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1 Introduction

Predicate encryption (PE) with public index, as a subclass of functional encryption [8], is a powerful
generalization of traditional public-key encryption (PKE). In a PE system for a predicate R, data are
encrypted under so-called ciphertext indices cInd, which are public. A user can decrypt such a ciphertext
if she holds a secret key with a key index kInd, such that R (kInd, cInd) = 1. Identity-based encryption
(IBE) schemes realize the equality relation and are the simplest example of PE. In general, predicate
encryption schemes provide a powerful tool for achieving fine-grained access control on confidential data.

Except for IBE, constructions of fully (also called adaptively) secure PEs have been missing for a long
time. The dual system encryption methodology, introduced and extended by Waters and Lewko [21, 16],
provides fundamental techniques to achieve fully secure PE schemes which withstand chosen-plaintext
attacks (CPA). Based on this methodology, schemes for various predicates such as (hierarchical) identity-
based encryption [21, 16], attribute-based encryption [17, 15], inner-product encryption [18, 4], spatial
encryption [12, 4], and schemes for regular languages [3], to name just a few, have been constructed.

Although many PE schemes have been presented, constructions for new predicates have each been
built from the ground up until the following results were published. Attrapadung [3] and Wee [22]
independently introduced generic frameworks for the design and analysis of PE schemes with public
index from composite-order bilinear groups. These frameworks are based on the dual system encryp-
tion methodology and define new cryptographic primitives called pair encoding and predicate encoding.
Attrapadung and Wee showed that fully CPA-secure PEs can be constructed from encoding schemes
in a generic fashion. This approach simplifies the development of new schemes, since the complexity
of security proofs is reduced. Furthermore, the properties required to achieve secure constructions are
better understood, structured, and defined in terms of security properties of encodings. Recently, both
frameworks were adapted to prime-order groups in [2, 1] and in [9], respectively. Overall, the research
on encodings resulted in new and efficient CPA-secure schemes for various predicates. In this paper,
we extend the framework of Attrapadung [3] to achieve fully CCA-secure PE schemes. We chose this
framework because of its powerful computational (rather than information theoretic) security notion
which allows to capture involved predicates. Although this will be a non-trivial task, we believe that our
techniques can be applied to the pair encoding framework in prime order groups [2].

Related work. Although there exist many adaptively CPA-secure PE schemes for various predicates, only
a few papers consider the realization of fully secure schemes which withstand chosen-ciphertext attacks
(CCA), the most desirable security notion in practice. Comparing this situation with PKE schemes and
IBE schemes, we identify the following gap. Mainly two different approaches are known to achieve efficient
CCA-secure schemes without random oracle model in the context of PKE and IBE (cf. discussion in [7]).
The first approach goes back to the CCA-secure PKE schemes introduced in [11]. Schemes following this
approach achieve CCA-security using a kind of well-formedness proofs, exploit specific properties of the
underlying CPA-secure schemes, and sacrifice generality for efficiency. The second approach goes back
to the generic transformations presented in [7] and uses one-time signatures or message authentication
codes as building blocks. Whereas both approaches are well studied for PKE [11, 10, 7] and (hierarchical)
IBE [13, 14, 7] this is not the case for PE with more involved predicates.

Generic transformations of CPA-secure PE schemes into CCA-secure schemes presented in [23, 24]
pursue the second approach from above and use one-time signatures as a building block. However,
the first approach of well-formedness proofs has not been taken into account for PEs. Indeed, only
a few PE schemes are proven to be fully CCA-secure without applying the generic transformations
from [23, 24]. To the best of our knowledge these are the broadcast-encryption scheme from [19] and the
(index hiding) encryption for relations that are specified by non-monotone access structures combined
with inner product relations [18]. The techniques from [19] are closely related to the techniques used for
adaptively secure IBE schemes. The schemes from [18] achieve CCA-security using one-time signature
schemes and their techniques are closely related to [24].

We can only speculate why the non-generic approach of well-formedness proofs from [11] has not been
considered for fully secure predicate encryption schemes. Probably because of the complex structure of the
ciphertexts in PE schemes well-formedness proofs have been assumed to be inefficient. Furthermore, the
consistency checks for the ciphertexts seem to be in conflict with the dual system encryption methodology,
since an essential part of this technique is based on incorrectly formed ciphertexts, i.e. semi-functional
ciphertexts. In this work we show that these assumptions are premature. We show that the dual system
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encryption techniques can be combined with well-formedness proofs and that the resulting fully CCA-
secure PE schemes require computational overhead, which is comparable to the additional overhead
required by the generic transformations.

Our contribution. In this work we take a significant step to close the gap between PKE/IBE and PE
w.r.t. non-generic CCA-secure constructions. Namely, given any pair encoding scheme (with natural
restrictions) secure in terms of [3], we construct a fully CCA-secure key-encapsulation mechanism (KEM)
for the corresponding predicate using a kind of well-formedness proofs. Surprisingly, due to the pair
encoding abstraction, we achieve a semi-generic transformation and still exploit structural properties
of the underlying CPA-secure schemes. Since the underlying framework of [3] is defined on composite-
order groups, our construction is also build on these groups. Combined with an appropriate symmetric
encryption, our framework leads to various new fully CCA-secure PE schemes through the usual hybrid
construction. In fact, for efficiency reasons hybrid schemes are preferred to plain encryption schemes in
practice.

Although our extensions of CPA-secure schemes are similar to those used in PKE schemes, the appli-
cation to complex predicates as well as the generic nature of our construction are novel for the underlying
techniques. We achieve simpler and usually more efficient constructions than those obtained from CPA-
secure schemes and the generic transformations based on one-time signatures [23, 24]. Furthermore, we
keep the advantage of tight reductions from the original framework of Attrapadung [3], and the re-
duction costs of our CCA-secure construction are comparable to the reduction costs of the underlying
CPA-secure construction. This is indeed surprising and is due to our extension of the dual system en-
cryption methodology which we describe below. The only additional cryptographic primitive required
by our construction is a collision-resistant hash function, which is used to add a single redundant group
element to the ciphertext. Apart from that, we add two group elements to the public parameters of the
underlying CPA-secure scheme. The security of our framework is based on the same security assumptions
as the security of the original CPA-secure framework.

Moving beyond the dual system encryption methodology. Security proofs in cryptography often consist of
a sequence of probability experiments (or games) with small differences. The first experiment is the target
security experiment (CCA-security experiment in our case) whereas the last experiment is constructed
in such a way, that the adversaries cannot achieve any advantage. The task of the proof is to show that
consecutive experiments are computationally indistinguishable. This proof structure is also used in dual
system encryption methodology [21], but the changes between the experiments are quite special. The main
idea of this technique is to define so-called semi-functional keys and semi-functional ciphertexts, which
are indistinguishable from their normal counterparts. In the proof sequence, the challenge ciphertext and
all generated keys are transformed from normal to semi-functional one by one. In the last experiment,
when all elements are modified, the challenge can be changed to the ciphertext of a randomly chosen
message.

The obvious way to apply dual system encryption methodology in the context of CCA-security is to
treat keys used to answer decryption queries in the same way as keys queried by the adversary. This
strategy was followed in [18] (see discussion of this work below), but our proof strategy diverges from it.
We deal with decryption queries in a novel and surprisingly simple manner. As an additional advantage,
the reductions of the original CPA-security proof require only a few and simple modifications. The main
idea is to answer decryption queries in all games using separately generated normal keys. Our well-
formedness checks ensure that this modification cannot be noticed. Moreover, we ensure that normal
and semi-functional ciphertexts both pass our well-formedness checks. Mainly because of this approach,
we can keep the basic structure of the original CPA-security proof of Attrapadung. We only have to
add four additional experiments: three at the beginning and one before the last game. In our last game
we show that by using the redundant element added to the ciphertext we can answer all decryption
queries without the user secret keys. The indistinguishability for this experiment is again based on our
well-formedness checks.

The main advantage of our construction and our proof strategy becomes obvious if compared to the
techniques in [18], where all keys are changed and the security guarantees decrease linearly in the number
of decryption queries and the number of corrupted keys. In our approach, the number of decryption
queries influences the security guarantees only negligibly. In a realistic scenario, the number of decryption
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queries must be assumed to be much larger than the number of corrupted keys. Hence, our approach
results in smaller security parameters, which also increases efficiency.

Organization. In Section 2 we present the preliminaries including security definitions and assumptions.
Section 3 contains our formal requirements on pair encoding schemes and our fully CCA-secure frame-
work. In Section 4 we present our main theorem and explain our proof strategy. Finally, in Section 5 we
compare our resulting schemes with generic constructions and conclude.

2 Background

We denote by α := a the algorithmic action of assigning the value a to the variable α. For n ∈ N,
we denote by [n] the set {i ∈ N | 1 ≤ i ≤ n} and by [n]0 the set [n] ∪ {0}. Let X be a random variable
on a finite set S. We denote by [X] the support of X, that is [X] = {s ∈ S | Pr [X = s] > 0}. We write
α← X to denote the algorithmic action of sampling an element of S according to the distribution defined
by X. We also write α ← S when sampling an element from S according to the uniform distribution.
Furthermore, α1, . . . , αn ← X is a shortcut for α1 ← X, . . . , αn ← X. This notation can be extended to
probabilistic polynomial time (ppt) algorithms, since every ppt algorithm A on input x defines a finite
output probability space denoted by A (x). Finally, vectors are written in bold and we do not distinguish
between row and column vectors. It will be obvious from context what we mean. We usually denote the
components of a vector v by (v1, . . . , vn), where n = |v|.

2.1 Predicate Families

In general, a predicate family is just a set of relations. For our purposes we require a more specific
definition. Compared to [3], we give a more fine grained definition. Namely, we split the relation indexes
into two parts which play different roles.

Definition 2.1. Let Ω, Σ be arbitrary sets. A predicate family RΩ,Σ (or just R) is a set of relations

R = {Rdes,dom : Xdes,dom × Ydes,dom → {0, 1}}des∈Ω,dom∈Σ ,

where Xdes,dom and Ydes,dom are sets called the key index space and the ciphertext index space of Rdes,dom,
respectively. Relation indexes will be often denoted by κ = (des,dom) and the corresponding relations will
be denoted by Rκ.

By the definition, every predicate Rdes,dom ∈ RΩ,Σ is uniquely defined by two indices. In our context,
every index des ∈ Ω specifies some general description properties of the corresponding predicates (e.g.
maximal number of attributes in a key). This index will be chosen by the system administrator before
the setup of the system. Index dom ∈ Σ specifies domain properties which will depend on the security
parameter (e.g. domain of computation ZN ) and will be determined by the corresponding setup algorithm.

For every des ∈ Ω we denote by Rdes the following subfamily of predicates

Rdes = {Rdes,dom : Xdes,dom × Ydes,dom → {0, 1}}dom∈Σ ⊆ R .

Furthermore, if des ∈ Ω is fixed and obvious from context, we will simply write Rdom, Xdom and Ydom.
Our framework is defined over composite order groups and hence, we have to take care of zero-divisors

in ZN for composite N ∈ N. The following definition is adapted from [3] to our notation and specifies
the properties of the predicate families which are required for the framework.

Definition 2.2. A predicate family RΩ,Σ is called domain-transferable if Σ ⊆ N, for every κ =
(des, N) ∈ Ω × Σ, and every p ∈ N>1 with p

∣∣ N it holds κ′ = (des, p) ∈ Ω × Σ, and Xκ′ ⊆ Xκ,
Yκ′ ⊆ Yκ. Furthermore, there must exist a ppt algorithm Factor and projection maps f1 : Xκ 7→ Xκ′ and
f2 : Yκ 7→ Yκ′ such that for all kInd ∈ Xκ and cInd ∈ Yκ it holds:

Completeness: If Rκ (kInd, cInd) = 1, then Rκ′ (f1 (kInd) , f2 (cInd)) = 1.
Soundness: If Rκ (kInd, cInd) = 0 and Rκ′ (f1 (kInd) , f2 (cInd)) = 1, then a non-trivial factor F of N

can be computed by F := Factor (κ, kInd, cInd).
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2.2 Predicate Key-Encapsulation Mechanisms

In this subsection we present the definition of predicate key-encapsulation mechanisms (P-KEMs) and
the definition of full security against adaptively chosen-ciphertext attacks (also called CCA2 attacks) for
these schemes. P-KEMs combined with appropriate symmetric encryption schemes lead to fully functional
predicate encryptions through the usual hybrid construction. For the sake of completeness we present
this construction and the corresponding security proof in Appendix C.

Definition 2.3. Let K = {Kλ} be a family of finite sets indexed by security parameter λ and possibly
some further parameters. A predicate key-encapsulation mechanism Π for predicate family RΩ,Σ
and a family of key spaces K consists of four ppt algorithms:

Setup
(
1λ,des

)
→ (msk,ppκ) : takes as input security parameter λ, des ∈ Ω, and outputs a master

secret key and public parameters. The algorithm determines among other elements dom ∈ Σ and the
relation index κ = (des,dom) is (implicitly) included in ppκ.

KeyGen
(
1λ,ppκ,msk, kInd

)
→ sk : takes as input the master secret key msk and a key index kInd ∈

Xκ. It generates a user secret key sk for kInd.

Encaps
(
1λ,ppκ, cInd

)
→ (K,CT) : takes as input a ciphertext index cInd ∈ Yκ and outputs a key

K ∈ Kλ, and an encapsulation CT of this key.

Decaps
(
1λ,ppκ, sk,CT

)
→ K : takes as input a secret key sk and an encapsulation. It outputs a key

K ∈ Kλ or an error symbol ⊥ /∈ Kλ.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, every

kInd ∈ Xκ and cInd ∈ Yκ with Rκ (kInd, cInd) = 1, every sk ∈
[
KeyGen

(
1λ,ppκ,msk, kInd

)]
and

(K,CT) ∈
[
Encaps

(
1λ,ppκ, cInd

)]
it must hold that

Pr
[
Decaps

(
1λ,ppκ, sk,CT

)
= K

]
= 1 .

We will leave out 1λ and ppκ from the input of the algorithms, if these are obvious from the context.
Furthermore, for every kInd ∈ Xκ and every cInd ∈ Yκ we denote by SKkInd and by CcInd the sets
of syntactically correct secret keys and encapsulations, respectively. These sets are certain supersets of
corresponding correctly generated elements and represent their syntactic structure, which can be easily
checked (e.g. the correct number of group elements).

CCA Security Definition for P-KEMs. Whereas in the context of traditional PKE there is only a
single secret key in question, in PE schemes there are many user secret keys generated from the master
secret key. Actually, several users may have different keys for the same key index. In order to model this
issue, we have to give the adversary the possibility to specify not only the key index, but also the keys
which have to be used for answering decapsulation queries. Similar to [19], we model this using so-called
covered key generation queries.

Let Π be a P-KEM for predicate family RΩ,Σ and family K = {Kλ} of key spaces. The CCA-

security experiment aP-KEMaCCA
Π,A (λ,des) between challenger C and adversary A is defined next. In this

experiment, index i denotes the number of a covered key generation query and kIndi denotes the key
index used in the query with number i. W.l.o.g. we assume that A uses index i in the oracle queries
only after the i’th query to the covered key generation oracle. In the security proof we will change this
experiment step by step. Those parts of the experiment, which will be changed later, are framed and
numbered.

The advantage of A in security experiment aP-KEMaCCA
Π,A (λ,des) is defined as

Adv-aP-KEMaCCA
Π,A (λ, des) := Pr

[
aP-KEMaCCA

Π,A (λ,des) = 1
]
− 1/2 .

Definition 2.4. A predicate key encapsulation mechanism Π for predicate family RΩ,Σ is called fully
(or adaptively) secure against adaptively chosen-ciphertext attacks (or CCA2 secure) if for
every des ∈ Ω and every ppt adversary A the function Adv-aP-KEMaCCA

Π,A (λ,des) is negligible in λ.
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aP-KEMaCCA
Π,A (λ, des) :

Setup : C generates 〈1〉 (msk,ppκ)← Setup
(
1λ,des

)
and starts A on input

(
1λ,ppκ

)
.

Phase I : A has access to the following oracles:
CoveredKeyGen (kIndi) for kIndi ∈ Xκ: Challenger C generates a secret key for kIndi

〈2〉 ski ← KeyGen (msk, kIndi) , stores (kIndi, ski), and returns nothing.

Open (i) for i ∈ N: C returns 〈3〉 ski . We call the corresponding key index kIndi a corrupted key
index.

Decapsulate (CT, i) with CT ∈ CcInd for some cInd ∈ Yκ, and i ∈ N: C returns the decapsulation
〈4〉 Decaps (ski,CT) . a

Challenge : A submits a target ciphertext index cInd∗ ∈ Yκ under the restriction that for every cor-
rupted key index kInd it holds Rκ (kInd, cInd∗) = 0. C computes 〈5〉 (K0,CT∗)← Encaps (cInd∗) ,

chooses K1 ← Kλ, flips a bit b← {0, 1}, sets 〈6〉 K∗ := Kb , and returns the challenge (K∗,CT∗).
Phase II : A has access to the following oracles:

CoveredKeyGen (kIndi) for kIndi ∈ Xκ: As before, challenger C generates a secret key
〈7〉 ski ← KeyGen (msk, kIndi) , stores (kIndi, ski), and returns nothing.

Open (i) for i ∈ N: C returns 〈8〉 ski under the restriction that Rκ (kIndi, cInd∗) = 0.

Decapsulate (CT, i) with CT ∈ CcInd for some cInd ∈ Yκ, and i ∈ N: C returns the error symbol

⊥ if CT = CT∗. b Otherwise, C returns 〈9〉 Decaps (ski,CT) .

Guess : A outputs a bit b′ ∈ {0, 1}. If one of the restrictions is violated, the output of the experiment

is 0. 〈10〉 The output of the experiment is 1 iff b′ = b .

a For schemes, where cInd is not efficiently computable from CT, the decapsulation oracle requires the
ciphertext index as additional input.

b For schemes, where the decapsulation oracle requires cInd in addition, a query on CT∗ is allowed if cInd 6=
cInd∗.

2.3 Composite Order Bilinear Groups

In this section we briefly recall the main properties of composite order bilinear groups (cf. [16]). We
define these groups using a group generation algorithm G, a ppt algorithm which takes as input a
security parameter 1λ and outputs a description GD of bilinear groups. We require that G outputs

GD = (p1, p2, p3, (g,G) ,GT, e : G×G→ GT) ,

where p1, p2, p3 are distinct primes of length λ, G and GT are cyclic groups of order N = p1p2p3, g
is a generator of G, and function e is a non-degenerate bilinear map: i.e., e

(
ga, gb

)
= e (g, g)

a·b
for

all a, b ∈ ZN , and e (g, g) is a generator of GT. Furthermore, we denote by GDN a restricted group
description corresponding to GD, where the prime numbers are replaced by N . We require that the
group operations as well as the bilinear map e are computable in polynomial time with respect to λ
when the restricted group description GDN is given.

G can be decomposed as Gp1×Gp2×Gp3 , where for every pi | N we denote by Gpi the unique subgroup
of G of order pi. Let gi be an arbitrary but fixed generator of Gpi . Every h ∈ G can be expressed as
ga11 ga22 ga33 , where ai are uniquely defined modulo pi. Hence, we will call gaii the Gpi component of h. Note
that, e.g., gp1p2 generates Gp3 and hence, given the factorization of N , we can pick random elements
from every subgroup. A further important property of composite order bilinear groups is that for pi 6= pj
and gi ∈ Gpi , gj ∈ Gpj it holds e (gi, gj) = 1GT .

We will also use the following common shortcuts for vectors of group elements. Let g, h, r ∈ G,
v,w,u ∈ ZkN , and E ∈ Zk×dN for k, d ∈ N. We denote by gv the vector (gv1 , gv2 , . . . , gvk) ∈ Gk. Fur-

thermore, we define gv · gw := gv+w, (gv)
E

:= gv·E , and e (gv, hw) :=
∏k
i=1 e (gvi , hwi). Hence, it also

holds e (gv, hw · ru) = e (gv, hw) · e (gv, ru) . Furthermore, given gv and E one can efficiently compute

components of (gv)
E ∈ Gd.

Remark 2.1. We will often pick group elements from G and its subgroups uniformly at random. Thereby
we will always assume, that a generator of the corresponding group is chosen. This is only a technical
convention, since the opposite happens only with negligible probability.
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2.4 Security Assumptions

In this subsection we define three so-called Subgroup Decision Assumptions used to prove the security
of our construction. We use exactly the same assumptions as the original CPA-secure framework [3].
See also [16] for validity of these assumptions in the generic group model. Let G be a group generation
algorithm. Each of the following probability experiments starts with

GD = (p1, p2, p3, (g,G) ,GT, e : G×G→ GT)← G
(
1λ
)

:

SD1 (λ) : g1 ← Gp1 , g3 ← Gp3 ,

D := (GDN , g1, g3) , Z0 ← Gp1 , Z1 ← Gp1p2 .

SD2 (λ) : g1, X1 ← Gp1 , X2, Y2 ← Gp2 , g3, Y3 ← Gp3 ,

D := (GDN , g1, X1X2, Y2Y3, g3) , Z0 ← Gp1p3 , Z1 ← G .

SD3 (λ) : g1 ← Gp1 , g2, X2, Y2 ← Gp2 , g3 ← Gp3 , α, s← ZN
D := (GDN , g1, g

α
1X2, g

s
1Y2, g2, g3) , Z0 ← GT, Z1 := e (g1, g1)

α·s
.

The advantage of A in breaking experiment SDi (λ) is defined as

AdvSDi
A (λ) := |Pr [A (D,Z0) = 1]− Pr [A (D,Z1) = 1]| .

Assumptions. We say that G satisfies Assumption SDi if for every ppt algorithm A the function
AdvSDi

A (λ) is negligible.

The following lemma was implicitly proven in [16] (see the proof of Lemma 5). This lemma implies,
that under Assumption SD2, it is computationally infeasible to compute a non-trivial factor of N .

Lemma 2.1. There exists a ppt algorithm A with

|Pr [A (D,Z0, F ) = 1]− Pr [A (D,Z1, F ) = 1]| = 1 ,

where D,Z0, Z1 are distributed as defined in Experiment SD2, and F is a non-trivial factor of N (N is
defined by GDN ∈ D).

Proof. See the proof in Appendix F.2.

3 Framework for CCA-Secure P-KEMs

In this section we recall the definition of pair encoding schemes and define two additional properties,
which are required for our CCA-secure framework. Our framework is presented in Subsection 3.3.

3.1 Pair Encoding Schemes

In this subsection we first recall the formal definition of pair encodings presented by Attrapadung [3]
and slightly adapted to our notation. This cryptographic primitive is used to construct predicate encryp-
tion schemes. Actually, pair encodings are multivariate polynomials which are evaluated during the key
generation and during the encryption. The elements, used to evaluate the polynomials, will be chosen
according to certain probability distributions. We separate the notation of polynomial variables and the
notation of corresponding elements in the schemes, which is different from [3]. Every polynomial vari-
able gets an index, which in turn will be the name of the corresponding element in the schemes. For
example random element s corresponds to the polynomial variable Xs. This justifies the unusual names
of variables.

Definition 3.1. Let RΩ,Σ be a domain-transferable predicate family, κ = (des, N) ∈ Ω×Σ be a predicate
index, kInd ∈ Xκ and cInd ∈ Yκ be a key index and a ciphertext index respectively. A pair encoding
scheme P for RΩ,Σ consists of four ppt algorithms:

Param (κ) =: n : outputs n ∈ N, which defines the number of so-called common variables denoted by
(Xh1

, . . . ,Xhn) = Xh .
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Enc1 (κ, kInd) =: (k,m2) : outputs m2 ∈ N and a vector k = (k1, . . . , km1
) of m1 multivariate polyno-

mials k1, . . . , km1
∈ ZN [Xα,Xr,Xh]. The variable Xα is called the master secret key variable and the

variables
(
Xr1 , . . . ,Xrm2

)
= Xr are called key-specific variables. The polynomials in k are restricted

to linear combinations of monomials
{

Xα, Xri , XhjXri

}
i∈[m2],j∈[n]

.

Enc2 (κ, cInd) =: (c, w2) : outputs w2 ∈ N and a vector c = (c1, . . . , cw1
) of w1 multivariate polynomials

c1, . . . , cw1
∈ ZN [Xs,Xs,Xh]. The variable Xs and the variables

(
Xs1 , . . . ,Xsw2

)
= Xs are called

ciphertext-specific variables.1 The polynomials in c are restricted to linear combinations of monomials{
Xs, Xsi , XhjXs, XhjXsi

}
i∈[w2],j∈[n]

.

Pair (κ, kInd, cInd)→ E : outputs a matrix E ∈ Zm1×w1

N , where m1 and w1 are defined by Enc1 (κ, kInd)
and Enc2 (κ, cInd), respectively.

Correctness: Let κ = (des, N) ∈ Ω×Σ, kInd ∈ Xκ, cInd ∈ Yκ be arbitrary. Let (k,m2) = Enc1 (κ, kInd),
m1 = |k|, and (c, w2) = Enc2 (κ, cInd), w1 = |c|. The following three properties must be fulfilled:

1. If RN (kInd, cInd) = 1, then for every E ∈ [Pair (κ, kInd, cInd)] it holds symbolically∑
τ∈[m1]

∑
τ ′∈[w1]

eτ,τ ′ · kτ · cτ ′ = Xα ·Xs .

2. (Trivially holds for prime N) For every kInd ∈ Xκ and every p ∈ N>1 with p
∣∣ N it holds

k′ = k (mod p) and m2 = m′2 ,

where (k′,m′2) = Enc1 (κ, f1 (kInd)) and f1 is the projection map from domain-transferable property
of RΩ,Σ.

3. (Trivially holds for prime N) For every cInd ∈ Yκ and every p ∈ N>1 with p
∣∣ N it holds

c′ = c (mod p) and w2 = w′2 ,

where (c′, w′2) = Enc2 (κ, f2 (cInd)) and f2 is the projection map from domain-transferable property
RΩ,Σ.

As a notational convention, whenever a particular relation index κ, a key index kInd ∈ Xκ, and a
ciphertext index cInd ∈ Yκ are under consideration, the following values are also implicitly defined:
n = Param (κ), (k,m2) = Enc1 (κ, kInd), m1 = |k|, and (c, w2) = Enc2 (κ, cInd), w1 = |c|. Note that
differently from [3] we allow the algorithm Pair to be probabilistic. The results from [3] still hold with
our definition.

Security Notions for Pair Encoding Schemes. We prove the security of our framework based on
the computational security notions of pair encoding schemes presented in [3], i.e. selectively master-
key hiding (SMH) and co-selectively master-key hiding (CMH). These security notions make the pair
encoding framework so powerful. We refer to Appendix A for both definitions.

3.2 Additional Requirements of CCA-Secure Framework

In this subsection we formalize two properties of pair encoding schemes, which are sufficient to achieve
CCA-secure P-KEMs using our framework. As in [5] we require normality of pair encoding P, a very
natural restriction (this is also one of the restrictions of regular encodings from [2]).

Definition 3.2. A pair encoding P for RΩ,Σ is called normal, if for every predicate index κ ∈ Ω×Σ and
every cInd ∈ Yκ there exists an integer τ̂ ∈ [w1] such that it holds cτ̂ = Xs, where (c, w2) = Enc2 (κ, cInd),
w1 = |c|. W.l.o.g, we will assume that c1 = Xs.

Next, we formally define the second required property, which we call verifiability property. As men-
tioned before, we have to check the form of the encapsulation to a certain extent in order to achieve
CCA-security. The verifiability property itself does not ensure the CCA-security and has to be consid-
ered in the context of our extended framework. Hence, for the intuition behind this property we refer

1 The variable Xs is separated, because it plays a special role in the algorithms. We will also denote it by Xs0 .
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to the discussion in the next subsection. In Theorem 4.2 we will furthermore state that all regular pair
encodings schemes are verifiable. The definition of regular encodings and a constructive proof of this
theorem are given in Appendix E.

Let RΩ,Σ be a domain-transferable predicate family, G be a group generator and λ be a security
parameter. Let GD ∈

[
G
(
1λ
)]

and GDN be the corresponding restricted group description. (We call G
an appropriate group generator for RΩ,Σ if N ∈ Σ for every GD ∈

[
G
(
1λ
)]

.) Furthermore, let des ∈ Ω,
kInd ∈ Xκ, and cInd ∈ Yκ be arbitrary but fixed such that Rκ (kInd, cInd) = 1, where κ = (des, N). Let
n = Param (κ).

Definition 3.3. (Verifiability) P is called verifiable with respect to G if it is normal and there exists
a deterministic polynomial-time algorithm Vrfy, which given des, GDN , g1 ∈ Gp1 , gh1 ∈ Gnp1 , kInd, cInd,
E ∈ [Pair (κ, kInd, cInd)], and C = (C1, . . . , Cw1

) ∈ Gw1 outputs 0 or 1 such that:

Completeness: The output is 1 if there exist s ∈ ZN and s ∈ Zw2

N such that the Gp1 components of the

elements in C are equal to g
c(s,s,h)
1 , where (c, w2) = Enc2 (κ, cInd).

Soundness: If the output is 1, then for every α ∈ ZN , r ∈ Zm2

N it holds:

e
(
g
k(α,r,h)·E
1 ,C

)
= e (g1, C1)

α
, (1)

where (k,m2) = Enc1 (κ, kInd).

Remark 3.1. Suppose that the verification algorithm outputs 1 if and only if there exist s ∈ ZN and s ∈
Zw2

N such that the Gp1 components of C are equal to g
c(s,s,h)
1 . Then, both required properties are satisfied

due to the correctness of the pair encoding scheme, which ensures that for every E ∈ [Pair (κ, kInd, cInd)]
it holds k (α, r,h) ·E · c (s, s,h) = α · s.

Collision-Resistant Hash Functions. Our construction requires a collision-resistant hash function in
order to hash elements from Yκ and a restricted number of elements from GT into ZN . Such a function
can be realized using an appropriate injective encoding function and a cryptographic hash function. The
notion of collision-resistance is common and we refer to Appendix B for a formal definition. We denote
by H← Hκ the random choice of such a function.

3.3 Fully CCA-Secure Framework

In this section we present our framework for constructing fully CCA-secure P-KEMs from pair encoding
schemes. Let P be a verifiable pair encoding scheme for domain-transferable predicate family RΩ,Σ and
Vrfy be the algorithm from Definition 3.3. Let G be a composite order group generator, and H be a
family of appropriate collision-resistant hash functions. A P-KEM Π for RΩ,Σ is defined as follows:

Setup
(
1λ,des

)
: If des ∈ Ω, generate GD ← G

(
1λ
)
, g1 ← Gp1 and g3 ← Gp3 . Set κ := (des, N),

where N = p1p2p3. Compute n := Param (κ), pick h ← ZnN , and compute gh1 . Choose α, u, v ← ZN
and set Y := e (g1, g1)

α
, U1 := gu1 , and V1 := gv1 . Choose H ← Hκ and output msk := α and

ppκ :=
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
.

KeyGen (ppκ,msk, kInd) : If kInd ∈ Xκ, compute (k,m2) := Enc1 (κ, kInd) (let m1 = |k|). Pick r ←
Zm2

N , R3 ← Gm1
p3 , and compute K := g

k(msk,r,h)
1 ·R3. Output sk := (kInd,K).

The key space for kInd ∈ Xκ is SKkInd := {kInd} ×Gm1 .
Encaps (ppκ, cInd) : If cInd ∈ Yκ, compute (c, w2) := Enc2 (κ, cInd) (let w1 = |c|). Pick s ← ZN ,

s← Zw2

N , and compute C := g
c(s,s,h)
1 = (C1, . . . , Cw1

). Compute

t := H (cInd, e (g1, C1) , . . . , e (g1, Cw1
)) (2)

and C ′′ := (U t1 · V1)
s
. Set CT := (cInd,C, C ′′), K := Y s, and output (K,CT). The ciphertext space

for cInd ∈ Yκ is CcInd := {cInd} ×Gw1+1.
Note that, given CT ∈ CcInd, the corresponding hash value can be computed efficiently. We denote by
HInput (CT) the input of the hash function as defined in (2).
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Decaps (ppκ, sk,CT) : It must hold CT = (cInd,C, C ′′) ∈ CcInd for cInd ∈ Yκ and sk = (kInd,K) ∈
SKkInd for kInd ∈ Xκ. Output ⊥ if RN (kInd, cInd) 6= 1. Compute t := H (HInput (CT)) and E ←
Pair (κ, kInd, cInd). Output ⊥, if one of the following checks fails:

e (C ′′, g1)
?
= e (C1, U

t
1 · V1) , (3)

e (C ′′, g3)
?
= 1 and ∀i∈[w1] : e (Ci, g3)

?
= 1 , (4)

Vrfy
(
des,GDN , g1, g

h
1 , kInd, cInd,E,C

) ?
= 1 . (5)

Output K := e
(
KE ,C

)
.

Correctness is based mainly on the correctness of pair encoding and the completeness of the verifica-
tion algorithm (see the proof in Appendix F.1). Compared to the original CPA-secure framework of [3]
we add only the hash function H and the group elements U1, V1 ∈ G to the public parameter. The user
secret keys are not changed at all. The encapsulation is extended by a single group element C ′′ ∈ G.
The checks in (3), (4) and (5) are new in the decapsulation algorithm. We call these checks consistency
checks and explain them in more detail below.

Semi-functional algorithms. The following semi-functional algorithms are basically from [3] and are
essential to prove adaptive security of the original and our extended framework. The main idea is to
extend the keys and the ciphertexts with components from Gp2 subgroup. These modifications cannot
be noticed by a ppt adversary mainly due to the subgroup decision assumptions and since the public
parameters do not contain a generator of Gp2 . We extended the algorithms from [3] by semi-functional
components for our additional elements in the public parameters (U1, V1) and in the encapsulation (C ′′).

SFSetup
(
1λ,des

)
: Generate (msk,ppκ) ← Setup

(
1λ,des

)
, g2 ← Gp2 , ĥ ← Znp2 and û2, v̂2 ← Zp2 .

Output
(

msk,ppκ, g2, ĥ, û2, v̂2

)
.

SFKeyGen
(

1λ,ppκ,msk, kInd, type, α̂, g2, ĥ
)

for α̂ ∈ ZN : Generate a normal secret key (kInd,K1)←
KeyGen (msk, kInd), pick r̂ = (r̂1, . . . , r̂m2

)← Zm2

N , and compute

K̂ :=


g
k(0,r̂,ĥ)
2 if type = 1

g
k(α̂,r̂,ĥ)
2 if type = 2

g
k(α̂,0,0)
2 if type = 3 .

Set K := K1 · K̂ and output a semi-functional key sk := (kInd,K) ∈ SKkInd.

SFEncaps
(

1λ,ppκ, cInd, g2, ĥ, û2, v̂2

)
: Generate (K, (cInd,C1, ))← Encaps (cInd). Let s ∈ ZN be the

corresponding random exponent. Choose ŝ ← ZN , ŝ ← Zw2

N and compute Ĉ := g
c(ŝ,ŝ,ĥ)
2 . Next, set

C := C1 · Ĉ, compute the hash value t = H (HInput (cInd,C, )) and Ĉ ′′ := (U t1 · V1)
s ·
(
gû2·t

2 · gv̂22

)ŝ
.

Output key K and CT = (cInd,C, C ′′) ∈ CcInd.

Remark 3.2. Note, that differently from [3], we define the semi-functional elements ĥ1, . . . , ĥn, û2, and v̂2

as uniformly distributed elements in Zp2 instead of ZN . All these elements are used only in the exponents
of g2 ∈ Gp2 and hence, by Chinese Remainder Theorem, we did not change the distributions of the user
secret keys and the distributions of encapsulations. But, this simplifies argumentation on several places
in the proofs.

Intuition behind the Consistency Checks. In this subsection we provide a high-level explanation of
why the consistency checks render the decapsulation oracle useless to any ppt adversary. Our explanation
leaves out many important details of the formal proof.

Assume that A queries the decapsulation oracle with CT = (cInd,C, C ′′) ∈ CcInd such that the group
elements of CT contain only the Gp1 components. If CT passes (5), then by the verifiability property

e
(
KE ,C

)
= e (g1, C1)

msk
. Next, our additional element C ′′ and the check in (3) guarantee that the

Gp1 component of C1 is of the form gs1 and s is known to A. Hence, the output of the decapsulation
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is e (g1, C1)
msk

= Y s. Since A knows Y and s anyway, this can be computed by A itself and the
decapsulation oracle is useless for A.

We still have to justify the assumption that the elements in CT contain only the Gp1 components.
The checks in (4) guarantee that the elements of CT contain no Gp3 components. Then, the subgroup
decision assumptions ensures that CT does not also contain Gp2 components.

The following lemma is important for the following security proof. It shows that, due to the consistency
checks in (4) and in (5), there is no difference which normal key is used in the decapsulation algorithm.
This lemma provides further intuition behind the consistency checks.

Lemma 3.1. For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈ Setup
[(

1λ,des
)]

, every
kInd ∈ Xκ, every sk1, sk2 ∈ [KeyGen (ppκ,msk, kInd)] and every CT ∈ {0, 1}∗ it holds

Pr [K : K← Decaps (ppκ, sk1,CT)] = Pr [K : K← Decaps (ppκ, sk2,CT)] .

Proof. Let λ, des ∈ Ω, (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, kInd ∈ Xκ, sk1, sk2 ∈ [KeyGen (ppκ,msk, kInd)],

and CT ∈ {0, 1}∗ be arbitrary, but fixed. We consider only the case that there exists an index cInd ∈ Yκ
such that CT ∈ CcInd and RN (kInd, cInd) = 1, since otherwise the decapsulation algorithm will output
⊥ for both keys. Furthermore, let (k,m2) = Enc1 (κ, kInd), m1 = |k|, and (c, w2) = Enc2 (κ, cInd),
w1 = |c|. We denote CT = (cInd,C, C ′′), where C ∈ Gw1 and C ′′ ∈ G.

Both probability distributions are over the random choice of E ← Pair (κ, kInd, cInd). The choice
of E ∈ Zm1×w1

N depends on kInd, but is independent of the concrete secret key for kInd. Hence, every
E ∈ [Pair (κ, kInd, cInd)] is chosen with the same probability in both cases. Let E ∈ [Pair (κ, kInd, cInd)]
be arbitrary, but fixed. We claim, that independently of the concrete secret key, the result of the decap-
sulation algorithm using E will be the same. This will immediately prove the lemma.

It is important to notice, that for a fixed E the consistency checks are deterministic. In particular,
Vrfy is a deterministic algorithm by definition. Hence, if one of the consistency checks fails, the output
of the decapsulation algorithm will be ⊥ independently of the concrete secret key. Hence, it remains to
consider the case that CT = (cInd,C, C ′′) passes all consistency checks.

Since the keys sk1 and sk2 are normal, there exist r1, r2 ∈ Zm2

N and R3,1,R3,2 ∈ Gm1
p3 such that

sk1 =
(

kInd,K1 = g
k(msk,r1,h)
1 ·R3,1

)
and sk2 =

(
kInd,K2 = g

k(msk,r2,h)
1 ·R3,2

)
, where gh1 ∈ ppκ.

Hence, by construction of Decaps and since the elements in C do not have Gp3 components (due to the
consistency check in (4)) it holds:

Decaps (ppκ, sk1,CT) = e

((
g
k(msk,r1,h)
1 ·R3,1

)E
,C

)
= e

(
g
k(msk,r1,h)·E
1 ,C

)
,

and

Decaps (ppκ, sk2,CT) = e

((
g
k(msk,r2,h)
1 ·R3,2

)E
,C

)
= e

(
g
k(msk,r2,h)·E
1 ,C

)
.

Furthermore, CT passes the consistency check in (5). Hence, by the soundness property of Vrfy, for every
α′ ∈ ZN , r ∈ Zm2

N it holds:

e

(
g
k(α′,r,h)·E
1 ,C

)
= e (g1, C1)

α′
.

We deduce that for a fixed E ∈ [Pair (κ, kInd, cInd)] it holds

Decaps (ppκ, sk1,CT) = e (g1, C1)
msk

= Decaps (ppκ, sk2,CT) .

This finally proves the lemma, since every E is chosen with the same probability in both probability
distributions, as explained above. ut
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Fig. 1. Proof Structure

GReal GresH
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CRH SD2 SD1 Vrfy SD2 CMH SD2 SD2 SMH SD2 SD2 SD3

Extension of our construction. Our framework requires additional computational overhead during
the computation of the hash value. Namely, a pairing is computed for every group element in the cipher-
text. We can avoid this computation by hashing the original ciphertext. Formally, we only change the
definition of the function HInput defined in (2). Then, our last reduction must be adapted in order to
prove the security for this variant. The other reductions require only minor modifications. We decided
to present the given less efficient construction in order to explicitly show which parts of the ciphertext
are important for the well-formedness proofs, when the dual system encryption methodology is used to
achieve CCA-secure schemes. We will present the formal proof for this variant in the next version.

4 Main Theorem and Extended Proof Technique

In this section we present our main theorem and explain the proof technique. We also state that all
known pair encodings satisfy our verifiability property.

Theorem 4.1. Let Π be the P-KEM from Section 3.3. Suppose that the subgroup decision assumptions
from Section 2.4 are correct, the underlying pair encoding scheme P is selectively and co-selectively master
key hiding, and the family of collision-resistant hash functions H is secure. Then, Π is fully CCA-secure
with respect to Definition 2.4. Furthermore, for every des ∈ Ω and every ppt algorithm A, there exists a
negligible function negl and there exist ppt algorithms B1, . . . ,B6 with essentially the same running time
as A such that for sufficiently large λ it holds

Adv-aP-KEMaCCA
Π,A (λ, des) ≤ AdvCR

H,B1
(λ,des) + AdvSD1

B2
(λ) + AdvSD3

B4
(λ)

+ (2q1 + 4) ·AdvSD2
B3

(λ) + AdvSMH
P,B6

(λ, des)

+q1 ·AdvCMH
P,B5 (λ, des) + qdec1/p1 + negl (λ) ,

where q1 is the number of keys that are corrupted in Phase I and qdec1 is the number of decapsulation
queries in Phase I of experiment aP-KEMaCCA

Π,A (λ,des).

For simplicity, we collected some negligible terms such as 1/p1 in negl (λ). It is important to notice
that the number of decapsulation queries from Phase I only appears in the term qdec1/p1 and decreases
the security guarantees only negligibly. Furthermore, compared to the CPA-secure framework of [3] we
only loose the additional terms AdvCR

H,B1
(λ, des) and AdvSD2

B3
(λ).

The structure for the proof of Theorem 4.1 is presented in Fig. 1. The nodes represent different
probability experiments. In Table 1 the modifications between the probability experiments are defined
(these will be explained in detail in the corresponding proofs). The first experiment is the target exper-
iment aP-KEMaCCA

Π,A (λ, des) from page 8 and the last experiment is constructed in such a way, that the
advantage of every adversary is zero. The edges represent reduction steps and their labels the underly-
ing security assumptions, except for the edge labeled with Vrfy. The corresponding proof is based on
the verifiability property of the pair encoding scheme. In the proof we show that no ppt algorithm can
distinguish between any pair of consecutive experiments. The formal proof of Theorem 4.1 is given in
Appendix D. Here, we explain the main steps of the proof and the proof technique.

The structure of the proof for our CCA-secure construction is similar to the structure of the proof
for the CPA-secure construction of [3]. Experiments GresH, GresQ, G′0, and G′q1+3 as well as the four
reduction steps denoted by bold edges in Fig. 1 are new. The remaining experiments and reductions are
from the original CPA-security proof from [3] and require only simple extensions.

Our first reduction GReal → GresH is based on the security of the family of collision-resistant hash
functions. In the second reduction GresH → GresQ we separate failure events which enable us to find a
non-trivial factor of N , which violates Assumption SD2 by Lemma 2.1. This reduction is an extension of
the first reduction step from [3]. These two steps are of a technical nature. Our additional games G′0 and
G′q1+3 and the corresponding new reductions G′0 → G0,3 and Gq1+3 → G′q1+3 are the most important
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Table 1. The probability experiments from security proof.

GresH: Modify 〈10〉 Output is 0 if there is a collision for H

GresQ: Modify 〈10〉 Output 0 if A implicitly found a factor of N .

G′0:
Modify 〈1〉

(
msk, pp, g2, ĥ, û2, v̂2

)
← SFSetup

(
1λ,des

)
Modify 〈5〉 (K0,CT∗)← SFEncaps

(
cInd∗, g2, ĥ, û2, v̂2

)
G0,3:

Modify〈4〉, 〈9〉 sk′i ← KeyGen (msk, kIndi), Decaps (sk′i,CT)
Change Generate keys in Open oracle.

Gk,1: Modify 〈3〉

α̂j ← ZN ,

skj ←


SFKeyGen (msk, kInd, 3, α̂j , g2, ) if j < k

SFKeyGen
(

msk, kInd, 1, , g2, ĥ
)

if j = k

KeyGen (msk, kInd) if j > k

Gk,2: Modify 〈3〉

α̂j ← ZN ,

skj ←


SFKeyGen (msk, kInd, 3, α̂j , g2, ) if j < k

SFKeyGen
(

msk, kInd, 2, α̂j , g2, ĥ
)

if j = k

KeyGen (msk, kInd) if j > k

Gk,3: Modify 〈3〉
α̂j ← ZN ,

skj ←

{
SFKeyGen (msk, kInd, 3, α̂j , g2, ) if j ≤ k
KeyGen (msk, kInd) if j > k

Gq1+1: Modify 〈8〉 SFKeyGen
(

msk, kInd, 1, , g2, ĥ
)

Gq1+2:
Insert α̂← ZN at the beginning of Phase II

Modify 〈8〉 SFKeyGen
(

msk, kInd, 2, α̂, g2, ĥ
)

Gq1+3: Modify 〈8〉 SFKeyGen (msk, kInd, 3, α̂, g2, )

G′q1+3:
Insert X2 ← Gp2 in the Setup phase

Modify 〈4〉,〈9〉 Check consistency, return e
(
gmsk
1 ·X2, C1

)
GFinal: Modify 〈6〉 K∗ ← GT

parts of the CCA-security proof and enable us to deal with decapsulation queries in an elegant way. The
major modification in G0,3 is that the decapsulation queries are answered using separately generated
normal keys which we denote by sk′i. We do not change these keys to semi-functional in the following
games. In particular, using consistency check (5) we show that for every (unconditional) A, experiments
G′0 and G0,3 are indistinguishable. The next important observation is that in all reductions between G0,3

and Gq1+3, the master secret key is known to the reduction algorithm. Hence, the normal keys for the
decapsulation queries can be generated by the key generation algorithm. The final challenge is to answer
decapsulation queries without the user secret keys in the last experiment GFinal. Experiment G′q1+3 and
the corresponding new reduction step Gq1+3 → G′q1+3 allow us to deal with this problem. In the proof of
this reduction step we use our additional group element from the encapsulation in order to answer the
decapsulation queries. To prove that this modification can not be noticed, again the consistency checks
are crucial (see the proof of Lemma D.17).

Verifiability of pair encoding schemes. In this paragraph we explain how to construct verification algo-
rithms for pair encoding schemes according to Definition 3.3. Together with our framework, this provides
new, fully CCA-secure PE schemes for various predicates. Among these are an IBE scheme, the scheme
for regular languages and its dual, new and reviewed key-policy and ciphertext-policy attribute-base
schemes, spatial and negated spatial encryption, key-policy over doubly spatial encryption, as well as
dual-policy attribute-based schemes. All (nineteen) pair encoding schemes from [3, 5] satisfy the verifia-
bility property according to Definition 3.3. Almost all these encoding schemes are regular. The following
theorem leads to verification algorithms for all these schemes. We refer to Appendix E for the definition
of regular pair encodings and for the constructive proof of this theorem.

Theorem 4.2. Suppose RΩ,Σ is a domain-transferable predicate family and P is a regular pair encoding
scheme for RΩ,Σ. Then, P satisfies the verifiability property according to Definition 3.3.
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Two ciphertext-policy attribute-based encryption schemes from [3] achieved using dual scheme conversion
are not regular. These schemes were improved in [5] and the resulting schemes are regular. Anyway,
verification algorithms can be constructed using a slightly adapted technique also for these schemes.

5 Comparison with Generic Constructions and Conclusion

In this section we compare the efficiency of our construction to the efficiency of generic constructions for
fully CCA-secure PEs from [23, 24]. On the one hand we look at the size of public parameters, user secret
keys and ciphertexts. On the other hand we look at the efficiency of the encapsulation (encryption) and
the decapsulation (decryption) algorithms.

All generic transformations from above use one-time signature schemes as a building block and
integrate the verification key vk into the ciphertexts. This results in non-trivial extensions of public
parameters, user secret keys and ciphertexts. For example, keys and ciphertexts of PE for the dual of
regular languages are extended by 6 · |vk| and by 2 · |vk| group elements. In contrast to this, we only add
two group elements to the public parameters and a single group element to the ciphertext independently
of the predicate. Hence, with respect to the size of public parameters, secret keys, and ciphertexts our
construction is more efficient.

Considering the efficiency of the encapsulation and the decapsulation, we further need to distinguish
two types of generic transformations of CPA-secure schemes into CCA-secure schemes: schemes based on
verifiability, and schemes based on key delegation. CCA-secure attribute-based schemes achieved from
key delegation [23] require derandomization and delegation of the user secret keys in every decryption.
Depending on the predicate, on kInd and on cInd this can be more efficient or more costly compared to the
schemes achieved using our construction. Generic constructions based on verifiability require a verification
algorithm which ensures that decryption of a ciphertext under every secret key for kInd and every secret
key corresponding to vk will be the same. In our construction we require that decapsulation using every
secret key for kInd will be the same. Hence, schemes from generic constructions have to check in addition
those parts of the ciphertext, that correspond to the verification key included in the ciphertext (2 · |vk|
group elements in the example from above). This results in more costly verification algorithms compared
to ours. Furthermore, these additional elements have to be computed in the encryption algorithm together
with the one-time signature, whereas we only use a hash function and have to compute a single group
element in addition.

Summarizing, we presented a semi-generic framework to construct fully CCA-secure PEs in composite-
order groups from any verifiable pair encoding schemes including regular pair encoding schemes. From
this point of view our framework is as generic as the underlying CPA-secure framework of [3]. Our security
proofs are based on a small but significant modification of the dual system encryption methodology, i.e.
we do not change decryption keys to semi-functional. This results in a reduction of CCA-security to the
security of pair encodings which is almost as tight as the reduction of CPA-security to the security of
pair encodings given by Attrapadung [3].
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A Security Notions of Pair Encodings

In this section we recall the computational security notions of pair encoding schemes presented in [3].
Suppose G is a group generation algorithm and P is a pair encoding scheme for domain-transferable
predicate family RΩ,Σ . First define the following generic probability experiment between challenger C
and adversary A, which is parametrized with Type ∈ {SMH,CMH} and ν ∈ {0, 1}.

ExpType
P,G,ν,A (λ,des):

Setup : C chooses GD← G
(
1λ
)
, sets κ := (des, N) and n := Param (κ). C picks g1 ← Gp1 , g2 ← Gp2 ,

g3 ← Gp3 , α̂← ZN , ĥ← ZnN , and simulates adversary A on (des,GDN , g1, g2, g3).
Phase I : A is allowed to query oracle O1

Type,ν,α̂,ĥ
(·).

Phase II : A is allowed to query oracle O2
Type,ν,α̂,ĥ

(·).
Guess : A outputs a guess ν′ ∈ {0, 1}, which is the output of the experiment.

Based on this generic experiment we define two following security experiments for the corresponding
security notions of pair encoding schemes.

ExpSMH
P,G,ν,A (λ,des) is an instantiation of ExpType

P,G,ν,A (λ, des) with:

O1
SMH,ν,α̂,ĥ

(cInd∗) for cInd∗ ∈ Yκ: Can be queried only once. C computes (c, w2) := Enc2 (κ, cInd∗),

picks ŝ← ZN , ŝ← Zw2

N and returns Ĉ := g
c(ŝ,ŝ,ĥ)
2 .

O2
SMH,ν,α̂,ĥ

(kInd) for kInd ∈ Xκ: Can be queried polynomially many times. Challenger C returns ⊥
if Rp2 (f1(kInd), f2(cInd∗)) = 1. Otherwise, C computes (k,m2) := Enc1 (κ, kInd), picks r̂ ← Zm2

N

and returns K̂ := g
k(0,r̂i,ĥ)
2 if ν = 0 and K̂ := g

k(α̂,r̂i,ĥ)
2 if ν = 1.

The advantage of A in this experiment is defined as:

AdvSMH
P,A (λ,des) :=

∣∣Pr
[
ExpSMH

P,G,0,A (λ,des) = 1
]
− Pr

[
ExpSMH

P,G,1,A (λ, des) = 1
]∣∣ .

Definition A.1. Pair encoding P is called selectively master key hiding with respect to G if for all
des ∈ Ω, all λ and all ppt (in λ) adversaries A, the function AdvSMH

P,A (λ, des) is negligible in λ.

ExpCMH
P,G,ν,A (λ,des) is an instantiation of ExpType

P,G,ν,A (λ, des) with:

O1
CMH,ν,α̂,ĥ

(kInd) for kInd ∈ Xκ: Can be queried only once. C computes (k,m2) := Enc1 (κ, kInd),

r̂ ← Zm2
p2 and returns K̂ := g

k(0,r̂,ĥ)
2 if ν = 0 and K̂ := g

k(α̂,r̂,ĥ)
2 if ν = 1.

O2
CMH,ν,α̂,ĥ

(cInd∗) for cInd∗ ∈ Yκ: The oracle can be queried only once. Challenger C returns ⊥ if

Rp2 (f1(kInd), f2(cInd∗)) = 1. Otherwise, C computes (c, w2) := Enc2 (κ, cInd∗), picks ŝ← ZN and

ŝ← Zw2

N and returns Ĉ := g
c(ŝ,ŝ,ĥ)
2 .

The advantage of A in this experiment is defined as:

AdvCMH
P,A (λ, des) :=

∣∣Pr
[
ExpCMH

P,G,0,A (λ, des) = 1
]
− Pr

[
ExpCMH

P,G,1,A (λ,des) = 1
]∣∣ .

Definition A.2. Pair encoding P is called co-selectively master key hiding with respect to G if for
all des ∈ Ω, all λ and all ppt (in λ) adversaries A, the function AdvCMH

P,A (λ, des) is negligible in λ.

B Families of Collision-Resistant Hash Function

Let G be a group generation algorithm and RΩ,Σ be a predicate family with Σ ⊆ N. In our constructions
we will hash elements from Yκ together with a restricted number of group elements of GT. Hence,
we require a collision resistant hash function, which will be formalized as in [11]. Let λ be a security
parameter, des ∈ Ω.
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Definition B.1. A family of collision-resistant hash functions H associated with G and RΩ,N is
specified by:
– A family of key spaces S = {Sλ,GDN ,des} indexed by security parameter λ, restricted group description

GDN of GD ∈
[
G
(
1λ
)]

, and des ∈ Ω. Each Sλ,GDN ,des is a probability space and there must be a ppt
algorithm Sample, which given 1λ, GDN , and des outputs a key s according to Sλ,GDN ,des. We write
s← Sample

(
1λ,GDN ,des

)
.

– A family of efficiently computable functions{
Hλ,GDN ,des,s : Ydes,N × (GT)

≤mdes,N 7→ ZN
}

indexed by security parameter λ, restricted group description GDN of GD ∈
[
G
(
1λ
)]

, des ∈ Ω, and
s ∈ Sλ,GDN ,des. Furthermore, mdes,N ∈ N only depends on des, N and the pair encoding scheme.
Namely,

mdes,N = max
(
{w1 ∈ N : (c, w2) = Enc2 ((des, N) , cInd) , w1 = |c|}cInd∈Ydes,N

)
.

The security property for the collision-resistant hash functions is defined through the following proba-
bilistic experiment.

CRH,A (λ,des) : GD← G
(
1λ
)
, s← Sample

(
1λ,GDN ,des

)
,

(x1, x2)← A
(
1λ,GD,des, s

)
.

The output is 1 if and only if x1 6= x2 and

Hλ,GDN ,des,s (x1) = Hλ,GDN ,des,s (x2) (mod N) .

We particularly note that A is given GD and not only GDN in the defined experiment.
The advantage of A in experiment CRH,A (λ,des) is defined as

AdvCR
H,A (λ,des) := Pr [CRH,A (λ,des) = 1] .

Definition B.2. A family of collision-resistant hash functions H is secure, if for every ppt algorithm A
there exists a negligible function negl (λ) such that AdvCR

H,A (λ,des) ≤ negl (λ) .

For simplicity, if 1λ, GDN , and des are fixed and obvious from the context, we will write H← Hκ instead
of s ← Sample

(
1λ,GDN ,des

)
and H := Hλ,GDN ,des,s. We will use the formalized experiment for the

reduction step based on the security property of the hash family H.

C Hybrid Construction of Predicate Encryption Schemes

In this section we show that a predicate key-encapsulation mechanisms (P-KEMs) combined with appro-
priate symmetric schemes lead to predicate encryption schemes (PEs) with unrestricted message space.
We start by recalling common definition of data encapsulation mechanisms and key derivation functions
as well as appropriate security definitions for these primitives. Then, we present the hybrid construction
for PE schemes and prove the security of this construction. The proof is similar to those from PKE [11]
and IBE [6] settings.

C.1 Data Encapsulation Mechanisms (DEMs)

In this subsection we recall the definition of data encapsulation mechanism, which is also called one-time
symmetric-key encryption (cf. [11]).

Definition C.1. Let KLen (λ) be a polynomial. A data encapsulation mechanism Π for the message
spaceM = {0, 1}∗ and with key length KLen (λ) consists of two deterministic polynomial time algorithms:

Enc
(
1λ, symk,m

)
=: C : The encryption algorithm takes as input a security parameter λ, a key symk ∈

{0, 1}KLen(λ)
, and a message m ∈M. It outputs a ciphertext C ∈ {0, 1}∗.
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Dec
(
1λ, symk,C

)
=: m : The decryption algorithm takes as input a security parameter λ, a key symk ∈

{0, 1}KLen(λ)
, and a ciphertext C ∈ {0, 1}∗. It outputs a message m ∈M or an error symbol ⊥ /∈M.

Correctness: For every security parameter λ, every symk ∈ {0, 1}KLen(λ)
, and every m ∈M it must hold

Dec
(
1λ, symk,Enc

(
1λ, symk,m

))
= m .

Next we recall the chosen-ciphertext security definition for DEMs.

DEMCCA
Π,A (λ):

Challenge : Adversary A
(
1λ
)

outputs two messages m0,m1 ∈M of the same length. Challenger C
picks a key symk← {0, 1}KLen(λ)

and a bit b← {0, 1}. It returns C∗ := Enc
(
1λ, symk,mb

)
to A.

Phase II : A has access to the decryption oracle Dec
(
1λ, symk, ·

)
for any C ∈ {0, 1}∗ under the

restriction that C 6= C∗.
Guess : A outputs a bit b′. If one of the restrictions is violated, the output of the experiment is 0.

The output of the experiment is 1 iff b′ = b.

The advantage of A in experiment DEMCCA
Π,A (λ) is defined as

Adv-DEMCCA
Π,A (λ) := Pr

[
DEMCCA

Π,A (λ) = 1
]
− 1/2 .

Definition C.2. A data encapsulation mechanism Π is called CCA-secure if for every ppt adversary
A the function Adv-DEMCCA

Π,A (λ) is negligible.

C.2 Key Derivation Functions

In this subsection we recall the notion of key derivation functions. These definitions are simplified com-
pared to the formalization in [11].

Definition C.3. Let K = {Kλ} be a family of key spaces indexed by security parameter λ. A key
derivation function family KDF = (Sample,KDF) for K with output length OutLength (λ) for some
polynomial OutLength (λ) consists of two ppt algorithms:

Sample
(
1λ
)
→ dk : The probabilistic sampling algorithm takes as input a security parameter λ and

outputs a derivation key dk.

KDF
(
1λ,dk,K

)
=: symk : The deterministic evaluation algorithm takes as input a derivation key dk, a

security parameter λ, and a source key K ∈ Kλ. It outputs a symmetric key symk ∈ {0, 1}OutLength(λ)
.

We define the security property of KDF through the following probability distributions.

KDFKDF (λ) : dk← Sample
(
1λ
)
, K← Kλ,

symk0 := KDF
(
1λ,dk,K

)
, symk1 ← {0, 1}

OutLength(λ)
.

The advantage of an adversary A against KDF is defined as

Adv-KDFKDF,A (λ) :=
∣∣Pr
[
A
(
1λ,dk, symk0

)
= 1
]
− Pr

[
A
(
1λ,dk, symk1

)
= 1
]∣∣ .

Definition C.4. A family of key derivation functions KDF is secure, if for every ppt algorithm A the
function Adv-KDFKDF,A (λ) is negligible.

20



C.3 Predicate encryption schemes

For the sake of completeness we present a formal definition of predicate based encryption schemes, which
is similar to the Definition 2.3 of P-KEMs.

Definition C.5. A predicate encryption Πpe for predicate family RΩ,Σ and message spaceM consists
of four ppt algorithms:

Setup
(
1λ,des

)
→ (msk,ppκ) : takes as input security parameter λ, des ∈ Ω, and outputs a master

secret key and public parameters. The algorithm determines among other elements dom ∈ Σ and the
relation index κ = (des,dom) ∈ Ω ×Σ is (implicitly) included in ppκ.

KeyGen
(
1λ,ppκ,msk, kInd

)
→ sk : takes as input the master secret key msk and a key index kInd ∈

Xκ. It generates a user secret key sk for kInd.
Enc

(
1λ,ppκ, cInd,m

)
→ ct : takes as input a ciphertext index cInd ∈ Yκ and a message m ∈ M. It

outputs a ciphertext ct.
Dec

(
1λ,ppκ, sk, ct

)
→ m : takes as input a secret key sk and a ciphertext ct. It outputs a message

m ∈M or an error symbol ⊥ /∈M.

Correctness: For every security parameter λ, every des ∈ Ω, every (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, every

kInd ∈ Xκ and cInd ∈ Yκ which satisfy Rκ (kInd, cInd) = 1, every sk ∈
[
KeyGen

(
1λ,ppκ,msk, kInd

)]
,

every m ∈M and every ct ∈
[
Enc

(
1λ,ppκ, cInd,m

)]
it must hold

Pr
[
Dec

(
1λ,ppκ, sk, ct

)
= m

]
= 1 .

C.4 Hybrid Construction

In this subsection we put the primitives together and present the hybrid constructions for predicate
encryption schemes.

Suppose l (λ) is a polynomial. Let ΠDEM =
(
Enc′,Dec′

)
be a data encapsulation mechanism for

message space M = {0, 1}∗ and with key length l (λ). Let ΠKEM =
(
Setup′,KeyGen′,Encaps′,Decaps′

)
be a predicate key encapsulation mechanism for RΩ,Σ and key space family K = {Kλ}. At last, let
KDF = (Sample,KDF) be a key derivation function family for K and with output length l (λ).

The hybrid predicate encryption Πhyb for RΩ,Σ and M is as follows:

Setup
(
1λ,des

)
→ (msk,ppκ) for des ∈ Ω : Generate

(
msk′,pp′κ

)
← Setup′

(
1λ,des

)
as well as dk ←

Sample
(
1λ
)
. Return msk = msk′ and ppκ := (pp′κ,dk).

KeyGen
(
1λ,ppκ,msk, kInd

)
→ sk for ppκ = (pp′κ,dk) and kInd ∈ Xκ : Generate and return a user se-

cret key sk← KeyGen′
(
1λ,pp′κ,msk′, kInd

)
, where msk′ = msk.

Enc
(
1λ,ppκ, cInd,m

)
→ ct for ppκ = (pp′κ,dk), cInd ∈ Yκ, and m ∈M : Generate an encapsulation

(K,CT)← Encaps′
(
1λ,pp′κ, cInd

)
, compute symk := KDF

(
1λ,dk,K

)
and C := Enc′

(
1λ, symk,m

)
,

and return ct := (CT,C).
Dec

(
1λ,ppκ, sk, ct

)
for ppκ = (pp′κ,dk) and ct = (CT,C) : Compute K ← Decaps′

(
1λ,pp′κ, sk,CT

)
,

symk := KDF
(
1λ,dk,K

)
, and output Dec′

(
1λ, symk,C

)
.

Proof. (Correctness) Let λ, des ∈ Ω, (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
, kInd ∈ Xκ and cInd ∈ Yκ which sat-

isfy Rκ (kInd, cInd) = 1, sk ∈
[
KeyGen

(
1λ,ppκ,msk, kInd

)]
, m ∈ M and ct ∈

[
Enc

(
1λ,ppκ, cInd,m

)]
be arbitrary, but fixed.

By construction of Πhyb it holds ppκ = (pp′κ,dk), where
(
msk′,pp′κ

)
∈
[
Setup′

(
1λ,des

)]
as well as

dk ∈
[
Sample

(
1λ
)]

. Furthermore, for the key sk it holds sk ∈
[
KeyGen′

(
1λ,pp′κ,msk′, kInd

)]
. Finally,

ciphertext ct is a tuple (CT,C). Element CT is computed by (K,CT)← Encaps′
(
1λ,pp′κ, cInd

)
, that is

CT uniquely determines K ∈ Kλ by correctness of ΠKEM. Furthermore, C = Enc′
(
1λ, symk,m

)
, where

symk = KDF
(
1λ,dk,K

)
.

Decryption algorithm Dec on input
(
1λ,ppκ, sk, ct

)
computes Decaps′

(
1λ,pp′κ, sk,CT

)
. Hence, by

correctness of ΠKEM (cf. Definition 2.3) it holds

Decaps′
(
1λ,pp′κ, sk,CT

)
= K .

Next, Dec evaluates function KDF
(
1λ,dk,K

)
and hence, receives symk from above. Finally, Dec executes

the deterministic algorithm Dec′
(
1λ, symk,C

)
= Dec′

(
1λ, symk,Enc′

(
1λ, symk,m

))
and, by correctness

of ΠDEM, reconstructs and outputs m. ut
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C.5 CCA-Security Definition for Predicate Encryption Schemes

Next we define the CCA-security experiment for predicate encryption schemes. We use the notation
of hybrid construction, i.e. the ciphertext is split into two parts. The definition is very similar to the
definition of experiment aP-KEMaCCA

ΠKEM,A (λ, des). Index i denotes the number of a covered key generation
query and kIndi denotes the key index used in the query with number i. W.l.o.g. we assume that A uses
index i in the oracle queries only after the i’th query to the covered key generation oracle. In the security
proof we will slightly change this experiment. Those parts of the experiment, which will be changed later,
are framed and numbered.

aPECCA
Π,A (λ,des):

Setup : Challenger C generates (msk,ppκ)← Setup
(
1λ,des

)
and starts A

(
1λ,ppκ

)
.

Phase I : A has access to the following oracles:
CoveredKeyGen (kIndi) for kIndi ∈ Xκ : C generates and stores ski ← KeyGen (msk, kIndi).
Open (i) : C returns ski. We call the corresponding key index kIndi a corrupted key index.
Decrypt ((CT,C) , i) : If CT ∈ CcInd for cInd ∈ Yκ, and C ∈ {0, 1}∗, then the challenger C returns

Dec (ski, (CT,C)).
Challenge : A submits m0,m1 ∈ M of the same length and a target ciphertext index cInd∗ ∈ Yκ,

under the restriction that for every corrupted key index kIndi it holds Rκ (kIndi, cInd∗) = 0.

Challenger flips a bit b← {0, 1} and returns 〈11〉 ct∗ = (CT∗,C∗)← Enc (cInd∗,mb) .
Phase II : A has access to the following oracles:

CoveredKeyGen (kIndi) : As before.
Open (i) : As before, under the restriction that it must hold Rκ (kIndi, cInd∗) = 0.
Decrypt ((CT,C) , i) : If CT ∈ CcInd for cInd ∈ Yκ, C ∈ {0, 1}∗, and (CT,C) 6= ct∗, C returns
〈12〉 Dec (ski, (C,CT)) .

Guess : A outputs a guess b′ ∈ {0, 1}. If one of the restrictions is violated, the output of the
experiment is 0. The output of the experiment is 1 iff b′ = b.

The advantage of A in security experiment aPECCA
Π,A (λ,des) is defined as

Adv-aPECCA
Π,A (λ, des) := Pr

[
aPECCA

Π,A (λ, des) = 1
]
− 1/2 .

Definition C.6. A predicate encryption Π for predicate family RΩ,Σ is called adaptively (or fully)
secure against adaptively chosen-ciphertext attacks if for every des ∈ Ω and every ppt (in λ)
adversary A the function Adv-aPECCA

Π,A (λ,des) is negligible in λ.

C.6 Security of Hybrid Construction

In this subsection we will show that the hybrid construction Πhyb from Subsection C.4 is secure.

Theorem C.1. Suppose ΠKEM is a fully CCA-secure KEM, ΠDEM is a CCA-secure DEM, and KDF
is a secure family of key derivation functions. Then, hybrid scheme ΠPE is a fully CCA-secure predicate
encryption scheme. In particular, for every des ∈ Ω and every ppt algorithm A there exist ppt algorithms
B1, B2, and B3 with essentially the same running time as A such that for sufficiently large λ it holds

Adv-aPEaCCA
Π,A (λ, des) ≤ 2 ·Adv-aP-KEMaCCA

Π,B1
(λ, des)

+Adv-KDFKDF,B2
(λ) + Adv-DEMCCA

Π,B3
(λ) .

Proof. We define a sequence of probability experiments in Fig. 2.

Fig. 2. Proof Structure

G0 G1 G2

DEM

G3

≈ KEM KDF

G0 is the CCA experiment aPECCA
Π,A (λ, des) and the other games arise from it through simple modifica-

tions summarized in Table 2. We explain the modifications in detail in the proof. The indistinguishability
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Table 2. The probability experiments from security proof of hybrid construction.

G1: Modify 〈12〉
Decrypt ((CT∗,C) , i) := Dec (symk∗,C)

if R (kIndi, cInd∗) = 1

G2: Modify K∗ in 〈11〉 K∗ ← Kλ
G3: Modify symk∗ in 〈11〉 symk∗ ← {0, 1}l(λ)

of the games is based on the security of corresponding cryptographic primitives labeling the edges. In
the last game the advantage of any adversary is negligible due to the security of DEM.

Experiment G1 is defined as G0 except for 〈12〉. Namely, in the second phase decryption queries on
ct = (CT,C) and i which satisfies CT = CT∗, C 6= C∗, and R (kIndi, cInd∗) = 1, are answered directly
with Dec (symk∗,C). Thereby symk∗ is the key used to compute the challenge ciphertext ct∗ = (CT∗,C∗).

The change in G1 is conceptual, since our definition of KEM is error-free and hence, symk∗ is the
encapsulated key for CT∗. Hence, for every des ∈ Ω it holds for every A

Pr [A wins in G0] = Pr [A wins in G1] .

Experiment G2 is defined as G1 except for the computation of K∗ in 〈11〉. Namely, the challenge is
generated as follows. C computes an encapsulation as before ( ,CT∗)← Encaps′ (cInd∗). Then, a random
key K∗ ← Kλ is chosen. At the end the symmetric part is computed as before by symk∗ := KDF (dk,K∗)
and C∗ ← Enc′ (symk∗,mb). Due to this modification C∗ and CT∗ are independently generated such that
CT∗ does not contain any information about the symmetric key used to encrypt the actual message. Both
experiments are indistinguishable due to the security property of KEM, as stated in the following lemma.

Lemma C.1. For every ppt algorithm A there exists a ppt algorithm B1 such that for every security
parameter λ and every des ∈ Ω it holds

Pr [A wins in G1]− Pr [A wins in G2] = 2 ·Adv-aP-KEMaCCA
ΠKEM,B1

(λ,des) .

The running time of B1 is essentially the same as the running time of A.

Proof. Given an algorithm A, which can distinguish between G1 and G2, we construct an algorithm B1

against ΠKEM with essentially the same running time.

We analyze the constructed algorithm. B1 gets as input correctly generated public parameters and
extends these by the derivation key for the hash function. This corresponds to the computations in
the experiment. Next, we state, that B1 answers all queries of A correctly using the own oracles. The
covered key generation queries and the opening queries are redirected to the own challenger and hence, all
computations for these queries are performed correctly. By construction, B1 queries an irregular opening
query if and only if A does. Next, we observe that by construction, B1 never queries decapsulation of
CT∗ in the second phase. In Phase I such a query is allowed. Hence, all queries of B1 are permissible if
A does not violate the restrictions of the experiment.

Next, we consider decryption queries. Thereby, the special queries from the second phase will be
analyzed separately. The decryption queries of A are split into the decapsulation part, realized using the
own decapsulation oracle, and the decryption part, performed by B. Since the challenger of B executes
the decapsulation algorithm, B derives the corresponding symmetric key from it and hence, answers such
decryption queries as defined in the experiments. The special queries in the second phase for CT = CT∗

are answered using the symmetric key symk∗ from the challenge phase. This is exactly as defined in the
experiments.

Finally, consider the challenge phase. If K∗ and CT∗ in the challenge of B1 are independently generated
(let say the challenge bit for B1 is µ = 1), the view of A is as in G2. Otherwise, the view of A is as in
G1 by construction of B1. Hence, we get
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Algorithm 1: B1 in experiment aP-KEMaCCA
ΠKEM,B1

(λ,des)

Input :
(
1λ, pp′κ

)
.

Require: (msk,pp′κ) ∈
[
Setup′

(
1λ, des

)]
.

1 Setup

2 Generate dk← Sample
(
1λ
)
, set ppκ := (pp′κ, dk), and simulate A with

(
1λ, ppκ

)
.

3 Phase I
4 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
5 Queries are redirected to the own challenger.
6 Open (i):
7 Queries are redirected to the own challenger.
8 Decrypt ((CT,C) , i) with CT ∈ CcInd for cInd ∈ Yκ:

9 Query the own oracle Decapsulate (CT, i)→ K. Compute symk := KDF
(
1λ,dk,K

)
and return

m← Dec′
(
1λ, symk,C

)
.

10 Challenge on input m0,m1 ∈M of the same length and cInd∗ ∈ Yκ:
11 Asks for the challenge (K∗,CT∗) on cInd∗.

12 Compute and store symk∗ := KDF
(
1λ, dk,K∗

)
.

13 Flip a bit b← {0, 1}, and compute C∗ ← Enc′
(
1λ, symk∗,mb

)
.

14 Return the challenge ct∗ := (CT∗,C∗).

15 Phase II
16 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
17 As before.
18 Open (i):
19 As before.
20 Decrypt ((CT,C) , i) with CT ∈ CcInd for cInd ∈ Yκ:

21 If R (kIndi, cInd) = 1, CT = CT∗ and C 6= C∗ return m← Dec′
(
1λ, symk∗,C

)
. Other permissible

queries are answered as in Phase I.
22 Guess on input b′ ∈ {0, 1}:
23 Output 1 if and only if b′ = b and A did not violate the restrictions.

Adv-aP-KEMaCCA
Π,B1

(λ,des) = Pr
[
aP-KEMaCCA

Π,B1
(λ, des) = 1

]
− 1/2

= 1/2 ·
(
Pr
[
B1

(
1λ,pp′κ

)
= 0

∣∣ µ = 0
]

+ Pr
[
B1

(
1λ,pp′κ

)
= 1

∣∣ µ = 1
]
− 1
)

= 1/2 ·
(
Pr
[
B1

(
1λ,pp′κ

)
= 1

∣∣ µ = 1
]
− Pr

[
B1

(
1λ,pp′κ

)
= 1

∣∣ µ = 0
])

= 1/2 · (|Pr [b′ = b | µ = 1]− Pr [b′ = b | µ = 0]|)
= 1/2 · (Pr [A wins in G2]− Pr [A wins in G1]) .

This finally proves Lemma C.1. ut

Experiment G3 is defined as G2 except for the computation of symk∗ in 〈11〉, which is chosen at

random: symk∗ ← {0, 1}l(λ)
.

Lemma C.2. For every ppt algorithm A and every des ∈ Ω there exists a ppt algorithm B2 such that
for every security parameter λ it holds

Adv-KDFKDF,B2
(λ) = |Pr [A wins in G2]− Pr [A wins in G3]| .

The running time of B2 is essentially the same as the running time of A.

Proof. Assume that there exist a ppt algorithm A such that

|Pr [A wins in G2]− Pr [A wins in G3]|

is not negligible. We construct an algorithm B2 which breaks the security property of KDF .
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B2 given 1λ, dk, and symkµ simulates the experiment using correctly generated msk and ppκ as
defined in the experiments, but uses symkµ instead of symk∗. B2 outputs 1 if and only if A outputs the
correct bit and does not violates the restrictions. By construction, if µ = 0 the view of A is as in G2.
Otherwise, the view of A is as in G3. Hence, we get

Adv-KDFKDF,B2
(λ) =

∣∣Pr
[
B2

(
1λ,dk, symk0

)
= 1
]
− Pr

[
B2

(
1λ,dk, symk1

)
= 1
]∣∣

= |Pr [A wins in G2]− Pr [A wins in G3]| .

This proves Lemma C.2. ut

Now we analyze experiment G3. We prove the following lemma.

Lemma C.3. For every ppt algorithm A and every des ∈ Ω there exists a ppt algorithm B3 such that
for every security parameter λ it holds

Adv-DEMCCA
Π,B3

(λ) = Pr [A wins in G3]− 1/2 .

The running time of B2 is essentially the same as the running time of A.

Proof. Assume that there exist a ppt algorithm A which has not-negligible advantage in G3. We construct
an algorithm B3 which breaks the CCA-security property of ΠDEM:

B3 on input 1λ simulates A as follows:

Setup, Phase I: Using correctly generated msk and ppκ, B3 simulates everything as defined in the
experiment until the challenge phase.

Challenge: Given m0, m1, and cInd∗ ask for the challenge on m0,m1 and receive C∗. Compute the
encapsulation ( ,CT∗)← Encaps′

(
1λ,pp′κ, cInd∗

)
, and output (CT∗,C∗).

Phase II: As defined in the experiment except for the decryption query:
Decrypt ((CT,C) , i) with R (kIndi, cInd) = 1, CT = CT∗ and C 6= C∗. Query the own oracle

Decrypt (C) and given m, return it.
Guess: Output the output of A.

B3 does not use the own oracle in the first Phase. Furthermore, in the second phase B3 never ask the
decryption of C∗ by construction. Hence, all queries of B3 are permissible. Furthermore, G3 is defined in
such a way, that symk∗ from the challenge is chosen independently from CT∗. This corresponds to the
key generation of the challenger of B3. B3 wins if and only if A wins. Hence, it holds:

Adv-DEMCCA
Π,B3

(λ) = Pr
[
DEMCCA

Π,B3
(λ) = 1

]
− 1/2

= Pr [A wins in G3]− 1/2 .

This proves Lemma C.3. ut

All together we get for every ppt A:

Adv-aPECCA
Π,A (λ,des) = Pr

[
aPECCA

Π,A (λ,des) = 1
]
− 1/2

= Pr [A wins in G0]− Pr [A wins in G1]

+ Pr [A wins in G1]− Pr [A wins in G2]

+ Pr [A wins in G2]− Pr [A wins in G3]

+ Pr [A wins in G3]− 1/2

≤ 0 + 2 ·Adv-aP-KEMaCCA
Π,B1

(λ,des)

+Adv-KDFKDF,B2
(λ) + Adv-DEMCCA

Π,B3
(λ) .

This finally proves Theorem C.1. ut

D Security Proof of the CCA-Secure Pair Encoding Framework

In this section we present a formal proof of Theorem 4.1. We start with general lemmas which will be
used in the main proof, which is then presented in Subsection D.3.

25



D.1 On the distribution of semi-functional components

In this subsection we will prove some useful lemmas about the output distributions of semi-functional
algorithms. These lemmas will be used in several lemmas of the main proof.

The first lemma states that as long as α̂ is chosen uniformly at random, the distribution of the
resulting semi-functional keys is independent of the concrete generator of Gp2 .

Lemma D.1. For every λ, every des ∈ Ω, every
(

msk,ppκ, g2, ĥ, ,
)
∈
[
SFSetup

(
1λ,des

)]
, every

kInd ∈ Xκ, every type ∈ {1, 2, 3}, and every generator g̃2 ∈ Gp2 it holds

Pr
[
ŝk : α̂← ZN , ŝk← SFKeyGen

(
1λ,ppκ,msk, kInd, type, α̂, g2, ĥ

)]
= Pr

[
s̃k : α̃← ZN , s̃k← SFKeyGen

(
1λ,ppκ,msk, kInd, type, α̃, g̃2, ĥ

)]
.

Proof. We will prove the lemma for all key types simultaneously. Let λ, des ∈ Ω,
(

msk,ppκ, g2, ĥ, ,
)
∈[

SFSetup
(
1λ,des

)]
, kInd ∈ Xκ, and a generator g̃2 ∈ Gp2 be arbitrary, but fixed. Elements g2, g̃2 ∈ Gp2

are generators of Gp2 . Hence, there exists x ∈ Z∗p2 such that g̃2 = gx2 . Next, denote ŝk = (kInd,K1)

and s̃k = (kInd,K2). By the definition of SFKeyGen, the input values α̂ and g2 affect only the Gp2
components of the group elements in the generated key. Furthermore, these components are independently
generated from the Gp1 and from the Gp3 components. Hence, the distribution of the Gp1 components
and the distribution of the Gp3 components of K1 and K2 are identical and we will consider only the
distributions of the Gp2 components of K1 and K2.

In the first probability space, the Gp2 components K̂ of K1 are determined by the mutually inde-
pendent random variables r̂ (defined by SFKeyGen) and α̂. In the second probability space, the Gp2
components K̃ of K2 are determined by the mutually independent random variables r̃, (defined by
SFKeyGen) and α̃. Namely, it holds:

K̂ =


g
k(0,r̂,ĥ)
2 if type = 1

g
k(α̂,r̂,ĥ)
2 if type = 2

g
k(α̂,0,0)
2 if type = 3

and K̃ =


g̃
k(0,r̃,ĥ)
2 = g

k(0,x·r̃,ĥ)
2 if type = 1

g̃
k(α̃,r̃,ĥ)
2 = g

k(x·α̃,x·r̃,ĥ)
2 if type = 2

g̃
k(α̃,0,0)
2 = g

k(x·α̃,0,0)
2 if type = 3 ,

where (k,m2) = Enc1 (κ, kInd). For the keys of Type 1 and of Type 2 the values r̂ and x · r̃ are uniformly
distributed over Zm2

p2 due to the choices of r̂ and r̃, and because x 6= 0 (mod p2). Additionally, for the
keys of Type 2 and of Type 3 the values α̂ and x · α̃ are uniformly distributed over Zp2 due to the choices
of α̂ and α̃, and because x 6= 0 (mod p2). Hence, we deduce that the Gp2 components of the group
elements in the keys are identically distributed in both probability experiments. As mentioned above,
this implies that ŝk and s̃k are identically distributed. This proves the lemma. ut

Next lemma is very similar and shows that the output distribution of the semi-functional encapsula-
tion algorithm is independent of the concrete generator of Gp2 .

Lemma D.2. For every λ, every des ∈ Ω, every
(

msk,ppκ, g2, ĥ, û2, v̂2

)
∈
[
SFSetup

(
1λ,des

)]
, every

cInd ∈ Yκ, and every generator g̃2 ∈ Gp2 it holds

Pr
[
K̂, ĈT : K̂, ĈT← SFEncaps

(
1λ,ppκ, cInd, g2, ĥ, û2, v̂2

)]
= Pr

[
K̃, C̃T : K̃, C̃T← SFEncaps

(
1λ,ppκ, cInd, g̃2, ĥ, û2, v̂2

)]
.

Proof. Let λ, des ∈ Ω,
(

msk,ppκ, g2, ĥ, û2, v̂2

)
∈
[
SFSetup

(
1λ,des

)]
, cInd ∈ Yκ, and a generator

g̃2 ∈ Gp2 be arbitrary, but fixed. Elements g2, g̃2 ∈ Gp2 are generators of Gp2 . Hence, there exists x ∈ Z∗p2
such that g̃2 = gx2 . Next, denote ĈT = (cInd,C1, C

′′
1 ) and C̃T = (cInd,C2, C

′′
2 ). First, let us consider

the distributions of C1 and C2. By the definition of SFEncaps, the input value g2 only affects the
Gp2 components of the group elements in the generated encapsulation. Furthermore, these components
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are generated independently from the Gp1 components and all these elements do not contain the Gp3
components. Hence, the distribution of the Gp1 components of C1 and C2 are identical and we will only
consider the distributions of the Gp2 components of these elements.

In the first probability space, the Gp2 components Ĉ of C1 are determined by the mutually inde-
pendent random variables ŝ and ŝ (defined by SFEncaps). In the second probability space, the Gp2
components C̃ of C2 are determined by the mutually independent random variables s̃ and s̃ (defined by
SFEncaps). Namely, it holds:

Ĉ = g
c(ŝ,ŝ,ĥ)
2 and C̃ = g̃

c(s̃,s̃,ĥ)
2 = g

c(x·s̃,x·s̃,ĥ)
2 ,

where (c, w2) = Enc2 (κ, cInd). The values ŝ, x · s̃ ∈ Zp2 , and ŝ, x · s̃ ∈ Zw2
p2 are uniformly distributed due

to the choice of the corresponding random values and because x 6= 0 (mod p2). Hence, we deduce that

Ĉ and C̃ are identically distributed. As mentioned above, this implies that C1 and C2 are identically
distributed too. Next, we claim that if the random variables, which determine the Gp1 components and
the Gp2 components of C1 and C2 take the same values than C ′′1 = C ′′2 . Namely, C1 = C2 implies that
the hash value t and the random value s are the same in both cases and furthermore it holds ŝ = x · s̃
(mod p2). Hence, by construction of SFEncaps it holds

C ′′2 =
(
U t1 · V1

)s · (g̃û2·t
2 · g̃v̂22

)s̃
=
(
U t1 · V1

)s · (gû2·t
2 · gv̂22

)x·s̃
=
(
U t1 · V1

)s · (gû2·t
2 · gv̂22

)ŝ
= C ′′1 .

This proves the lemma. ut

D.2 Supplementary Algorithms

In this subsection we will show how to simulate different elements of the scheme. The algorithms from
this subsection will be used in several reductions. Partially, these algorithms were (implicitly) presented
in the proof of the original framework from [3]. We separately define these algorithms in order to avoid
repetitions and also in order to simplify the involved proofs.

Simulation of the Semi-Functional Public Parameters. By the definition of algorithm SFSetup,
the semi-functional public parameters for the predicate Rκ consist of the normal public parameters ppκ,

a group generator ĝ2 ∈ Gp2 , a vector ĥ ∈ Znp2 and two additional elements û2, v̂2 ∈ Zp2 (n = Param (κ)).
All these elements are chosen independently and remain hidden in the realization of the scheme. But for
the proof, these elements are essential, since the normal keys and the normal challenge encapsulation
are changed to their semi-functional counterparts. That is, the Gp2 components, which we also call semi-
functional, are appended to the corresponding group elements. These components are not completely
random (which is the case for the Gp3 components of the user secret keys). Rather, the Gp2 components
have the same structure as the normal Gp1 components. This is indispensable in the proof, where the
properly distributed semi-functional keys and a semi-functional challenge encapsulation will be generated
given either a generator of Gp1p2 or a generator of Gp2p3 instead of a generator of Gp2 .

In this subsection we actually show how to generate properly distributed semi-functional public
parameters (except g2 ∈ Gp2) given des ∈ Ω, the restricted group description GDN , g1 ∈ Gp1 , and
g3 ∈ Gp3 .

Lemma D.3. There exist a ppt algorithm SimPP such that for every security parameter λ and every
des ∈ Ω it holds

1. SimPP can be used to generate the normal public parameters and the master secret key:

Pr
[
msk,ppκ : (msk,ppκ)← Setup

(
1λ,des

)]
= Pr

[
msk,ppκ : (msk,ppκ, , , )← SFSetup

(
1λ,des

)]
= Pr

[
msk,ppκ :

G̃D← G
(
1λ
)
, g̃1 ← Gp1 , g̃3 ← Gp3 ,

(msk,ppκ, , , )← SimPP
(

des, G̃DÑ , g̃1, g̃3

)] ,

where G̃DÑ is the restricted group description of G̃D.
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2. For every G̃D ∈
[
G
(
1λ
)]

, every g̃1 ∈ Gp1 , every g̃3 ∈ Gp3 , and every (msk,ppκ,h
′, u, v) generated

by SimPP
(

des, G̃DÑ , g̃1, g̃3

)
it holds

ppκ =
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
,

where GDN = G̃DÑ , g1 = g̃1, g3 = g̃3, gh1 = gh
′

1 , U1 = gu1 , and V1 = gv1 . Furthermore, the values h′,
u, v modulo p2 and modulo p3 are uncorrelated with ppκ.

3. For every (msk,ppκ) ∈
[
Setup

(
1λ,des

)]
it holds

Pr
[
ĥ, û2, v̂2

∣∣∣ ppκ = p̂pκ̂ :
(

m̂sk, p̂pκ̂, , ĥ, û2, v̂2

)
← SFSetup

(
1λ,des

)]
= Pr

h′ (mod p2),
u (mod p2),
v (mod p2)

∣∣∣∣∣∣ ppκ = p̃pκ̃ :
G̃D← G

(
1λ
)
, g̃1 ← Gp1 , g̃3 ← Gp3 ,(

m̃sk, p̃pκ̃,h
′, u, v

)
← SimPP

(
des, G̃DÑ , g̃1, g̃3

) ,

where G̃DÑ is the restricted group description of G̃D.

Proof. The algorithm SimPP is as follows:

Algorithm 2: SimPP

Input : (des,GDN , g1, g3).
1 Set κ := (des, N) and compute n := Param (κ).
2 Pick α← ZN and compute Y := e (g1, g1)

α
.

3 Pick h′ ← ZnN and u, v ← ZN . Compute gh
′

1 , U1 := gu1 and V1 := gv1 .
4 Choose a hash function H← Hκ.

5 Define msk := α and ppκ :=
(

des,GDN , g1, g
h′
1 , U1, V1, g3, Y,H

)
.

Output : (msk,ppκ,h
′, u, v).

SimPP is a ppt algorithm with respect to λ by construction.

Consider the first statement of the lemma. The first equation holds by the definition of the algorithm
SFSetup, which uses Setup for the generation of the master secret key and the public parameters. In the

last probability space, G̃D, g̃1 and g̃3 are generated identically to the generation of GD, g1 and g3 in
the algorithm Setup. All other elements of the public parameters and the master secret key are properly
distributed by construction of SimPP.

The second statement of the lemma holds by construction of SimPP. In particular, ppκ fix the values
h′, u and v modulo p1. By the Chinese Remainder Theorem these values are uncorrelated with h′, u and
v modulo p2 and modulo p3.

The last statement of the lemma holds by the definition of SFSetup, by construction of SimPP and
because of the second statement. This completes the proof. ut

Note, that SimPP outputs not only the properly distributed semi-functional public parameters, but
also the exponents which are correlated with the public parameters modulo p1. This will be exploited
in the following reductions in order to generate properly distributed semi-functional keys and semi-
functional encapsulations without a generator of Gp2 .

Simulation of the Semi-Functional Encapsulation. From the previous section we know that using
SimPP we can generate properly distributed (semi-functional) public parameters (except for g2 ∈ Gp2).
In this section we show how to generate correctly distributed semi-functional encapsulation (see the
definition on page 12) given a generator of Gp1p2 . The resulting algorithm will be used in almost all
following reductions for the generation of the challenge.

Lemma D.4. There exist a ppt algorithm SimSFChlg such that for every security parameter λ, every

des ∈ Ω, every
(

msk,ppκ, g2, ĥ, û2, v̂2

)
∈
[
SFSetup

(
1λ,des

)]
, every cInd ∈ Yκ, every X1 ∈ Gp1 ,
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X1 6= 1G, and every X2 ∈ Gp2 , X2 6= 1G it holds

Pr
[
K,CT : (K,CT)← SFEncaps

(
ppκ, cInd, g2, ĥ, û2, v̂2

)]

= Pr

K,CT

∣∣∣∣∣∣∣∣
p̃pκ̃ = ppκ,

h′ = ĥ (mod p2),
u = û2 (mod p2),
v = v̂2 (mod p2)

:

G̃D← G
(
1λ
)
, g̃1 ← Gp1 , g̃3 ← Gp3 ,(

m̃sk, p̃pκ̃,h
′, u, v

)
← SimPP

(
des, G̃DN , g̃1, g̃3

)
,

(K,CT)← SimSFChlg
(

p̃pκ̃, m̃sk, cInd,h′, u, v,X1X2

)
 ,

where G̃DN is the restriction of G̃D.
Furthermore, the second conditional probability is only over the random choices of SimSFChlg.

Proof. The algorithm SimSFChlg is as follows.

Algorithm 3: SimSFChlg - simulation of semi-functional challenge from SD2 (λ)

Input : (ppκ,msk, cInd,h′, u, v,X1X2).
Require : ppκ =

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
.

1 Compute (c, w2) := Enc2 (κ, cInd). Let w1 := |c|.
2 Pick s′ ← ZN and s′ =

(
s′1, . . . , s

′
w2

)
← Zw2

N . Compute C := (X1X2)
c(s′,s′,h′) .

3 Compute t := H (HInput (cInd,C, )) and C ′′ := (X1X2)
s′·(u·t+v)

.

4 Compute K := e (X1X2, g1)
msk·s′

and set CT := (cInd,C, C ′′).
Output : (K,CT).

SimSFChlg is a ppt algorithm with respect to λ by construction. In particular, all exponents in the
description of the algorithm can be computed explicitly.

Let λ, des ∈ Ω,
(

msk,ppκ, g2, ĥ, û2, v̂2

)
∈
[
SFSetup

(
1λ,des

)]
, cInd ∈ Yκ, X1 ∈ Gp1 , X1 6=

1G, and X2 ∈ Gp2 , X2 6= 1G be arbitrary but fixed. We denote the public parameters by ppκ =(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
. We can write X1 and X2 by gx1

1 and by gx2
2 , respectively. Thereby it

holds x1 6= 0 (mod p1) and x2 6= 0 (mod p2).
The first probability distribution is over the interior choices of SFEncaps. On the one hand, these are

the random choices of Encaps on input ppκ and cInd: s← Zp1 , and s← Zw2
p1 for (c, w2) = Enc2 (κ, cInd).

On the other hand, these are ŝ← Zp2 , and ŝ← Zw2
p2 chosen by SFEncaps itself. Key K and its encapsu-

lation CT = (cInd,C, C ′′) are completely determined by these values and by the semi-functional public
parameters. Namely, it holds

K = Y s ,

C = g
c(s,s,h)
1 · gc(ŝ,ŝ,ĥ)

2 ,

C ′′ = (U t1 · V1)
s ·
(
gû2·t

2 · gv̂22

)ŝ
,

where t = H (HInput (cInd,C, )).
Now, consider SimSFChlg in the context of the conditional distribution defined in the lemma. All

input values of SimSFChlg except for the values h′, u, v (mod p3) are fixed. In particular, p̃pκ̃ = ppκ,

which implies m̃sk = msk. Furthermore, ppκ determine h′ (mod p1), u (mod p1) and v (mod p1) by

Statement 2 of Lemma D.3, since GDN = G̃DN , g1 = g̃1, g3 = g̃3, gh1 = gh
′

1 , V1 = gv1 , and U1 = gu1 . By
construction of SimSFChlg the key K is as follows

K = e (X1X2, g1)
m̃sk·s′

= e (gx1
1 , g1)

msk·s′

= Y x1·s′ .

Hence, K is a key with s = x1 · s′ (mod p1), which is properly distributed due to the choice of s′ and
because x1 6= 0 (mod p1). Furthermore, it holds

C= (X1X2)
c(s′,s′,h′) C ′′= (X1X2)

s′(u·t+v)

=g
x1·c(s′,s′,h′)
1 · gx2·c(s′,s′,h′)

2 =g
x1·s′·(u·t+v)
1 · gx2·s′·(u·t+v)

2

=g
c(x1·s′,x1·s′,h)
1 · gc(x2·s′,x2·s′,ĥ)

2 , =
(
U t1 · V1

)x1·s′ ·
(
gû·t+v̂2

)x2·s′
,
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where t = H (HInput (cInd,C, )). In particular, we used h′ = ĥ (mod p2), u = û2 (mod p2), and v = v̂2

(mod p2) in the last equations. Hence, CT = (cInd,C, C ′′) is a semi-functional encapsulation of K with
s = x1 · s′ (mod p1), ŝ = x2 · s′ (mod p2), and ŝ = x2 · s′ (mod p2). Since x1 6= 0 (mod p1), x2 6= 0
(mod p2), all these elements are properly distributed due to the choice of s′ and s′, and due to the
Chinese Remainder Theorem. This completes the proof. ut

Simulation of the Semi-Functional Keys of Type 3. In this subsection, analogously to the previous
subsection, we show how to generate correctly distributed semi-functional secret keys of Type 3 (see the
definition on page 12) given a generator of Gp2p3 .

Lemma D.5. There exist a ppt algorithm SimSFKeyT3 such that for every security parameter λ, every
des ∈ Ω, every (msk,ppκ, g2, , , ) ∈

[
SFSetup

(
1λ,des

)]
, every kInd ∈ Xκ, every Y2 ∈ Gp2 , Y2 6= 1G,

Y3 ∈ Gp3 it holds

Pr
[
sk : α̂← ZN , sk← SFKeyGen

(
1λ,ppκ,msk, kInd, 3, α̂, g2,

)]
= Pr [sk : α′ ← ZN , sk← SimSFKeyT3 (ppκ,msk, kInd, Y2Y3, α

′)]

= Pr

sk

∣∣∣∣∣∣∣∣ p̃pκ̃ = ppκ :

G̃D← G
(
1λ
)
, g̃1 ← Gp1 , g̃3 ← Gp3 ,(

m̃sk, p̃pκ̃, , ,
)
← SimPP

(
des, G̃DÑ , g̃1, g̃3

)
,

α′ ← ZÑ , sk← SimSFKeyT3
(

p̃pκ̃, m̃sk, kInd, Y2Y3, α
′
)
 ,

where G̃DÑ is the restriction of G̃D.

Furthermore, SimSFKeyT3 sets the Gp2 component of K in sk = (kInd,K) to Y
k(α′,0,0)
2 , where

(k, ) = Enc1 (κ, kInd).

Proof. The algorithm SimSFKeyT3 is as follows.

Algorithm 4: SimSFKeyT3 - simulation of semi-functional keys of Type 3

Input : (ppκ,msk, kInd, Y2Y3, α
′).

Require : ppκ =
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
.

1 Compute (k,m2) := Enc1 (κ, kInd). Let m1 := |k|.
2 Pick r′ ← Zm2

N , R′3 ← Gm1
p3 and compute

K := g
k(msk,r′,h)
1 · (Y2Y3)

k(α′,0,0) ·R′3 .

Output : sk = (kInd,K).

SimSFKeyT3 is a ppt algorithm with respect to λ by construction. Random elements from Gp3 can

be sampled using g3 ∈ ppκ. The element g
k(msk,r′,h)
1 can be computed given k, msk, gh1 ∈ ppκ, and r′

as shown in Lemma F.1. The elements from k (α′,0,0) can be computed explicitly given k and α′.

We will only prove the first equation, since the second equation is then implied by Statement 1 of
Lemma D.3.

Let λ, des ∈ Ω, (msk,ppκ, g2, , , ) ∈
[
SFSetup

(
1λ,des

)]
, kInd ∈ Xκ, Y2 ∈ Gp2 , Y2 6= 1G, and

Y3 ∈ Gp3 be arbitrary but fixed. Let ppκ =
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
, (k,m2) = Enc1 (κ, kInd),

and m1 = |k|. Furthermore, since g2, Y2 are both generators of Gp2 , there exists x ∈ Z∗p2 such that
Y2 = gx2 .

The first probability space is determined by α̂ and by the random variables r ← Zm2
p1 , and R3 ← Gm1

p3
defined by SFKeyGen (or rather KeyGen as a sub algorithm of SFKeyGen). Vector r is uniformly
distributed over Zm2

p1 whereas vector R3 is uniformly distributed over Gm1
p3 . The output of SFKeyGen is

a secret key sk = (kInd,K) such that:

K = g
k(msk,r,h)
1 · gk(α̂,0,0)

2 ·R3 .

Note, that the Gp2 components of K are fixed by the input values.
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Now, consider SimSFKeyT3 in the context of the second probability distribution. By construction of
SimSFKeyT3, it outputs sk = (kInd,K), where K ∈ Gm1 and it holds

K = g
k(msk,r′,h)
1 · (Y2Y3)

k(α′,0,0) ·R′3

= g
k(msk,r′,h)
1 · Y k(α′,0,0)

2 · Y k(α′,0,0)
3 ·R′3

= g
k(msk,r′,h)
1 · gk(x·α′,0,0)

2 · Y k(α′,0,0)
3 ·R′3 .

The Gp1 components of the group elements in K are computed as defined in the (semi-functional) key
generation algorithm. The Gp2 components are properly distributed, since α̂ and x · α′ are identically
distributed, due to the choice of α̂ and α′, and since x 6= 0 (mod p2). Finally, the Gp3 components of K
are properly distributed due to the choice of the group elements in R′3.

Furthermore, SimSFKeyT3 sets the Gp2 component of K to Y
k(α′,0,0)
2 as shown above in an inter-

mediate step. This completes the proof. ut

Difference-Lemma. The following general lemma will be used in almost all reduction steps of the main
proof. See [20] for the proof of this lemma.

Lemma D.6. (Difference Lemma) Let E1, E2 and F be events defined in a probability space, and suppose
that E1 ∧ ¬F ⇔ E2 ∧ ¬F . Then |Pr [E1]− Pr [E2]| ≤ Pr [F ].

D.3 Proof of the Main Theorem

In this section we provide the formal proof of our main theorem. As explained in Section 4, some of the
reductions from the original CPA-secure framework of [3] require only few and simple modifications. For
the sake of completeness we will present the complete proof and explain which parts of the proof are
new.

Remark D.1. Formally, we have to show that the statement of our main theorem holds for every des ∈ Ω.
However, we will not present different reduction algorithms for different description parameters des.
Rather, the reduction algorithms in the proof will get des as an additional input.

From GReal to GresH. The first game GReal in the proof sequence of probability experiments (see Fig. 1)
is the CCA-security experiment aP-KEMaCCA

Π,A (λ,des) from page 8. The restricted hash game GresH is

defined as GReal except for the Guess phase, where the output 〈10〉 is modified. Recall that HInput (·)
is defined on page 11 as a part of the encapsulation algorithm. It takes as input an encapsulation and
computes the corresponding input for the hash function. The last group element C ′′ of the encapsulation
does not affect the hash input.

Changes in GresH compared to GReal:
Exchange 〈10〉 for:
1. The output is 0, if A queried the decapsulation of CT ∈ CcInd for some cInd ∈ Yκ such that

HInput (CT) 6= HInput (CT∗) and t = t∗ (mod N) ,

where CT∗ is the challenge encapsulation, t and t∗ are the hash values of CT and CT∗ respectively.
2. Otherwise, the output is as defined in aP-KEMaCCA

Π,A (λ, des).

We call by HashAbort the event that a query, as defined in Step 1 above, occurs. The probability for
this event is negligible due to the collision-resistance of H as stated in the following lemma.

Lemma D.7. For every ppt algorithm A there exists a ppt algorithm B such that for every security
parameter λ and every des ∈ Ω it holds∣∣∣AdvGReal

Π,A (λ,des)−AdvGresH

Π,A (λ,des)
∣∣∣ ≤ AdvCR

H,B (λ,des) .

The running time of B is essentially the same as the running time of A.
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Proof. Given a ppt adversary A, that can distinguish between GReal and GresH, we construct a ppt
algorithm B which uses A and breaks the security property of the collision-resistant hash function family
H.

Let λ and des ∈ Ω be arbitrary, but fixed. Both probability experiments are identical as long as the
event HashAbort does not occur. Hence, by Lemma D.6 it holds∣∣∣AdvGReal

Π,A (λ,des)−AdvGresH

Π,A (λ,des)
∣∣∣ ≤ Pr [HashAbort] .

But if this event occurs, we get a collision (x1, x2) for H:

x1 = HInput (CT) 6= HInput (CT∗) = x2 ,

H (x1) = t = t∗ = H (x2) ,

which violates the security property of H. More formally, we can construct a ppt algorithm B against H
as follows. B on input

(
1λ,GD,des, s

)
(as defined in experiment CRH,A (λ,des) on page 19) simulates A

using H := Hλ,GDN ,des,s and the public parameters generated using GD as defined in the experiment. If
HashAbort occurs, B outputs the collision (x1, x2) from above for H and wins its experiment. We deduce
AdvCR

H,B (λ,des) = Pr [HashAbort]. This completes the proof. ut

From GresH to GresQ. The game with restricted queries GresQ is defined as GresH except for the
Guess phase, where we again modify the output 〈10〉. We keep the modification from GresQ and add two
additional checks:

Changes in GresQ compared to GresH:
Exchange 〈10〉 for:
1. The same as Step 1 in GresH.
2. The output is 0, if A queried the covered key generation oracle in Phase I or in Phase II on key

index kInd with
Factor (κ, kInd, cInd∗) = F 6= ⊥ ,

where Factor is the algorithm from the domain-transferability property of R (see Definition 2.2).
3. The output is 0, if A queried the decapsulation oracle on CT ∈ CcInd for some cInd ∈ Yκ such

that for the corresponding hash value t it holds

t 6= t∗ (mod N) and gcd (t− t∗, N) 6= 1 ,

where t∗ is the hash value for the challenge CT∗.
4. Otherwise, the output is as defined in aP-KEMaCCA

Π,A (λ, des) (the same as Step 2 in GresH).

We call by FactorAbort the event, that the output of game GresQ is defined to be 0 by Step 2 or Step 3
from above. The probability for this event is negligible, since in both cases we can compute a non-trivial
factor of N , which violates Assumption SD2 by Lemma 2.1 as stated in the following lemma.

Lemma D.8. For every des ∈ Ω and every ppt algorithm A there exists a ppt algorithm B such that for
every security parameter λ it holds∣∣∣AdvGresH

Π,A (λ, des)−Adv
GresQ

Π,A (λ,des)
∣∣∣ ≤ AdvSD2

B (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversary A, that can distinguish between GresH and GresQ, we construct a ppt
algorithm B which uses A and breaks Assumption SD2. B is given des ∈ Ω in addition as explained in
Remark D.1.

Let λ and des ∈ Ω be arbitrary, but fixed. Experiments GresH and GresQ are identical as long as the
event FactorAbort does not occur. Hence, by Lemma D.6 it holds∣∣∣AdvGresH

Π,A (λ, des)−Adv
GresQ

Π,A (λ,des)
∣∣∣ ≤ Pr [FactorAbort] .
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Next we will analyze the probability for this event. We construct a ppt algorithm B which uses A and
wins in Experiment SD2 if the event FactorAbort occurs. B is given des ∈ Ω in addition.

Algorithm 5: B against Assumption SD2

Input : (D,Z, des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 Compute (msk,ppκ, , , )← SimPP (des,GDN , g1, g3) and simulate A as defined in the
experiment GresH until its output.

2 Perform Step 1 from the Guess Phase. Output a guess ν ← {0, 1} if the result of the experiment is
defined to be 0 in this step.

3 (Instead of Step 2) For every kIndi used as input for the covered key generation oracle in Phase I
or in Phase II compute Fi := Factor (κ, kIndi, cInd∗).

4 if there exists Fi such that Fi 6= ⊥ then
5 Break the own challenge as shown in the proof of Lemma 2.1 using (D,Z, Fi).
6 (Instead of Step 3) For every decapsulation query on CT ∈ CcInd, cInd ∈ Yκ compute the

corresponding hash value t and check if t 6= t∗ (mod N) and gcd (t− t∗, N) 6= 1, where t∗ is the
hash value for the challenge CT∗.

7 if t with required property is found then
8 Compute a factor F = gcd (t− t∗, N) of N and break the own challenge as shown in the proof

of Lemma 2.1, using (D,Z, F ).
9 Output a guess ν ← {0, 1}.

In the first step, B generates properly distributed public parameters and the corresponding master secret
key by Lemma D.3. Hence, B can simulate the adversary as defined in the experiment. Note, that the
challenge Z of B is not used in the simulation of A.

If the event FactorAbort does not occur, B outputs a guess and hence, it outputs 1 with probability
1/2 independently of the value Z. If the event FactorAbort occurs, B computes a non-trivial factor of N
and breaks Experiment SD2 with success probability 1 by Lemma 2.1.

Formally, for every des ∈ Ω and every ppt algorithm A there exists a ppt algorithm B′ = BA (·, ·,des)
such that for every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

= Pr [FactorAbort] · |Pr [BA (D,Z0,des) = 1 | FactorAbort]

− Pr [BA (D,Z1,des) = 1 | FactorAbort]|
= Pr [FactorAbort] · |Pr [B′′ (D,Z0, F ) = 1]− Pr [B′′ (D,Z1, F ) = 1]|
= Pr [FactorAbort] ,

where B′′ is the algorithm from Lemma 2.1. This proves the lemma. ut

Supplementary corollaries. One can efficiently check if the event HashAbort or the event FactorAbort
occurs, as shown in the definition of GresH and in the definition of GresQ. In the following experiments,
the output will be 0 if one of these events occurs. Equivalently, we can assume that these events never
happen. We obtain the following corollaries.

Corollary D.1. Suppose that events HashAbort and FactorAbort do not occur. Then, for every pi
∣∣ N

and every encapsulation CT, used by A as input for the decapsulation oracle, it holds

HInput (CT) 6= HInput (CT∗) implies t 6= t∗ (mod pi) ,

where t = H (HInput (CT)) and t∗ = H (HInput (CT∗)).

Proof. By the definition of H it holds t, t∗ ∈ ZN . If the event HashAbort does not occur, it holds t 6= t∗

(mod N) for every CT which satisfies HInput (CT) 6= HInput (CT∗). W.l.o.g. let 0 < t − t∗ < N and
pi
∣∣ N be arbitrary but fixed. Assume that t = t∗ (mod pi). Then we deduce that gcd (t− t∗, N) ≥ pi > 1,

which is the FactorAbort event (Step 3). Hence, it holds t 6= t∗ (mod pi) for every CT which satisfies
HInput (CT) 6= HInput (CT∗). ut
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Corollary D.2. Suppose that event FactorAbort does not occur. Then, for every kInd, used by A in
covered key generation queries, it holds

RN (kInd, cInd∗) = 0 implies Rp2 (f1 (kInd) , f2 (cInd∗)) = 0 ,

where f1 and f2 are the projection maps from the domain-transferability property of R.

Proof. The implication is guaranteed by Step 2 in the Guess phase from the definition of GresQ, since
otherwise algorithm Factor outputs a non-trivial factor F of N . ut

Together with the properties of selective master key hiding and co-selective master key hiding of the
underlying pair encoding schemes, Corollary D.2 is crucial for the analysis of the reduction steps leading
from Gk,1 to Gk,2 and from Gq1+1 to Gq1+2. In turn, Corollary D.1 is crucial for our last additional
reduction where we prove that Gq1+3 and G′q1+3 are indistinguishable.

From GresQ to G′0. The experiment G′0 is as GresQ, but the challenge encapsulation is semi-functional:

Changes in G′0 compared to GresQ:
Exchange 〈1〉 for: (

msk,ppκ, g2, ĥ, û2, v̂2

)
← SFSetup

(
1λ,des

)
.

Exchange 〈5〉 for:

(K0,CT∗)← SFEncaps
(

cInd∗, g2, ĥ, û2, v̂2

)
.

The following lemma corresponds to Lemma 28 from [3]. We use our supplementary algorithms from
Subsection D.2, which simplifies the description of the reduction algorithm and the proof. Furthermore,
we extended the algorithm by the computation of our additional elements.

Lemma D.9. (cf. Lemma 28 in [3]) For every des ∈ Ω and every ppt algorithm A there exists a ppt
algorithm B such that for every security parameter λ it holds∣∣∣Adv

GresQ

Π,A (λ,des)−Adv
G′0
Π,A (λ, des)

∣∣∣ = AdvSD1
B (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversaryA, that can distinguish between GresQ and G′0, we construct a ppt algorithm
B which uses A and breaks Assumption SD1 with the same success probability. Let des ∈ Ω be arbitrary
but fixed. B is given des in addition to its input (D,Z) from experiment SD1 as explained in Remark D.1
and is as follows.
B is a ppt algorithm with respect to λ by construction. In particular, all exponents in the description of
the algorithm can be computed explicitly.

Next, we analyze the view of A and the success probability of B. By construction of B and by
Statement 1 of Lemma D.3 the public parameters ppκ =

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
and the

master secret msk are distributed as defined in the experiments. Note, that GDN , g1 and g3 are distributed
as required by Lemma D.3 due to the definition of experiment SD1. Furthermore, by Statement 2 of
Lemma D.3 it holds gh

′
1 = gh1 , U1 = gu1 and V1 = gv1 . B implicitly sets the semi-functional elements as

ĥ = h′ (mod p2), û2 = u (mod p2), and v̂2 = v (mod p2). These elements are properly distributed by
Statement 3 of Lemma D.3.

All secret keys generated in Phase I and in Phase II are normal in both experiments and hence,
by construction of B are correctly generated using KeyGen (msk, ·). Let g2 be an arbitrary but fixed
generator of Gp2 . By the definition of probability experiment SD1 it holds Z = gz11 g

z2
2 , where z1 is

uniformly distributed in Z∗p1 , and z2 is either uniformly distributed in Z∗p2 (if Z = Z1) or z2 = 0
(mod p2) (if Z = Z0).

Next, consider the challenge phase and the generated challenge. It is important to notice, that by
Lemma D.2, we can consider the distribution of the encapsulation for any fixed generator of Gp2 . By
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Algorithm 6: B against Assumption SD1

Input : (D,Z,des).
Require: D = (GDN , g1, g3), Z ∈ G, des ∈ Ω.

1 Setup

2 Compute (msk, ppκ,h
′, u, v)← SimPP (des,GDN , g1, g3) and simulate A on input

(
1λ, ppκ

)
.

3 Phase I
4 Simulate this phase as defined in the experiments using KeyGen (msk, ·) to generate the keys.
5 Challenge (given cInd∗ ∈ Yκ from A)
6 Compute (c, w2) := Enc2 (κ, cInd∗).
7 Pick s′ ← ZN , s′ ← Zw2

N and compute

C∗ := Zc(s′,s′,h′) .

8 Compute t∗ := H (HInput (cInd∗,C∗, )) and

C′′∗ := Zs
′·(u·t∗+v) .

9 Set CT∗ := (cInd∗,C∗, C′′∗) and K0 := e (Z, g1)msk·s′ .
10 Pick K1 ← GT, flip a coin b← {0, 1}, set K∗ := Kb, and return the challenge (K∗,CT∗).

11 Phase II
12 Simulate this phase as defined in the experiments using KeyGen (msk, ·) to generate the keys.
13 Guess
14 Simulate this phase as defined in the experiment.

construction of B it holds

K0= e (Z, g1)
msk·s′

C∗=Zc(s′,s′,h′) C ′′∗=Zs
′·(u·t∗+v)

= e (gz11 g
z2
2 , g1)

msk·s′
=g

z1·c(s′,s′,h′)
1 · gz2·c(s

′,s′,h′)
2 = (gz11 g

z2
2 )

s′·(u·t∗+v)

=Y z1·s
′
, =g

c(z1·s′,z1·s′,h)
1 · gc(z2·s

′,z2·s′,ĥ)
2 , =

(
U t
∗

1 V1

)z1·s′
·
(
gû2·t∗

2 gv̂22

)z2·s′
.

We claim that CT∗ = (cInd∗,C∗, C ′′∗) is a properly distributed encapsulation of K0, which is either
normal (if Z = Z0) or semi-functional, as defined on page 12 (if Z = Z1). Namely, B implicitly sets the
random values of the normal (Gp1) components as s := z1 · s′ (mod p1), and s := z1 · s′ (mod p1). The
random values of semi-functional (Gp2) components are set as ŝ := z2 ·s′ (mod p2), ŝ := z2 ·s′ (mod p2).
These values are properly distributed due to the choice of s′ and s′. Thereby, we use the fact that z1 6= 0
(mod p1) in both cases and z2 6= 0 (mod p2) in the case of Z = Z1. Furthermore, the value s′ and all
values in s′ modulo p1 and modulo p2 are uncorrelated by the Chinese Remainder Theorem.

We deduce that B perfectly simulates experiment GresQ if Z = Z0 and experiment G0 if Z = Z1.
Furthermore, the output of B is 1 if and only if A wins in the corresponding experiment. Hence, for
every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such that for every security
parameter λ it holds

AdvSD1
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

=

∣∣∣∣12 + Adv
GresQ

Π,A (λ, des)−
(

1

2
+ Adv

G′0
Π,A (λ,des)

)∣∣∣∣
=
∣∣∣Adv

GresQ

Π,A (λ, des)−Adv
G′0
Π,A (λ, des)

∣∣∣ .
This proves the lemma. ut

From G′0 to G0,3. The main modification in G0,3 is that the decapsulation queries are answered using
separately generated normal keys which we denote by sk′i. Hence, the keys, generated in the covered key
generation queries and denoted by ski, will be used only in the opening oracle. Consequently, we do not

35



have to generate these keys in the covered key generation queries anymore, instead they are generated
in the opening oracle, when the keys are given to the adversary. This last change is only conceptual at
this point, but is crucial for the following reductions and the resulting security guaranties.

Changes in G0,3 compared to G′0:
CoveredKeyGen (kIndi) - Do not generate keys in 〈2〉 and in 〈7〉, just store (i, kIndi).

Open (i) - Instead of 〈3〉 and 〈8〉, generate 〈13〉 ski ← KeyGen (msk, kIndi) if ski was not generated
yet. Return ski.
Decapsulate (CT, i) instead of 〈4〉 and 〈9〉:

– For the first decapsulation query with index i generate and store sk′i ← KeyGen (msk, kIndi).
– Return Decaps

(
sk′i,CT

)
.

The following lemma is new in the original sequence of probability experiments (see Fig. 1). We
show that because of the consistency checks and especially because of the verifiability property of the
underlying pair encoding scheme both experiments are unconditionally indistinguishable.

Lemma D.10. For every security parameter λ, every des ∈ Ω and every algorithm A it holds

Adv
G′0
Π,A (λ, des) = AdvG0

Π,A (λ,des) .

Proof. All generated keys are normal in both experiments by definition. By construction, the view of
A in both experiments can only differ if there is a decapsulation query on CT and i ∈ N such that the
probability distributions defined by Decaps (ski,CT) and Decaps

(
sk′i,CT

)
are not equal. This can not

happen due to Lemma 3.1, which proves the lemma. ut

Remark D.2. As mentioned above, all reduction steps between G0,3 and Gq1+3 are similar to the original
CPA-secure construction of [3]. In all reduction steps between these two experiments the reduction
algorithm knows the master secret key. Hence, all normal keys used to answer decapsulation queries can be
generated using KeyGen (msk, ·). Furthermore, as mentioned before, we have to show that the additional
element C ′′∗ for the challenge encapsulation can be generated. For those steps, which are based on the
subgroup decision assumptions, this is already covered by Lemma D.4 and by the algorithm SimSFChlg.
The steps based on the security properties of the underlying pair encoding schemes require further
explanations (Lemma D.12 and Lemma D.15). For the sake of completeness we present all reductions
using our supplementary algorithms.

From Gk−1,3 to Gk,1 for k ∈ [q1]. Experiment Gk−1,3 is defined as experiment G0,3, but the first
k−1 keys, corrupted in Phase I, are semi-functional of Type 3. Hence, G0,3 is a special case of Gk−1,3 for
k = 1. The following experiments include an index j ∈ N, which denotes the current number of corrupted
keys in Phase I.

Experiment Gk−1,3 for k ∈ [q1] as generalization of G0,3:

– Set j := 0 in the Setup phase.

Open (i)a: Exchange 〈13〉 in Phase I (defined in G0,3 on page 36) for:

– Set j := j + 1;

– If j < k, choose α̂j ← ZN and return ski ← SFKeyGen
(

msk, kIndi, 3, α̂j , g2, ĥ
)

.

– If j ≥ k, return ski ← KeyGen (msk, kIndi).

a W.l.o.g. assume that A never asks for the same index. Otherwise, just store the keys.

Gk,1 is as Gk−1,3, but the k’s key corrupted in the first phase is semi-functional of Type 1:

Changes in Gk,1 compared to Gk−1,3:
Open (i): modify 〈13〉 in Phase I by

– If j = k, return ski ← SFKeyGen
(

msk, kIndi, 1, , g2, ĥ
)

.
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Algorithm 7: B against Assumption SD2

Input : (D,Z,des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 Setup
2 Compute (msk, ppκ,h

′, u, v)← SimPP (GDN , g1, g3, des).
3 Set j := 0.

4 Phase I
5 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
6 Store (i, kIndi).
7 Open (i) with i ∈ N:
8 Set j := j + 1.
9 case j < k do

10 Pick α′j ← ZN and return ski ← SimSFKeyT3 (ppκ,msk, kIndi, Y2Y3, αj).
11 case j = k do
12 Compute (k,m2) := Enc1 (kIndi). Let m1 := |k|.
13 Pick r′, r̂′ ← Zm2

N and R′3 ← Gm1
p3 and compute

K := g
k(msk,r′,h)
1 · Zk(0,r̂′,h′) ·R′3 .

14 Return ski := (kIndi,K).

15 case j > k do
16 Return ski ← KeyGen (msk, kIndi).

17 Decapsulate (CT, i) with CT ∈ CcInd, cInd ∈ Yκ, i ∈ N:
18 As defined in the experiment using normal secret key sk′i ← KeyGen (msk, kIndi), generated once.

19 Challenge (given cInd∗ ∈ Yκ from A)
20 Generate (K0,CT∗)← SimSFChlg (ppκ,msk, cInd∗,h′, u, v,X1X2)
21 Pick K1 ← GT, flip a coin b← {0, 1}, set K∗ := Kb, and return the challenge (K∗,CT∗).

22 Phase II
23 Simulates this phase as defined in the experiment using msk.
24 Guess
25 Simulate this phase as defined in the experiment

Lemma D.11. (cf. Lemma 29 in [3]) Suppose q1 ∈ N is the upper bound for the number of corrupted
keys in Phase I. Let k ∈ [q1] be arbitrary. For every des ∈ Ω and every ppt algorithm A there exists a
ppt algorithm B such that for every security parameter λ it holds∣∣∣Adv

Gk−1,3

Π,A (λ, des)−Adv
Gk,1
Π,A (λ,des)

∣∣∣ = AdvSD2
B (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Let k ∈ [q1] be arbitrary, but fixed. Given a ppt adversary A, that can distinguish between
Gk−1,3 and Gk,1, we construct a ppt algorithm B which uses A and breaks Assumption SD2 with the
same success probability. Let des ∈ Ω be arbitrary. B is given des in addition to its input (D,Z) from
experiment SD2 as explained in Remark D.1 and is as follows.
B is a ppt algorithm by construction. In particular, random elements from Gp3 can be chosen using

g3, the elements from g
k(msk,r′,h)
1 can be computed as shown in Lemma F.1, and k

(
0, r̂′,h′

)
can be

computed explicitly.
Next, we analyze the view of A and the success probability of B. By construction of B and by

Statement 1 of Lemma D.3 the public parameters ppκ =
(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
and the

master secret msk are distributed as defined in the experiments. Note, that GDN , g1 and g3 are distributed
as required by Lemma D.3 due to the definition of experiment SD2. Furthermore, by Statement 2 of
Lemma D.3 it holds gh

′
1 = gh1 , U1 = gu1 and V1 = gv1 . B implicitly sets the semi-functional elements as

ĥ = h′ (mod p2), û2 = u (mod p2), and v̂2 = v (mod p2). These elements are properly distributed by
Statement 3 of Lemma D.3.

Let g2 be an arbitrary but fixed generator of Gp2 . Then, by the definition of probability experiment
SD2 it holds Z = gz11 g

z2
2 g

z3
3 , where z1 ∈ Z∗p1 , z3 ∈ Z∗p3 are uniformly distributed, and z2 is either
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uniformly distributed in Z∗p2 (if Z = Z1) or z2 = 0 (mod p2) (if Z = Z0). Furthermore, X1 = gx1
1 ,

X2 = gx2
2 , Y2 = gy22 and Y3 = gy33 , where x1 ∈ Z∗p1 , x2, y2 ∈ Z∗p2 and y3 ∈ Z∗p3 are uniformly distributed

and independent.
The semi-functional challenge and all semi-functional keys of Type 3 are generated as required in the

experiment by Lemma D.4, and by Lemma D.5 respectively. The normal keys are correctly generated
using KeyGen (msk, ·).

Consider the corrupted key ski = (kIndi,K) generated for j = k. By construction of the algorithm
B it holds:

K = g
k(msk,r′,h)
1 · Zk(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)
1 · (gz11 g

z2
2 g

z3
3 )

k(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)+z1·k(0,r̂′,h′)
1 · gz2·k(0,r̂′,h′)

2 · gz3·k(0,r̂′,h′)
3 ·R′3

= g
k(msk,r′+z1·r̂′,h)
1 · gk(0,z2·r̂′,ĥ)

2 · gz3·k(0,r̂′,h′)
3 ·R′3 .

We claim, that ski is either a properly distributed normal secret key (if Z = Z0) or a properly distributed
semi-functional secret key of Type 1 (if Z = Z1). Namely, B implicitly sets the random values of the
normal (Gp1) components as r = z1 · r̂′ + r′ (mod p1), which are properly distributed due to the choice
of r′. The random values of the semi-functional (Gp2) components are set as r̂ = z2 · r̂′, which are
properly distributed (for Type 1 keys) due to the choice of r̂′ if Z = Z1, and which disappear if Z = Z0,

since z2 = 0 (mod p2). Finally, the Gp3 components are set as R3 = g
z3·k(0,r̂′,h)
3 ·R′3 and are properly

distributed by the choice of R′3.
Hence, for every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such that for

every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

=

∣∣∣∣12 + Adv
Gk−1,3

Π,A (λ,des)−
(

1

2
+ Adv

Gk,1
Π,A (λ,des)

)∣∣∣∣
=
∣∣∣Adv

Gk−1,3

Π,A (λ,des)−Adv
Gk,1
Π,A (λ,des)

∣∣∣ .
The second equation holds since B perfectly simulates Gk−1,3 and Gk,1 if Z = Z0 and Z = Z1 respectively.
Furthermore, B outputs 1 if and only if A wins the corresponding experiment. This proves the lemma. ut

From Gk,1 to Gk,2 for k ∈ [q1]. Gk,2 is as Gk,1, but the k’s key is semi-functional of Type 2:

Changes in Gk,2 compared to Gk,1:
Open (i): modify 〈13〉 in Phase I (defined in G0,3) for the key with j = k

– If j = k, choose α̂k ← ZN and return ski ← SFKeyGen
(

msk, kIndi, 2, α̂k, g2, ĥ
)

.

Lemma D.12. (cf. Lemma 30 in [3]) Suppose q1 ∈ N is the upper bound for the number of corrupted
keys in Phase I. Let k ∈ [q1] be arbitrary. For every ppt algorithm A there exists a ppt algorithm B such
that for every security parameter λ and every des ∈ Ω it holds∣∣∣Adv

Gk,1
Π,A (λ,des)−Adv

Gk,2
Π,A (λ,des)

∣∣∣ = AdvCMH
P,B (λ,des) .

The running time of B is essentially the same as the running time of A.

Proof. Let k ∈ [q1] be arbitrary, but fixed. Given a ppt adversary A, that can distinguish between
Gk,1 and Gk,2, we construct a ppt algorithm B which uses A and breaks the co-selective master-key
hiding security property of the underlining pair encoding scheme with the same advantage. B on input
(des,GDN , g1, g2, g3), as defined in ExpCMH

P,G,ν,A (λ,des), is as follows.
B is a ppt algorithm with respect to λ by construction. It uses different supplementary ppt algorithms,

the own oracles, and performs besides only simple computation. Next we analyze the view of A and the
success probability of B.
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Algorithm 8: B against co-selective master-key hiding security property of P

Input : (des,GDN , g1, g2, g3).
1 Setup
2 Compute the public parameters and the master secret key

(msk,ppκ, , u, v)← SimPP
(
1λ,GDN , g1, g3,des

)
. Set j := 0.

3 Phase I
4 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
5 Store (i, kIndi).
6 Open (i):
7 Set j := j + 1.
8 case j < k do
9 Pick αj ← ZN and return ski ← SFKeyGen (msk, kIndi, 3, αj , g2, ).

10 case j = k do
11 Generate a normal key (kIndi,K)← KeyGen (msk, kIndi).
12 Query the own oracle:

K̂ := O1
CMH,ν,α̂,ĥ (kIndi) .

13 Output ski =
(

kIndi,K · K̂
)

.

14 case j > k do
15 Output ski ← KeyGen (msk, kIndi).

16 Decapsulate (CT, i):
17 As defined in the experiment using sk′i ← KeyGen (msk, kIndi), generated once.

18 Challenge (given cInd∗ from A)
19 Compute (K0, (cInd∗,C, ))← Encaps (cInd∗).
20 Query the own oracle:

Ĉ := O2
CMH,ν,α̂,ĥ (cInd∗) ,

set C∗ := C · Ĉ.
21 Compute t∗ := H (HInput (cInd∗,C∗, )) and

C′′∗ := (C∗1 )
u·t∗+v

.

22 Choose K1 ← GT, pick b← {0, 1}, set K∗ := Kb and return (K∗,CT∗cInd∗ = (cInd∗,C∗, C′′∗)) .

23 Phase II
24 Simulates this phase as defined in the experiment using msk.
25 Guess
26 Simulate this phase as defined in the experiment

Let security parameter λ and des ∈ Ω be arbitrary, but fixed. By the definition of the Experi-
ment ExpCMH

P,G,ν,A (λ,des), GDN is the restricted group description of GD generated by G
(
1λ
)
. Further-

more, the generators gi ∈ Gpi are chosen uniformly at random. Hence, by construction of B and by
Statement 1 of Lemma D.3 the public parameters ppκ =

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
and the mas-

ter secret msk are distributed as defined in the experiments. Furthermore, by Statement 2 of Lemma D.3
it holds U1 = gu1 and V1 = gv1 . B implicitly sets the semi-functional elements as û2 = u (mod p2), and
v̂2 = v (mod p2). These elements are properly distributed by Statement 3 of Lemma D.3. Furthermore,
B implicitly sets the input generator g2 as the generator of Gp2 . This generator is properly distributed

as mentioned above. Vector ĥ (mod p2) of the semi-functional public parameters will be defined below.

It is important to notice that all oracle queries made by B are permissible if all corruption queries of
A are permissible, since RN (kInd, cInd∗) = 0 implies Rp2 (f1 (kInd) , f2 (cInd∗)) = 0 by Corollary D.2.
The normal keys and the semi-functional keys of Type 3 are generated using msk and g2 as defined in
the experiments.

Next, we claim that the challenge encapsulation is a properly distributed semi-functional encapsula-
tion. Furthermore, the k’s corrupted key is either a properly distributed semi-functional key of Type 1
(if ν = 0) or a properly distributed semi-functional key of Type 2 (if ν = 1). Namely, by the definition of
the Experiment ExpCMH

P,G,ν,A (λ, des), the challenger choose α̃ ← ZN and h̃ ← ZnN , where n = Param (κ).

39



Then, B receives

K̂ = O1
CMH,ν,α̂,ĥ

(kIndi) =

g
k(0,r̃,h̃)
2 if ν = 0

g
k(α̃,r̃,h̃)
2 if ν = 1 ,

where r̃ ∈ Zm2
p2 is chosen uniformly at random, (k,m2) = Enc1 (κ, kIndi). Hence, K̂ is a properly

distributed semi-functional part of either Type 1 key (if ν = 0) or Type 2 key (if ν = 1) with random

values ĥ = h̃ (mod p2), r̂ = r̃ (mod p2), and α̂ = α̃ (mod p2). Furthermore, B receives

Ĉ = O2
CMH,ν,α̂,ĥ

(cInd∗) = g
c(s̃,s̃,ĥ)
2 ,

where s̃ ∈ ZN and s̃ ∈ Zw2

N are chosen uniformly at random, (c, w2) = Enc2 (κ, cInd∗). Hence, Ĉ is a
properly distributed semi-functional part of an encapsulation with random values ŝ = s̃ (mod p2), ŝ = s̃

(mod p2), and ĥ = h̃ (mod p2).
Finally, we show that the last group element in the challenge encapsulation is correctly generated:

C ′′∗ = (C1)
u·t∗+v ·

(
Ĉ1

)u·t∗+v
= (gs1)

u·t∗+v ·
(
gŝ2
)u·t∗+v

=
(
U t
∗

1 · V1

)s
·
(
gû2·t∗+v̂2

2

)ŝ
,

where s is the random element fixed by C1, which is chosen as the first element of C in Line 19 and ŝ is
fixed by Ĉ1 as defined above. In the second equation we used the normality of P. Hence, C ′′∗ is exactly
as defined in SFEncaps.

We deduce that for every A, every security parameter λ and every des ∈ Ω it holds

AdvCMH
P,B (λ,des) =

∣∣ExpCMH
P,G,0,B (λ,des)− ExpCMH

P,G,1,B (λ,des)
∣∣

=

∣∣∣∣12 + Adv
Gk,1
Π,A (λ, des)−

(
1

2
+ Adv

Gk,2
Π,A (λ, des)

)∣∣∣∣
=
∣∣∣Adv

Gk,1
Π,A (λ, des)−Adv

Gk,2
Π,A (λ,des)

∣∣∣ .
The second equation holds since B correctly simulates Gk,1 and Gk,2 if ν = 0 and if ν = 1 respectively.
Furthermore, B outputs 1 if and only if A wins the corresponding game. This proves the lemma. ut

From Gk,2 to Gk,3 for k ∈ [q1]. Gk,3 is as Gk,2, but the k’s corrupted key is semi-functional of
Type 3.

Changes in Gk,3 compared to Gk,2:
Open (i): modify 〈13〉 in Phase I (defined in G0,3) for the key with j = k

– If j = k, choose α̂k ← ZN and return skk ← SFKeyGen (msk, kIndi, 3, α̂k, g2, ).

Lemma D.13. (cf. Lemma 31 in [3]) Suppose q1 ∈ N is the upper bound for the number of corrupted
keys in Phase I. Let k ∈ [q1] be arbitrary. For every des ∈ Ω and every ppt algorithm A there exists a
ppt algorithm B such that for every security parameter λ it holds∣∣∣Adv

Gk,2
Π,A (λ,des)−Adv

Gk,3
Π,A (λ,des)

∣∣∣ = AdvSD2
A (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversaryA, that can distinguish between Gk,2 and Gk,3, we construct a ppt algorithm
B which uses A and breaks Assumption SD2 with the same advantage. Let des ∈ Ω be arbitrary. B is
given des in addition to its input (D,Z) from experiment SD2 as explained in Remark D.1.
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B is almost the same as Algorithm 7. We only change the simulation of corrupted key number k:

Algorithm 9: B against Assumption SD2 as modification of Algorithm 7

Input : (D,Z, des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 . . .
2 Phase I
3 . . .
4 Open (i) with i ∈ N:
5 . . .
6 case j = k do
7 Compute (k,m2) := Enc1 (kIndk). Let m1 := |k|.
8 Pick r′, r̂′, α̂′ ← Zm2

N and R′3 ← Gm1
p3 . Compute

K := g
k(msk,r′,h)
1 · (Y2Y3)

k(α̂′,0,0) · Zk(0,r̂′,h′) ·R′3 .

9 Return ski = (kIndi,K).

10 . . .

B is a ppt algorithm by construction. Next we will analyze the view of A and the success probability of
algorithm B.

Let all elements be as defined in the proof of Lemma D.11. In particular, Z = gz11 g
z2
2 g

z3
3 , Y2 = gy22 ,

Y3 = gy33 , h = h′ (mod p1) and ĥ = h′ (mod p2). Here, we only analyze the distribution of the secret
key ski = (kIndi,K) generated for j = k. By construction of B it holds

K = g
k(msk,r′,h)
1 · (Y2Y3)

k(α̂′,0,0) · Zk(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)
1 · (gy22 gy33 )

k(α̂′,0,0) · (gz11 g
z2
2 g

z3
3 )

k(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)+z1·k(0,r̂′,h)
1 · gy2·k(α̂′,0,0)+z2·k(0,r̂′,ĥ)

2 · gy3·k(α̂′,0,0)+z3·k(0,r̂′,h′)
3 ·R′3

= g
k(msk,r′+z1·r̂′,h)
1 · gk(y2·α̂′,z2·r̂′,ĥ)

2 · gk(y3·α̂′,z3·r̂′,h)
3 ·R′3 .

We claim, that this key is either a properly distributed semi-functional key of Type 2 (if Z = Z1) or a
properly distributed semi-functional key of Type 3 (if Z = Z0). Namely, B implicitly sets the random
values of the Gp1 components as r = z1 · r̂′ + r′ (mod p1), which are properly distributed due to the
choice of r′. The random values of Gp2 components are set as α̂ = y2 · α̂′ (mod p2) and r̂ = z2 · r̂′
(mod p2). If Z = Z0, it holds z2 = 0 (mod p2) and thus

k
(
y2 · α̂′, z2 · r̂′, ĥ

)
= k

(
y2 · α̂′,0, ĥ

)
= k (y2 · α̂′,0,0) (mod p2) .

Hence, if Z = Z0 the Gp2 components are properly distributed as defined for Type 2 keys due to the
choice of α̂′ (since y2 6= 0 (mod p2)). If Z = Z1, then α̂ and r̂ are properly distributed, as defined for
Type 3 keys, due to the choice of α̂′ (mod p2) and r̂′ (mod p2) (since y2, z2 6= 0 (mod p2)), respectively.

Finally, the Gp3 components are set as R3 = g
z3·k(0,r̂′,h)
3 ·R′3 and are properly distributed by the choice

of R′3.
We deduce that for every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such

that for every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

=

∣∣∣∣12 + Adv
Gk,2
Π,A (λ, des)−

(
1

2
+ Adv

Gk,3
Π,A (λ,des)

)∣∣∣∣
=
∣∣∣Adv

Gk,2
Π,A (λ,des)−Adv

Gk,3
Π,A (λ, des)

∣∣∣ .
The second equation holds since B perfectly simulates Gk,2 and Gk,3 if Z = Z0 and if Z = Z1 respectively.
Furthermore, B outputs 1 if and only if A wins the corresponding experiment. This proves the lemma. ut
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From Gq1,3 to Gq1+1. Experiment Gq1,3 is a special case of Gk,3 for k = q1. In Gq1,3 all corrupted
keys in Phase I are semi-functional of Type 3 and in Phase II all corrupted keys are normal. We simplify
the description of the experiment as follows.

Gq1,3:
Open (i) in Phase I:

– If ski is not generated yet, choose α̂j ← ZN and return ski ← SFKeyGen
(

msk, kIndi, 3, α̂j , g2, ĥ
)

.

Open (i) in Phase II:

– If ski is not generated yet, return ski ← KeyGen (msk, kIndi).

Gq1+1 is as Gq1,3, but the corrupted keys in Phase II are semi-functional of Type 1:

Changes in Gq1+1 compared to Gq1,3:
Open (i) in Phase II:

– If ski is not generated yet, return ski ← SFKeyGen
(

msk, kIndi, 1, , g2, ĥ
)

.

Lemma D.14. (cf. Lemma 32 in [3]) For every des ∈ Ω and every ppt algorithm A there exists a ppt
algorithm B such that for every security parameter λ it holds∣∣∣Adv

Gq1,3
Π,A (λ,des)−Adv

Gq1+1

Π,A (λ, des)
∣∣∣ = AdvSD2

B (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversary A, that can distinguish between Gq1,3 and Gq1+1, we construct a ppt
algorithm B which uses A and breaks Assumption SD2 with the same advantage. Let des ∈ Ω be
arbitrary. B is given des in addition to its input (D,Z) from experiment SD2 as explained in Remark D.1.
The algorithm B is again similar to the Algorithm 7, but there is no distinction of cases in the opening
oracle. Hence, we presented the complete algorithm. B is a ppt algorithm with respect to 1λ by construc-

tion. In particular, random elements from Gp3 can be chosen using g3, the elements from g
k(msk,r′,h)
1 can

be computed as shown in Lemma F.1, and k
(
0, r̂′,h′

)
can be computed explicitly.

Next, we analyze the view of A and the success probability of B. By construction of B and by
Statement 1 of Lemma D.3 the public parameters ppκ =

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
and the

master secret msk are distributed as defined in the experiments. Note, that GDN , g1 and g3 are distributed
as required by Lemma D.3 due to the definition of experiment SD2. Furthermore, by Statement 2 of
Lemma D.3 it holds gh

′
1 = gh1 , U1 = gu1 and V1 = gv1 . B implicitly sets the semi-functional elements as

ĥ = h′ (mod p2), û2 = u (mod p2), and v̂2 = v (mod p2). These elements are properly distributed by
Statement 3 of Lemma D.3.

Let g2 be an arbitrary but fixed generator of Gp2 . Then, by the definition of probability experiment
SD2 it holds Z = gz11 g

z2
2 g

z3
3 , where z1 ∈ Z∗p1 , z3 ∈ Z∗p3 are uniformly distributed, and z2 is either

uniformly distributed in Z∗p2 (if Z = Z1) or z2 = 0 (mod p2) (if Z = Z0). Furthermore, X1 = gx1
1 ,

X2 = gx2
2 , Y2 = gy22 and Y3 = gy33 , where x1 ∈ Z∗p1 , x2, y2 ∈ Z∗p2 and y3 ∈ Z∗p3 are uniformly distributed

and mutually independent.
The challenge and all semi-functional keys of Type 3 in Phase I are generated as required in the

experiments by Lemma D.4, and by Lemma D.5 respectively.
Consider the corrupted keys in Phase II. By construction of the algorithm B, for every i and every

generated secret key ski = (kIndi,K) it holds:

K = g
k(msk,r′,h)
1 · Zk(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)
1 · (gz11 g

z2
2 g

z3
3 )

k(0,r̂′,h′) ·R′3

= g
k(msk,r′,h)+z1·k(0,r̂′,h′)
1 g

z2·k(0,r̂′,h′)
2 · gz3·k(0,r̂′,h′)

3 ·R′3

= g
k(msk,r′+z1·r̂′,h)
1 · gk(0,z2·r̂′,ĥ)

2 · gz3·k(0,r̂′,h′)
3 ·R′3 .
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Algorithm 10: B against Assumption SD2

Input : (D,Z,des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 Setup
2 Compute the public parameters and the master secret key

(msk,ppκ,h
′, u, v)← SimPP

(
1λ,GDN , g1, g3, des

)
. Set j := 0.

3 Phase I
4 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
5 Store (i, kIndi).
6 Open (i):
7 Set j := j + 1.
8 Pick α′j ← ZN and return ski ← SimSFKeyT3

(
ppκ,msk, kIndi, Y2Y3, α

′
j

)
.

9 Decapsulate (CT, i):
10 As defined in the experiment using sk′i ← KeyGen (msk, kIndi) generated once.

11 Challenge (given cInd∗ from A)
12 Generate (K0,CT∗)← SimSFChlg (ppκ,msk, cInd∗,h′, u, v,X1X2).
13 Pick K1 ← GT, flip a coin b← {0, 1}, set K∗ := Kb, and return the challenge (K∗,CT∗).

14 Phase II
15 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
16 Store (i, kIndi).
17 Open (i):
18 Compute (k,m2) := Enc1 (kIndi). Let m1 = |k|. Pick r′, r̂′ ← Zm2

N and R′3 ← Gm1
p3 and compute

K := g
k(msk,r′,h)
1 · Zk(0,r̂′,h′) ·R′3 .

19 Return ski = (kIndi,K).

20 Decapsulate (CT, i):
21 As defined in the experiment using sk′i ← KeyGen (msk, kIndi) generated once.

22 Guess
23 Simulate this phase as defined in the experiment.

We claim, that for every i, the corresponding secret key sk is either a properly distributed normal secret
key (if Z = Z0) or a properly distributed semi-functional secret key of Type 1 (if Z = Z1). Namely, B
implicitly sets the random values of the normal components (in Gp1) as r = z1 · r̂′ + r′ (mod p1), which
are properly distributed due to the choice of r′. The random values of the semi-functional components
(in Gp2) are set as r̂ = z2 · r̂′, which are properly distributed (for Type 1 keys) due to the choice of r̂′

if Z = Z1, and which disappear if Z = Z0 and hence, z2 = 0 (mod p2). Finally, the Gp3 components are

set as R3 = g
z3·k(0,r̂′,h′)
3 ·R′3 and are properly distributed by the choice of R′3.

Hence, for every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such that for
every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

=

∣∣∣∣12 + Adv
Gq1,3
Π,A (λ, des)−

(
1

2
+ Adv

Gq1+1

Π,A (λ, des)

)∣∣∣∣
=
∣∣∣Adv

Gq1,3
Π,A (λ, des)−Adv

Gq1+1

Π,A (λ,des)
∣∣∣ .

The second equation holds since B perfectly simulates Gq1,3 and Gq1+1 if Z = Z0 and Z = Z1 respectively.
Furthermore, B outputs 1 if and only if A wins the corresponding experiment. This proves the lemma. ut

From Gq1+1 to Gq1+2. Gq1+2 is as Gq1+1, but the key in Phase II are semi-functional of Type 2.
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Changes in Gq1+2 compared to Gq1+1:

– Choose α̂← ZN at the beginning of Phase II.

Open (i) in Phase II

– Return ski ← SFKeyGen
(

msk, kIndi, 2, α̂, g2, ĥ
)

.

Lemma D.15. (cf. Lemma 33 in [3]) For every ppt algorithm A there exists a ppt algorithm B such
that for every security parameter λ and every des ∈ Ω it holds∣∣∣Adv

Gq1+1

Π,A (λ, des)−Adv
Gq1+2

Π,A (λ, des)
∣∣∣ = AdvSMH

P,B (λ, des) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversary A, that can distinguish between Gq1+1 and Gq1+2, we construct a ppt
algorithm B which uses A and breaks the selective master-key hiding security property of the under-
lining pair encoding scheme with the same advantage. B on input (GDN , g1, g2, g3,des) as defined in
ExpSMH

P,G,ν,A (λ, des) is as follows.
Note, that B is similar to Algorithm 8, but the oracle is used in Phase II to generate all corrupted keys.

B is a ppt algorithm with respect to λ by construction. It uses different supplementary ppt algorithms
and performs besides only simple computation. Next we analyze the view of A and the success probability
of B.

Let security parameter λ and des ∈ Ω be arbitrary, but fixed. By the definition of the Experi-
ment ExpSMH

P,G,ν,A (λ,des), GDN is the restricted group description of GD generated by G
(
1λ
)
. Further-

more, the generators gi ∈ Gpi are chosen uniformly at random. Hence, by construction of B and by
Statement 1 of Lemma D.3 the public parameters ppκ =

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

)
and the mas-

ter secret msk are distributed as defined in the experiments. Furthermore, by Statement 2 of Lemma D.3
it holds U1 = gu1 and V1 = gv1 . B implicitly sets the semi-functional elements as û2 = u (mod p2), and
v̂2 = v (mod p2). These elements are properly distributed by Statement 3 of Lemma D.3. Furthermore,
B implicitly sets the input generator g2 as the generator of Gp2 . This generator is properly distributed

as mentioned above. Vector ĥ (mod p2) of the semi-functional public parameters will be defined below.
It is important to notice that all oracle queries made by B are permissible if all corruption queries of

A are permissible, since RN (kInd, cInd∗) = 0 implies Rp2 (f1 (kInd) , f2 (cInd∗)) = 0 by Corollary D.2.
The normal keys and the semi-functional keys of Type 3 are generated using msk and g2 as defined in
the experiments.

By the definition of the Experiment ExpSMH
P,G,ν,A (λ,des), the challenger choose α̂← ZN and ĥ← ZnN ,

where n = Param (κ). Then, B receives

K̂ = O2
SMH,ν,α̂,ĥ

(kIndi) =

g
k(0,r̃,ĥ)
2 if ν = 0

g
k(α̂,r̃,ĥ)
2 if ν = 1 ,

where r̂ ∈ Zm2
p2 is chosen uniformly at random for every key. Hence, all corrupted keys in Phase II

are either properly distributed semi-functional keys of Type 1 (if ν = 0) or properly distributed semi-
functional keys of Type 2 (if ν = 1) by construction. If ν = 1, the element α̂ is the same for all these
keys, as defined in the experiment Gq1+2.

Furthermore, B receives

Ĉ = O1
SMH,ν,α̂,ĥ

(cInd∗) = g
c(s̃,s̃,ĥ)
2 ,

where s̃ ∈ Zp2 and s̃ ∈ Zw2
p2 are chosen uniformly at random, ĥ is as above. Hence, Ĉ are properly

distributed semi-functional components with ŝ = s̃ (mod p2) and ŝ = s̃ (mod p2).
Finally, we show that the last group element in the challenge encapsulation is correctly generated:

C ′′∗ = (C1)
u·t∗+v ·

(
Ĉ1

)u·t∗+v
= (gs1)

u·t∗+v ·
(
gŝ2
)u·t∗+v

=
(
U t
∗

1 · V1

)s
·
(
gû2·t∗+v̂2

2

)ŝ
,
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Algorithm 11: B against selective master-key hiding security property

Input : (GDN , g1, g2, g3, des).
1 Setup
2 Compute the public parameters and the master secret key

(msk,ppκ, , u, v) := SimPP
(
1λ,GDN , g1, g3,des

)
. Set j := 0.

3 Phase I
4 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
5 Store (i, kIndi).
6 Open (i):
7 Set j := j + 1.
8 Pick αj ← ZN and output sk← SFKeyGen (msk, kIndi, 3, αj , g2, ).

9 Decapsulate (CT, i):
10 As defined in the experiment using sk′i ← KeyGen (msk, kIndi) generated once.

11 Challenge (given cInd∗ from A)
12 Compute (K0, (cInd∗,C, ))← Encaps (cInd∗).
13 Query the own oracle

Ĉ := O1
SMH,ν,α̂,ĥ (cInd∗) ,

Set C∗ := C · Ĉ.
14 Compute t∗ := H (HInput (cInd∗,C∗, )) and

C′′∗ := (C∗1 )
u·t∗+v

.

15 Choose K1 ← GT, pick b← {0, 1}, set K∗ := Kb and return (K∗, (cInd∗,C∗, C′′∗)).

16 Phase II
17 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
18 Store (i, kIndi).
19 Open (i):
20 Query the oracle

K̂ := O2
SMH,ν,α̂,ĥ (kIndi) .

21 Compute a normal key (kIndi,K)← KeyGen (msk, kIndi) and return

sk :=
(

kIndi,K · K̂
)
.

22 Decapsulate (CT, i):
23 As defined in the experiment using sk′i ← KeyGen (msk, kIndi) generated once.

24 Guess
25 Simulate this phase as defined in the experiment

where s is the random element fixed by C1, which is chosen as the first element of C in Line 12 and ŝ is
fixed by Ĉ1 as defined above. In the second equation we used the normality of P. Hence, C ′′∗ is exactly
as defined in SFEncaps.

We deduce that for every A there exist a ppt algorithm B such that for every security parameter λ
and every des ∈ Ω it holds

AdvSMH
P,B (λ, des) =

∣∣ExpSMH
P,G,0,B (λ,des)− ExpSMH

P,G,1,B (λ,des)
∣∣

=

∣∣∣∣12 + Adv
Gq1+1

Π,A (λ,des)−
(

1

2
+ Adv

Gq1+2

Π,A (λ,des)

)∣∣∣∣
=
∣∣∣Adv

Gq1+1

Π,A (λ,des)−Adv
Gq1+2

Π,A (λ,des)
∣∣∣ .

The second equation holds since B correctly simulates Gq1+1 and Gq1+2 if ν = 0 and if ν = 1 respectively.
Furthermore, B outputs 1 if and only if A wins the corresponding game. This proves the lemma. ut

From Gq1+2 to Gq1+3. Gq1+3 is as Gq1+2, but the key in Phase II are semi-functional of Type 3.

45



Changes in Gq1+3 compared to Gq1+2:
Open (i) in Phase II:

– ski ← SFKeyGen (msk, kIndi, 3, α̂, g2, ). (Where α̂ as defined in Gq1+1)

Lemma D.16. (cf. Lemma 34 in [3]) For every des ∈ Ω and every ppt algorithm A there exists a ppt
algorithm B such that for every security parameter λ it holds∣∣∣Adv

Gq1+2

Π,A (λ,des)−Adv
Gq1+3

Π,A (λ,des)
∣∣∣ = AdvSD2

A (λ) .

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversary A, that can distinguish between Gq1+2 and Gq1+3, we construct a ppt
algorithm B which uses A and breaks Assumption SD2 with the same advantage. Let des ∈ Ω be
arbitrary. B is given des in addition to its input (D,Z) from experiment SD2 as explained in Remark D.1.
Note that B is almost the same as Algorithm 10. Hence, next we present only the simulation of corrupted
keys in Phase II:

Algorithm 12: B against Assumption SD2 as modification of Algorithm 10

Input : (D,Z, des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 Setup
2 . . .
3 . . .
4 Phase II
5 Pick α̂′ ← ZN .
6 . . .
7 Open (i):
8 Compute (k,m2) := Enc1 (kIndi). Let m1 := |k|.
9 Pick r′, r̂′,← Zm2

N and R′3 ← Gm1
p3 and compute

K := g
k(α,r′,h)
1 · (Y2Y3)

k(α̂′,0,0) · Zk(0,r̂′,h) ·R′3

10 Return (kIndi,K).

11 . . .

12 . . .

According to the analysis of Algorithm 10 we have to consider only the corrupted keys in Phase 2.
Note, that these keys are generated as the semi-functional keys of Type 3 in Phase I in Algorithm 9
except for the choice of α̂′, which is the same for all keys in this phase.

Let Y2 = gy22 and Z = gz11 g
z2
2 , where g2 is an arbitrary but fixed generator of Gp2 , y2 ∈ Z∗p2 , z1 ∈ Z∗p1 ,

and either z2 = 0 (mod p2) if Z = Z0 or z2 ∈ Z∗p2 if Z = Z1, as defined in SD2. As already shown in the
analysis of Algorithm 9, the semi-functional (Gp2) components of the keys are set to:

g
k(y2·α̂′,z2·r̂′,ĥ)
2 .

The elements in r̂′ are chosen uniformly at random for every key, whereas α̂′ is chosen once in the Setup
Phase. Hence, the corresponding key is either a properly distributed semi-functional key of Type 2 (if
Z = Z1) or a properly distributed semi-functional key of Type 3 (if Z = Z0) as already explained in the
analysis of Algorithm 9.

Hence, for every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such that for
every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

=

∣∣∣∣12 + Adv
Gq1+3

Π,A (λ, des)−
(

1

2
+ Adv

Gq1+2

Π,A (λ,des)

)∣∣∣∣
=
∣∣∣Adv

Gq1+3

Π,A (λ,des)−Adv
Gq1+2

Π,A (λ, des)
∣∣∣ .
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The second equation holds since B perfectly simulates Gq1+3 and Gq1+2 if Z = Z0 and Z = Z1 respec-
tively. Furthermore, B outputs 1 if and only if A wins the corresponding experiment. This proves the
lemma. ut

From Gq1+3 to G′q1+3. In experiment Gq1+3 all keys generated in the opening oracle are semi-functional
of Type 3 and all keys used in the decapsulation queries are normal. Experiment G′q1+3 is defined as Gq1+3

except for decapsulation queries, which are answered without user secret keys. Namely, an additional
generator X2 of Gp2 is chosen uniformly at random in the setup phase and the decapsulation queries on
CT = (cInd,C, C ′′), which passes the consistency checks, are answered with e

(
gmsk

1 ·X2, C1

)
, where C1

is the first element of C.

Changes in G′q1+3 compared to Gq1+3:

– Pick X2 ← Gp2 in the Setup phase.

Exchange 〈4〉 and 〈9〉 for:

– Decapsulate (CT, i):
• Perform the (implicit) syntactic checks. Return ⊥ if these are not satisfied. Otherwise CT =

(cInd,C, C ′′) for cInd ∈ Yκ. Return ⊥ if R (kIndi, cInd) = 0.
• Return ⊥ if the consistency checks in Decaps are not satisfied for CT.
• Return e

(
gmsk

1 ·X2, C1

)
, where C1 ∈ C.

Lemma D.17. For every des ∈ Ω and every ppt algorithm A there exists a ppt algorithm B such that
for every security parameter λ it holds∣∣∣∣Adv

Gq1+3

Π,A (λ,des)−Adv
G′q1+3

Π,A (λ,des)

∣∣∣∣ ≤ AdvSD2
B (λ) +

qdec1

p1
+

2

p2
,

where qdec1 is the number of decapsulation queries in Phase I. The running time of B is essentially the
same as the running time of A.

Proof. Experiments Gq1+3 and G′q1+3 differ only in the realization of the decapsulation oracles. First, let
us consider experiment Gq1+3. Suppose that A queries the decapsulation oracle on (CT, i) with CT =
(cInd,C, C ′′) ∈ CcInd and i ∈ N, and suppose that CT passes the consistency checks. Then, due to the
checks in (4), the elements in C do not contain Gp3 components. By the definition of experiment Gq1+3,

the decapsulation queries are answered using normal keys. Let sk′i = (kIndi,K), K = g
k(msk,r,h)
1 ·R3 be

the corresponding normal secret key generated to answer the decapsulation query. Recall that the group
elements of normal keys do not contain Gp2 components. Hence, during the decapsulation of CT using
sk′i the Gp2 components of C and the Gp3 components of K disappear. Namely, it holds

K = e

((
g
k(msk,r,h)
1 ·R3

)E
,C

)
= e

((
g
k(msk,r,h)
1

)E
,C

)
= e (g1, C1)

msk
,

where the last equation holds since CT pass the check in (5) and due to the soundness of algorithm Vrfy.
In turn, by the definition of experiment G′q1+3, the decapsulation oracle on CT as above returns

K = e
(
gmsk

1 ·X2, C1

)
= e (g1, C1)

msk · e (X2, C1) .

We deduce that the view of A and hence, its success probability in the experiments G′q1+3 and Gq1+3

can differ if and only if A queries the decapsulation oracle on (CT, i) ∈ CcInd × N such that CT pass
the consistency checks and C1 ∈ CT contains a Gp2 component. At the same time the challenger should
not output 0 in the Guess Phase because of an abort event (recall, that in this case the output of both
experiments is 0). Hence, we call by CipherAbort the event that a decapsulation query on (CT, i) with
property from above (C1 contains Gp2 component) exist and the events HashAbort and FactorAbort do
not occur. By Lemma D.6 it holds∣∣∣∣Adv

Gq1+3

Π,A (λ,des)−Adv
G′q1+3

Π,A (λ,des)

∣∣∣∣ ≤ Pr [CipherAbort] .
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Algorithm 13: B against Assumption SD2

Input : (D,Z, des).
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, des ∈ Ω.

1 Setup
2 Compute (msk,ppκ,h

′, u, v)← SimPP (GDN , g1, g3,des). Pick α̂′ ← ZN .
3 Phase I
4 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
5 Store (i, kIndi).
6 Open (i):
7 Pick α̂← ZN and return sk← SimSFKeyT3 (ppκ,msk, kIndi, Y2Y3, α̂).
8 Decapsulate (CT, i):
9 As defined in the experiment using normal secret key sk′i ← KeyGen (msk, kIndi) generated

once.
10 Challenge (given cInd∗ from A)
11 Generate (K0,CT∗)← SimSFChlg (ppκ,msk, cInd∗,h′, u, v,X1X2).
12 Pick K1 ← GT, flip a coin b← {0, 1}, set K∗ := Kb, and return the challenge (K∗,CT∗).

13 Phase II
14 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
15 As before.
16 Open (i):
17 Return sk← SimSFKeyT3 (ppκ,msk, kIndi, Y2Y3, α̂

′).
18 Decapsulate (CT, i):
19 As defined in the experiment using normal secret key sk′i ← KeyGen (msk, kIndi) generated

once.
20 Guess
21 Ignore the output of A. Choose ν′ ← {0, 1}.
22 Perform the original checks of bad events and output ν′ if one of these events occurs.
23 foreach decapsulation query on (CT, i) with CT ∈ CcInd and R (kIndi, cInd) = 1, where CT

pass the consistency checks (let t be the corresponding hash value) do
24 if t = t∗ (mod N) then
25 if the query is made in Phase I then output ν′;
26 else
27 Look for an index l ∈ [w1 + 1] (index w1 + 1 corresponds to the element C ′′) such

that Cl 6= C∗l . Then, compute G1 := Cl/C∗l .
28 if e (G1, Z) 6= 1GT then output 1;
29 else output 0;

30 end

31 else

32 Compute G2 := C ′′ · C−(u·t+v)
1 .

33 if G2 6= 1G then
34 if e (G2, Z) 6= 1GT

then output 1;
35 else output 0;

36 end

37 end

38 end
39 Output ν′.

In order to analyze CipherAbort event, we construct an algorithm B against Experiment SD2, which
uses A as a subroutine. B simulates game Gq1+3 for A and if the event CipherAbort occurs, B breaks
Experiment SD2 which violates Assumption SD2. The main observation is that if the event CipherAbort
occurs and t 6= t∗ (mod N), then with overwhelming probability (over the random choices of û and v̂
(mod p2)) we can use the elements C1 and C ′′ in order to compute a generator of Gp2 . Furthermore, if
the event CipherAbort occurs and t = t∗ (mod N), we will found an index l such that Cl and C∗l differ
only in the Gp2 components and hence, we again compute a generator of Gp2 . Using a generator of Gp2
we can break the own challenge.
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Let des ∈ Ω be arbitrary, but fixed. B is given des ∈ Ω in addition to its input (D,Z) from experiment
SD2 as explained in Remark D.1.

B is a ppt algorithm with respect to λ by construction. It uses different supplementary ppt algorithms
and performs besides only simple computation. Next, we analyze the view ofA and the success probability
of B. B simulates A until her output (which is ignored) using supplementary algorithms. We are not
interested in the output of the experiment, but in the success probability of B related to the probability
that the event CipherAbort occurs. Hence, consider the computation of B in the Guess Phase.

At first, let us consider the computation of B in the Guess Phase independently of the event
CipherAbort. Recall from page 11 that for CT ∈ CcInd the input of the hash function is HInput (CT) =
(cInd, e (g1, C1) , . . . , e (g1, Cw1)). Let (CT, i) be an encapsulation, considered in the foreach loop. Due to
the checks in Line 22 we can assume that event HashAbort does not occur (cf. Corollary D.1). Hence, in
Line 25, t = t∗ (mod N) implies HInput (CT) = HInput (CT∗). If an encapsulation with these properties
occurs in Phase I, B aborts and outputs a guess (event Abort). But in Phase I, A gets no information
about C∗1 , and therefore it gets no information about its Gp1 component gs

∗
1 . In turn, s∗ (mod p1) is

uniformly distributed over Zp1 and fixes the second element of HInput (CT∗). Hence, the overall prob-
ability that B aborts and outputs a guess in Line 25 is at most qdec1/p1, where qdec1 is the number of
decapsulation queries in Phase I:

Pr [Abort] ≤ qdec1/p1 .

Next we consider B’s computation in Line 27. In this case a query with t = t∗ (mod N) is made in
the second phase and consequently it holds HInput (CT) = HInput (CT∗). But in Phase II the adversary
is not allowed to query the decapsulation of CT∗, that is CT 6= CT∗. We deduce that cInd = cInd∗ and
the Gp1 components of all corresponding elements in C and C∗ are equal. Together with the consistency
check from (3) this implies that the Gp1 components of C ′′ and C ′′∗ are equal, too. Furthermore, by the
consistency checks in (4), the group elements of CT do not contain Gp3 components. The group elements
of CT∗ do not contain Gp3 components by construction. Hence, there is an index l ∈ [w1 + 1] such that
Cl 6= C∗l , the Gp1 components of both elements are equal and the Gp3 components are not present. We
deduce that if t = t∗ (mod N) and the query is made in Phase II, B computes a generator G1 ∈ Gp2
and can solve the own challenge with success probability 1.

Next, we consider the computation of B in Line 32. In this case t 6= t∗ (mod N), which implies

HInput (CT) 6= HInput (CT∗) .

Hence, applying Corollary D.1 it holds t 6= t∗ (mod p2). Let g2 be an arbitrary, but fixed generator of
Gp2 . By the consistency checks in (4), the group elements of CT do not contain Gp3 components. Hence,
we can denote C1 = gs1 · g

κ1
2 , where s ∈ Zp1 and κ1 ∈ Zp2 . Furthermore, by the consistency checks in (3)

it holds C ′′ = g
s·(u·t+v)
1 · gκ′′2 , where κ′′ ∈ Zp2 . We deduce that B computes

G2 =
C ′′

Cu·t+v1

= g
κ′′−κ1·(u·t+v)
2 ∈ Gp2 .

Hence, if G2 6= 1G (which is additionally checked in the algorithm), B again solves the own challenge
with success probability 1.

In summary, if B does not output the guess bit ν′ (chosen uniformly and independently of any other
random variables), and rather outputs 0 or 1 directly, the output is correct. In particular, the probability
that B outputs 1 if Z = Z1 is at least 1/2, whereas the probability that B outputs 1 if Z = Z0 is at most
1/2. Hence, for every des ∈ Ω and every ppt algorithm A there exists a ppt algorithm B′ = BA (·, ·,des)
such that for every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

= Pr [B′ (D,Z1) = 1]− Pr [B′ (D,Z0) = 1] .

For our analysis, we can even neglect the advantage of B′ in the case that the event CipherAbort does
not occur. It holds

Pr
[
B′ (D,Z1) = 1

∣∣ CipherAbort
]
− Pr

[
B′ (D,Z0) = 1

∣∣ CipherAbort
]
≥ 0 ,
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since also for this conditional probability distribution it holds Pr
[
B′ (D,Z1) = 1

∣∣ CipherAbort
]
≥ 1/2

and Pr
[
B′ (D,Z0) = 1

∣∣ CipherAbort
]
≤ 1/2. Hence, we continue the analysis:

AdvSD2
B′ (λ) = Pr [B′ (D,Z1) = 1]− Pr [B′ (D,Z0) = 1]

= Pr [CipherAbort] · (Pr [B′ (D,Z1) = 1 | CipherAbort]

− Pr [B′ (D,Z0) = 1 | CipherAbort])

+ Pr
[
CipherAbort

]
·
(
Pr
[
B′ (D,Z1) = 1

∣∣ CipherAbort
]

− Pr
[
B′ (D,Z0) = 1

∣∣ CipherAbort
])

≥ Pr [CipherAbort] · (Pr [B′ (D,Z1) = 1 | CipherAbort]

− Pr [B′ (D,Z0) = 1 | CipherAbort]) .

Next, we consider the advantage of B under the condition, that the event CipherAbort occurs and
the event Abort defined above does not occur. We claim, that under these conditions B either outputs a
correct bit using G1 or B founds G2 ∈ Gp2 except for a negligible probability and solve the own challenge.
Namely, if a query with t = t∗ (mod N) is made in the second phase B will found G1 and solve the own
challenge as already explained above. The second part of our claim is a bit more complex.

By construction of B, the adversary A gets information about û, v̂ ∈ Zp2 only from the value û · t∗+ v̂
(mod p2), which is included in the exponent of C ′′∗ in the semi-functional challenge encapsulation.
Furthermore, t 6= t∗ (mod N) implies t 6= t∗ (mod N) as explained above. But if t 6= t∗ (mod p2), the
values û · t∗ + v̂ (mod p2) and û · t + v̂ (mod p2) are independent. Hence, A get no information about
û · t+ v̂ (mod p2). But, if event CipherAbort occurs, there is an encapsulation CT such that C1 = gs1 ·g

κ1
2

for some s ∈ Zp1 and κ1 ∈ Z∗p2 . For this encapsulation CT, by the analysis from above, the corresponding

elements C ′′ and G2 are equal to g
s·(u·t+v)
1 · gκ′′2 and g

κ′′−κ1·(u·t+v)
2 respectively. Since κ1 6= 0 (mod p2)

we deduce that the probability for κ′′ − κ1 · (u · t+ v) = 0 (mod p2) is negligible (namely 1/p2) over the
random choice of û, v̂ (mod p2). Hence, except for negligible probability 1/p2, B computes a generator
G2 ∈ Gp2 and outputs a correct bit in Line 27.

We deduce that it holds

Pr
[
B′ (D,Z1) = 1

∣∣ CipherAbort ∧Abort
]
≥ 1− 1/p2

Pr
[
B′ (D,Z0) = 1

∣∣ CipherAbort ∧Abort
]
≤ 1/p2 .

Now, we can continue the analysis from above

AdvSD2
B′ (λ) ≥ Pr [CipherAbort] · (Pr [B′ (D,Z1) = 1 | CipherAbort]

− Pr [B′ (D,Z0) = 1 | CipherAbort])

(?)
= Pr [CipherAbort] · Pr

[
Abort

∣∣ CipherAbort
]
·(

Pr
[
B′ (D,Z1) = 1

∣∣ CipherAbort ∧Abort
]

− Pr
[
B′ (D,Z0) = 1

∣∣ CipherAbort ∧Abort
])

≥ Pr [CipherAbort] · (1− Pr [Abort | CipherAbort]) · (1− 2/p2)

≥ Pr [CipherAbort]− 2/p2 − Pr[Abort ∧ CipherAbort]

≥ Pr [CipherAbort]− 2/p2 − qdec1/p1 .

Equation (?) holds since conditionally on the event Abort, B′ outputs 1 with probability 1/2 independently
of Z and hence,

Pr [B′ (D,Z1) = 1 | CipherAbort ∧Abort]− Pr [B′ (D,Z0) = 1 | CipherAbort ∧Abort] = 0 .

In the following step we used the previous estimations. Finally, in the last two inequalities we used only
simple estimations and Pr[Abort] ≤ qdec1/p1, explained above. This proves the lemma. ut

From G′q1+3 to GFinal. GFinal is as G′q1+3, but the key K∗ is chosen uniformly at random independetly
of b.
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Changes in GFinal compared to G′q1+3:

Exchange 〈6〉 for

– Set K∗ ← GT.

Lemma D.18. For every des ∈ Ω and every ppt algorithm A there exists a ppt algorithm B such that
for every security parameter λ it holds∣∣∣∣Adv

G′q1+3

Π,A (λ,des)−AdvGFinal

Π,A (λ,des)

∣∣∣∣ ≤ AdvSD3
B (λ) +

2

p2
.

The running time of B is essentially the same as the running time of A.

Proof. Given a ppt adversary A, that can distinguish between both games, we construct a ppt algorithm
B which breaks Assumption SD3 with the same advantage. Algorithm B is essentially the same as in
the original reduction of Attrapadung (see Lemma 35 in [3]). We additionally have to show how to
answer the decapsulation queries. B against SD3 gets an input that includes gα1X2 and implicitly sets
msk := α. Furthermore, A gets no information about X2. Hence, we can use gα1X2 in order to answer the
decapsulation queries as defined in both games. Let des ∈ Ω be arbitrary but fixed. B is given des ∈ Ω
in addition to its input (D,Z) from experiment SD3 as explained in Remark D.1.
B is a ppt algorithm with respect to λ by construction. In particular, random elements from Gp3 can

be chosen using generator g3 ∈ Gp3 , and all exponents can be computed explicitly. Next, we analyze the
view of A and the success probability of B.

By construction of B it holds Y = e (g1, g1)
α

. Hence, the master secret key msk is implicitly set to α,
which is properly distributed by the definition of Experiment SD3. The public parameters are correctly
generated by construction. The semi-functional generator of Gp2 is set to g2. Also this generator is

properly distributed by the definition of Experiment SD3. Furthermore, the semi-functional elements ĥ,
û and v̂ will be implicitly set to h′ (mod p2), u (mod p2), and v (mod p2) respectively. These elements
are properly distributed by construction. In particular, these values are independent of the corresponding
values modulo p1 by the Chinese Remainder Theorem. Furthermore, we recall that by the definition of
Experiment SD3, there exist x2, y2 ∈ Z∗p2 such that X2 = gx2

2 and Y2 = gy22 .
Now, consider keys generated in Phase I. By construction of B it holds:

K = (gα1X2)
k(1,0,0) · gk(0,r,h′)

1 · gk(α̂′j ,0,0)
2 ·R3

= g
k(msk,0,0)+k(0,r,h′)
1 · gk(x2,0,0)+k(α̂′j ,0,0)

2 ·R3

= g
k(msk,r,h)
1 · gk(x2+α̂′j ,0,0)

2 ·R3 .

This is a correctly generated semi-functional key of Type 3. The normal components are properly dis-
tributed due to the choice of r and R3. The semi-functional component α̂ is set to α̂j = x2+α̂′j (mod p2),
which is correctly distributed due to the choice of α̂′j . In Phase II the keys are generated in the same
way but with α̂ = x2 + α̂′ for all keys, which is properly distributed due to the choice of α̂′ (mod p2). It
is important to notice that the values α̂j and α̂ are independent of the value x2.

Next, consider the challenge encapsulation. By construction of B it holds:

C∗= (gs1Y2)
c(1,s′,h′) C ′′∗= (gs1Y2)

u·t∗+v

=g
s·c(1,s′,h′)
1 · gy2·c(1,s′,ĥ)

2 =g
s·(u·t∗+v)
1 · gy2·(u·t

∗+v)
2

=g
c(s,s·s′,h)
1 · gc(y2,y2·s

′,ĥ)
2 , =

(
U t
∗

1 · V1

)s
·
(
gû·t

∗+v̂
2

)y2
.

We claim that CT∗ is a properly distributed semi-functional encapsulation except for negligible proba-
bility. The random values s and s of the normal components are set to s (mod p1) and s ·s′ respectively.
The value s is properly distributed due to the choice of s (mod p1). Vector s is properly distributed due
to the choice of s′ (mod p1) as long as s 6= 0 (mod p2). The opposite happens with negligible probability
1/p2. The random values of the semi-functional components are set to ŝ = y2 and ŝ = y2 · s′. The value ŝ
is properly distributed due to the choice of y2 (mod p2). The value ŝ is properly distributed due to the
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Algorithm 14: B against Assumption SD3

Input : (D,Z,des).
Require: D = (GDN , g1, gα1X2, g

sY2, g2, g3), Z ∈ GT, des ∈ Ω.
1 Setup
2 Set κ := (des, N) and compute n := Param (κ). Set Y := e (g1, g

α
1X2).

3 Pick h′ ← ZnN and u, v ← ZN . Compute gh
′

1 , U1 := gu1 and V1 := gv1 .
4 Choose a hash function H← Hκ.

5 Define ppκ :=
(

des,GDN , g1, gh
′

1 , U1, V1, g3, Y,H
)

. Set j := 0

6 Simulate A on input ppκ.

7 Phase I
8 CoveredKeyGen (kIndi) with kIndi ∈ Xκ:
9 Store (i, kIndi).

10 Open (i):
11 Set j := j + 1
12 Compute (k,m2) := Enc1 (kInd). Let m1 := |k|.
13 Pick α̂′j ← ZN , r ← Zm2

N , R3 ← Gm1
p3 and compute

K := (gα1X2)k(1,0,0) · gk(0,r,h′)
1 · gk(α̂′j ,0,0)

2 ·R3 .

14 Return ski = (kIndi,K)

15 Decapsulate (CT, i):
16 if all restrictions are satisfied and CT pass the consistency checks then return K = e (gα1X2, C1);

17 Challenge (given cInd∗ from A)
18 Compute (c, w2) := Enc2 (κ, cInd∗). Let |c| = w1.
19 Pick s′ ← Zw1

N and compute

C∗ := (gs1Y2)c(1,s
′,h′)

20 Compute the hash value t∗ = HInput (cInd∗,C∗, ) and

C′′∗ := (gs1Y2)u·t
∗+v

21 Return K∗ := Z and CT∗ := (cInd∗,C∗, C′′∗)

22 Phase II
23 As Phase I, but use α̂′ ← ZN instead of α̂′j for all keys.
24 Guess
25 As defined in the experiment.

choice of s′, since y2 6= 0 (mod p2). Hence, CT∗ is a semi-functional encapsulation of key K = Y s = Z1

except for negligible probability 1/p2.

If Z = Z0 the key K is chosen uniformly and independently at random from GT as required in GFinal.
The simulation of CT∗ is properly distributed except for negligible probability 1/p2.

The decapsulation queries are answered as defined in the experiment using X2, properly distributed
by the definition of Experiment SD3. In particular, all generated keys are independent of X2.

In summary, for every des ∈ Ω and every A there exists a ppt algorithm B′ = BA (·, ·,des) such that
for every security parameter λ it holds

AdvSD2
B′ (λ) = |Pr [B′ (D,Z0) = 1]− Pr [B′ (D,Z1) = 1]|

≥
∣∣∣∣12 + AdvGFinal

Π,A (λ,des)−
(

1

2
+ Adv

Gq1+3

Π,A (λ, des)

)∣∣∣∣− 2

p2
.

=
∣∣∣AdvGFinal

Π,A (λ, des)−Adv
Gq1+3

Π,A (λ,des)
∣∣∣− 2

p2
.

The second equation holds since B almost perfectly simulates GFinal and Gq1+3 if Z = Z0 and Z = Z1

respectively. Furthermore, B outputs 1 if and only if A wins the corresponding experiment. This proves
the lemma. ut
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GFinal and the final analysis. In this last game the adversary gets no information about the challenge
bit and hence, its advantage is equal to zero.

Lemma D.19. For every ppt algorithm A and every des ∈ Ω there exists a ppt algorithm B3 such that
for every security parameter λ it holds

AdvGFinal

Π,A (λ,des) = 0 .

Summing up all factors from Lemma D.7 to Lemma D.19 we get

Adv-aP-KEMaCCA
Π,A (λ,des) = AdvGReal

Π,A (λ, des)−AdvGresH

Π,A (λ, des)

+AdvGresH

Π,A (λ,des)−Adv
GresQ

Π,A (λ, des)

+ . . .

+Adv
G′q1+3

Π,A (λ,des)−AdvGFinal

Π,A (λ, des)

+AdvGFinal

Π,A (λ,des)

≤ AdvCR
H,B1

(λ,des) + AdvSD1
B2

(λ) + AdvSD3
B4

(λ)

+ (2q1 + 4) ·AdvSD2
B3

(λ) + AdvSMH
P,B6

(λ,des)

+q1 ·AdvCMH
P,B5 (λ, des) + qdec1/p1 + 4/p2 .

This finally proves Theorem 4.1.

E Verifiability for Regular Pair Encoding Schemes

In this section we prove that regular pair encoding schemes are verifiable. We first present the formal
definition of the regular pair encoding schemes from [2].

In this section we denote the encapsulation variable Xs by Xs0 . Furthermore, we denote the coefficients
of polynomials kτ ∈ k in the key encodings (k,m2) = Enc1 (κ, kInd), m1 = |k| as follows

∀τ∈[m1] : kτ = aτ ·Xα +
∑
i∈[m2]

aτ,i ·Xri +
∑
j∈[n]

(
aτ,i,j ·Xhj ·Xri

) .

The coefficients of polynomials cτ ∈ c in the ciphertext encodings (c, w2) = Enc2 (κ, cInd), w1 = |c| are
denoted by

∀τ∈[w1] : cτ =
∑

i∈[w2]0

bτ,i ·Xsi +
∑
j∈[n]

(
bτ,i,j ·Xhj ·Xsi

) .

Definition E.1. A pair encoding scheme P = (Param,Enc1,Enc2,Pair) for domain-transferable pred-
icate family RΩ,Σ is called regular if the following properties hold for every predicate index κ =
(des, N) ∈ Ω × Σ, every kInd ∈ Xκ and cInd ∈ Yκ which satisfy Rκ (kInd, cInd) = 1. Suppose
((c1, . . . , cw1

) , w2) = Enc2 (κ, cInd) and ((k1, . . . , km1
) ,m2) = Enc1 (κ, kInd).

1. (Normality) There is an integer τ̂ ∈ [w1] such that it holds

cτ̂ = Xs .

W.l.o.g. we assume that τ̂ = 1.
2. Let E ∈ [Pair (κ, kInd, cInd)] be arbitrary. Then, for every τ ∈ [m1] and every τ ′ ∈ [w1] it holds

∃i∈[m2]∃j∈[n]∃i′∈[w2]0
∃j′∈[n] : (aτ,i,j 6= 0 ∧ bτ ′,i′,j′ 6= 0) implies eτ,τ ′ = 0 .

3. For every i ∈ [m2] such that there is no τ̂ ∈ [m1] with kτ̂ = Xri it holds

∀τ∈[m1]∀j∈[n] : aτ,i,j = 0 .
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4. For every i ∈ [w2] such that there is no τ̂ ∈ [w1] with cτ̂ = Xsi it holds

∀τ∈[w1]∀j∈[n] : bτ,i,j = 0 .

Before proving Theorem 4.2 we present the following lemma, which leads to simple verification algo-
rithms for the most known pair encoding schemes.

Lemma E.1. Suppose RΩ,Σ is a domain-transferable predicate family, P is a pair encoding scheme
for RΩ,Σ, and G is an appropriate group generator. If for every κ ∈ Ω × Σ, every cInd ∈ Yκ with
(c, w2) = Enc1 (cInd), w1 = |c|, and every i ∈ [w2]0 there exists an index τi ∈ [w1] such that cτi = Xsi ,
then P is verifiable with respect to G according to Definition 3.3.

Proof. Let RΩ,Σ be an arbitrary but fixed domain-transferable predicate family and P be an arbitrary
but fixed pair encoding scheme for RΩ,Σ , which satisfies the property from the lemma. P is a normal
encoding by definition, since among others, there exists τ0 ∈ [w1] such that cτ0 = Xs0 . In order to prove
the verifiability property of P, we construct an appropriate verification algorithm Vrfy for P. We assume
w.l.o.g. that ciphertext encodings of P do not contain any polynomials multiple times, since these are
redundant. Otherwise the corresponding group element in C must be checked for equality.

By Definition 3.3, Vrfy is given
(
des,GDN , g1, g

h
1 , kInd, cInd,E,C

)
as input. The elements are as

follows: λ is a security parameter, des ∈ Ω, GD ∈
[
G
(
1λ
)]

and GDN is the corresponding restricted
group description, κ = (des, N) ∈ Ω × Σ, g1 ∈ Gp1 , gh1 ∈ Gnp1 , where n = Param (κ), kInd ∈ Xκ and
cInd ∈ Yκ with Rκ (kInd, cInd) = 1, E ∈ [Pair (κ, kInd, cInd)], C ∈ Gw1 , where (c, w2) = Enc1 (κ, cInd),
w1 = |c|.

We make use of the observation from Remark 3.1 and construct an algorithm Vrfy which checks if

there exist s0 ∈ Zp1 and s ∈ Zw2
p1 such that the Gp1 components of C are equal to g

c(s0,s,h)
1 . By the

definition of pair encoding schemes, for every τ ∈ [w1] the polynomial cτ ∈ c has the form

cτ =
∑

i∈[w2]0

bτ,i ·Xsi +
∑
j∈[n]

(
bτ,i,j ·XhjXsi

) ∈ ZN [Xs0 ,Xs,Xh] . (6)

Due to the property of P from the lemma we can assume w.l.o.g. that c1 = Xs0 , c2 = Xs1 , . . . , cw2+1 =
Xsw2

. Hence, the Gp1 components of the corresponding elements C1, . . . , Cw2+1 ∈ C particularly de-
termine elements s0 and s = (s1, . . . , sw2

) modulo p1. Namely, for every i ∈ [w2]0 there exists unique

si ∈ Zp1 such that the Gp1 component of Ci+1 is equal to gsi1 = g
ci+1(s0,s,h)
1 . Correctness of remaining

elements Cτ ∈ C for w2 + 1 < τ ≤ w1 can be checked as follows:

e (Cτ , g1)
?
=

∏
i∈[w2]0

e

Ci+1, g
bτ,i
1 ·

∏
j∈[n]

(
g
hj
1

)bτ,i,j . (7)

The checks are constructed directly from (6). We deduce that for every τ ∈ [w1] \ [w2 + 1] the check of

Cτ is satisfied if and only if the Gp1 components of Cτ is equal to g
cτ (s0,s,h)
1 , since

∏
i∈[w2]0

e

Ci+1, g
bτ,i
1 ·

∏
j∈[n]

(
g
hj
1

)bτ,i,j
=

∏
i∈[w2]0

e
(
gsi1 , g

bτ,i+
∑
j∈[n](bτ,i,j ·hj)

1

)
= e (g1, g1)

∑
i∈[w2]0

(bτ,i·si+
∑
j∈[n](bτ,i,j ·si·hj))

= e (g1, g1)
cτ (s0,s,h)

.

Hence, Vrfy performs the checks in (7) for every τ ∈ [w1]\ [w2 + 1] and outputs 1, if and only if these
checks are satisfied. The lemma follows by Remark 3.1. ut
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The algorithms constructed directly from the proof of Lemma E.1 can be optimized for concrete
schemes in different ways. The proof shows only the main idea. On the one hand, one should look for
reducing the number of pairing computations in (7) using usual techniques. Note furthermore, that for
the concrete schemes the number of coefficients unequal zero is small. On the other hand, the constructed
algorithm does not use kInd and E given as input. In several predicate encryption schemes (e.g. attribute-
based schemes) only few elements form C may be relevant for the decapsulation, that is some columns
of E ∈ Zm1×w1

N contain only zeros. In this case, the verification algorithm does not have to check the
corresponding elements from C ∈ Gw1 in order to ensure the soundness property. This results in more
efficient verification algorithms. Formally, we have to perform the check in 7 for k ∈ [w1] \ [w2 + 1] if and
only if the column k in E is unequal 0. This still ensures the soundness property, since the values in C

which are not checked do not affect the result of e
(
g
k(α,r,h)·E
1 ,C

)
.

Now we extend this result to regular pair encoding schemes.

Proof. (Proof of Theorem 4.2) Let RΩ,Σ be an arbitrary but fixed domain-transferable predicate family
and P be an arbitrary regular pair encoding scheme for RΩ,Σ . P is a normal encoding by definition, due
to the first property of regular pair encoding schemes. In order to prove the verifiability property of P,
we construct an appropriate verification algorithm Vrfy for P.

By Definition 3.3, Vrfy is given
(
des,GDN , g1, g

h
1 , kInd, cInd,E,C

)
as input. The elements are as

follows: λ is a security parameter, des ∈ Ω, GD ∈
[
G
(
1λ
)]

and GDN is the corresponding restricted
group description, κ = (des, N) ∈ Ω × Σ, g1 ∈ Gp1 , gh1 ∈ Gnp1 , where n = Param (κ), kInd ∈ Xκ and
cInd ∈ Yκ with Rκ (kInd, cInd) = 1, E ∈ [Pair (κ, kInd, cInd)], C ∈ Gw1 , where (c, w2) = Enc1 (κ, cInd),
w1 = |c|.

We make use of the observation from Remark 3.1 and construct an algorithm Vrfy which checks if

there exist s0 ∈ Zp1 and s ∈ Zw2
p1 such that the Gp1 components of C are equal to g

c(s0,s,h)
1 .

Let I ⊆ [w2]0 be an index set such that i ∈ I if and only if there exists τ ∈ [w1] with cτ = Xsi .
Furthermore, define I ′ := [w2]0 \ I. The case I = [w2]0 is covered by Lemma E.1. Hence, we only
consider the case I ⊂ [w2]0. Note that c1 = Xs0 by the first property of regular encodings and hence,
0 ∈ I. Let l := |I| − 1. Assume w.l.o.g. that I = [l]0 which implies I ′ = {l + 1, . . . , w2}. Furthermore,
assume w.l.o.g. that for every i ∈ I it holds ci+1 = Xsi . Hence, the Gp1 components of the elements
C1, . . . , Cl+1 ∈ C particularly determine elements s0, s1, . . . , sl (mod p1). Namely, for every i ∈ I there

exists unique si ∈ Zp1 such that the Gp1 component of Ci+1 is equal to gsi1 = g
ci+1(s0,s,h)
1 , where only

the first l elements of s = (s1, . . . , sl, , . . . , ) are relevant.

We have to check if there exist sl+1, . . . , sw2 ∈ Zp1 such that the Gp1 components of remaining group
elements Cl+2, . . . , Cw1

∈ C are consistent with all values s0, . . . , sw2
.

Due to the fourth property of regular pair encodings, it holds for every τ ∈ [w1]:

cτ =
∑

i∈[w2]0

(bτ,i ·Xsi) +
∑
i∈I

∑
j∈[n]

(
bτ,i,j ·XhjXsi

)
.

We slightly reorder the summands with respect to I and I ′ and get the following form:

cτ =
∑
i∈I′

(bτ,i ·Xsi) +
∑
i∈I

bτ,i ·Xsi +
∑
j∈[n]

(
bτ,i,j ·XhjXsi

) . (8)

For those τ ∈ [w1]\ [l + 1], where the first summand in (8) of polynomial cτ , is equal zero, we can perform
the check for Cτ similar to the checks in (7) in the proof of Lemma E.1:

e (Cτ , g1)
?
=
∏
i∈I

e

Ci+1, g
bτ,i
1 ·

∏
j∈[n]

(
g
hj
1

)bτ,i,j . (9)
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The checks are satisfied if and only if the Gp1 components of Cτ for every τ as above are equal to

g
cτ (s0,s,h)
1 , where only the first l elements of s = (s1, . . . , sl, , . . . , ) are relevant. Namely, it holds

∏
i∈I

e

Ci+1, g
bτ,i
1 ·

∏
j∈[n]

(
g
hj
1

)bτ,i,j
=
∏
i∈I

e
(
gsi1 , g

bτ,i+
∑
j∈[n](bτ,i,j ·hj)

1

)
= e (g1, g1)

∑
i∈I(bτ,i·si+

∑
j∈[n](bτ,i,j ·si·hj)) .

Vrfy outputs 0, if one of these checks is not satisfied.
Let us assume w.l.o.g that t elements from C, namely Cl+2, . . . , Cl+t+1, can be checked using this kind

of checks. It remains to check the elements Cl+t+2, . . . , Cw1 ∈ C. By construction, for all τ ∈ [w1]\[l+t+1]
the first summand of cτ in (8) is unequal zero. We first eliminate from every Cτ group elements which
corresponds to the correctly evaluated second summand from (8). Namely, Vrfy computes for every
τ ∈ [w1] \ [l + t+ 1]:

Yτ := e (Cτ , g1) ·

∏
i∈I

e

Ci+1, g
bτ,i
1 ·

∏
j∈[n]

(
g
hj
1

)bτ,i,j−1

. (10)

Hence, it holds

Yτ = e
(
Ck · g1

−
∑
i∈I(bτ,i·si+

∑
j∈[n](bτ,i,j ·si·hj)), g1

)
.

Note that all Yτ ’s are element of the order p1 subgroup of GT and e (g1, g1) is a generator of this subgroup.
Hence, for every τ ∈ [w1] \ [l + t+ 1] there exists unique yτ ∈ Zp1 such that Yτ = e (g1, g1)

yτ .
Next, we have to check if there exist sl+1, . . . , sw2

∈ Zp1 such that for every τ ∈ [w1] \ [l + t+ 1] it
holds

Yτ = e (g1, g1)
∑
i∈I′ (bτ,i·si) ,

or rather

yτ =
∑
i∈I′

(bτ,i · si) (mod p1) . (11)

This can be verified as follows.
Let us consider (11) more abstractly. Recall that I ′ = {l + 1, . . . , w2}. Let ς := w1 − (l + t + 1) and

% := w2 − l. These are the number of group elements Yτ ∈ GT which have to be checked and the size of
I ′ respectively. Let M = (mi,j)i∈[ς],j∈[%] ∈ Zς×%N be the matrix of coefficients bτ,i corresponding to (11).

Hence, we have to check if there exist s ∈ Z%p1 such that

y = M · s (mod p1) ,

where y = (yτ )τ∈[w1]\[l+t+1] ∈ Zςp1 and s = (si)i∈I′ ∈ Z%p1 are vectors of the corresponding elements yτ
and si.

Using the Gaussian elimination algorithm (over ZN ) on M , Vrfy derives an invertible matrix T ∈ Zς×ςN

such that T ·M is in reduced row echelon form. Under the assumption, that the factorization of N is a
difficult task, we can ignore the case that a zero divisor is hit during the computation of the algorithm.
Furthermore, since T is invertible over ZN , it will be also invertible over Zp1 and it holds

∃s∈Z%p1 : M · s = y (mod p1)

⇔ ∃s∈Z%p1 : T ·M · s = T · y (mod p1)

⇔ ∃s∈Z%p1 : e (g1, g1)
T ·M ·s

= e (g1, g1)
T ·y

.

Vrfy checks the last of this statements. It computes all elements of

x = e (g1, g1)
T ·y ∈ GςT (12)
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using T and {Yτ = e (g1, g1)
yτ }τ∈[w1]\[l+t+1].

We claim that there exist s ∈ Z%p1 such that e (g1, g1)
T ·M ·s

= e (g1, g1)
T ·y

if and only if for every zero

row τ in T ·M ∈ Zς×%N it holds xτ = 1GT
. This is true since T ·M is in reduced row echelon form. If

this is not the case, Vrfy outputs 0. Otherwise, Vrfy outputs 1.
In summary, we deduce that Vrfy outputs 1 if and only if there exist s0 ∈ Zp1 and s ∈ Zw2

N such that

the Gp1 components of C are equal to g
c(s,s,h)
1 . Hence, according to Remark 3.1 P is a verifiable pair

encoding scheme. ut

We note, that the Vrfy algorithm from the proof might seam to be quite complex. Indeed, the most
known predicate based schemes are covered by much simpler algorithm from the proof of Lemma E.1.
Furthermore, also this more involved algorithm has to check only those elements in C, which are relevant
with respect to the reconstruction matrix E. That is, the checks in (9) have to be performed only for
the relevant elements in C as well as the elements Yτ have to be computed in (10) and have to be
checked as described after (12) only for the relevant elements in C. Finally, matrix M is fixed by cInd.
For example, in the case of ciphertext-policy attribute-based encryption, where cInd is a monotone span
program (MSP), M will be the matrix of the MSP.

F Further Proofs

In this section we present proofs of different lemmas and theorems from the work.

F.1 Correctness of the Framework

In this subsection we will first show that the algorithms of our framework from Subsection 3.3, especially
the key generation algorithm and the encapsulation algorithm, are ppt algorithms with respect to the
security parameter. Then, we present the correctness proof for our construction.

The computability of the algorithm can be easily checked except for the evaluation of the polynomials
in the exponent of group elements. Hence, for the sake of completeness we explicitly show how to compute
these elements.

Lemma F.1. (Key computability) For every security parameter λ, every composite order group descrip-
tion GD = (p1, p2, p3, (g,G) ,GT, e : G×G→ GT) ∈

[
G
(
1λ
)]

and every des ∈ Ω one can efficiently
compute

g
k(α,r,h)
1 ∈ Gm1

p1 ,

given GDN , g1 ∈ Gp1 , gh1 ∈ Gnp1 , α ∈ ZN , and r ∈ Zm2

N . Here, N = p1p2p3, GDN is the restricted
description of GD, κ = (des, N), n = Param (κ), kInd ∈ Xκ is arbitrary, (k,m2) = Enc1 (κ, kInd), and
m1 = |k|.

Proof. Due to the restrictions on polynomials, for every τ ∈ [m1] the polynomials in k are of the

form kτ = aτ · Xα +
∑
i∈[m2]

(
aτ,i ·Xri +

∑
j∈[n] aτ,i,j ·Xhj ·Xri

)
. Hence, given the coefficient of the

polynomials (given by Enc1 (κ, kInd)), we can compute for every τ :

g
kτ (α,r,h)
1 = (gα1 )

aτ · g
∑
i∈[m2] aτ,i·ri

1 ·
∏
j∈[n]

(
g
hj
1

)∑
i∈[m2] aτ,i,j ·ri

.

This proves the lemma. ut

The following lemma and the proof are analogous for the encapsulation algorithm.

Lemma F.2. (Ciphertext computability) For every security parameter λ, every group description GD =
(p1, p2, p3, (g,G) ,GT, e : G×G→ GT) ∈

[
G
(
1λ
)]

and every des ∈ Ω one can efficiently compute

g
c(s0,s,h)
1 ∈ Gw1

p1 ,

given GDN , g1 ∈ Gp1 , gh1 ∈ Gnp1 , s0 ∈ ZN , and s ∈ Zw2

N . Here, N = p1p2p3, GDN is the restricted
description of GD, κ = (des, N), n = Param (κ), cInd ∈ Yκ is arbitrary, (c, w2) = Enc2 (κ, cInd), and
w1 = |c|.
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Proof. Due to the restrictions on polynomials, for every τ ∈ [w1] the polynomials in c are of the form

cτ =
∑
i∈[w2]0

(
bτ,i ·Xsi +

∑
j∈[n] bτ,i,j ·Xhj ·Xsi

)
. Hence, given the coefficient of the polynomials we

can compute:

g
cτ (s0,s,h)
1 = g

∑
i∈[w2]0

bτ,i·si
1 ·

∏
j∈[n]

(
g
hj
1

)∑
i∈[w2]0

bτ,i,j ·si
.

This proves the lemma. ut
Next we present the correctness proof for our framework.

Proof. (Correctness of P-KEM Π from Subsection 3.3) The elements from g
k(msk,r,h)
1 can be efficiently

computed from gh1 , msk, and r due to Lemma F.1. Analogously, the elements from g
c(s,s,h)
1 can be

computed due to Lemma F.2. Since K ∈ Gm1 , the element KE in the decapsulation algorithm can be
computed efficiently as described in Subsection 2.3.

Let λ, des ∈ Ω, and
(
msk,

(
des,GDN , g1, g

h
1 , U1, V1, g3, Y,H

))
∈
[
Setup

(
1λ,des

)]
be arbitrary but

fixed and let N = (des, N). Furthermore, let kInd ∈ Xκ and cInd ∈ Yκ be arbitrary but fixed such
that Rκ (kInd, cInd) = 1. In turn, let (kInd,K) ∈ [KeyGen (msk, kInd)] and (K, (cInd,C, C ′′)) ∈
[Encaps (cInd)] be arbitrary. Suppose K = Y s for some s ∈ ZN . Then, by construction, there exist

r ∈ Zm2

N , s ∈ Zw2

N , and R3 ∈ Gm1
p3 such that K = g

k(msk,r,h)
1 ·R3, and C = g

c(s,s,h)
1 , where h (mod p1)

is defined by gh1 ∈ ppκ. Furthermore, by construction C ′′ = (U t1 · V1)
s
, where t is the hash value for the

encapsulation as defined in the algorithm Encaps. By the normality of pair encoding C1 = gs1.
The decapsulation algorithm Decaps computes E ← Pair (κ, kInd, cInd). The checks in (4) are satis-

fied since the elements in C and C ′′ do not contain Gp3 components. The check in (3) is satisfied due
to the form of C1 and C ′′. The check in (5) is satisfied since Vrfy outputs 1 due to its completeness
property.

After the checks the decapsulation algorithm outputs

e
(
KE ,C

)
= e

((
g
k(msk,r,h)
1 ·R3

)E
, g

c(s,s,h)
1

)
= e (g1, g1)

k(msk,r,h)·E·c(s,s,h)
= e (g1, g1)

msk·s
= K ,

where the third equation holds due to the correctness of the pair encoding scheme. Hence, the predicate
based key encapsulation mechanism Π is correct by definition. ut

F.2 Hardness of Factorization under Subgroup Decision Assumptions

Proof. (Proof of Lemma 2.1) We prove that the following Alg. 15 satisfies the required properties.

Algorithm 15: B against Assumption SD2 given a nontrivial factor of N

Input : (D,Z, F )
Require: D = (GDN , g1, X1X2, Y2Y3, g3), Z ∈ G, F ∈ N, 1 < F < N , and F

∣∣ N .

1 Set a := min
(
F, NF

)
and b := max

(
F, NF

)
;

2 if (Y2Y3)
b

= 1G then
3 if e (Za, X1X2) = 1GT

then output 0;
4 else output 1;

5 if (X1X2)
b

= 1G then
6 if e (Za, Y2Y3) = 1GT

then output 0;
7 else output 1;

8 if Zb = 1G then output 0;
9 else output 1;

B is a ppt algorithm with respect to λ by construction. Next, we analyze the success probability of
the algorithm. Let ĝ1, ĝ2, ĝ3 be arbitrary but fixed generators of Gp1 , Gp2 and Gp3 respectively. By the
definition of Experiment SD2 we have X1 = ĝx1

1 , X2 = ĝx2
2 , Y2 = ĝy22 , Y3 = ĝy33 , and Z = ĝz11 · ĝ

z2
2 · ĝ

z3
3 .

Thereby x1 and z1 are uniformly distributed in Z∗p1 , x2 and y2 are uniformly distributed in Z∗p2 , y3 and
z3 are uniformly distributed in Z∗p3 . Furthermore, z2 = 0 if Z = Z0, whereas z2 is uniformly distributed
in Z∗p2 if Z = Z1.

Given a non-trivial factor F of N we have three possible cases:
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1) a = p1 ∧ b = p2p3, 2) a = p2 ∧ b = p1p3, 3) a = p3 ∧ b = p1p2 .

The condition (Y2Y3)
b

= 1G from Line 2 is satisfied if and only if b = p2p3. In this case a = p1 and
the Gp1 component of Z disappears in Za. Hence, Z = Z0 ∈ Gp1p3 if and only if e (Za, X1X2) = 1GT .

Analogously, the condition (X1X2)
b

= 1G from Line 5 is satisfied if and only if b = p1p2. In this case a = p3

and the Gp3 component of Z disappears in Za. Hence, Z = Z0 ∈ Gp1p3 if and only if e (Za, Y2Y3) = 1GT .
Due to the observations from above, Line 5 is executed if and only if b = p1p3. In this case the Gp1 and
the Gp3 components of Z disappears in Zb. Hence, Z = Z0 ∈ Gp1p3 if and only if Zb = 1G.

In summary, under the assumption from above, B outputs 1 if and only if Z = Z1. Hence, it holds
Pr [B (D,Z1, F ) = 1] = 1and Pr [B (D,Z0, F ) = 1] = 0.Consequently,

|Pr [B (D,Z0, F ) = 1]− Pr [B (D,Z1, F ) = 1]| = 1

This proves the lemma. ut
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