOR

k = 3, w = 4
k = 2, w = 10

Prøst 4 3 4 AND, 1 OR, 4 XOR,
1 NAND, 1 XNOR

k = 4, w = 2
k = 3, w = 10

RECTANGLE 3 6 2 AND, 3 OR, 5 XOR,
1 NAND, 1 NOR, 3 XNOR

k = 3, w = 4
k = 2, w = 10

RECTANGLE−1 3 6 1 OR, 8 XOR,
3 NAND, 2 NOR, 2 XNOR

k = 3, w = 4
k = 2, w = 10

Table 6. Depth complexity of S-boxes

The PRIMATEs S-box is an almost bent permutation with a maximum
linear and differential probability of 2−4. It is chosen because of its low area
consumption in hardware implementations. It can be defined by the following
table:

[1, 0, 25, 26, 17, 29, 21, 27, 20, 5, 4, 23, 14, 18, 2, 28, . . .

. . . , 15, 8, 6, 3, 13, 7, 24, 16, 30, 9, 31, 10, 22, 12, 11, 19]

When the optimization method for multiplicative complexity is applied, we
find a solution with multiplicative complexity 7 as follows:

q0 = x0 ⊕ x3

q1 = x1

t0 = q0 ∨ q1

q2 = ¬(x1 ⊕ x3)

q3 = x0 ⊕ x2

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x0 ⊕ x2 ⊕ x3

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x2 ⊕ x3 ⊕ x4)

q7 = x1 ⊕ x2 ⊕ x4

t3 = q6 ∨ q7

q8 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

q9 = x2 ⊕ t0 ⊕ t3

t4 = q8 ∧ q9

q10 = x0 ⊕ x3 ⊕ x4

q11 = ¬(x0 ⊕ x4)

t5 = q10 ∨ q11

q12 = ¬(x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4)

q13 = x2 ⊕ x3

t6 = q12 ∧ q13

y0 = x1 ⊕ x3 ⊕ t2 ⊕ t3 ⊕ t5 ⊕ t6

y1 = x0 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6

y2 = x1 ⊕ x2 ⊕ x4 ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5

y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6

y4 = ¬(x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)
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It is not hard to see that there are a lot of redundant XOR operations in this
implementation. We distinguish between XOR operations before the nonlinear
gates (on xi) and XOR operations after the nonlinear gates (on ti). It is possible
to see them as two straight-line linear programs, where the first describes the
linear part of the S-box approached from the input and the second describes the
linear part approached from the S-box output.

The shortest linear straight-line program problem A1x1 can be given by

A1 =



q0 1 0 0 1 0
q1 0 1 0 0 0
q2 0 1 0 1 0
q3 1 0 1 0 0
q4 1 1 0 0 1
q5 1 0 1 1 0
q6 1 0 1 1 1
q7 0 1 1 0 1
q8 1 1 1 1 1
q9 0 0 1 0 0
q10 1 0 0 1 1
q11 1 0 0 0 1
q12 0 1 1 0 0
q13 0 0 1 1 0
y0 0 1 0 1 0
y1 1 0 0 0 1
y2 0 1 1 0 1
y3 1 0 1 1 1
y4 0 0 1 0 0



x1 =


x0

x1

x2

x3

x4

 .

The shortest linear straight-line program problem A2x2 can be given by

A2 =



q9 1 0 0 1 0 0 0
q12 1 0 1 1 1 0 0
y0 0 0 1 1 0 1 1
y1 0 1 1 1 1 1 1
y2 0 1 0 1 1 1 0
y3 0 0 0 1 1 1 1
y4 1 0 1 1 1 1 1


x2 =



t0
t1
t2
t3
t4
t5
t6


.

We are able to find a minimal straight-line program computing A2x2 using
SAT solvers. We use the method suggested by Fuhs and Schneider-Kamp [16] to
encode the SLP problem as a SAT instance in CNF. This yields a result that is
incorporated in our implementation of the PRIMATEs S-box. Finding a minimal
straight-line program computing A1x1 turned out to be infeasible using SAT
solvers within a reasonable amount of time. Therefore, we apply the heuristic
approach as suggested by Boyar and Peralta [8]. This does provide us with a
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short straight-line program. We combine both results and amend the original
PRIMATEs S-box implementation to get the more efficient implementation below,
where zi represent helper variables.

z0 = x0 ⊕ x4

z1 = x1 ⊕ x2

z2 = x2 ⊕ x3

q0 = x0 ⊕ x3

t0 = q0 ∨ x1

q2 = x1 ⊕ x3

q3 = ¬(x0 ⊕ x2)

t1 = q2 ∨ q3

q4 = x1 ⊕ z0

q5 = x0 ⊕ z2

t2 = q4 ∧ q5

q6 = ¬(x4 ⊕ q5)

q7 = x4 ⊕ z1

t3 = q6 ∨ q7

q8 = q4 ⊕ z2

z9 = t0 ⊕ t3

q9 = x2 ⊕ z9

t4 = q8 ∧ q9

q10 = ¬(x3 ⊕ z0)

t5 = q10 ∧ z0

q12 = ¬(z1 ⊕ z9 ⊕ t2 ⊕ t4)

t6 = q12 ∧ z2

z3 = t5 ⊕ t6

z4 = t3 ⊕ z3

z5 = t2 ⊕ z4

z6 = t1 ⊕ t6

z7 = t4 ⊕ z5

z8 = t1 ⊕ z7

z10 = t0 ⊕ z7

z11 = t4 ⊕ z4

z12 = z6 ⊕ z11

y0 = ¬(q2 ⊕ z5)

y1 = z0 ⊕ z8

y2 = q7 ⊕ z12

y3 = q6 ⊕ z11

y4 = x2 ⊕ z10

We are able to decrease the previous result of 58 XOR gates to only 31 XOR

gates.

Tools. We provide tools to generate C ′ in ANF for all discussed optimization
goals and to convert a SAT solver solution back to an S-box implementation. We
place those tools into the public domain. They and additional documentation
are available online at https://github.com/Ko-/sboxoptimization.

5 Conclusion

SAT solvers can be used to find minimal implementations for small functions
such as S-boxes with respect to criteria as the multiplicative complexity, bitslice
gate complexity, gate complexity, and circuit depth complexity. We have shown
how this can be done and how multiple criteria can be combined. However, for
8-bit S-boxes and larger functions these methods quickly become infeasible. One
will then have to resort to approaches based on heuristics.
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5. Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles van Assche, and Ronny van
Keer. Ketje v1. CAESAR submission: http://competitions.cr.yp.to/round1/

ketjev11.pdf, 2014. http://ketje.noekeon.org/.
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A Optimized S-box Implementations

For all given implementations, x0 and y0 denote the most significant bit of the
S-box input x and the S-box output y, respectively.

A.1 Optimized for Multiplicative Complexity

Only implementations that do not reach the minimal number of nonlinear oper-
ations when optimizing for other criteria are listed here. The implementations
below serve as a demonstration of what kind of output can be expected from SAT
solvers when optimizing for multiplicative complexity. To increase the amount
of solutions and therefore the likelihood that we will find one fast, we do not
put restrictions on the number of linear gates, which is why the implementations
below are not very efficient. The number of linear gates can be reduced further
as shown in Section 4.

Ascon
k = 5

q0 = ¬(x3 ⊕ x4)

q1 = ¬x4

t0 = q0 ∧ q1

q2 = x0 ⊕ x2 ⊕ x4

q3 = x1

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x1

t2 = q4 ∧ q5

q6 = x3 ⊕ x4

q7 = x0

t3 = q6 ∧ q7

q8 = x3 ⊕ t1 ⊕ t2
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q9 = x1 ⊕ x2

t4 = q8 ∧ q9

y0 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ t1

y1 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t4

y2 = x1 ⊕ x2 ⊕ x3 ⊕ t0

y3 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3

y4 = x3 ⊕ x4 ⊕ t2

ICEPOLE
k = 6

q0 = x0 ⊕ x3 ⊕ x4

q1 = x0 ⊕ x3

t0 = q0 ∧ q1

q2 = ¬(x2 ⊕ x4)

q3 = x2 ⊕ x3 ⊕ x4

t1 = q2 ∧ q3

q4 = x2 ⊕ t0 ⊕ t1

q5 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t1

t2 = q4 ∧ q5

q6 = x0 ⊕ x1 ⊕ x4

q7 = x1 ⊕ x4

t3 = q6 ∧ q7

q8 = x1 ⊕ x2 ⊕ t0 ⊕ t1 ⊕ t2

q9 = x0 ⊕ x1 ⊕ t0 ⊕ t1 ⊕ t2

t4 = q8 ∧ q9

q10 = ¬(x2 ⊕ t1 ⊕ t3 ⊕ t4)

q11 = ¬(x0 ⊕ t4)

t5 = q10 ∧ q11

y0 = x0 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t5

y1 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t2 ⊕ · · ·
· · · ⊕ t3 ⊕ t4 ⊕ t5

y2 = x0 ⊕ x3 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5

y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ · · ·
· · · ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5

y4 = x2 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t4 ⊕ t5

PRIMATEs

k = 7
See Section 4.

PRIMATEs−1

k = 10

q0 = x0 ⊕ x2 ⊕ x3

q1 = ¬(x2 ⊕ x4)

t0 = q0 ∧ q1

q2 = x0

q3 = x1

t1 = q2 ∧ q3

q4 = x2 ⊕ x3 ⊕ t0

q5 = ¬x1

t2 = q4 ∧ q5

q6 = x1 ⊕ t1 ⊕ t2

q7 = x2 ⊕ x4

t3 = q6 ∧ q7

q8 = x2 ⊕ t0 ⊕ t2 ⊕ t3

q9 = x0 ⊕ x3 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3

t4 = q8 ∧ q9

q10 = x0 ⊕ x2 ⊕ x3 ⊕ t1 ⊕ t2 ⊕ t3

q11 = x1 ⊕ x3 ⊕ t0 ⊕ t2

t5 = q10 ∧ q11

q12 = x0 ⊕ x4

q13 = t0 ⊕ t3 ⊕ t4 ⊕ t5

t6 = q12 ∧ q13

q14 = ¬(x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ t0 ⊕ · · ·
· · · ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)

q15 = x0 ⊕ x3 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t4 ⊕ t6

t7 = q14 ∧ q15

q16 = ¬(x2 ⊕ x3 ⊕ t2 ⊕ t5)

q17 = ¬(x0 ⊕ x1 ⊕ x4 ⊕ t0 ⊕ t1 ⊕ · · ·
· · · ⊕ t2 ⊕ t3 ⊕ t6 ⊕ t7)

t8 = q16 ∧ q17

q18 = x4 ⊕ t2 ⊕ t5 ⊕ t6 ⊕ t8

q19 = ¬(x0 ⊕ x1 ⊕ x4 ⊕ t4 ⊕ t7 ⊕ t8)

t9 = q18 ∧ q19
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y0 = x0 ⊕ x1 ⊕ t0 ⊕ t6 ⊕ t7 ⊕ t9

y1 = t0 ⊕ t3 ⊕ t6

y2 = t3 ⊕ t5 ⊕ t6 ⊕ t7

y3 = t1 ⊕ t2 ⊕ t4

y4 = x1 ⊕ t0 ⊕ t4 ⊕ t8

Minalpher
k = 5

q0 = x1 ⊕ x2 ⊕ x3

q1 = x1

t0 = q0 ∧ q1

q2 = x0 ⊕ x1 ⊕ x3

q3 = x1 ⊕ x2 ⊕ t0

t1 = q2 ∧ q3

q4 = x0 ⊕ t0

q5 = x0 ⊕ x1 ⊕ x2 ⊕ t0

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x1 ⊕ x2 ⊕ t0 ⊕ t2)

q7 = ¬(x0 ⊕ x1 ⊕ t1)

t3 = q6 ∧ q7

q8 = x0 ⊕ x2 ⊕ x3 ⊕ t0 ⊕ t1 ⊕ t2 ⊕ t3

q9 = x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3

t4 = q8 ∧ q9

y0 = x2 ⊕ t4

y1 = x0 ⊕ x2 ⊕ t1

y2 = t0 ⊕ t3

y3 = t1 ⊕ t2 ⊕ t3

A.2 Optimized for Bitslice Gate Complexity

Keccak/Ketje/Keyak
k = 13

t0 = ¬x2

t1 = t0 ∧ x3

y1 = t1 ⊕ x1

t3 = ¬x4

t4 = t3 ∧ x0

y3 = x3 ⊕ t4

t6 = x3 ∨ t3

y2 = t0 ⊕ t6

t8 = ¬x0

t9 = y1 ∨ t0

t10 = t8 ∧ x1

y0 = t9 ⊕ t8

y4 = x4 ⊕ t10

Joltik/Piccolo
k = 10

t0 = x0 ∨ x1

t1 = t0 ⊕ x3

y0 = ¬t1

t3 = x2 ∨ y0

y2 = t3 ⊕ x1

t5 = x1 ∨ x2

t6 = t5 ⊕ x0

t7 = t1 ∧ t6

y3 = x2 ⊕ t7

y1 = ¬(t6)

Joltik−1/Piccolo−1

k = 10

t0 = ¬x1

t1 = ¬x0

t2 = t1 ∧ t0

y2 = t2 ⊕ x3

t4 = x0 ∨ y2

y1 = x2 ⊕ t4

t6 = y2 ∨ y1

y0 = t6 ⊕ t0

t8 = y0 ∨ y1

y3 = t8 ⊕ t1

LAC
k = 11

t0 = x3 ⊕ x2

t1 = x1 ∨ x0

y3 = t1 ⊕ t0

t3 = x1 ∧ y3

t4 = ¬x3

t5 = t4 ⊕ t3

y2 = t5 ⊕ x0

t7 = t5 ∧ y2

t8 = y3 ∨ y3

y1 = t7 ⊕ x1

y0 = t8 ⊕ x0

Prøst
k = 8

t0 = x2 ∧ x1

y1 = t0 ⊕ x3

t2 = x0 ∧ x1

y0 = x2 ⊕ t2

t4 = y1 ∧ y0
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y2 = x0 ⊕ t4

t6 = y1 ∧ y2

y3 = x1 ⊕ t6

RECTANGLE
k = 12

t0 = x3 ∨ x0

t1 = x1 ⊕ t0

y1 = x2 ⊕ t1

t3 = x3 ∧ t1

t4 = x0 ⊕ t3

y2 = y1 ⊕ t4

t6 = x3 ⊕ x2

t7 = ¬y2
t8 = t7 ∨ t1

y0 = t8 ⊕ t6

t10 = t7 ∨ y0

y3 = t10 ⊕ t1

RECTANGLE−1

k = 12

t0 = ¬x2

t1 = x0 ∨ t0

t2 = x3 ⊕ t1

y2 = t2 ⊕ x1

t4 = t0 ∨ t2

t5 = x0 ⊕ t4

y3 = t5 ⊕ y2

t7 = t2 ∨ y3

t8 = t7 ⊕ t5

y0 = t8 ⊕ x2

t10 = y0 ∨ y3

y1 = t10 ⊕ t2

A.3 Optimized for Gate Complexity

Joltik/Piccolo
k = 8

t0 = x1 ∨ x0

t1 = x1 ↓ x2

y0 = x3 ↔ t0

y1 = t1 ⊕ x0

t4 = y1 ∨ y0

t5 = y0 ↓ x2

y2 = t5 ↔ x1

y3 = t4 ↔ x2

Joltik−1/Piccolo−1

k = 8

t0 = x1 ↓ x0

y2 = t0 ⊕ x3

t2 = y2 ↓ x0

y1 = x2 ↔ t2

t4 = y1 ∨ y2

y0 = t4 ↔ x1

t6 = y0 ∨ y1

y3 = t6 ↔ x0

LAC
k = 10

t0 = x2 ↔ x3

t1 = x1 ∧ t0

t2 = t1 ⊕ x3

y2 = x0 ↔ t2

t4 = x0 ∨ x1

y3 = t4 ↔ t0

t6 = t3 ∨ y3

t7 = x0 ∨ t2

y0 = t6 ⊕ x0

y1 = x1 ↔ t7

Prøst
k = 8

t0 = x2 ∧ x1

y1 = t0 ⊕ x3

t2 = x0 ∧ x1

y0 = x2 ⊕ t2

t4 = y1 ∧ y0

y2 = x0 ⊕ t4

t6 = y1 ∧ y2

y3 = x1 ⊕ t6

RECTANGLE
k = 11

t0 = x3 ↓ x0

t1 = x1 ⊕ t0

t2 = x2 ↔ x0

y1 = t1 ↔ x2

t4 = t1 ∧ t2

t5 = y1 ↔ x3

t6 = t1 ∨ x3

y2 = t2 ⊕ t6

t8 = y2 ↑ t5
y3 = t1 ↔ t8

y0 = t5 ↔ t4

RECTANGLE−1

k = 11

t0 = x3 ∨ x2

t1 = x0 ⊕ t0

t2 = t1 ↓ x1

t3 = t2 ⊕ x3

y1 = x2 ⊕ t3

t5 = t1 ⊕ x2

y3 = t5 ⊕ x1

t7 = y1 ↑ y3
t8 = y3 ∧ t1

y0 = t7 ↔ t1

y2 = t8 ⊕ t3
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A.4 Optimized for Depth Complexity

The extra whitespace separates the different depth layers.

Joltik/Piccolo
k = 4,w = 2

t0 = x1 ∨ x0

t1 = x1 ↓ x2

y0 = x3 ↔ t0

y1 = t1 ⊕ x0

t4 = y1 ∨ y0

t5 = y0 ↓ x2

y2 = t5 ↔ x1

y3 = t4 ↔ x2

Joltik−1/Piccolo−1

k = 4,w = 3

t0 = x1 ∨ x0

t1 = x2 ↔ x0

t2 = x3 ⊕ x1

t3 = t2 ⊕ t0

y2 = x3 ↔ t0

t5 = t0 ⊕ t1

t6 = t3 ↓ t5
t7 = y2 ∨ t1

t8 = y2 ∨ x0

y1 = x2 ⊕ t8

y3 = x0 ⊕ t6

y0 = t3 ↔ t7

LAC
k = 3,w = 6

t0 = x0 ↑ x1

t1 = x3 ⊕ x0

t2 = x3 ↔ x2

t3 = x2 ⊕ x0

t4 = x2 ∨ x0

t5 = x1 ∨ x0

y3 = t5 ↔ t2

t7 = t0 ↔ t4

t8 = t5 ↑ x3

t9 = t3 ↑ t2
t10 = t5 ∨ t2

t11 = x1 ↑ t2

y1 = t10 ⊕ t7

y2 = t11 ⊕ t1

y0 = t9 ↔ t8

Prøst
k = 4,w = 3

t0 = x1 ∧ x2

t1 = x1 ∧ x0

t2 = x3 ∧ x0

y1 = t0 ⊕ x3

t4 = t2 ⊕ x1

y0 = x2 ⊕ t1

t6 = y0 ↑ y1
t7 = y1 ∧ x2

t8 = t4 ∨ t2

y2 = x0 ↔ t6

y3 = t7 ⊕ t8

RECTANGLE
k = 3,w = 6

t0 = x0 ↓ x3

t1 = x1 ⊕ x2

t2 = x3 ↔ x2

t3 = x0 ∧ x1

t4 = x1 ∧ x2

t5 = x1 ⊕ x0

t6 = t4 ∨ t2

t7 = x3 ↑ t5
t8 = t4 ⊕ t3

t9 = t1 ∨ t5

y1 = t0 ↔ t1

t11 = t0 ∨ t2

y3 = t9 ⊕ t6

y2 = t1 ↔ t7

y0 = t8 ⊕ t11

RECTANGLE−1

k = 3,w = 6

t0 = x0 ⊕ x1

t1 = x0 ↑ x2

t2 = x3 ↔ x2

t3 = x2 ↓ x3

t4 = x2 ⊕ x1

t5 = x1 ∨ x0

t6 = t3 ⊕ x2

t7 = t3 ↓ x1

t8 = t0 ↑ t2
t9 = t4 ⊕ t1

t10 = t4 ↑ t1
t11 = t2 ⊕ t5

y1 = t7 ⊕ t11

y2 = t9 ⊕ x3

y3 = t0 ↔ t6

y0 = t10 ⊕ t8
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