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Abstract. The security of homomorphic encryption over the integers and its vari-
ants depends on the hardness of the Approximate Common Divisor (ACD) prob-
lem. In this paper we review and compare existing algorithmsto solve the ACD
problem using lattices. In particular we consider the simultaneous Diophantine
approximation method, the orthogonal lattice method, and amethod based on
multivariate polynomials and Coppersmith’s algorithm that was studied in de-
tail by Cohn and Heninger. We give a novel analysis of these algorithms that is
appropriate for some of the recent variants of the ACD problem.
One of our main contributions is to compare the multivariatepolynomial ap-
proach with other methods. We find that Cohn and Heninger madecertain as-
sumptions that give a misleading view of the best choices of parameters for that
algorithm. Instead, the best parameters seem to be those forwhich the algorithm
becomes the orthogonal lattice algorithm.
Another contribution is to consider a sample-amplificationtechnique for ACD
samples, and to consider a pre-processing algorithm similar to the Blum-Kalai-
Wasserman (BKW) algorithm for learning parity with noise. We explain why,
unlike in other settings, the BKW algorithm does not give an improvement over
the lattice algorithms.
Keywords: Approximate common divisors, lattice attacks, orthogonallattice,
Coppersmith’s method.

1 Introduction

The approximate common divisor problem (ACD) was first studied by Howgrave-Graham [HG01].
Further interest in this problem was provided by the homomorphic encryption scheme
of van Dijk, Gentry, Halevi and Vaikuntanathan [DGHV10] andits variants [CMNT11,CNT12,CS15].
The computational problem is to determine a secret integerp when one is given many
samples of the formxi = pqi + ri for small error termsri. More precisely,p is anη bit
odd prime, thexi areγ bits, and theri areρ bits, whereρ is significantly smaller than
η.

The original papers [HG01,DGHV10] sketched a large number of possible lattice at-
tacks on this problem. Futher cryptanalytic work was done by[CN12,CNT12,CH13,DT14].
The main aim of our paper is to compare all known lattice attacks on the approximate



common divisor problem. Rather than determining the exact running time of these at-
tacks, the main focus in [DGHV10] was to determine parameters for which the attacks
do not work, and so the analysis was not very precise. Cohn andHeninger [CH13]
analysed a method based on multivariate polynomials, but did not compare it with the
orthogonal lattice methods in [DGHV10], and also their analysis was focussed on the
case where only a small number of ACD samples are available. In contrast, we study
these algorithms in the cryptographically relevant situation where the number of ACD
samples is very large. We also consider these methods in the context of more recent vari-
ants of the ACD problem, such as by Cheon and Stehlé [CS15]. Hence, our analysis of
these algorithms with respect to a common set of lattice reduction heuristics is a signif-
icant contribution to the literature on the problem. One of our main conclusions is that
the multivariate polynomial approach is not better than theorthogonal lattice approach.
We also propose a pre-processing idea, motivated by the Blum-Kalai-Wasserman algo-
rithm for learning parity with noise (LPN), and a sample-amplification idea motivated
by work on LPN and learning with errors (LWE).

We do not consider in this paper the variants of “exhaustive search” over the errors
ri, as proposed by Chen and Nguyen [CN12], Coron, Naccache and Tibouchi [CNT12],
and Lee and Seo [LS14]. Such algorithms are important for theoriginal version of the
ACD problem, but are less relevant for the Cheon-Stehlé variant.

2 Background and Notation

We use standard notation throughout the paper. The symbols≪ and≫ do not have a
precise technical meaning, but are supposed to convey an informal assurance of “sig-
nificantly less (greater) than”.

2.1 Statement of the approximate common divisor problems

There are at least four variants of the approximate common divisor problem in the
literature. We now define these problems precisely.

Fix γ, η, ρ ∈ N. Let p be anη-bit odd prime. By this we mean that

2η−1 < p < 2η.

Actually it is not necessary forp to be prime, and in some applications (e.g., Appendix
D of [DGHV10]) it is definitely not prime. Define the efficiently sampleable distribution
Dγ,ρ(p) as

Dγ,ρ(p) = {pq + r | q ← Z ∩ [0, 2γ/p), r← Z ∩ (−2ρ, 2ρ)}. (1)

In practice we haveρ significantly smaller thanη and so all samples fromDγ,ρ(p)
will satisfy xi < 2γ with overwhelming probability. Note also that ift is sufficiently
large andx1, . . . , xt are sampled fromDγ,ρ(p) then we expect there to be at least one
indexi such that

2γ−1 < xi < 2γ .
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Definition 1. Let notation be as above. Theapproximate common divisor problem
(ACD) is: Given polynomially many samplesxi fromDγ,ρ(p), to computep.

Thepartial approximate common divisor problem (PACD) is: Given polynomially
many samplesxi from Dγ,ρ(p) and also a samplex0 = pq0 for uniformly chosen
q0 ∈ Z ∩ [0, 2γ/p), to computep.

In this paper we focus on the “computational” versions of theproblems. There are
also “decisional” versions, but it is known that the computational and decisional prob-
lems are equivalent. Furthermore, there are no known lattice attacks that directly solve
a decisional problem without first essentially solving the computational problem.

Let λ be a security parameter. Van Dijk et al [DGHV10] setγ/η2 = ω(log(λ))
to thwart lattice attacks on the approximate common divisorproblem. Concretely, the
parameters are set to(ρ, η, γ) = (λ, λ2, λ5), so one sees thatρ is extremely small
compared withη. The analysis in [DGHV10] is very conservative and seems to overes-
timate the size ofγ required. For example, in [CNT12] one finds parameters(ρ, η, γ) =
(71, 2698, 19350000) that are claimed to have security level around 72-bits, and it is
likely thatγ can be taken considerably smaller than this while still achieving the claimed
security level.

Cheon et al [CCK+13] have given a homomorphic encryption scheme that uses the
Chinese remainder theorem to pack more information into a ciphertext. This system
featuresℓ η-bit primespi. Let π = p1 · · · pℓ andx0 = πq0. A ciphertext is an element
c = πq + r wherer is congruent modulo each primepi to a small integerri, and
information can be encoded in each valueri (these are called CRT-components). The
public key includes a number of ciphertextsxi that are encryptions of0, as well as a
number of ciphertexts that are encryptions of1 in a single CRT component. We refer
to [CCK+13] and Chapter 7 of Lepoint [Lep14] for more detailsabout parameters. We
call the problem of computingp1, . . . , pℓ from the public key theCRT-ACD problem .

An important detail about CRT-ACD is that, sinceπ is very large compared with an
individualpi, one can use smaller values for theq. In terms of cryptanalysis, the problem
can be reduced to a standard PACD instance of the formx0 = p1q

′

0 andxi = p1q
′

i+ r′i,
and it is these attacks that are used to specify the parameters. A reduction is given in
Lemma 1 of [CCK+13] that gives evidence that the CRT variant of the ACD problem
is hard, but this reduction does not preserve the sizes of parameters and so it is not very
useful for setting concrete parameters. It is an open problem to give an algorithm to
solve the CRT-ACD problem that exploits the CRT structure.

Cheon and Stehlé [CS15] have given a scale-invariant homomorphic encryption
scheme that permits a very different flavour of parameters. Furthermore, they give an
explicit hardness result for their parameters, by showing that if one can solve the (deci-
sional) approximate common divisor problem then one can solve the (decisional) learn-
ing with errors problem. The parameters in [CS15] are set as

(ρ, η, γ) = (λ, λ + d log(λ), Ω(d2λ log(λ))),

whered is the depth of the circuit to be evaluated homomorphically.Note thatρ is no
longer extremely small compared withη. We will sometimes refer to these parameters
as theCheon-Stehĺe approximate common divisor problem. We draw the reader’s
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attention to a typo in [CS15]: regarding the security of the parameters against the mul-
tivariate polynomial attack the authors wroteγ < η2 but should have writtenγ > η2;
in any case the conditionγ > η2 is not required to have secure parameters.

We will see that the lattice algorithms for ACD seem to work less well for the CRT-
ACD and Cheon-Stehlé-ACD. Hence these two variants seem tooffer a higher degree
of security, at least according to our current knowledge. This is perhaps not surprising
in the case of the Cheon-Stehlé-ACD, since that problem enjoys some evidence for its
hardness.

2.2 Lattice basis reduction

The algorithms considered in this paper make use of lattice basis reduction algorithms
such as LLL [LLL82]. Recall that a lattice of rankn is a discrete subgroup ofRm

that has rankn as aZ-module. In this paper we write elements of a lattice as row
vectors. Denote by〈u,v〉 the Euclidean inner product onRm and‖v‖ = 〈v,v〉1/2 the
Euclidean norm. We sometimes use the norm‖(v1, . . . , vn)‖1 = max{|vi|}. A latticeL
is described by givingn basis vectorsv1, . . . ,vn, such thatL = {∑n

i=1 aivi : ai ∈ Z}.
The volume of a latticeL, denoteddet(L), is the volume of the paralleliped formed

by any basis of the lattice. The successive minimaλi(L) are the smallest real numbers
such thatL containsi linearly independent vectors all of Euclidean norm less than or
equal toλi(L). Soλ1(L) is the length of the shortest non-zero vector in the latticeL.
The Gaussian heuristic states that, for a “random lattice”,the shortest non-zero vector in
the lattice has Euclidean norm approximately

√

n/(2πe) det(L)1/n. For details of the
Gaussian heuristic see Ajtai [Ajt06] (formalising what is meant by a “random lattice”
is non-trivial and is beyond the scope of this paper). A commonly used heuristic is that
if L is a lattice that contains a vectorv of Euclidean norm less thandet(L)1/n thenv
is (a multiple of) the shortest vector in the lattice. A further consequence of [Ajt06] is
that, for a “random” lattice of rankn, there exists a lattice basisb1, . . . ,bn of L such
that‖bi‖ ≈

√

n/(2πe) det(L)1/n for all 1 ≤ i ≤ n.
Let 1/4 < δ < 1. A basisb1, . . . ,bn for a latticeL is δ-LLL-reduced if the Gram-

Schmidt vectorsb∗

i satisfy|µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n and

‖b∗i ‖2 ≥
(

δ − µ2
i,i−1

)

‖b∗i−1‖2

for 2 ≤ i ≤ n, whereµi,j = 〈bi,b
∗

j 〉/〈b∗

j ,b
∗

j 〉. It is known that an LLL-reduced lattice
basis satisfies

det(L) ≤
n
∏

i=1

‖bi‖ ≤ 2n(n−1)/4 det(L)

and‖b1‖ ≤ 2(n−1)/2λ1(L), whereλ1(L) is the length of the shortest non-zero vector
of L. Furthermore, it is known that an LLL-reduced basis satisfies

‖bi‖ ≤
(

2n(n−1)/4 det(L)
)1/(n+1−i)

for 1 ≤ i ≤ n.
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It is folklore that LLL performs better on average than theseworst-case bounds
suggest. Nguyen and Stehlé [NgSt06] have studied the behaviour of LLL on “random”
lattices and have hypothesised that an LLL-reduced basis satisfies the improved bound

‖b1‖ ≤ (1.02)n det(L)1/n.

Based on this we suppose that‖b1‖ ≤ (1.04)nλ1(L). Figure 4 of [NgSt06] shows that
‖b∗

i+1‖ ≤ ‖b∗

i ‖ almost always, and certainly‖b∗

i+1‖ ≤ 1.2‖b∗

i ‖ with overwhelm-
ing probability. Hence, we make the heuristic assumption that, for “random” lattices,
‖b∗

i ‖ ≤ ‖b∗

1‖ for all 2 ≤ i ≤ n. From this it is easy to show that, for2 ≤ i ≤ n,

‖bi‖ ≤
√

1 + (i − 1)/4‖b1‖.

In other words, on average LLL produces a basis that behaves close to the Gaussian
heuristic. The analysis of lattice attacks in [DGHV10,CS15] is under an assumption of
this type. We formalise this with the below heuristic assumption.

Assumption 1 LetL be a “random” lattice of rankn and letb1, . . . ,bn be an LLL-
reduced basis forL. Then

‖bi‖ ≤
√
i(1.02)n det(L)1/n.

for all 1 ≤ i ≤ n.

3 Simultaneous Diophantine approximation approach (SDA)

In this and the following two sections we describe the three most successful lattice-
based algorithms to solve the ACD problem when the error termis too large for exhaus-
tive search and when sufficiently many samples are available.

The basic idea of this attack is to note that ifxi = pqi + ri for 1 ≤ i ≤ t, whereri
is small, then

xi

x0
≈ qi

q0

for 1 ≤ i ≤ t. In other words, the fractionsqi/q0 are an instance of simultaneous
Diophantine approximation toxi/x0. This was first noted by Howgrave-Graham (see
Section 2 of [HG01]) and was further developed in Section 5.2of [DGHV10]. Onceqi
is known one can computeri ≡ xi (mod qi) and hence(xi − ri)/qi = p and so the
problem is solved. Note that this attack does not benefit significantly from having an
exact samplex0 = pq0, so we do not assume that such a sample is given.

Following [DGHV10] we build a latticeL of rank t + 1 generated by the rows of
the basis matrix

B =















2ρ+1 x1 x2 · · · xt

−x0

−x0

. . .
−x0















. (2)
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Note thatL contains the vector

v = (q0, q1, · · · , qt)B
= (2ρ+1q0, q0x1 − q1x0, · · · , q0xt − qtx0)

= (q02
ρ+1, q0r1 − q1r0, · · · , q0rt − qtr0)

Sinceq0 ≈ 2γ−η the Euclidean norm ofv is approximately
√
t+ 12γ−η+ρ+1. We give

a more precise estimate in Lemma 1. We call this vector thetarget vector.
Since the basis matrixB of the latticeL is given in upper triangular form, the

determinant ofL is easily computed asdet(L) = 2ρ+1xt
0. Hence, if

√
t+ 1 2γ−η+ρ+1 <

√

t+ 1

2πe
det(L)1/(t+1)

then we expect by the Gaussian heuristic that the target vector v is the shortest non-
zero vector in the lattice. The attack is to run a lattice basis reduction algorithm to get
a candidatew for the shortest non-zero vector. One then divides the first entry ofw by
2ρ+1 to get a candidate solution value forq0 and then computes the remaining valuesqi.
One then computes theri and checks if they are sufficiently small and that(xi − ri)/qi
all give the same value forp, in which case the attack has succeeded. We call this the
SDA algorithm.

This method is analysed in Section 5.2 of [DGHV10], where it is argued that if
t < γ/ρ then there are likely many vectors of around the same size or smaller as the
desired vector. Hence it is required thatt > γ/ρ to have any chance for this method
to succeed, even disregarding the difficulties of lattice reduction methods to find the
shortest vector.

We make some specific remarks, that are relevant for comparing this attack with the
other attacks. First, this attack only requires a single short vector, not a large number of
short vectors. Second, the attack is heuristic because we are assuming thatv is the only
vector in the lattice that is shorter than the length predicted by the Gaussian heuristic.
However, this seems to be a relatively mild heuristic in practice. Third, if we wish to use
LLL to break the system we requirev to be shorter by an exponential factor than the
second successive minimum. In other words, we need2t/2‖v‖ ≤ √ndet(L)1/(t+1).
The factor2t/2 can be reduced using heuristics on the average-case behaviour of LLL,
or by using more powerful basis reduction algorithms such asBKZ.

We now repeat the analysis of [DGHV10], with an eye to the Cheon-Stehlé-ACD
parameters, and also using a more precise estimate of the target vector than was given
in previous work.

Lemma 1. The expected length of the target vectorv is

0.47

√
t+ 1

p
2ρ+γ .

Proof. Note that both theqi and theri are random variables onZ with distributions

qi ← Uni{0, . . . , ⌊p−12γ⌋} and ri ← Uni{−2ρ, . . . 2ρ},
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where Uni denotes the uniform distribution and← represents sampling from a distribu-
tion. It follows thatE

(

q2i
)

≈ 1
3p

−222γ , E(ri) = 0 andE
(

r2i
)

≈ 1
32

2ρ. Furthermore,
all of these random variables are independent, so we have

E
(

(q0ri − qir0)
2
)

= E
(

q20r
2
i

)

+E
(

q2i r
2
0

)

− 2E (q0riqir0)
= E

(

q20
)

E
(

r2i
)

+E
(

q2i
)

E
(

r20
)

− 2E (q0qi)E (ri)E (r0)
≈ 2

9p
−222(ρ+γ).

It follows that the root mean squared length ofv is given by

E
(

|v|2
)

1
2 ≈

(

2
9

)
1
2 (t+ 1)

1
2 p−12(ρ+γ) ≈ 0.47 (t+ 1)

1
2 p−12(ρ+γ).

This completes the proof.⊓⊔

The estimate for the length ofv given in [DGHV10] is(t+ 1)
1
2 2(ρ+γ−η), that is to

say about twice the above approximation (takingp ≈ 2η).
The attacker hopes that the lattice is a “gap lattice” in the sense that the first mini-

mumλ1(L) = ‖v‖ is much shorter than the lengthλ2(L) of the next shortest vector in
L independent ofv. We apply the Gaussian heuristic to estimate

λ2(L) ≈
√

(t+ 1)/(2πe) det(L)1/(t+1) ≈
√

(t+ 1)/(2πe)2(ρ+1+γt)/(t+1).

We know LLL succeeds in findingv if λ2(L) > 2t/2λ1(L), but on average one has
a smaller exponential factor (or one can use BKZ or other algorithms to find short
vectors). Hence, the target vector is the shortest vector inthe lattice and is found by
LLL if

0.47
√
t+ 1(1.04)t+12γ+ρ−η <

√

(t+ 1)/(2πe)2(ρ+1+γt)/(t+1). (3)

Van Dijk et al [DGHV10] show that, in order thatv is heuristically the shortest
vector in the lattice, one needs to uset > γ/η samples and a lattice of dimension
t + 1. Their analysis assumes thatρ is small and is not helpful when considering the
Cheon-Stehlé variant of the problem. Hence, we re-consider their analysis. Ignoring
constants in the above equation, we find that a necessary (notsufficient) condition for
the algorithm to succeed is

t+ 1 >
γ − ρ

η − ρ
. (4)

For the Cheon-Stehlé variant we may haveρ close toη (e.g.,ρ = λ andη = λ +
10 log(λ)), which means the required dimension can grow very fast evenwith relatively
small values forγ. More precisely, [CS15] suggests

(ρ, η, γ) = (λ, λ+ d log(λ), Ω(d2λ log(λ)))

whered is the circuit depth andλ is the security parameter. Takingλ = 80 andd = 10
and settingΩ(x) = x we have(ρ, η, γ) = (80, 143, 50575), which is very modest com-
pared with the parameters in [DGHV10]. However, for these values,(γ−ρ)/(η−ρ) ≥
800, should be large enough to prevent any practical lattice attack. These arguments
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therefore confirm the analysis from [CS15] that their approach should provide more
efficient parameters for homomorphic encryption.

The above analysis ignored some terms, so as a final remark we justify why these
approximations are reasonable. Equation (3) states that weneed

(0.47)
√
2πe(1.04)t+12ρ−η < 2(ρ+1−γ)/(t+1).

Taking logs and noting thatρ < η < γ gives

η − ρ− 1− (t+ 1) log2(1.04) > (γ − ρ− 1)/(t+ 1) > 0.

Writing A = log2(1.04), B = η − ρ− 1 andC = γ − ρ− 1 this is

A(t+ 1)2 −B(t+ 1) + C < 0.

We are interested in the range oft for which this occurs, so it is natural to seek the
smallestx > 0 for which Ax2 − Bx + C = 0. Note thatA ≈ 0.06, C ≈ γ and
B2 ≈ η2. If we assume thatη > 4ρ andη2 > γ then0 < 4AC/B2 ≪ 1. Using
B2 − 4AC = B2(1− 4AC/B2) and

√
1− 2ǫ ≈ 1− ǫ for smallǫ we compute

√

B2 − 4AC ≈ B(1− 2AC/B2).

The smallest choice fort that satisfies the inequality is therefore close to

B −
√
B2 − 4AC

2A
≈ B −B(1− 2AC/B2)

2A
= C/B =

γ − ρ− 1

η − ρ− 1
.

One sees that this agrees with the original estimate, and so within that range of param-
eters, the term(1.04)t+1 does not have any significant effect on the performance of the
algorithm.

4 Orthogonal based approach (OL)

Nguyen and Stern (see for example [NgSt01]) have demonstrated the usefulness of the
orthogonal lattice in cryptanalysis, and this has been usedin several ways to attack
the ACD problem. Appendix B.1 of [DGHV10] gives a method based on vectors or-
thogonal to(x1, . . . , xt). Their idea is that the lattice of integer vectors orthogonal to
(x1, . . . , xt) contains the sublattice of integer vectors orthogonal to both (q1, . . . , qt)
and (r1, . . . , rt). Later in Appendix B.1 of [DGHV10] a method is given based di-
rectly on vectors orthogonal to(1,−r1/R, . . . ,−rt/R), whereR = 2ρ. Ding and
Tao [DT14] have given a method based on vectors orthogonal to(q1, . . . , qt). Cheon and
Stehlé [CS15] have considered the second method from Appendix B.1 of [DGHV10].

Our analysis (as with that in [DGHV10]) and experiments suggest these methods
all essentially have the same performance in both theory andpractice. Indeed, all three
methods end up computing short vectors that are orthogonal to (q1, . . . , qt) and some
vector related to the error termsri, for example see Lemma 3. Hence, in this paper we
follow [DGHV10,CS15] and study the use of vectors orthogonal to (1,−r1/R, . . . ,−rt/R).
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These attacks do not benefit significantly from having an exact samplex0 = pq0 so we
do not use it.

LetR = 2ρ be an upper bound on the absolute value of the errorsri in xi = pqi+ri.
LetL be a lattice inZt+1 with basis matrix

B =















x1 R
x2 R
x3 R
...

. . .
xt R















. (5)

Clearly the rank ofB is t. The lattice volume was estimated in previous works, but we
give an exact formula.

Lemma 2. The Gram matrixBB
T ofL is of the formR2

It+x
T
xwherex = (x1, . . . , xt)

andIt is thet×t identity matrix. The volume of the lattice isRt−1
√

R2 + x2
1 + · · ·+ x2

t .

Proof. The claim aboutBB
T is easily checked by induction. Writing this asBB

T =
A + x

T
x whereA = R2

It is invertible, the matrix determinant lemma states that
det(BB

T ) = det(A)(1 + xA
−1

x
T ). Sincedet(A) = R2t andA−1 = 1

R2 It we find

det(BB
T ) = R2t

(

1 +
x2
1 + · · ·+ x2

t

R2

)

= R2(t−1)(R2 + x2
1 + · · ·+ x2

t ).

The final claim comes from the fact that the lattice volume is
√

det(BBT ). ⊓⊔

Any vectorv = (v0, v1, · · · , vt) ∈ L is of the form

v = (u1, · · · , ut)B =

(

t
∑

i=1

uixi, u1R, u2R, · · · , utR

)

,

whereui ∈ Z. The main observation of Van Dijk et al. [DGHV10] is

v0 −
t
∑

i=1

vi
R
ri =

t
∑

i=1

uixi −
t
∑

i=1

uiR

R
ri =

t
∑

i=1

ui(xi − ri) = 0 (modp). (6)

Since we don’t knowp, we wish to have a linear equation overZ. The equation holds

if |v0 −
t
∑

i=1

vi
R
ri| < p/2. The following lemma gives a bound onv that implies we get

an integer equation as desired.

Lemma 3. Letv = (u0, u1, u2, · · · , ut)B. Let ||v|| ≤ 2η−2−log2(t+1). Then

|v0 −
t
∑

i=1

uiri| < p/2 and
t
∑

i=1

uiqi = 0.
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Proof. Let v = (v0, v1, · · · , vt) = (

t
∑

i=1

uixi, u1R, u2R, · · · , utR) and letN = ||v||.

Then|v0| ≤ N and|uiri| ≤ |uiR| ≤ N for 1 ≤ i ≤ t. Thus

∣

∣

∣

∣

∣

v0 −
t
∑

i=1

uiri

∣

∣

∣

∣

∣

≤ |v0|+
t
∑

i=1

|uiri| ≤ (t+ 1)N.

SinceN ≤ 2η−2−log2(t+1), we have(t + 1)N < 2η−2 < p/2 sincep > 2η−1. Hence

|v0 −
t
∑

i=1

uiri| < p/2.

To prove
t
∑

i=1

uiqi = 0, suppose
t
∑

i=1

uiqi 6= 0 so thatp|
t
∑

i=1

uiqi| ≥ p > 2η−1.

Sincexi = pqi + ri, we have

p|
t
∑

i=1

uiqi| = |
t
∑

i=1

ui(xi − ri)|

≤ |
t
∑

i=1

uixi|+ |
t
∑

i=1

uiri|.

But, by the previous argument, this is≤ (t+ 1)N < 2η−1, which is a contradiction.⊓⊔

In other words, every short enough vectorv in the lattice gives rise to an inho-
mogeneous equationv0 =

∑

uiri in the t variablesri, and a homogeneous equation
∑

i uiqi = 0 in thet variablesqi. There are therefore two approaches to solve the sys-
tem. The papers [DGHV10,CS15,DT14] uset inhomogeneous equations and solve for
theri, but we believe it is simpler and faster to uset − 1 equations and then find the
kernel of the matrix formed by them to solve for(q1, . . . , qt). We call these methods
theOL algorithm .

Hence, it suffices to havet − 1 linearly-independent vectors in the latticeL that
satisfy the bound of Lemma 3. Hence we run lattice reduction and take thet−1 smallest
vectors in the output basis (they are linearly independent as required).

To analyse the method we use Assumption 1. This shows that onecan compute
using LLL t− 1 linearly-independent vectors of the correct size as long as

√
t(1.02)t det(L)1/t ≤ 2η−2−log2(t+1).

By Lemma 2 we approximatedet(L) by 2ρ(t−1)+γ . Hence, the condition for success is

4
√

t(t+ 1)(1.02)t2ρ+(γ−ρ)/t ≤ 2η.

Following the analysis in [DGHV10,CS15], if one ignores constants and exponential
approximation factors in the lattice reduction algorithm,then a necessary condition on
the dimension ist ≥ (γ − ρ)/(η − ρ), which is the same as equation (4) for the SDA
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method.3 Hence, we deduce that the OL method is not more powerful than the SDA
method. Our experimental results confirm this, though they suggest the OL method is
slightly faster (due to the smaller size of entries in the basis matrix defining the lattice).

We give one remark about the CRT-ACD problem. Recall that each ACD instance
xi in this problem satisfiesxi ≡ ri,j (mod pj) for many primespi, whereri,j is small.
Hence there are many variants of equation (6)

v0 −
t
∑

i=1

vi
R
ri,j =

t
∑

i=1

uixi −
t
∑

i=1

uiR

R
ri,j =

t
∑

i=1

ui(xi − ri,j) = 0 (modp)j .

In practice this causes the lattice method to be much less effective, since different short
vectors may correspond to different choices of primepj and hence different values for
theri,j . It remains an open problem to analyse the security of this variant of the ACD
problem.

5 Multivariate polynomial approach (MP)

Howgrave-Graham [HG01] was the first to consider reducing the approximate common
divisor problem to the problem of finding small roots of multivariate polynomial equa-
tions. The idea was further extended in Appendix B.2 of van Dijk et al [DGHV10].
Finally, a detailed analysis was given by Cohn and Heninger [CH13]. However, the pa-
per [CH13] focusses on the case when a small number of ACD samples are available,
it uses worst-case rather than average-case LLL bounds, andit contains no compari-
son against the orthogonal lattice approaches. Hence, in this section we give a revised
analysis of the algorithm and report on experiments with it.Our heuristic analysis and
experimental results suggest that the best choice of parameters for the multivariate ap-
proach is to use linear polynomials, in which case the algorithm is equivalent to the
orthogonal lattice method. In other words, we find that the multivariate approach seems
to have no advantage over the orthogonal lattice method whenattacking ACD instances
coming from crypto applications.

The multivariate approach can be applied to both the full andpartial ACD problems,
but it is simpler to explain and analyse for the partial ACD problem. Hence, in this
section we restrict to this case only.4

We change notation from the rest of the paper to follow more closely the notation
used in [CH13]. Note that the symbolsXi are variables, not ACD samples. Hence, let
N = pq0 and letai = pqi + ri for 1 ≤ i ≤ m be our ACD samples, where|ri| ≤ R for
some given boundR. The idea is to construct a polynomialQ(X1, X2, . . . , Xm) in m
variables such thatQ(r1, · · · , rm) ≡ 0 (modpk) for somek. The parametersm andk
are optimised later. In [CH13], such a multivariate polynomial is constructed as integer

3 There is no need to repeat the more careful analysis we already did for SDA, since we are
lower-bounding the OL method by the SDA method.

4 Since the orthogonal lattice method performs equally well for both full and partial ACD, it
suffices to compare the methods in the case most favourable tothe multivariate polynomial
approach.
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linear combinations of the products

(X1 − a1)
i1 · · · (Xm − am)imN ℓ

whereℓ is chosen such thati1 + · · ·+ im + ℓ ≥ k.
An additional generality is to choose a degree boundt ≥ k (do not confuse this

with the use of the symbolt previously) and impose the conditioni1 + · · · + im ≤ t.
The valuet will be optimised later.

The latticeL is then defined by the coefficient row vectors of the polynomials

f[i1,...,im](X1, . . . , Xm) = (RX1 − a1)
i1 · · · (RXm − am)imN ℓ, (7)

such thati1 + · · · + im ≤ t and ℓ = max(k −∑j ij , 0). For example, the values
(t,m, k) = (3, 2, 1) lead to the following basis matrix.

B =



























f[i1,i2] 1 X1 X2 X2
1 X1X2 X2

2 . . . X3
2

f[0,0] N 0 0 0 0 0 . . . 0
f[1,0] −a1 R 0 0 0 0 . . . 0
f[0,1] −a2 0 R 0 0 0 . . . 0
f[2,0] a21 −2a1R 0 R2 0 0 . . . 0
f[1,1] a1a2 −a2R −a1R 0 RR 0 . . . 0
f[0,2] a22 0 −2a2R 0 0 R2 . . . 0
...

...
...

...
...

...
...

. . .
...

f[0,3] −a32 0 3a22R 0 0 −3a2R2 . . . R3



























. (8)

It is shown in [CH13] thatL has dimensiond =
(

t+m
m

)

and determinant

det(L) = R(t+m
m ) mt

m+1N(k+m
m ) k

m+1 = 2d
ρmt
m+1

+(k+m
m ) γk

m+1 .

A natural choice forR is 2ρ.
Let v be a vector inL. One can interpretv = (vj1,··· ,jmRj1+···+jm) as the coeffi-

cient vector of a polynomial

Q(X1, . . . , Xm) =
∑

j1,··· ,jm

vj1,··· ,jmXj1
1 · · ·Xjm

m .

If |Q(r1, · · · , rm)| < pk then we haveQ(r1, · · · , rm) = 0 over the integers, so we
need to bound|Q(r1, · · · , rm)|. Note that

|Q(r1, · · · , rm)| ≤
∑

j1,··· ,jm

|vj1···jm ||r1|j1 · · · |rm|jm

≤
∑

j1,··· ,jm

|vj1···jm |Rj1 · · ·Rjm

= ‖v‖1.

Hence, if‖v‖1 < pk then we have a suitable polynomial. We call a vectorv ∈ L such
that‖v‖1 < pk atarget vector. We will need (at least)m algebraically independent tar-
get vectors to be able to perform elimination (using resultants or Gröbner basis method)
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to reduce to a univariate polynomial equation and hence solve for (r1, . . . , rm). One
then computesp = gcd(N, a1 − r1). Note that solving multivariate polynomial equa-
tions of degree greater than one in many variables is very time consuming and requires
significant memory. In practice, the elimination process using Gröbner basis methods is
faster if the system is overdetermined, so we generally use more thanm polynomials.
We call this process theMP algorithm .

We remark that the case(t, k) = (1, 1) gives essentially the same lattice as in equa-
tion (5) and so this case of the MP algorithm is the same as the orthogonal lattice attack
(this was already noted in [DGHV10] and is also mentioned in Section 6 of [CH13]).
Because of this, one can always say that the MP attack is at least as good as the orthogo-
nal lattice attack. But the interesting question is whetherany other choices of parameters
for the MP algorithm give rise to better attacks.

5.1 The Cohn-Heninger Analysis

Cohn and Heninger [CH13] give a heuristic theoretical analysis of the MP algorithm
and suggest optimal parameter choices(t,m, k). Their paper does this very briefly and
omits some details, so we sketch their approach here.

Cohn and Heninger [CH13] introduce a parameterβ = η/γ ≪ 1 so thatp ≥ Nβ.
They work with the equation

mt log2(R)

(m+ 1)k
+

γkm

(m+ 1)tm
< βγ = η (9)

which is a version of equation (10) below, with some terms deleted. They make a num-
ber of simplifying assumptions, assume that the best results will come from takingt
large, and impose the asymptotic relationshipt ≈ β−1/mk, which means thatt ≫ k.
Their method allows errors up toR = γβ(m+1)/m. They requireβ2 log(N) ≫ 1 for
the method to work5, which is equivalent toη2 ≫ γ. The lattice dimension in their
method is

(

t+m
m

)

= O(tm) = O(β−1km) = O(γ/η), and so yet again we encounter
the same dimension bound as the previous methods (at least, whenρ is small). The
main “heuristic theorem” of [CH13] can be stated as: for fixedm, if β = η/γ where
η2 ≫ γ andρ = log2(R) < η(1 + o(1))β1/m then one can solve the ACD problem
in polynomial time. The claim of polynomial-time complexity is correct, but does not
imply that the MP approach is better than the SDA or OL approaches: The input size
is proportional toγ and all the algorithms use lattices of dimension approximately γ/η
whenρ is small, so they are all polynomial time if they return a correct solution to the
problem.

The conditionη2 ≫ γ already means the MP attack can be avoided in practice
relatively easily. We remark that the orthogonal lattice method does not have any such
hard limit on its theoretical feasibility. However, in practice the restrictionη2 ≫ γ is
not so different from the usual condition that the dimensionmust be at leastγ/η: if
γ > η2 then the required dimension would be at leastη, which is infeasible for lattice
reduction algorithms for the sort of parameters used in practice.

5 It is mentioned in Section 2.1 of [CH13] that this can be relaxed toβ1+ǫ log(N) ≫ 1 if a
lattice reduction algorithm with a sub-exponential approximation factor is available.
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It is also important to consider the parameters of interest in the Cheon-Stehlé scheme.
Hence we now supposeρ ≈ η (e.g.,ρ/η = 0.9) andγ = η1+δ for someδ > 0 and
ask if the MP method can be better than the OL method in this setting. The condition
tρ < kη implies thatt ≈ k, (recall thatt ≥ k) in which case

(

k+m
m

)

≈ d =
(

t+m
m

)

and so the bound from equation (12) suggests the MP approach has no advantage over
other methods for parameters of this type. Our experimentalresults confirm this (see
Table 1).

5.2 Improved Analysis

We closely follow the analysis in [CH13], but we use average-case bounds on LLL
(Assumption 1) rather than the worst-case bounds of equation (2.2).6 Another of our
main contributions is to consider the parameters more generally, unlike in [CH13] where
it was assumed that the optimal solution would be to taket, k > 1 (e.g., they write “If
t andk are large, then...” and “we taket ≫ m and. . . km ≈ βtm”). Instead, we will
argue that the best choices for the MP algorithm are(t, k) = (1, 1). In other words, the
MP method seems to have no advantage over the orthogonal lattice method.

The MP algorithm succeeds if we can producem vectors in the lattice such that
‖v‖1 < pk. Note that the heuristics immediately differ between the casest = 1 and
t > 1. Whent > 1 the number of target vectors required is much smaller than the
dimensiond = dim(L) =

(

t+m
m

)

, however we require the corresponding polynomials
to be algebraically independent which is a much stronger assumption than linear in-
dependence of the corresponding vectors. On the other hand,whent = 1 we require
m = d− 1 short vectors so need a stronger assumption on the shape of the lattice basis,
however it suffices to have linearly independent vectors to complete the attack.

Using‖v‖1 ≤
√
d‖v‖ (where the latter is the Euclidean norm) and the bounds from

Assumption 1 we have that an LLL-reduced basis satisfies

‖bi‖1 ≤ d(1.02)d det(L)1/d

whered is the dimension of the lattice. If this bound is less thanpk ≈ 2ηk then we will
have enough target vectors. Hence we need

dd(1.02)d
2

det(L) < 2ηkd

and so we need

d log2(d) + d2 log2(1.02) + dρ
mt

m+ 1
+ γ

(

k +m

m

)

k

m+ 1
< kηd. (10)

We now derive some useful necessary conditions for the algorithm to succeed. Noting
that mt

m+1 ≈ t we see that it is necessary to have

tρ < kη, (11)

6 This does not have a major effect, since the analysis in [CH13] ignored several “nuisance
factors” which boil down to the same thing as our assumption.
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and sot cannot grow too fast compared withk. Similarly, we see it is necessary that
γ
(

k+m
m

)

k
m+1 < kηd which is equivalent to

d =

(

t+m

m

)

>
γ

η

(

k +m

m

)

1

m+ 1
. (12)

Whenk = 1 then the right hand side is equal toγ/η, but it gets steadily larger ask
grows. Sinceγ/η is large, this shows thatt has to be significantly larger thank, or else
m has to be very large. At the very least, this condition demonstrates that the MP method
does not overcome the minimal degree boundγ/η we already saw for the SDA and OL
methods. (In the case(t, k) = (1, 1) equation (12) simply becomesm+1 > γ/η which
we have already seen in Sections 4 and 3.)

We now attempt to give some further justification of our claimthat the Cohn and
Heninger analysis witht > 1 does not give any advantage over the caset = 1. To do
this, supposeγ = η1+δ for some0 < δ < 1 so thatβ = 1/ηδ andβ2γ = η1−δ ≫ 1
as required. The analysis in [CH13] suggests thatm and t should be large, but does
not seem to requirek to grow large, hence we takek = 1. Equation (9) then becomes,
recalling thatkm = βtm,

mt log2(R)

(m+ 1)
+

γβ

(m+ 1)
< η

It therefore suffices that the lattice dimension should be taken to bed ≈ tm/m! =
1/(βm!) = ηδ/m!, giving t ≈ ηδ/m. Note that this lattice dimension is comparable
with the lower boundγ/η = ηδ that we saw for the SDA and OL methods. From this
we find that we can handle errors of bitlengthlog2(R) ≈ η/t. There are many ways to
choose parameters, but a reasonable choice seems to be to take t ≈ m. This means that

d =

(

t+m

m

)

≈
(

2m

m

)

≈ 4m

and som ≈ log4(d) ≈ δ log4(η). Finally, we haveρ = log2(R) ≈ η/(δ log4(η)).
To make this concrete, let us takeη = 1000 andδ = 1/2 soγ = η1+δ = 31622.

Choosing(t,m, k) = (5, 4, 1) gives a lattice of dimension
(

9
4

)

= 126 that can handle
errors of size up toR = 21000/5 = 2200. For these values, we have(γ − ρ)/(η −
ρ) ≈ 39 which suggests the instance can be more easily solved using the SDA and OL
methods or, equivalently, the MP method with parameters(t,m, k) = (1, 50, 1). Our
experimental results confirm these findings.

There are two further major advantages of the SDA and OL methods compared with
the MP approach witht > 1. The first is that one can choose any value desired for the
dimension, whereas in the MP method the dimension must be of the form

(

t+m
m

)

and
so it only takes certain values. The second is that the MP method with t > 1 requires
solving systems of multivariate polynomial equations, andthe cost of this stage can
dwarf the cost of the lattice stage.

Table 1 gives a comparison of different parameters for the MPmethod. The left hand
table is forη = 100 and varying values ofγ. For different choices of(t, k) we determine
the maximalρ such that the MP algorithm with parameters(t, k) can solve the problem

15



Table 1. Comparison between different parameter choices(t, k) in the multivariate polynomial
algorithm. The left hand table reports, forη = 100, the largest value forρ that can be solved with
reasonable probability for the given choice(γ, η, t, k,m). The right hand table compares running
times for larger examples.dim(L), TLLL, and TGRB refer to the lattice dimension, running time
(seconds) of the LLL algorithm and running of the Gröbner basis algorithms to solve the resulting
polynomial systems respectively. The notation ‘**’ indicates that the computation was aborted
before a result was found after the fixed time period of a few minutes.

γ ρmax t k m dim(L) TLLL TGRB
150 95 1 1 30 31 0.020 0.020

90 3 2 8 165 0.350 0.070
85 4 3 4 70 0.220 0.040

300 90 1 1 30 31 0.030 0.130
60 3 2 5 56 0.310 0.770
60 4 3 4 70 4.150 15.150

600 80 1 1 30 31 0.070 0.020
35 3 2 4 35 1.020 0.170
10 4 3 3 35 2.930 4.640

γ ρ t k m dim(L) TLLL TGRB
300 10 1 1 4 5 0.020 0.000

3 2 4 35 0.300 0.050
50 1 1 6 7 0.010 0.010

3 2 4 35 0.110 0.030
600 10 1 1 7 8 0.020 0.000

3 2 4 35 1.070 6.100
30 1 1 9 10 0.030 0.010

3 2 4 35 1.020 5.330
1200 10 1 1 14 15 0.030 0.010

3 2 5 56 14.130 347.200
20 1 1 15 16 0.030 0.010

3 2 5 56 13.890 297.820
2400 10 1 1 27 28 0.190 0.010

3 2 5 56 32.710 **
20 1 1 30 31 0.260 0.020

3 2 5 56 32.480 **
5000 15 1 1 119 120 102.660 0.675

2 1 10 66 10.380 **
30 1 1 72 120 84.070 0.680

2 1 11 78 18.010 **
8000 10 1 1 119 120 136.530 0.670

2 1 14 120 219.140 **
3 1 6 84 74.490 **

15 1 1 119 120 145.770 0.670
2 1 14 120 226.370 **

20 1 1 1 120 164.750 0.670
2 1 14 120 300.100 **

with high probability. This table shows that(t, k) = (1, 1) allows to solve a wider range
of parameters than other choices, which confirms our argument that (t, k) = (1, 1) is
better than other parameter choices. The second table considers larger values forγ and
the aim of this table is to emphasise the considerable increase in the running time when
usingt > 1.

6 Experimental Observation

We have conducted extensive experiments with the SDA, OL andMP methods. For a
small summary see Table 2. As with all lattice attacks, the running time depends mostly
on the dimension of the lattice, and then on the size of the integers in the basis for the
lattice. In general our experiments confirm that the OL method is the fastest and most
effective algorithm for solving the ACD problem. For many more tables of experimental
results we refer to Chapter 5 of [Geb16].

The parameters(ρ, η, γ) in Table 2 are selected according to the formula(λ, λ +
d log(λ), d2λ log(λ)) from [CS15], whereλ is a security parameter andd > 0 is the
depth of a circuit to allow decryption of depthd. We tookλ = 80 and varyd from 1 to
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Table 2. Comparison of orthogonal lattice (OL) and simultaneous Diophantine approximation
(SDA) algorithms (note that the MP method with(t, k) = (1, 1) is the same as the OL method).

η γ ρ dim(L) OL time (seconds) SDA time (seconds)
86 480 75 120 1.700 2.380

70 40 0.110 0.200
50 24 0.030 0.050

92 1920 50 56 1.540 5.020
98 4320 50 200 1242.640 4375.120
104 7680 50 200 3047.500 14856.630
110 12000 20 200 5061.760 27578.560

10 200 3673.160 23428.410

5. Of course, we did not expect to solve this system quickly for the choiceρ = λ (and
our experiments confirmed this). We only report timings for slightly smaller values for
ρ.

7 Pre-processing of the ACD samples

The most important factor in the difficulty of the ACD problemis the ratioγ/η, which
is the size of the integersxi relative to the size ofp. If one can lowerγ for the samep
and without changing the size of the errors then one gets an easier instance of the ACD
problem.

Hence, it is natural to consider a pre-processing step wherea large number of initial
samplesxi = pqi+ri are used to form new samplesx′

j = pq′j+r′j with q′j significantly
smaller thanqi. The main idea we consider for doing this is by taking differencesxk−xi

for xk > xi andxk ≈ xi. The essential property is that ifxk ≈ xi thenqk ≈ qi but rk
andri are not necessarily related at all. Hencexk − xi = p(qk − qi) + (rk − ri) is an
ACD sample for the same unknownp but with a smaller value forq and a similar sized
errorr. It is natural to hope that one can iterate this process untilthe samples are of a
size suitable to be attacked by the orthogonal lattice algorithm.

This idea is reminiscent of the Blum-Kalai-Wasserman (BKW)algorithm [BKW03]
for learning parity with noise (LPN). In that case we have samples(a, b) wherea ∈ Z

n
2

is a vector of lengthn andb = a · s + e, wheres ∈ Z
n
2 is a secret ande is a noise

term which is usually zero. we wish to obtain samples such that a = (1, 0, 0, . . . , 0),
or similar, and we do this iteratively by adding samples(ak, bk) + (ai, bi) where some
coordinates ofak andai agree. The result is an algorithm with subexponential com-
plexity 2n/ log(n), compared with the naive algorithm (guessing alls ∈ Z

n
2 ) which has

complexity2n. In our context we do not have(qi, pqi + ri) but onlyxi = pqi + ri,
however we can use the high-order bits ofxi as a proxy for the high order bits ofqi and
hence perform a similar algorithm. A natural question is whether this leads to a faster
algorithm for the ACD problem.

There are several approaches one might attempt. Letx1, . . . , xτ be the initial list of
γ-bit ACD samples.

1. (Preserving the sample size) Fix a small boundB (e.g.,B = 16) and selectB
samples (without loss of generality call themx1, . . . , xB) such that the leading
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coefficients in baseB are all distinct. For each of the remainingτ − B samples,
generate a new sample by subtracting the one with the same leading coefficient.
The result isτ −B samples each of sizeγ − log2(B) bits.

2. (Aggressive shortening) Sort the samplesx1 ≤ x2 ≤ · · · ≤ xτ and, for some small
thresholdT = 2γ−µ, generate new samples by subtractingxi+1 − xi when this
difference is less thanT . The new samples are of size at mostγ − µ bits, but there
are far fewer of them.

7.1 Preserving the sample size

This first method is analysed briefly in [Geb16] and we give further informal discussion
here. SupposeB = 2b. After I iterations of the method we have generated approxi-
matelyτ − IB samples, each ofγ − Ib bits. However, we must consider the size of the
errors. The original samplesxi = pqi + ri have errors|ri| ≤ 2ρ, and the samples at
iterationk are of the form

x =

2k
∑

i=1

cixi where ci = ±1

and so the error terms behave like a “random” sum of2k ρ-bit integers. Since theri are
uniformly distributed in[−2ρ, 2ρ], for largek the valuer =

∑

i ciri has mean0 and
variance1

32
2ρ+k. So we expect|r| ≤ 2ρ+k/2. Onceρ + k/2 > η then the errors have

grown so large that we have essentially lost all informationaboutp, and the method is
no good. Hence, an absolute upper limit on the number of iterations is2(η − ρ). This
means that after the final iteration the samples are reduced to bitlength no fewer than
γ − 2b(η − ρ) bits.

In terms of lattice attacks, an attack on the original problem requires a lattice of
dimension roughlyγ/η (assumingρ ≪ η). After the pre-processing we would need a
lattice of dimension

γ − 2b(η − ρ)

η
≈ γ

η
− 2b.

Since a typical value forb is 8 or 16, we see that very little difference has been made to
the problem.

7.2 Sample amplification

First experiments may lead one to believe that the aggressive shortening approach is
fruitless. It is natural to choose parameters so that the lists are reduced at each itera-
tion by some constant factor, and so the number of samples decreases exponentially in
terms of the number of iterations. Eventually one has too fewsamples to run any of the
previously mentioned lattice algorithms.

However, it turns out that a very simple strategy can be used in practice to increase
the number of samples again. The idea is to generate new samples (that are still about the
same bitlength) by taking sums/differences of the initial list of samples. This is similar
to ideas used to amplify the number of samples for solving LPNor LWE [Lyu05].
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LetL = {x1, . . . , xτ} be a list of ACD samples, withxk = pqk + rk having mean
and variance given byµ = E(xk) = pE(qk) = 2γ−1 and variance given by

Var(xk) = p2Var(qk) + Var(rk) = 1
32

2(γ−1) + 1
122

2ρ

= 1
32

2(γ−1)
(

1 + 2−2(γ−ρ)
)

.

We generatem random sumsS1, . . . , Sm of l elements ofL, that is to say we consider
values of the form

Sk =

l
∑

i=1

xki
[k = 1, . . . ,m],

which have mean and variance given by

E(Sk) = l2γ−1 and Var(Sk) =
1
3 l2

2(γ−1)
(

1 + 2−2(γ−ρ)
)

.

We note that (providedl is not too large) two such random variablesSk andSk′ are
usually sums of different ACD samples and so are usually independent. In any case, we
can obtain many samples (withm potentially up to

(

τ
l

)

) of a more peaked distribution,
albeit with a slightly larger variance. Hence, not only havewe created a much larger
pool of samples, the non-uniform distribution of these samples makes them even more
attractive for an algorithm based on computing neighbouring differences.

Recall that the next stage of the algorithm will be to sort thenew samplesS1, . . . , Sm

to obtain the listS(1) ≤ · · · ≤ S(m). We call these theorder statistics. We then consider
the neighbouring differences orspacingsTk = S(k+1) − S(k) for k = 1, . . . ,m − 1.
In order to analyse the effectiveness of this approach we need to derive the statistical
distribution of the spacings.

The statistical distribution of spacings arising from a general distribution is consid-
ered by Pyke [Pyk65], where it is shown that such generic spacings have Exponential
distributions, and such an approach gives Lemma 4. We recallthat the distribution func-
tion F for a random variableW onR is the monotonic functionF (w) = P(W ≤ w),
which gives the density functionf = F ′ of W as the derivative ofF (where this exists)
and the inverse distribution functionF−1 of W as the inverse function toF . Further-
more, a positive random variableW ∼ Exp(λ) is an Exponential random variable
with (rate) parameterλ if its density functionfW (w) = λ exp(−λw) (w > 0), when
E(W ) = λ−1 and Var(W ) = λ−2, so an Exponential random variable has the same
mean and standard deviation.

Lemma 4. SupposeZ1, . . . , Zm are independent and identically distributed random
variables onR with common distribution functionF , inverse distribution functionF−1

and density functionf = F ′. If Z(1) ≤ . . . ≤ Z(m) denote the order statistics of
Z1, . . . , Zm, then thekth spacingZ(k+1) − Z(k) is well-approximated for largem as
an Exponential random variable with (rate) parameterm f

(

F−1
(

k
m

))

.

Proof. Equations (4.9) and (4.10) of Pyke [Pyk65] show that thekth spacing

Z(k+1) − Z(k) =
1

(m− k)

(1−Ak+1)

f (F−1 (Ak+1))
Yk,
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whereYk ∼ Exp(1) is an Exponential random variable andAk+1 essentially lies be-
tween thekth and(k+1)th order statistics ofm random variables uniformly distributed
on(0, 1). ThusAk+1 essentially lies between two random variables with meank

m+1 and
k+1
m+1 , so to a good approximationAk+1 ≈ k

m for largem.

1

(m− k)

(1−Ak+1)

f (F−1 (Ak+1))
≈ 1− k

m

(m− k)

1

f
(

F−1
(

k
m

)) =
1

mf
(

F−1
(

k
m

)) .

As the multiple of an Exponential random variable is also an Exponential distribution
with a suitably defined parameter, we to a very close approximation

Z(k+1) − Z(k) ∼ Exp
(

m f
(

F−1
(

k
m

)) )

. ⊓⊔

We use Lemma 4 to give the distribution of the spacings in three situations of in-
terest, namely when the underlying distributions are Uniform, Exponential and Nor-
mal. The distribution of the original ACD samplesx1, . . . , xτ , and hence random sums
S1, . . . , Sm whenl = 1, are well-approximated by a Uniform distribution on(0, 2γ),
In such a situation, the distribution of the consequent spacings has an Exponential dis-
tribution. More generally, the sum ofl > 1 such distributions (Uniform or Exponential)
is well-approximated by a Normal distribution even for moderatel, but the distribution
of such a sum could always be calculated exactly if required using Lemma 4.

– Uniform Distribution. SupposeZ1, . . . , Zm ∼ Uni(0, A) are uniformly distributed
on (0, A), thenZ1, . . . , Zm have inverse distribution functionF−1(u) = Au (0 ≤
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u ≤ 1) and density functionf(z) = A−1 (0 ≤ z < A). Thusf
(

F−1 (u)
)

= A−1,
and the spacings have an Exponential distribution given by

Z(k+1) − Z(k) ∼ Exp
(

mA−1
)

with mean
A

m
.

– Exponential Distribution. SupposeZ1, . . . , Zm ∼ Exp(λ) are exponentially dis-
tributed with (rate) parameterλ (meanλ−1), thenZ1, . . . , Zm have inverse distri-
bution functionF−1(u) = −λ−1 log(1 − u) (0 ≤ u < 1) and density function
f(z) = λ exp(−λz) (z > 0). Thusf

(

F−1 (u)
)

= λ(1 − u) (0 ≤ u < 1), and the
spacings have an Exponential distribution given by

Z(k+1) − Z(k) ∼ Exp(λ(m− k)) with mean
1

λ(m− k)
.

– Normal Distribution. SupposeZ1, . . . , Zm ∼ N
(

µ, σ2
)

are normally distributed
with meanµ and varianceσ2. If we letF−1 andf respectively denote the inverse
distribution function and density function of such a N(µ, σ2) random variable, then

f
(

F−1 (u)
)

=
g
(

G−1 (u)
)

σ
,

whereG−1 andg are respectively the inverse distribution function and density func-
tion of a standard Normal N(0, 1) random variable. We therefore letH(u) denote
the functiong(G−1(u))−1, so

H(u) =
1

g(G−1(u))
= (2π)

1
2 exp

(

InverseErfc(2u)2)
)

[0 < u < 1],

whereInverseErfcdenotes the inverse function to the complementary error func-
tion, and we illustrate this functionH in Figure 1. It can be seen thatH is a moder-
ately small value away from the extreme order statistics, for exampleH(u) ≈ 4 for
0.2 < u < 0.8. Thus the spacings have an Exponential distribution (with parameter
depending onk) given by

Z(k+1) − Z(k) ∼ Exp

(

m

σ H
(

k
m

)

)

with mean
σ H

(

k
m

)

m
.

7.3 Aggressive shortening

Having shown that the sample amplification technique leads to relatively small spac-
ings, we can now put everything together. The idea is to startwith a listL = {x1, . . . , xτ}
of ACD samples of mean value2γ−1 and standard deviationσ0 ≈ 3−

1
2 2(γ−1). One first

amplifies this to a list ofm samplesSk. One then sorts theSk to get the order statistics
S(k).7 Compute the spacingsTk = S(k+1) − S(k) for k = 1, . . . ,m − 1 and store the

7 In practice one can store theSk in a binary search tree, in which case an explicit sorting step
is not required.
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τ = m/2 “middle” spacings as input to the next iteration of the algorithm. After I
iterations one then applies the orthogonal lattice attack.

We now analyse the method. The complexity is proportional toIm log(m), since
each iteration computes a sorted list of sizem. The mean and the standard deviation
of the spacings is inversely proportional tom, so we would wish to takem to be very
large. Suppose, at thej-th iteration, we have a list ofτj−1 valuesY (j−1)

1 , . . . , Y
(j−1)
τj−1

(soτ0 = τ ) with standard deviationσj−1. As noted above, a random sumSk is well-
approximated as a Normal random variable with variancelσ2

j−1 for l > 1. Lemma 4
shows that thekth spacing in this Normal approximation case essentially has adistri-
bution given by

S(k+1) − S(k) ∼ Exp

(

m

l
1
2σj−1 H

(

k
m

)

)

with mean
l
1
2H

(

k
m

)

m
σj−1.

Figure 1 shows thatH( k
m ) ≈ 4 when 0.2m ≤ k ≤ 0.8m, so by considering the

“middle” spacings ofT1, . . . , Tm−1, we can obtainτj = 1
2m random variables with

approximately the same distribution that are in general independent. Thus at the end of
thejth iteration, we obtain random variables

Y j
1 , . . . , Y

j
τj with mean and standard deviationσj =

4l
1
2

m
σj−1.

The main question is how many times the method can be iterateduntil the errors
grow so large thatp is not determined anymore. Afterj iterations, the random variables
Y j
1 , . . . , Y

j
τj are sums of(2l)j of the original ACD samples, so the standard deviation

of an error term in the output of thej-th has increased by a multiple of(2l)
j
2 . Hence,

the total number of iterations performed satisfiesI < η.
Our analysis shows that the average size of samples afteri iterations is(4

√
l/m)i2γ−1.

To have samples of size close toη-bits thus requires

η ≈ i log2(4
√
l/m) + γ − 1.

Hence, optimistically takingi = η, we need

log2(m) ≈ (γ − 1 + η(log(4
√
l)− 1)/η

In other words, the lists are of size close to2γ/η, which is prohibitively large in practice.
Even for the toy parameters(ρ, η, γ) = (71, 2698, 19350000) from [CNT12] we would
havem ≈ 27000, which is absurd.

In summary, the detailed statistical analysis of this Section has essentially shown
that a neighbouring difference approach, whilst initiallyappearing promising, can only
reduce the essential magnitude and variability of the samples produced at each iteration
by a factor that depends linearly on the number of sums considered at each iteration. For
the parameter sizes required for a cryptographic system, this means that the resulting
errors grow too rapidly for this approach to be useful.

It is natural to wonder why the BKW algorithm is a useful tool for LPN, and yet
similar ideas are not useful for ACD. One answer is that ACD isactually a much easier
problem than LPN: The naive attack on LPN takes2n operations, whereas one can solve
ACD in vastly fewer than2γ steps.

22



8 Conclusions

We have surveyed known attacks on the ACD problem. Our main finding is that the
multivariate polynomial attack is not more powerful than the orthogonal lattice attack,
thereby clarifying the contribution of Cohn and Heninger [CH13]. We have developed
a sample amplification method for ACD which may have applications in cryptanalysis.
We have also investigated a pre-processing approach, similar to the BKW algorithm,
and given a statistical analysis that explains why this method does not lead to an attack
on ACD.
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[CCK+13] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim,Moon Sung Lee, Tancrède Le-
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