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Abstract

In this work we provide low rank estimations for coordinate sequences of linear
recurrent sequences (LRS) of maximal period (MP) over Galois ring R = GR(pn, r),
p ≥ 5, r ≥ 2, with numbers s such that s = kr + 2, k ∈ N0.

Keywords: linear recurrent sequence, linear complexity/rank estimations, pseudo-
random sequences.

1 Introduction
Pseudo-random sequences are essential ingredients of every modern digital communica-
tion system including cellular telephones, GPS, secure internet transactions and satellite
imagery. Each application requires pseudo-random sequences with specific properties.
This article describes the design and properties of pseudo-random sequences, obtained
from those generated strictly by shift registers over Galois rings.

Let R = GR(pn, r) be a Galois ring [12, 13], q = pr, p is a prime, u is a linear recurrent
sequence of the full period over R with characteristic Galois polynomial F (x) of degree
m [10].

Let T(F ) denote a period of polynomial F (x), i.e. minimal t with property: F (x) | xλ(xt−
e) for some λ ≥ 0.

Let F̄ (x) be an image of F (x) under canonical epimorphism R[x]→ R[x]/pR[x].
Let remind [11], that :

T(F̄ (x)) |T(F (x))|T(F̄ (x)) · pn−1.

Polynomial F (x) is called distinguished , if

T(F ) = T(F̄ ),

and is called polynomial of full period , if

T(F ) = T(F̄ ) · pn−1.
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Under additional condition T(F̄ ) = qm − 1, polynomial F (x) is called polynomial of
maximal period (MP-polynomial) . Unitary and reversible polynomial we call regular.

Galois ring R = GR(pn, r) is called nontrivial iff n > 1, r ≥ 2, i.e. iff R is neither field
nor residue ring of integers .

It is well-known [1] that for the synthesis of algebraic shift registers over finite fields,
rings or modules in most cases are necessary to construct polynomials with high periodic
properties.

Let S = GR(pn, rm), Q = qm, be a Galois extension of R, splitting ring of the
polynomial F (x), θ is a root of F (x) in the ring S. Then [9] there exists an unique
constant ξ ∈ S with property :

u(i) = TrSR(ξθi), i ∈ N0, (1.1)

where TrSR(x) = ∑
σ∈Aut(S/R)

xσ is a trace function from the ring S into ring R.

It is known that the arbitrary element s ∈ S may be uniquely represented in the form

s =
n−1∑
i=0

γi(s)pi, γi(s) ∈ Γ(S), i = 0, n− 1, (1.2)

where Γ(S) = {x ∈ S | xQ = x} is a p-adic coordinate set of the ring S (Teichmueller’s
representatives system).

The set Γ(S) with operations ⊕ : x⊕ y = (x+ y)Qn−1 and ⊗ : x⊗ y = xy is a Galois
field GF (Q).

The field Γ(S) contains as a sub field the set Γ(R) = {x ∈ R | xq = x} which is a
p-adic coordinate set of the ring R.

Operations on elements of the Γ(R) are defined in the same way. Because of that the
set Γ(R) is a field GF (q).

It is known that [12, 13] the group Aut(S/R) is a cyclic and is generated by the
Frobenius automorphism ρ which acts upon the element s ∈ S of the form (1.2) according
to the rule

ρ(s) =
n−1∑
i=0

γi(s)qpi. (1.3)

Representation analogous to the (1.2) takes place for elements of the ring R.
The sequence u(i), i ∈ N0, uniquely determines n p-adic coordinate sequences ul(i) =

γl(u(i)), l = 0, n− 1, i ∈ N0, over the field (Γ(R),⊕, ·).
Herewith if u is a linear recurrence of maximal period T(u) = (prm − 1)pn−1, then for

every s ∈ 0, n− 1 T(us) = (prm − 1)ps−1, i.e. us also has large period.
Let us denote by ms(x) the minimal polynomial of the sequence us, s = 0, n− 1, over

the field Γ(R). By the linear complexity or rank of the sequence us we denote the degree
of its minimal polynomial: rankus = degms(x).
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If we have a task to generate a pseudo-random sequence relying on linear recurrence
over Galois ring we may choose one or several elder coordinate sequences of this linear
recurrence:

u(i) 7→
un−1(i) = γn−1 (u(i))

...
u0(i) = γ0 (u(i))

7→ us(i) = γs (u(i)) . (1.4)

In this case it is important to have estimations for the linear complexity/ranks of
those coordinate sequences γl(u), l = 0, n− 1, because it is well-known that the linear
complexity is a parameter which characterizes the power of pseudo-random sequence in
relation to linearization method of cryptanalysis.

In the work [6] were obtained lower and upper estimations for the ranks of coordinate
sequences of linear recurrences of maximal period over primarily residue rings. Besides
that, there were obtained minimal polynomials of coordinate sequences for some types of
such linear recurrences.

Also in the work [6] were obtained minimal polynomials of sequences ul, l = 0, 1, over
nontrivial Galois ring.

In the article [4] were obtained the minimal polynomial and the rank of the first
coordinate sequence of linear recurrence u over non-trivial Galois ring determined in
arbitrary coordinate set.

Further in the article [2] were obtained exact values of ranks for second coordinate
sequence of faithful linear recurrent sequence over binary residue ring with minimal Galois
polynomial of degree not less then 5 in dependence on the initial vector of this LRS.

In [16] were provided polynomials over Galois field Γ(R) which respectively divides
and are divisible by minimal polynomial of the second coordinate sequence of the linear
recurrence u in p-adic coordinate set under condition of p ≥ 5.

These results provide a way to obtain upper and lower estimations for the rank of the
second coordinate sequence of this linear recurrence.

In this article we follow-up the pevious work [16] and obtain lower estimations for linear
complexity of coordinate sequences us of LRS MP under condition s ≡ 2 (mod r), p ≥ 5,
where R = GR(pn, r).

Let M,w ∈ N. Let’s denote by I(M,w) the set of vectors ~ = (j1, . . . , jM), 0 ≤ jl ≤
p−1, l = 1,M , with property:

∑M
l=1 jl = w, and by

{
M
w

}
let’s denote cardinality of the set

I(M,w). Let’s note that
{
M
w

}
is a number of placements of w indistinguishable balls in

M different boxes under condition that in every box may be placed not more than (p−1)
balls.

These equalities are true [14, p.215]:

{
M

w

}
=

min{w,(M−w)/p}∑
s=0

(−1)s
(
w

s

)(
M + w − ps− 1

M − 1

)
, (1.5)
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if 0 ≤ w ≤M(p− 1), and {
M

w

}
= 0 (1.6)

in other case.
Further we shall suppose that vectors ~ constituting the set I(M,w) are ordered as-

cending in lexicographical order.
Let u be a linear recurrent sequence of maximal period over ring R [10] with minimal

polynomial F (x). Let’s denote by F(x) = γ0(F (x)). It is known that [6]

F(x)ps−1+1
∣∣∣ ms(x), s = 1, n− 1,

where by the estimate of Nechaev–Kuzmin follows:

m(ps−1 + 1) ≤ rank us, s ≥ 0. (1.7)

Let θs = γs(θ), ξs = γs(ξ), s = 0, n− 1.
If F (x) is a polynomial of maximal period then θ0 is a primitive element of the field

Γ(S) and θ1 6= 0.
Let

H(x) =
∏

~λ∈I(m,p),
~ζ∈I(m,p−1)

(
x	 θ

∑m−1
l=0 prm+rl−2(λl+pζl)

0

)
, (1.8)

where ~λ = (λ0, . . . , λm−1), ~ζ = (ζ0, . . . , ζm−1).
It is known [16, Theorem 2.1] that if u is a linear recurrent sequence (LRS) of maximal

period (MP) over non-trivial Galois ring then

H(x)p | m2(x). (1.9)

Moreover, [16, Theorem 2.1] if ξ1 6= 0 and additional conditions fulfill:

∀~ζ ∈ I(m, p)
∑
⊕

κ=0,m−1 : ζκ>0

(ξ−1
0 ξ1)prm+rκ−1 6= 0 (1.10)

and

∀~ζ ∈ I(m, p)
∑
⊕

l=0,m−1 : ζl>0

γ0

(
ζl∏m−1

κ=0 ζκ!

)
(θ−1

0 θ1)
∑m−1

κ=0 ζκprm+rκ−1−prm+rl−1 6= 0, (1.11)

then for polynomial

Z(x) =
∏

~ζ∈I(m,p)

x	 θ
m−1∑
l=0

prm+rl−1·ζl

0

 (1.12)
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this relation fulfills:
Z(x)p | m2(x) . (1.13)

Let u be a LRS MP over ring R = GR(pn, r) with minimal polynomial F (x). In [6,
Теорема 1.3] were proved that for arbitrary Galois ring R = GR(pn, r), q = pr, and for
arbitrary s ∈ 1, n− 1 equalities accomplish:

ms(x) = F(x)ps−1+1 · fs,1(x)ps−1 · · · fs,k(x)ps−1−k+1 · · · fs,ps−1(x), (1.14)

where fs,k(x) is separable polynomial, k = 1, ps−1, and

F(x) · fs,1(x) · · · fs,ps−1(x) | xτ0 	 e, (1.15)

where
τs = (qm − 1)ps, m = degF (x), s = 0, n− 1.

Because F (x) is a polynomial of maximal period for s = 0, n− 1 this equality holds:

xτs − e ≡ ps+1Φs+1(x) (mod F (x)), (1.16)

herewith
deg Φs+1(x) < m, Φ̄s+1(x) 6= 0.

Following the article [4] let’s denote

u(s) = Φs(x) · u, and u(s)
t = γt(u(s)), s, t = 0, n− 1. (1.17)

If p ≥ 3 for arbitrary Galois ring R it is proved [6, Лемма 2.1]:

u
(s)
0 = u

(1)
0 , s ≥ 1, и u(s)

1 = u
(2)
1 , s ≥ 2. (1.18)

Besides that if by us,t denoted sequence of form

us,t = (xτ0 	 e)ps−1−pt · us, s ≥ t+ 2, t ≥ 0, s, t ∈ 0, n− 1, (1.19)

then this state takes place:

Statement 1.1 (Dorofeev N.V., 1993, personal communication). In the case of non-trivial
Galois ring R = GR(pn, r), q = pr, r ≥ 2, p ≥ 3, these relations hold:

ups,s−2 = (u(1)
0 )(p−1)pr · us−1 	

(u(1)
0 )p
2 ⊕ ξ(p, s, t), (1.20)

and for t < s− 2

up
s−t−1

s,t = (u(1)
0 )(p−1)

∑s−t−2
i=0 pr+i · ut+1 	

(u(1)
0 )p+(p−1)

∑s−t−2
i=1 pr+i

2 ⊕ ξ(p, s, t), (1.21)

where

ξ(p, s, t) =


(
Φ̄1(x)2 · u0

)p
, p = 3, t = 0, s = 2,(

Φ̄1(x)2 · u0
)p
· (u(1)

0 )(p−1)
∑s−2

i=1 p
r+i
, p = 3, t = 0, s > 2,

0, in other cases
(1.22)
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Let’s note that in [7, (2.13)] A.S.Kuzmin has published previously obtained analogous

results for the case of Zpn .

2 Main result
Theorem 2.1. Let R = GR(pn, r) be a non-trivial Galois ring, q = pr, p ≥ 5, r ≥ 2, F (x)
be a polynomial of maximal period and degree m over ring R, u be a non-zero modulo
pR sequence with characteristic polynomial F (x), S = GR(pn, rm) be a Galois extension
of R, θ be a root of F (x) in S, ξ ∈ S be under condition (1.1).

Let θs = γs(θ), ξs = γs(ξ), s = 0, n− 1,

H(x) =
∏

~λ∈I(m,p),
~ζ∈I(m,p−1)

(
x	 θ

∑m−1
l=0 prm+rl−2(λl+pζl)

0

)
,

Z(x) =
∏

~ζ∈I(m,p)

x	 θ
m−1∑
l=0

prm+rl−1·ζl

0

 .
Then for every natural s > 2 such that

s≡ 2 (mod r), (2.1)

this inequality holds:

m(ps−1 + 1) + ps−1 ·
{
m

p

}
·
{

m

p− 1

}
≤ rank us. (2.2)

Besides that, if ξ1 6= 0 and additional conditions take place:

∀~ζ ∈ I(m, p)
∑
⊕

κ=0,m−1 : ζκ>0

(ξ−1
0 ξ1)prm+rκ−1 6= 0 (2.3)

and

∀~ζ ∈ I(m, p)
∑
⊕

l=0,m−1 : ζl>0

γ0

(
ζl∏m−1

κ=0 ζκ!

)
(θ−1

0 θ1)
∑m−1

κ=0 ζκprm+rκ−1−prm+rl−1 6= 0, (2.4)

then for those s inequality takes place:

m(ps−1 + 1) + ps−1 ·
{
m

p

}
·
{

m

p− 1

}
+ ps−1 ·

{
m

p

}
≤ rank us. (2.5)

�
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Proof. Let s ≥ 3. Then according to (1.21), (1.22), up
s−1

s,0 = (u(1)
0 )ps−1−1 · u1 	 (u(1)

0 )ps−1

2 ,

up2,0 = (u(1)
0 )p−1 · u1 	 (u(1)

0 )p
2 .

(2.6)

Let’s note that in those tact i ∈ N0 when u(1)
0 (i) = 0 also

u2,0(i) = us,0(i) = 0. (2.7)

Therefor further we concern only those tact i ∈ N0 when u(1)
0 (i) 6= 0.

From (2.6), and previous equations, and conditions of the Theorem follow that if

s≡ 2 (mod r), (2.8)

then that system of equalities will take a form: ups,0 = (u(1)
0 )p−1 · u1 	 (u(1)

0 )p
2 ,

up2,0 = (u(1)
0 )p−1 · u1 	 (u(1)

0 )p
2 .

(2.9)

Indeed if s− 2 = kr, k ∈ N, then

pr − 1
∣∣∣ pkr − 1 = ps−2 − 1.

and
pr − 1

∣∣∣ p (ps−2 − 1
)

=
(
ps−1 − 1

)
− (p− 1) ,

where from for arbitrary α ∈ Γ(R) \ {0}

α(ps−1−1)−(p−1) = e

or
αp

s−1−1 = αp−1.

Hence under condition (2.8) the equality takes place:

us,0 = u2,0. (2.10)

This way under condition (2.8),

mus,0(x) = mu2,0(x). (2.11)

Because for arbitrary Galois ring this equality holds:

mus,t(x) = mus(x)
НОД (mus(x), (xτ0 	 e)ps−1−pt) = F(x)pt+1 · fp

t

s,1 · · · fs,pt(x), (2.12)
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hence for p ≥ 5 this equality takes place:

fs,1(x) = f2,1(x). (2.13)

Since
H(x) | f2,1(x), (2.14)

then from here with considering equality (1.14) inequality (2.2) follows.
Besides that, taking into account conditions ξ1 6= 0, (2.3), (2.4) we can deduce that

this relation holds:
Z(x) | f2,1(x) , (2.15)

from which it follows relation (2.5).

3 Conclusions
It is easy to see that estimations (2.2), (2.5) largely improve previously known Kuzmin–
Nechaev estimation (1.7), [6].

Weakness of newly acquired estimates consists in that the new estimates extends not
at all coordinate sequences us, s = 0, n− 1.

From the other side for the case r = 1, p ≥ 3, i.e. R = Zpn , in [7, (1.24)] were obtained
estimate

rank us ≥ m(ps−1 + 1) +
{
m

ps

}
, s = 0, n− 1.

It shows a deep difference between cases of non-trivial Galois ring and residue ring of
integers.
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