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Abstract:- Armknecht and Mikhalev proposed a new stream cipher ‘Sprout’ based on the design
specification of the stream cipher, Grain-128a. Sprout has shorter state size than Grain family with
a round key function. The output of the round key function is XOR’ed with the feedback bit of the
NFSR of the cipher. In this paper, we propose a new fault attack on Sprout by injecting a single
bit fault after the key initialization phase at any arbitrary position of the NFSR of the cipher.
By injecting a single bit fault, we recover the bits of the secret key of the cipher by observing the
normal and faulty keystream bits at certain clockings of the cipher. By implementing the attack,
we verify our result for one particular case. We also show that the Sprout generates same states
for several rounds in key initialization phase for two different key-IV pairs, which proves that the
key initialization round is having very poor period.
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1 Introduction

The design specification of Sprout [2] was proposed by Armknecht and Mikhalev at FSE, 2015.
Sprout is based on the design specification of the Grain family of stream ciphers [5], [6], [1] mainly
on Grain 128a [1]. This new cipher is based on one 40 bit LFSR, one 40 bit NFSR, one nonlinear
filter function, one counter function and one round key function. The nonlinear filter functions of
Sprout and Grain-128a are same. Interesting part of the design specification of Sprout is that first
time round key function has been introduced in any stream cipher.

In the design specification of Sprout, designers have claimed many security aspects. But, recently in
many literatures many authors have shown some significant security flaws in the design specification
of the cipher. Recently, Maitra et al. [9] have proposed a key recovery attack on this new stream
cipher. They recovered 40 bits of the NFSR and few bits of the LFSR from the given 850 keystream
bits. They also proposed a fault attack on this cipher. Within a feasible time they are able to
recover the secret key bits of the cipher by using some statistical observation of the normal and
faulty keystream bits. Also they found some drawbacks of the cipher which were claimed by the
designers. In the same year Banik [3] has found some security flaws in this cipher. He has obtained
some better result than the Maitra et al. The main idea of both the paper was to recover the secret
key by using some known state bits of the NFSR and LFSR at certain clockings. Banik [3] has
shown that the keystream generation phase of the cipher is having very poor period. He has shown
that there exists weak key-IV pair for which the initial state of the keystream generation phase and
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the 80-th state of the same phase of the cipher become same. From this result we can observe that
keystream generation phase of the cipher is having small period.

In Crypto 2015, Lallemand and Naya-Plasencia [8] have proposed a cryptanalysis on full round
of Sprout. Although the idea of their attack is very complicated but the attack has practical
complexity. One nice idea of their method of attack is that even if the cipher has the round key
function but still anybody can find some keystream bits only by knowing full state of the cipher at
certain clocking. Also they used some sieving techniques to reduce the search space of the secret
key.

The main idea of the fault attack is to first inject a fault into the cipher and then observe the
normal & faulty keystream bits to recover the secret information of the cipher. Using the fault
attack technique many authors have proposed attack on many ciphers like as Grain 128, Trivium
etc. In 2011, Karmakar et al. [7] proposed fault attack on Grain 128 stream cipher by targeting the
NFSR. Also in 2012, Banik et al. [4] proposed differential fault attack on Grain family of stream
cipher. Recently Maitra et al. [9] proposed a fault attack on Sprout. They proposed signature
based fault attack on this cipher, which is based on some statistical observations in the keystream
bits. After injecting a fault into the cipher (either NFSR or LFSR) they observed some statistical
properties of the normal & faulty keystream bits, and from there they first detect the position of
the fault and then recovered secret key bits.

In this paper we propose a new fault attack on Sprout by injecting a single bit fault into the NFSR
of the cipher. In our fault attack we inject a single bit fault into any arbitrary position of the
NFSR in the keystream generation phase. After that we detect the position and propagation of the
fault by observing the normal & faulty keystream bits. In the next phase of the attack we recover
the secret key bits by observing the difference between normal and faulty keystream bits. The
detail procedure of the attack is described in Section 4. The main difference between our work and
Maitra et al. [9] work is that after injecting a single bit fault we observe some simple deterministic
properties on the normal and faulty keystream bits to recover the secret key bits, where as they
used signature based approach. Because of this reason we need less number of keystream bits to
mount the attack. In this paper we also find two weak key-IV pairs of Sprout for which the cipher
generates same state in the key initialization phase and the state is null state.

The rest of the article is organized as follows: In Section 2 we describe some basic definitions. The
design specification of the cipher is given in Section 3. Our new fault attack is described in Section
4. Weak key-IV attack is presented in Section 5. Finally the paper is concluded in Section 6.

2 Definitions

Definition 1. Boolean function
Boolean function of n variables is a mapping from {0, 1}n to {0, 1}.
Definition 2. Algebraic normal form of a Boolean function
The algebraic normal form of f involving n variables is given by the following expression,

f(x1, ...., xn) = a0 ⊕
⊕

1≤i≤n
aixi ⊕

⊕
1≤i<j≤n

aijxixj ⊕ .....⊕ a12...nx1x2....xn, where all the

coefficients belongs to {0, 1}.
Definition 3. Degree of Boolean function
Degree of a Boolean function f is defined as the number of variables in the highest order product
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term in the algebraic normal form of f . Functions of degree at most one are called affine function.
An affine function with constant term equal to zero is called linear function.

3 Design specification of Sprout

In FSE 2015, Armknecht and Mikhalev [2] proposed a new light weight stream cipher based on the
design specification of the Grain family of stream cipher, mainly on Grain 128a [1] named as Sprout.
Sprout is based on one 40 bit NFSR, one 40 bit LFSR, one nonlinear filter function, one counter
function and one round key function. Through out the article we use the following notations:

• t denotes the clocking number.

• Lt = (lt, lt+1, ..., lt+39) denotes the state of the LFSR at the tth clocking.

• Nt = (nt, nt+1, ..., nt+39) denotes the state of the NFSR at the tth clocking.

• Ct = (c0t , c
1
t , ...., c

8
t ) denotes the state of the counter at the tth clocking.

• k = (k0, k1, ..., k79) denotes the secret key of the cipher.

• iv = (iv0, iv1, ...., iv79) denotes the initial value of the cipher.

• k∗t denotes the round key at tth clocking.

• zt denotes the keystream bits.

The primitive polynomial corresponding to the linear feedback function of the LFSR is given by,

f(x) = x40 + x35 + x25 + x20 + x15 + x6 + 1.

The main difference between the nonlinear feedback functions of Grain-128a and Sprout is that in
case of Sprout the output of the round key function and the output of the counter function are
involved in the feedback function of the NFSR, where as, Grain-128a does not have any counter
function and round key function. The algebraic normal form of the nonlinear feedback function of
the NFSR of Sprout is given by,

nt+40 =k∗t + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8

+ nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31.

Counter function of the cipher is based on 9 bits. First 7 bits computes the index of the secret
key bit which is going to be involved in the current clocking. Other two bits are used in the key
initialization phase. In each clocking the round key function outputs one bit, which depends on
the secret key bit. The expression of the round key function is given by the following function,

k∗t =

{
kt 0 ≤ t ≤ 79
(kt mod 80) · (l4 + l21 + l37 + n9 + n20 + n29) t ≥ 80

The nonlinear filter function of Sprout [2] and Grain-128a [1] are same. It is a function of 9
variables. Among which 7 variables are from the LFSR state variables and 2 variables are from the
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NFSR state variables. The algebraic normal form of the nonlinear filter function h(·) is given by
the following expression,

h(·) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, x1, ...x8 correspond to the state variables nt+4, lt+6, lt+8, lt+10, lt+32, lt+17,
lt+19, lt+23, and nt+38, respectively. The expression of the keystream bits of the cipher is given by
the following expression,

zt = h(·) + lt+30 +
∑
j∈B

nt+j ,

where B = {1, 6, 15, 17, 23, 28, 34}.

The cipher is based on two phases. First phase is key initialization phase and the second phase is
keystream generation phase. In the key initialization phase, the cipher will be initialized by the
secret key and the initial value. The first 40 bits of the NFSR is filled by the first 40 bits of the
initial value IV , by the process ni = ivi, 0 ≤ i ≤ 39 and the remaining 30 bits of the initial value is
loaded in the first 30 position of the LFSR, by the process li−40 = ivi, 40 ≤ i ≤ 69. The remaining
positions of the LFSR are filled by 0 or 1 bits by the process l30 = l31 = ... = l38 = 1 and l39 = 0.
Then the cipher is clocked for 320 times without producing any keystream bits instead the output
is XORed with the feedback bits of the LFSR and NFSR. i.e. the expressions of the feedback bits
will be, lt+40 = zt + f(L) and nt+40 = zt + k∗t + lt + c4t + g(Nt). Detailed design specification of the
cipher is given in the following figure 1.

After the key initialization phase is over, the cipher will start producing the keystream bits. The
detailed design specification of this cipher is available in [2].

k0 k79
.......

Round key function

......

NFSR LFSR

g counter
f

h

k∗t3 7 3

29 6

72

7

Initialization phase Initialization phase

keystream bits

Figure 1: Design specification of Sprout

4 Fault attack on Sprout

In this section we discuss about our new fault attack on Sprout. Before describing the attack
process we first assume that the attacker has following freedom:
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• after the key initialization phase attacker can inject a single bit fault at any position of the
NFSR.

• also attacker can reset the cipher into the normal position after injecting the fault.

Injecting a fault at any position means change the corresponding bit to its compliment. After
injecting a single bit fault to any position of the NFSR of the cipher, the injected fault will start
propagate and it may or may not affect the keystream bits depending upon the position of the
fault. In general there are two phases in the fault attack first one is detection of the fault position
and second one is finding the secret information from the normal & faulty keystream bits.

In the process of fault detection phase, the attacker observes the difference between the normal and
faulty keystream bits at different clockings. In the second phase also attacker finds some equations
involving the secret informations using the difference between the normal & faulty keystream bits.
As the design specification of Sprout is different than the usual NFSR based cipher (like as Grain),
so the key recovery phase will also be different from the other ciphers.

Now we describe our fault attack on Sprout. At first attacker injects a fault at any arbitrary
position of the NFSR of the cipher. After injecting a single bit fault at any arbitrary position of
the NFSR, the attacker will start observing the normal and faulty keystream bits of the cipher.
The first aim of the attacker is to detect the position of the fault at certain clocking.

Fault detection phase: After injecting a single bit fault at any arbitrary position (initially
unknown to the attacker) of the NFSR of the cipher, the first task of the attacker is to detect
the position of the fault by observing the normal and faulty keystream bits. Now from the design
specification of Sprout we observe that the expression of the keystream bit is zt = h(·) + lt+30 +∑
j∈B

nt+j , where B = {1, 6, 15, 17, 23, 28, 34}. We denote the normal keystream bit by zt and faulty

keystream bit by z′t. Now we can easily observe that if fault presents at nt+1 at tth clocking then the
value of zt+z′t will be 1. So its very trivial to observe that the cipher will output a faulty keystream
bit if fault arrives at any one position of the seven bits which are involved linearly in the expression
of the keystream bit. In these cases the value of zt + z′t will always be 1. Suppose after injecting a
single bit fault at any arbitrary position of the NFSR if we observe that the cipher outputs the first
faulty keystream bit after 2 clocking, another faulty keystream bits after 5 clockings, then after
6 clockings. Then we can say that initially the fault was at 30th position of the NFSR. So from
the pattern of the value of zt + z′t we can detect the position of the injected fault in the NFSR at
certain clocking. After injecting the fault, it will start moving through out the NFSR and also start
generating some faulty feedbacks into the NFSR. By following the previously described procedure
we can detect that whether the feedback bit into the NFSR at certain clocking is faulty or not (by
observing the value of zm + z′m at certain clocking m, where in the expression of keystream bit the
required feedback bit is present as linearly). So from the pattern of the values of zt +z′t for different
clockings we can detect the position of the fault and also can determine whether the feedback bit
corresponding to one certain clocking is faulty or not. The following algorithm presents the general
procedure to detect the position of the injected fault. The following algorithm states the general
procedure to recover the secret key bits from normal & faulty keystream bits.
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Algorithm 1 Fault position detection

Input: Normal and faulty keystream bits.
Output: Position of the fault.

1: Fault location F = {}.
2: Observe the value ∆t = zt + z′t for several clockings.
3: Store the values of ∆t and t, corresponding to several clockings t.
4: if ∆t follows particular pattern (as previously mentioned)

determine the fault position f and update F = F ∪ {(f, clocking number)}.
5: return The set F corresponding to different clockings.

Secret key recovery phase: In this phase after injecting a single bit fault at any arbitrary
position of the NFSR of the cipher the attacker will try to find out the secret key bits by observing
the normal and faulty keystream bits. Fault detection phase must be performed before secret key
recovery phase. To find the secret key; attacker needs to know the position of the fault.

Now the expression of the round key bit of the cipher in the keystream generation phase is k∗t =
(kt mod 80) · (lt+4 + lt+21 + lt+37 + nt+9 + nt+20 + nt+29). Now if fault is at n9 then the expression
of the round key function will be k̃∗t = (kt mod 80) · (lt+4 + lt+21 + lt+37 + n′t+9 + nt+20 + nt+29), as
t > 80. The expression of the normal feedback bit was,

nt+40 =k∗t + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8

+ nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31.

And the expression of the faulty feedback bit will be,

ñt+40 =k̃∗t + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8

+ nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31.

Now if we XOR the normal and faulty feedback bit we get,

nt+40 + ñt+40 = k∗t + k̃∗t

⇒nt+40 + ñt+40 = (kt mod 80) · (nt+9 + n′t+9)

⇒nt+40 + ñt+40 = kt mod 80.

Similarly if fault presents at nt+20, nt+29 we can still recover one secret key bit. The value of
nt+40+ñt+40 can be found by observing the normal and faulty keystream bits of the cipher (method
is already described). So, from the known value of nt+40 + ñt+40 we can get the value of one secret
key bit kt mod 80. Now suppose fault presents at any other bit except nt+9, nt+20 or nt+29, then
when the fault reaches to any of these positions we can get value of one secret key bit. For example
fault is at nt+29, so from there we can automatically recover one secret key bit. When fault moves
to 20th position again, we can recover another secret key bit. In this way we can recover several
secret key bits by injecting a single bit fault into the NFSR in the keystream generation phase.

So from the above discussion we observe that if fault presents at any of the NFSR bit then we can
recover one secret key bit by observing the normal and faulty keystream bits. We have observed that
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if fault presents at any of the NFSR bits involved in the round key function then, nt+40 + ñt+40 =
kt mod 80. Now if kt mod 80 = 0 then nt+40 + ñt+40 = 0 that means that the feedback value is fault
free. Now if kt mod 80 = 1 then nt+40 + ñt+40 = 1 it implies that the feedback is faulty. If the
feedback bit is faulty then it will start propagating into the NFSR and after certain number of
clockings this faulty feedback will again affect the value of round key bit and from there again we
can recover another secret key bit. By following this procedure we can recover the secret key bits
very easily, so we can continue the procedure until we can recover the full secret key. The faulty
nature of the feedback bit depends on the secret key bits. It may happen that the whole state of the
NFSR becomes fault free after certain number of clockings. In that case, we need to inject a new
single bit fault into the NFSR to recover the secret key bits. As the faulty nature of the feedback
bit depends on the secret key bits, so the total number of fault required to recover the full secret
key depends on the corresponding secret key. The following algorithm is the general procedure to
recover the secret key bits from the normal and faulty keystream bits.

Algorithm 2 Recover the secret key bit

Input: Normal and faulty keystream bits and position of the fault.
Output: Secret key bit.

1: Observe the position of the fault at certain clocking.
2: if position of the fault at desired position

calculate the value of nt+40 + ñt+40 = ∆m = zm + z′m, for certain clocking m.
3: return kt mod 80.

Implementation:- To implement our attack model we have used Sage [11]. We have assumed that
for one key IV pair we will get 1,1,1,0,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,0,0,1,0,1,1,1,1,0,1,1,1,1,1,0,0,0
,1,0,1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,1,1,0,1,0,1,1, 0,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,0,1,1 this state after the
key initialization phase, and also we have assumed that fault is injected just after the key initial-
ization phase (at the first clocking). We have observed 25 normal and faulty keystream bits after
injecting the fault into the NFSR. The following table gives the details of the position of the fault
(at the first clocking after the key initialization phase) and the corresponding recovered secret key
bits.

Here ki denotes the secret key bits. In the table 1 we have shown only the location of the injected
fault and the corresponding recovered secret key bits, when the fault is injected at the first clocking
of the cipher just after the key initialization phase. Similar implementation can be done for the
other clockings by observing many normal and faulty keystream bits.
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Fault location secret key bits obtained Fault location secret key bits obtained

40 k11, k12, k13 39 k10
38 k9, k13, k15 37 k8, k13, y14
36 k7, k12, k13 35 k6, k14, k16
34 k5, k12, k15 33 k4, k12
32 k3, k12 31 k2, k11, k16
30 k1, k10 29 k9, k14, k16, k17
28 k8, k14, k17 27 k7, k13, k15
26 k6, k13, k14, k15, k16 25 k5, k12, k13, k14, k15
24 k4, k13, k14 23 k3, k12
22 k2, k12, k15, k16 21 k1, k14
20 k11, k12, k14, k15, k16 19 k10, k14, k15
18 k9, k13, k14, k15, k19 17 k8, k14, k16
16 k7, k13 15 k6, k13
14 k5, k12, k13, k14, k15 13 k4, k14
12 k3, k13 11 k2, k18
10 k1, k14 9 k12, k13, k15, k16
8 k12, k13, k14, k18 7 k13, k14, k15
6 k12, k13, k14, k15, k16 5 k14, k15
4 k12, k14, k17 3 k12, k13, k14, k18
2 k13, k14 1 k12, k13, k15, k16

Table 1: Fault location vs secret key bit obtained

5 Weak key-IV pair

In this section we discuss about weak key-IV pair of Sprout [2]. To find weak key-IV pair our
main aim was to find atleast two key-IV pairs for which the cipher will generate same state in
the key initialization phase. Our main aim is to make the whole state of the cipher to zero after
certain number of clockings by starting with some non-trivial key-IV pair. Let us choose the
secret keys are of the form K = (k0, ..., k39, k40, ..., k79), and the initial values are of the form
IV = (iv0, iv1, ..., iv79). With this we start the key initialization phase of the cipher. We put the
secret key in the round key function and put the initial value into the NFSR and LFSR (ni = ivi,
0 ≤ i ≤ 39 and li−40 = ivi, 40 ≤ i ≤ 69). Now our next target is to make whole state of the cipher
to a null state (i.e. all state bits are 0). For this key-IV pair the expression of the output bit will
be,

zt = h(·) + lt+30 +
∑
j∈B

nt+j

= nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38 + lt+30 +
∑
j∈B

nt+j .

The expression of the feedback bit of the NFSR will be,

nt+40 =zt + kt + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8

+ nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31

8



nt+40 =nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38 + lt+30 + nt+1 + nt+6

+ nt+15 + nt+17 + nt+23 + nt+28 + nt+34 + kt + lt + c4t + nt + nt+13 + nt+19 + nt+35

+ nt+39 + nt+2nt+25 + nt+3nt+5 + nt+7nt+8 + nt+14nt+21 + nt+16nt+18 + nt+22nt+24

+ nt+26nt+32 + nt+33nt+36nt+37nt+38 + nt+10nt+11nt+12 + nt+27nt+30nt+31.

Similarly, the expression of the feedback bit of the LFSR will be,

lt+40 = zt + f(L)

= lt + lt+5 + lt+15 + lt+20 + lt+25 + lt+34 + nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23

+ nt+4lt+32nt+38 + lt+30 + nt+1 + nt+6 + nt+15 + nt+17 + nt+23 + nt+28 + nt+34.

Intentionally we make both the feedback bit to 0; i.e., nt+40 = 0 and lt+40 = 0 for the first 40 key
initialization rounds. So in each key initialization rounds we have two simultaneous equations,

nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23 + nt+4lt+32nt+38 + lt+30 + nt+1 + nt+6 + nt+15 + nt+17

+ nt+23 + nt+28 + nt+34 + kt + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39 + nt+2nt+25

+ nt+3nt+5 + nt+7nt+8 + nt+14nt+21 + nt+16nt+18 + nt+22nt+24 + nt+26nt+32

+ nt+33nt+36nt+37nt+38 + nt+10nt+11nt+12 + nt+27nt+30nt+31 = 0
(1)

and

lt + lt+5 + lt+15 + lt+20 + lt+25 + lt+34 + nt+4lt+6 + lt+8lt+10 + lt+32lt+17 + lt+19lt+23

+ nt+4lt+32nt+38 + lt+30 + nt+1 + nt+6 + nt+15 + nt+17 + nt+23 + nt+28 + nt+34 = 0.
(2)

By imposing these two conditions we can construct 80 equations involving k0, ..., k39 and iv0, ..., iv79.
As we are making the feedback bits of the NFSR to 0 for the first 40 key initialization rounds, so
after 40 key initialization rounds the state of the NFSR will be null. Also we are making the feedback
bits of the LFSR to 0 for first 40 key initialization rounds but it has been observed that for 40th key
initialization round the feedback bit corresponding to the LFSR is becoming 0 (independent of the
variables). After 40 key initialization rounds the state of the NFSR will be N40 = (0, 0, ..., 0) and
the state of the LFSR will be L40 = (0, ..., 0, ..., 0). Now we consider 40 equations corresponding to
nt+40 = 0 and 39 equations corresponding to lt+40 = 0 (we are not considering the 40th feedback
bit equation as it is constant and value is 0). After constructing the final system we solve the
system to get the values of k0, ..., k39 and iv0, ..., iv79. Now if this system has multiple solutions
then we can conclude that there exist two pair of (K, IV ) for which we will have same state after
40 key initialization rounds and the state will be N40 = (0, 0, ..., 0) and L40 = (0, ..., 0, ..., 0). Now
depending upon the choice of the last 40 bits of both the secret keys the state of the cipher will
change, if we assume the last 40 bits are 0 then the state bits of the cipher for next 40 rounds will
depend only on the output of the counter function (which is public). Now if we assume that the
last 40 bits of both the secret keys are same and all the bits are equal to the output of the counter
function (which is public) for the next 40 key initialization rounds, then the state of the cipher will
remain null for next 40 rounds, as L40 and N40 are null and the value of the feedback bits will be
kt + c4t = 0 for these 40 key initialization rounds. If we assume that the last 40 bits of both the
secret keys are same then also we can find collision for next 40 rounds, as L40 and N40 are null
and last 40 bits of both the secret keys are same. From this observation we can claim that the key
initialization phase of the cipher is having very poor period.

Firstly we constructed these types of equations in SAGE [11] and then passed the final system in
to SAT solver [10] to get the values corresponding to k0, ..., k39 and iv0, ..., iv79. If this system has
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atleast two solutions then we can say that there are two key-IV pairs (K1, IV1) and (K2, IV2) for
which the cipher generates same state (null state) after the 40 key initialization rounds. It has been
observed that this system has multiple solutions. The first 40 bits of K1 is,
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1,
and the corresponding IV1 is,
IV1 =(0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0).

The first 40 bits of K2 is,
1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1
and the corresponding IV2 is,
IV2 =(1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
1, 1, 1, 1,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0).

Let K ′ be the last 40 bits of both the secret keys then the weak key-IV pairs (K1, IV1) and (K2, IV2)
will be,
K1 =(0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
1, 1, 1, 1, K ′),
IV1 =(0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0),
and
K2 =(1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,
1, 1, 1, 1, K ′),
IV2 =(1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,
1, 1, 1, 1,1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0).

For this (K1, IV1) and (K2, IV2) pairs the cipher produces same state after 40 key initialization
rounds and we also observe that depending upon different choices of the last 40 bits of both the
secret keys the state collision will continue for next 40 rounds. These key-IV pairs (K1, IV1) and
(K2, IV2) are weak pairs. From the above obtained result we can say that the key initialization
round is having very bad period (as states are colliding for several rounds). In [3] Banik has shown
that keystream generation phase is having poor period, from our obtained result we can say that
even key initialization phase also has very poor period.

6 Conclusion

In this paper we have proposed a new fault attack on the stream cipher Sprout. By injecting a
single bit fault into any arbitrary position of the NFSR we are able to recover some secret key
bits. To recover the secret key bits in our fault attack model we have followed some deterministic
observation in the normal and faulty keystream bits of the cipher. By injecting a single bit fault
into any arbritary position of the NFSR of the cipher we are able to recover some secret key bits
by observing the normal & faulty keystream bits. We have observed that the faulty nature of the
feedback bit of the NFSR is depending on the secret key bits. We will able to recover the secret key
bits until the state bits of the NFSR remain faulty. We have also verified our result by implementing
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the attack for one particular case. We have also found two weak key-IV pairs for which the cipher
generates same states in the key initialization phase for several rounds. From this observation we
can claim that the key initialization phase also has very poor period.

References
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