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Abstract

Goldwasser and Rothblum (TCC ’07) prove that statistical indistinguishability obfuscation
(iO) cannot exist if the obfuscator must maintain perfect correctness (under a widely believed
complexity theoretic assumption: NP 6⊆ SZK ⊆ AM∩ coAM). However, for many applica-
tions of iO, such as constructing public-key encryption from one-way functions (one of the main
open problems in theoretical cryptography), approximate correctness is sufficient. It had been
unknown thus far whether statistical approximate iO (saiO) can exist.

We show that saiO does not exist, even for a minimal correctness requirement, if NP 6⊆
AM∩ coAM, and if one-way functions exist. A simple complementary observation shows that
if one-way functions do not exist, then average-case saiO exists. Technically, previous approaches
utilized the behavior of the obfuscator on evasive functions, for which saiO always exists. We
overcome this barrier by using a PRF as a “baseline” for the obfuscated program.

We broaden our study and consider relaxed notions of security for iO. We introduce the
notion of correlation obfuscation, where the obfuscations of equivalent circuits only need to be
mildly correlated (rather than statistically indistinguishable). Perhaps surprisingly, we show
that correlation obfuscators exist via a trivial construction for some parameter regimes, whereas
our impossibility result extends to other regimes. Interestingly, within the gap between the
parameters regimes that we show possible and impossible, there is a small fraction of parameters
that still allow to build public-key encryption from one-way functions and thus deserve further
investigation.

1 Introduction

Constructing public-key cryptography (e.g. public-key encryption) from private-key cryptography
(such as one-way functions) is one of the most fundamental questions in theoretical cryptography,
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going back to the seminal paper of Diffie and Hellman [8]. Diffie and Hellman suggested that
program obfuscators with sufficiently strong security properties would allow to realize this transfor-
mation. A program obfuscator is a compiler that takes as input a program, and outputs another
program with equivalent functionality, but which is harder to reverse engineer. Diffie and Hellman
suggested to obfuscate the encryption circuit of a symmetric-key encryption scheme, and use the
obfuscated program as a public key so as to obtain a public-key encryption scheme. An additional
hint that obfuscation may be instrumental in solving this riddle was provided by Impagliazzo and
Rudich [20, 19], who proved that a transformation from symmetric to public-key must make non
black-box use of the underlying symmetric primitive. Indeed, program obfuscation is one of very
few non black-box techniques known in cryptography.

Modern research showed that the Diffie-Hellman transformation requires obfuscators with se-
curity guarantees that do not exist in general [15, 1, 2]. However, recent years have seen incredibly
prolific study of weak notions of obfuscation, following the introduction of a candidate indistin-
guishability obfuscator (iO) by Garg et al. [9]. The security guarantee of iO is that the obfuscation
of two functionally equivalent circuits should result in indistinguishable output distributions. That
is, that reverse engineering could not detect which of two equivalent implementations had been the
source of the obfuscated program. Sahai and Waters [29] showed that even this seemingly weak
notion suffices for private-key to public-key transformation (via a clever construction that does not
resemble the Diffie-Hellman suggestion).

One would have hoped that a weak notion such as iO may be realizable with statistical security,
i.e. that reverse engineering (to the limited extent required by iO) will not be possible even to an
attacker with unlimited computational power. The existence of such statistical indistinguishability
obfuscator (siO) would resolve the question of constructing public key cryptography from one-way
functions, as well as would allow to construct one-way functions based on the hardness of NP [22].
Alas, Goldwasser and Rothblum [13, 14] proved that siO cannot exist unless the polynomial hierar-
chy collapses (in particular that it implies NP ⊆ SZK, and it is known that SZK ⊆ AM∩coAM),
which is considered quite unlikely in computational complexity, and at any rate way beyond the
current understanding of complexity theory. This seems to put a damper on our hopes to achieve
statistically secure obfuscation.

However, the [13, 14] negative result crucially relies on the correctness of the obfuscator. That
is, it only rules out such obfuscators that perfectly preserve the functionality of the underlying
primitive (at least with high probability over the coins of the obfuscator). In contrast, the symmetric
to public key transformation can be made to work with only approximate correctness, i.e. a non-
negligible correlation between the functionality of the input circuit and that of the output circuit
(where the probability is taken over the randomness of the obfuscator and the input domain). The
question of whether statistical approximate iO (saiO) exists was therefore the new destination in
the quest for understanding obfuscation. Interestingly, it turns out that ruling out computational
notions of iO in some idealized models also boils down to the question of whether saiO exists (see
Section 1.2 below). The study of this notion is the objective of this paper.

Our Results. We show that statistical approximate iO (saiO) does not exist if one-way functions
exist (under the assumption that NP 6⊆ AM∩ coAM). Thus, in particular, that saiO cannot be
used for the transformation from symmetric to public-key cryptography. We show that if one-way
functions exist, then any non-negligible correlation between the output of the obfuscator and the
input program would imply an SZK algorithm for unique SAT (USAT). As SAT reduces to USAT
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via a randomized reduction [31], a result of Mahmoody and Xiao [26] shows that this implies that
SAT is in AM∩ coAM.

To complement our result, we observe that if one-way functions do not exist, then an average-
case notion of saiO exists for any distribution. Specifically, for any efficiently samplable distribution
over circuits, there exists an saiO obfuscator whose correctness holds with high probability over
the circuits in that distribution (inverting the order of quantifiers would imply a worst-case saiO).
We thank Vinod Vaikuntanthan for pointing this out.

A Study of Correlation Obfuscation. Our impossibility results extend beyond the case of
saiO. In fact, the result applies even when the security of the obfuscator is approximate. Namely,
when we are only guaranteed that the obfuscation of functionally equivalent circuits results in
distributions that have mild statistical distance (as opposed to negligible). This motivated us to
explore the properties of this new kind of obfuscators, that as far as we know have not been studied
in the literature before.

We consider statistical approximate correlation obfuscation sacO. A sacO obfuscator is char-
acterized by two parameters ε ∈ [0, 1/2) and δ ∈ [0, 1). The requirement is that correctness holds
with probability 1 − ε (with respect to the randomness of the obfuscator and a random choice of
input), and that obfuscating two functionally equivalent circuits results in distributions with sta-
tistical distance δ. The case of negligible δ is exactly saiO, discussed above, and the case of ε = 0
corresponds to perfect correctness.

We observe that our impossibility result degrades gracefully and holds so long as 2ε + 3δ < 1.
We found this state of affairs unsatisfactory, and tried to extend the result to hold for the entire
parameter range. However, it turns out that sacO exists via an almost trivial construction whenever
2ε+ δ > 1 (e.g. ε = δ = 0.4). We do not know if sacO exists in the intermediate parameter regime.

Lastly, we conduct a study of whether sacO is sufficient to construct public-key encryption
from one-way functions. We present an amplified version of the Sahai-Waters construction using
an amplification technique due to Holenstein. Interestingly, it appears that there is a region in the
parameter domain that would allow to construct public-key encryption from one-way functions,
but is not ruled out by our current technique. See Figure 1 for the landscape of sacO parameters.
We leave it as an intriguing open problem to close the gap between the various parameter regimes.

1.1 Our Techniques

Our starting point is the Goldwasser-Rothblum impossibility result. Consider a statistical iO obfus-
cator such that for any pair of functionally equivalent circuits, the obfuscator generates statistically
indistinguishable distributions, and in addition the output circuit of the obfuscator is always func-
tionally equivalent to the input circuit (this can be relaxed to hold only with high probability
over the random coins of the obfuscator). Goldwasser-Rothblum observe that an unsatisfiable SAT
formula Ψ is functionally equivalent to the all-zero function 0 and therefore the distributions pro-
duced by a siO obfuscator in both cases should be statistically indistinguishable. Slightly more
formally, let X[C] denote the distribution output by the obfuscator on input circuit C, then we
get that X[Ψ] ≡ X[0], where ≡ denotes statistical indistinguishability. On the contrary, if Ψ is a
satisfiable formula, then it has a different functionality than 0 and therefore the support of X[Ψ]
and X[0] will be disjoint (and thus obviously not statistically indistinguishable). It follows that
in order to solve SAT, it suffices to tell whether X[Ψ] is close to X[0]. As we know due to Sahai
and Vadhan [28], there is an SZK protocol that takes two polynomial-time samplers, and decides
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Figure 1: The graph gives an overview over the possible range of parameters for sacO. In the upper
right are parameter regimes that can be achieved using the construction described in Appendix A.
In the lower left are the strong parameter regimes ruled out by our negative result in Section 3.
The graph shows nicely the gap between the parameters that can be ruled out and those that can
be used to construct public key encryption using the construction of Sahai and Waters as well as
the amplification technique of Holenstein.

whether they sample from distributions that are ε1-statistically close or ε2-statistically far, so long
as (ε2 − ε1) is a noticeable function. The conclusion is that an siO obfuscator implies an SZK
protocol for SAT which in turn implies that NP ⊆ SZK.

To sum up the core argument, to show that an siO obfuscator does not exists unlessNP ⊆ SZK,
Goldwasser-Rothblum built the formula-indexed distribution X[Ψ] that samples an siO obfuscation
of Ψ and has the properties that it is (i) efficiently sampleable, (ii) if Ψ is not satisfiable, then X[Ψ]
and X[0] are close, while (iii) if Ψ not satisfiable, then X[Ψ] and X[0] are far.

Allowing the obfuscator to have approximate correctness thwarts this approach completely.
Hard SAT instances are obviously ones where the density of accepting inputs is sub-polynomial
and therefore a satisfiable and unsatisfiable SAT formulae will have almost identical functionality.
One could consider an saiO obfuscator that on any SAT formula that is not trivially satisfiable,
would just produce an obfuscation of 0. This means that X[Ψ] will have the same distribution
whether Ψ is satisfiable or not and thus, property (iii) is not satisfied anymore.

In order to overcome this issue, we construct a different distribution on formula-indexed circuits
CX [k,Ψ] (where k is some uniformly random key k) such that if Ψ is not satisfiable, then CX [k,Ψ]
and CX [k,0] have the same functionality, and if Ψ is satisfiable, then CX [k,Ψ] and CX [k,0] differ on
a single point. Then, assuming one-way functions exist, we show that, although these two circuits
differ on a single point only, the obfuscator saiO of CX [k,Ψ] has to produce a distribution that is
statistically far from saiO of CX [k,0]. To do this, we rely on the fact that the obfuscator itself
is computationally efficient, and therefore it cannot break the hardness of one-way functions and
derived cryptographic objects such as pseudorandom functions (PRFs) or puncturable PRFs (see
below). This way, we construct a new formula-indexed distribution X[Ψ] that satisfies properties
(i), (ii) and (iii) as discussed above.

Puncturable PRFs were introduced simultaneously in [5, 6, 21] and were utilized as an essential
building block for indistinguishability obfuscation in [29]. A standard PRF is a function that can
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be efficiently computable using a key k, but is indistinguishable from a random function via oracle
access. A puncturable PRF is a PRF where one can generate a punctured key k{x0} which allows
to compute the PRF at all points except x0, but the value at x0 is still indistinguishable from
uniform, even given the punctured key. Punctured PRFs can be constructed from any one-way
function.

Based on a puncurable PRF and an saiO obfuscator O, we now construct a distribution on
pairs of circuits (for now not indexed by a formula) such that the two circuits differ on a single
point only and yet, an saiO obfuscator will produce distributions that are far. Let k be a key for
a puncturable PRF, let x0 be a random point in the domain, let k{x0} be a key punctured at
x0 and consider the function fk{x0},y that outputs PRF(k{x0}, x) = PRF(k, x) for all x 6= x0, and
outputs y on input x0. Then by definition fk{x0},y for a random y and fk{x0},y0 = PRF(k, ·) for
y0 = PRF(k, x0) are identical in functionality except maybe at point x0. However, using puncturing,
we can guarantee that the distributions O(fk{x0},y) and O(fk{x0},y0), where k, x0, y are chosen
uniformly at random are statistically far. To see this, it is enough to show that O(fk{x0},y) and
O(PRF(k, ·)) are statistically far since fk{x0},y0 = PRF(k, ·) and thus O(fk{x0},y0) ≡ O(PRF(k, ·)).
Consider the predicate that checks whether O(PRF(k, ·))(x0) = PRF(k, x0). This predicate must
have non-negligible bias towards holding true, and is efficiently checkable, which also implies that
O(fk{x0},y)(x0) = fk{x0},y(x0) holds true with noticeable bias, since otherwise we will have an
efficient distinguisher from fk{x0},y0 = PRF(k, ·) in contradiction to the puncturable PRF security.
Finally, since y 6= y0 with high probability (assume for simplicity that the PRF and the obfuscator
have long outputs and keys of half the size), this implies that O(fk{x0},y) and O(fk{x0},y0) have
noticeable statistical distance, since they will have noticeable probability mass on circuits that
respect the functionality on x0. Note that we used a computational argument, the security of
punctured PRFs, to derive a statistical statement about the output distribution of the obfuscator.

We would like to use the aforementioned distributions to distinguish between satisfiable and
unsatisfiable formulae. Let us restrict our attention to Unique-SAT formulae that are either un-
satisfiable or have only one satisfying assignment. Unique-SAT is known to be NP-Hard via a
randomized reduction [31], and a result of Mahmoody and Xiao [26] shows that if Unique-SAT is
in SZK ⊆ AM∩ coAM, then SAT is in AM∩ coAM (See Section 2.1).

Let Ψ be a formula that has a unique satisfying assignment, then one can randomize the
satisfying assignment (if it exists) to be uniformly distributed over the input space (e.g. by XORing
all variables with a random string). Now, consider the function fk,y,Ψ defined s.t. fk,y,Ψ(x) =
PRF(k, x) if x does not satisfy Ψ, and fk,y,Ψ(x) = y otherwise. By definition, if Ψ is unsatisfiable
then fk,y,Ψ = PRF(k, ·) and if Ψ is satisfiable by some x0 (which is uniformly distributed) then
fk,y,Ψ = fk{x0},y. Therefore O(fk,y,Ψ) is guaranteed to have a noticeable statistical distance in the
case where Ψ is unsatisfiable (in which case it is close to O(fk,y,0)) and in the case where it is
uniquely satisfiable (in which case it is far from O(fk,y,0)). This will allow us to produce an SZK
protocol to distinguish the two possibilities.

In a World without OWFs. We recall that if OWFs do not exist then for any efficiently
computable function f and with overwhelming probability over a y sampled from the output dis-
tribution of f , it is possible to efficiently sample (almost) uniformly (up to negligible error) from
the set f−1(y) = {x : f(x) = y} [18]. Given an efficiently sampleable distribution over circuits,
we can construct an average-case obfuscator for this family as follows. Let sampC be a sampler
for this distribution of circuits and consider the function f(r, x1, . . . , xm) for a large polynomial m
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such that f(r, x1, . . . , xm) = (x1, . . . , xm, C(x1), . . . , C(xm)), for C = sampC(r).
Now, to obfuscate a circuit C, sample x1, . . . , xm and compute yi = C(xi). Sample (r, x1, . . . , xm)

from f−1(x1, . . . , xm, y1, . . . , ym) and output C ′ = sampC(r). This is clearly a perfect indistinguisha-
bility obfuscator (i.e. two circuits with the same functionality will produce identical distributions).
It is also approximately correct on the average, because on average, if two circuits agree on a
randomly chosen set of points, then they will have a large agreement altogether.

We note that a similar and even simpler argument shows that if all efficiently computable
functions are PAC learnable [30], even allowing membership queries, then saiO with perfect in-
distinguishability exists. This follows immediately by definition by giving the learner (black-box)
access to C, and outputting its hypothesis C ′ as the output of the obfuscator. In such case OWFs
trivially do not exist.

The Landscape of Correlation Obfuscation. Extending our techniques to rule out sacO with
2ε+3δ < 1 follows from carefully analyzing the parameters in the proof outlined above (one can get
2ε+ 4δ < 1 by straightforward analysis, and the slight improvement comes from properly defining
the random variables in the problem). We can show a trivial sacO obfuscator for 2ε + δ > 1 as
follows. Given an input circuit C, use random sampling to find the majority value of the truth
table of C (if C is approximately balanced, then any value works). Then output the constant
function taking the majority value with probability 2ε, and output C itself with probability 1− 2ε.
Correctness will hold with probability 1 − ε, since if C is output then correctness is perfect, and
if the constant function is output then correctness is approximately 1/2. The correlation between
two functionally equivalent circuits is at least 2ε since the calculation of the majority value only
depends on the truth table. We provide a more formal analysis in Appendix A. It seems that such
a trivial obfuscator cannot imply any non-trivial results.

We notice that a sacO obfuscator can be plugged into the Sahai-Waters construction, and would
imply weak notions of security and correctness for the resulting public-key encryption scheme.
Holenstein [17] shows that, for some parameters, this weak notion can be amplified to standard
security and correctness. Plugging in our parameters, we get that roughly when 1

2 − 3ε+ 2ε2 > δ,
sacO would imply symmetric to public key transformation using this method. This leaves a small
region of parameters where sacO is not known to be impossible, and if it is possible it will imply
highly non-trivial results. It is not clear whether other parameter regimes can also be useful, or
whether our impossibility can be extended to rule out the entire useful regime. We refer to Figure 1
again for a visual characterization of the parameter regimes.

1.2 Consequences of Our Result

Our result strengthens previous negative results for proving the existence of iO in several ideal
models. Previous works show that a construction of statistically secure (perfectly correct) iO in
any of those ideal models implies the existence of saiO in the standard model. Actually, one
can generalize these results to also hold for saiO. Combined with our result, we now yield that a
construction of iO or saiO in these ideal models implies that NP ⊆ AM ∩ coAM or the non-
existence of one-way functions.

This line of research was initiated by Canetti et al. [7] who show that given a VBB obfuscator in
the random oracle model, one can remove the random oracle at the cost of relaxing the correctness
of the obfuscator. Pass and shelat [27] show an analogous result for VBB obfuscators in the ideal
constant-degree encoding model, and Mahmoody, Mohammed, and Nematihaji [24] show analogous
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results for the generic group model and the generic trapdoor permutation model. All these results
transform a VBB obfuscator in an oracle world into an approximately correct VBB obfuscator in
the standard model. They yield an impossibility result for VBB obfuscation in the ideal models,
as approximately correct VBB is known not to exist, assuming trapdoor permutations, see [7, 3].
The crucial insight of Mahmoody et al. [25] is that all these oracle removal procedures are actually
oblivious to the exact notion of obfuscation. The reason is that all proofs proceed by showing
that the oracle-free obfuscation is as secure as the oracle-based obfuscation, i.e., the oracle-free
obfuscated circuit can be simulated by an adversary in the oracle world, given the oracle-based
obfuscated circuit. Therefore, if one has an iO obfuscator in any of the ideal models, via the oracle
removal procedures, one obtains an saiO obfuscator in the standard model. Mahmoody et al. [25]
conclude that, as an saiO obfuscator in the standard model allows to resolve the long-standing
open problem of building public-key encryption from symmetric-key encryption, it seems very hard
to construct such an object. In other words, their result rules out saiO assuming that building
public-key encryption from symmetric-key encryption is impossible. Our result strengthens1 their
result by ruling out saiO based on the accepted complexity postulate that NP 6⊆ AM ∩ coAM
and the fundamental assumption of cryptography that one-way functions exist. Therefore, based
on the same assumptions, iO in all aforementioned idealized models cannot exist.

1.3 Open Problems

The main question that we leave open is the set of parameters for sacO that are useful and that
are (im)possible. Note that it is desirable to have more positive results not only for sacO, but also
for acO, the computational variant of sacO, in the spirit of Bitansky-Vaikuntanathan [4] who give
an assumption-based transformations from aiO to standard iO. Even if sacO for useful parameters
turns out to be impossible, it might still be easier to build acO for useful parameters and then use
amplification rather than to build fully secure fully correct iO directly.

In particular, note that for a certain parameter range of sacO, we do not know of any impos-
sibility results of building sacO in ideal models. The oracle removal procedures that we discuss
in Section 1.2 maintain security and only weaken correctness. Therefore, a variant of the oracle
removal procedures can also be proven for sacO (losing some amount of correctness). As not all
useful parameters for sacO are ruled out by our results, one might aim for building sacO in an ideal
model for these parameters. Note that one can use our result as a sanity check for any potential
oracle construction: If the construction would also work for parameters that we rule out, then it is
probably better to pursue a different approach.

Another direction for building useful statistical variants of iO is to relax the computational
efficiency of the obfuscator in which case the distributions X[Ψ] that we considered before are not
efficiently sampleable anymore (condition (i)) and thus, the SZK argument fails. Interestingly, Lin
et al. [23] recently showed that such a notion of iO that they call XiO has indeed useful applications
to transformations on functional encryption.

1Note that our result is only a “stronger” result in a moral sense, but not in a formal sense. While the non-existence
of one-way function would allow us to build a reduction from public-key encryption to symmetric-key encryption (as
in this case, both do not exist), it is not known that NP ⊆ AM ∩ coAM implies that we can build a public-key
encryption scheme from a one-way function.
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2 Preliminaries

We first introduce some general notation. By n ∈ N, we denote the security parameter that we give
to all algorithms implicitly in unary representation 1n. By {0, 1}` we denote the set of all bit-strings
of length `. For a finite set S, we denote the action of sampling x uniformly at random from S by
x←$S, and denote the cardinality of S by |S|. Algorithms are assumed to be randomized, unless
otherwise stated. We call an algorithm efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y ← A(x; r) we denote that A is run on input x and with
random coins r and produced output y. If no randomness is specified, then we assume that A is
run with freshly sampled uniform random coins, and write this as y←$A(x;U) or in shorthand
y←$A(x). For a circuit C we denote by |C| the size of the circuit. We say a function negl(n) is
negligible if for any positive polynomial poly(n), there exists an N ∈ N, such that for all n > N ,
negl(n) ≤ 1

poly(n) . To define statistically secure variants of obfuscation we will use the following
definition of statistical distance.

Definition 1 (Statistical Distance). For two probability distributions X,Y we define the statistical
distance SD(X,Y ) as

SD(X,Y ) = max
A

(Prx←$X [A(x) = 1]− Pry ←$Y [A(y) = 1])

where A ranges over all probabilistic algorithms including inefficient ones.

2.1 Complexity Theory

We refer the reader to Goldreich’s book [10] for a detailed exposition of complexity theory. We now
discuss a few object that are most relevant to our proof. We let SAT denote the set of all satisfiable
CNF formulae, we let USAT denote the set of CNF formulae that have exactly one satisfying
assignment, and UNSAT denote the set of CNF formulae that have no satisfying assignment. Given
a formula Ψ, deciding whether Ψ ∈ SAT is an NP-Complete problem. We recall that a promise
problem Π = (ΠYes,ΠNo) is a pair of disjoint subsets of {0, 1}∗. Of particular interest to us is the
unique SAT (promise) problem UniqueSAT = (USAT,UNSAT). Total problems (a.k.a languages)
are a special case of promise problems, e.g. (SAT,UNSAT) is exactly the SAT problem. In such
case, it is sufficient to specify ΠYes in order to completely specify the problem.

We consider the notion of randomized polynomial time Turing reductions between problems. A
promise oracle to a problem Π = (ΠYes,ΠNo), is one that always answers 1 on inputs in ΠYes and
always answers 0 on inputs in ΠNo, but otherwise can answer arbitrarily, and even inconsistently
between calls. We define the class BPPΠ as the class of problems solvable using a probabilistic
polynomial time algorithm with access to a Π oracle. In other words, BPPΠ is the class of problems
that are reducible to Π. One can verify that this class indeed composes, i.e. if Π̃ ∈ BPPΠ then

BPPΠ̃ ⊆ BPPΠ. Valiant and Vazirani [31] showed that SAT is reducible to unique SAT.

Theorem 2 (Valiant-Vazirani). SAT ∈ BPPUniqueSAT.

An additional promise problem which will be of interest to us is the GapSD problem, defined by
Sahai and Vadhan [28]. This problem essentially captures the hardness of distinguishing between
efficient samplers for statistically close distributions and ones for statistically far distributions. We
recall that for a circuit C (which we regard as a sampler from a distribution), C(U) denotes the
distribution generated by running C on a random input.
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Definition 3 (GapSD Problem). The problem GapSD = (GapSDYes,GapSDNo) is defined as follows.
Consider tuples of the form (C0, C1, ν, 1

`), where C0, C1 are circuits, ν is a threshold value and 1`

is a unary encoding of a probability gap. Define

GapSDYes = {(C0, C1, ν, 1
`) : SD(C0(U), C1(U)) < ν} ,

and
GapSDNo = {(C0, C1, ν, 1

`) : SD(C0(U), C1(U)) > ν + 1/`} .

Mahmoody and Xiao [26] prove that BPPGapSD is contained in AM∩ coAM.2

Theorem 4 (Mahmoody-Xiao). BPPGapSD ⊆ AM∩ coAM.

The following corollary shows that UniqueSAT ∈ BPPGapSD would have unlikely consequences.

Corollary 5. If UniqueSAT ∈ BPPGapSD, then NP ⊆ AM∩ coAM.

Proof. By definition NP ⊆ BPPSAT. Theorem 2 implies that BPPSAT ⊆ BPPUniqueSAT. If
UniqueSAT ∈ BPPGapSD then BPPUniqueSAT ⊆ BPPGapSD. Together with BPPGapSD ⊆ AM ∩
coAM from Theorem 4, we get

NP ⊆ BPPSAT ⊆ BPPUniqueSAT ⊆ BPPGapSD ⊆ AM∩ coAM ,

and the corollary follows.

2.2 Obfuscation

In this subsection, we define the statistically secure variant of approximately correct indistinguisha-
bility obfuscation (saiO) and its generalization that we call statistically secure Approximately Cor-
rect Correlation Obfuscation (sacO). We start with the generalized variant sacO first and then
define saiO as a special case. The notion of correlation obfuscation, in contrast to standard indis-
tinguishability obfuscation, does not require that the output of the obfuscator is indistinguishable
for functionally equivalent circuits. Rather, it only requires that there is a noticeable correlation
between the outputs.

Definition 6 (Approximately Correct Correlation Obfuscation). Let O be a PPT algorithm that
takes boolean circuits (with a single output bit) as inputs and produces boolean circuits as output.
For a circuit C, we let O(C; r) denote the output of running O on C with randomness r, and we
let O(C) denote the distribution O(C; r) with uniform r.

We say that O is a (1− ε)-approximately correct and (1− δ)-secure correlation obfuscator sacO
if the following conditions hold:

Approximate Correctness. For any circuit C it holds that

Prr,x [O(C; r)(x) = C(x)] ≥ 1− ε(|C|, n).

Correlation. For any pair of circuits C1, C2 which compute the same function and such that
|C1| = |C2| it holds that SD(O(C1),O(C2)) ≤ 1− δ(|C1|, n).

2They considered the class BPPSZK which is equivalent to BPPGapSD.
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The definition of statistically secure approximately correct indistinguishability obfuscation (saiO)
follows by requiring negligible statistical distance 1− δ.

Definition 7 (Approximately Correct Indistinguishability Obfuscation). Let O be a (1−ε)-approximately
correct and (1 − δ)-secure correlation obfuscator. We say that O is also a (1 − ε)-approximately
correct statistically secure indistinguishability obfuscator (saiO) if there exists a negligible function
negl(|C|, n) such that for all circuits C it holds that 1− δ(|C|, n) ≤ negl(|C|, n).

2.3 Puncturable Pseudorandom Functions

We use a weak notion of puncturable pseudorandom function. This notion suffices for our results
and follows trivially from the stronger standard definition.

Definition 8 (Puncturable Pseudorandom Functions). A pair of PPT algorithms (PRF,Puncture)
is a puncturable pseudorandom function with one-bit output if, on input a key k ∈ {0, 1}n or a
punctured key k∗ and an input value x ∈ {0, 1}n, PRF deterministically outputs a bit b and on
input a key k ∈ {0, 1}n and an input value x0, Puncture outputs a punctured key k∗ such that the
following two properties are satisfied.

Functionality Preserved Under Puncturing. For all keys k, all input values x0, all punctured
keys k∗←$Puncture(k, x0), and all input values x 6= x0, it holds that

PRF(k∗, x) = PRF(k, x).

Security For every PPT adversary (A1,A2) such that A1(1n; r1) outputs an input value x0 and
state st, consider an experiment where k←$ {0, 1}n, k∗ = Puncture(k, x0; t), and b←$ {0, 1}. Then
we have

|Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1]− Prk,b,r1,t,r2 [A2(st, k∗, x0, b; r2) = 1] ≤ negl(n) .

As observed by [5, 6, 21] puncturable PRFs can, for example, be constructed from pseudorandom
generators (and thereby one-way functions [16]) via the GGM tree-based construction [11, 12].

3 Negative Results for sacO and saiO

We now prove our main theorem that sacO for a large class of parameters, in particular the saiO
parameters, is impossible assuming one-way functions and NP 6⊆ AM∩ coAM.

Theorem 9 (Impossibility of sacO). If (1 − ε)-approximately correct, (1 − δ)-secure sacO for P
exists, and there exists some polynomial poly(|C| , n) such that δ(|C| , n) ≤ 1

3−
2
3ε(|C| , n)− 1

poly(|C|,n) ,
then one-way functions do not exist or NP ⊆ coAM∩AM.

By setting δ to be some negligible function, impossibility of saiO follows immediately as a
corollary.

Corollary 10 (Impossibility of saiO). If (1−ε)-approximately correct, saiO for P exists, and there
exists some polynomial poly(|C| , n) such that ε(|C| , n) ≤ 1

2 −
1

poly(|C|,n) , then one-way functions do
not exist or NP ⊆ coAM∩AM.
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Proof of Theorem 9. We define an efficiently samplable distribution X[Ψ] that is parametrized by
a formula Ψ, and we define a reference distribution Y that should be parametrized by the size of
Ψ and the number of variables in Ψ, but we omit the dependency on Ψ for readability. We note
that in the introduction, we discussed to use Y = X[0], where 0 is a canonical representation of an
unsatisfiable formula of the same size as Ψ. It is intuitive to think of Y as being indeed equal to
X[0]. However, for the sake of tightness, jumping ahead, we will use a slightly different distribution
and note that this allows us to gain an additive term of δ in Claim 17.

As in the proof by Goldwasser and Rothblum [13, 14] that we sketched in the introduction,
we want to define X[Ψ] (and Y) in a way such that properties (1), (2) and (3) are satisfied,
assuming one-way functions and sacO. If we manage to do so, then we suceed in showing that these
assumptions imply the collapse of the polynomial hierarchy.

Our proof will rely on the promise problem (USAT,UNSAT) rather than the language SAT (See
Subsection 2.1) and therefore, instead of using the gap statistical distance problem GapSD directly
as Goldwasser-Rothblum, we will consider BPPGapSD to be able to accommodate the randomized
reduction from SAT to USAT (See Theorem 2).

Our proof does not rely on complexity-theoretic techniques, except for proving the following
claim and showing that the theorem follows from it.

Claim 11. Assume that there is a formula-indexed distribution X[Ψ], a reference distribution Y ,
a function ν, and a polynomial poly(n) such that the following three conditions are satisfied.

(1) There is a uniform polynomial-time algorithm A, that on input Ψ, constructs two polynomial-
size randomized circuits that sample from X[Ψ] and Y respectively.

(2) If Ψ is in UNSAT, then X[Ψ] is has statistical distance at most ν(n) from Y .

(3) If Ψ is in USAT, then X[Ψ] has statistically distance at least ν(n) + 1
poly(n) from Y .

Then USAT is in BPPGapSD ⊆ AM∩ coAM.

Proof. Given that conditions (1), (2) and (3) are satisfied, we construct an algorithm B such that
for all GapSD oracles and all formulae Ψ, BGapSD(Ψ) outputs 1 with probability 1 if Ψ ∈ USAT and 0
with probability 1 if Ψ ∈ UNSAT. On input Ψ, the algorithm B runs A to get circuits for X[Ψ] and
Y and queries (X[Ψ], Y, ν(n), 1poly(n)) to the GapSD oracle. B returns whatever the oracle returns.
By properties (1), (2) and (3), the query that B makes is in GapSDYes if Ψ ∈ USAT and in GapSDNo

if Ψ ∈ UNSAT. Hence, B is correct and USAT is in BPPGapSD. Moreover, due to Theorem 4 by
Mahmoody and Xiao, BPPGapSD ⊆ AM∩ coAM.

To obtain the main theorem, we need to show that USAT is in BPPGapSD implies that NP is
in AM ∩ coAM which directly follows from Corollary 5 of Theorem 4 by Mahmoody and Xiao.
Thus, if we can show that a distributions as described in conditions (1), (2) and (3) exist, then the
theorem follows.

We now define X[Ψ] and Y and then show that they satisfy (1), (2) and (3) assuming the
existence of one-way functions and sacO with suitable correctness and security.

Definition 12 (Distribution). Let `(n) be a sufficiently large polynomial designating the size to
which all circuits are padded before being obfuscated. Let Ψ be a formula, let (PRF,Puncture) be
a puncturable pseudorandom function, and let O be a (1 − ε)-correct, statistically (1 − δ)-secure
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approximate correlation obfuscator, where δ(|C| , n) ≤ 1
3 −

2
3ε(|C| , n) − 1

poly(|C|,n) . We now define

the distribution X[Ψ] and Y , where the circuits CX [k, b, s,Ψ] and Cprf[k] are defined to the right of
the distributions.

X[Ψ](1n)

k←$ {0, 1}n

s←$ {0, 1}n

C := CX [k, s,Ψ]

C ′←$O(C)

return (k, s, C ′)

CX [k, s,Ψ](x)

if Ψ(x⊕ s) = 1

return PRF(k, x)⊕ 1

else

return PRF(k, x)

Y (1n)

k←$ {0, 1}n

s←$ {0, 1}n

C := Cprf[k]

C ′←$O(C)

return (k, s, C ′)

Cprf[k](x)

return PRF(k, x)

Claim 13 (Distribution). The distributions defined in Definition 12 satisfy the conditions demanded
in Claim 11. I.e., there exists a function ν and a polynomial poly(n) such that they satisfy the
following:

(1) There is a uniform polynomial-time algorithm A, that on input Ψ, constructs two polynomial-
size randomized circuits that sample from X[Ψ] and Y respectively.

(2) If Ψ is in UNSAT, then X[Ψ] is has statistical distance at most ν(n) from Y .

(3) If Ψ is in USAT, then X[Ψ] has statistically distance at least ν(n) + 1
poly(n) from Y .

We will first state two claims and a lemma that will allow us to prove Claim 13. We will then
prove Claim 13 and afterwards prove the claims and the lemma.

Claim 14 (Efficient Sampling). There is a uniform polynomial-time algorithm A, that on input Ψ,
constructs two polynomial-size randomized circuits that sample from X[Ψ] and Y respectively..

Claim 15 (Statistical Proximity). For all formulae Ψ ∈ UNSAT, X[Ψ] has statistical distance at
most δ(`(n), n) from Y .

Lemma 16 (Statistical Distance). There exists a negligible function negl(n), such that for all
formulae Ψ ∈ USAT, X[Ψ] has statistical distance at least 1 − 2ε(`(n), n) − 2δ(`(n), n) − negl(n)
from Y .

Proof of Claim 13. Condition (1) follows immediately from Claim 14. Condition (2) follows from
Claim 15 for a function ν(n) = δ(`(n), n). From Lemma 16, it follows that, if Ψ is in USAT, then
X[Ψ] has statistically distance at least 1−2ε(`(n), n)−2δ(`(n), n)−negl(n) from Y . Combining this
with the ν(n) obtained from Claim 15 we get that condition (3) holds, if there exists a polynomial
poly(n), such that

δ(`(n), n) + 1
poly(n) ≤ 1− 2ε(`(n), n)− 2δ(`(n), n)− negl(n)

⇔ 3δ(`(n), n) ≤ 1− 2ε(`(n), n)− 1
poly(n) − negl(n)

⇔ δ(`(n), n) ≤ 1

3
− 2

3
ε(`(n), n)− 1

poly(n) − negl(n) . (1)

And, since negl(n) is dominated by an inverse polynomial, Equation 1 is already ensured by Defi-
nition 12, condition (3) holds, and the claim follows.
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Proof of Claim 14. Sampling k and s is efficient and so is constructing CX [k, s,Ψ] and Cprf[k].
Finally, from the efficiency of the obfuscator, it follows that X[Ψ] and Y are efficiently samplable
by polynomial-size randomized circuits.

Proof of Claim 15. For all unsatisfiable formulae Ψ, the circuits CX [k, s,Ψ] and Cprf[k] are func-
tionally equivalent and of same size `(n). Hence, by statistical security of the obfuscator, the distri-
butions (k, s,O(CX [k, s,Ψ])) and (k, s,O(Cprf[k])) have statistical distance at most δ(`(n), n).

We now turn to the most involved part of the proof, which is to show that Lemma 16 holds.
In order to show that for all formulae Ψ ∈ USAT, X[Ψ] is statistically far from Y , we show that, if
Ψ ∈ USAT, then the distribution X[Ψ] has a property that Y does not have. We state the property
in two claims.

Claim 17. For all x0, it holds that

Pr(k,s,C′)←$Y (1n)

[
C ′(x0 ⊕ s) 6= PRF(k, x0 ⊕ s)

]
≤ ε(`(n), n).

Claim 18. If Ψ ∈ USAT, then there exists xΨ, such that

Pr(k,s,C′)←$X[Ψ](1n)

[
C ′(xΨ ⊕ s) 6= PRF(k, xΨ ⊕ s)

]
≥ 1− ε(`(n), n)− 2δ(`(n), n)− 2negl(n) .

Proof of Lemma 16. Lemma 16 follows directly from Claim 17 and Claim 18, because the stated
properties are statistical properties, i.e., we can give an inefficient distinguisher as follows: The
distinguisher determines xΨ through exhaustive search and then, given a sample (k, s, C ′) from
either X[Ψ] or Y , checks whether PRF(k, ·) and C ′ differ on input xΨ ⊕ s. If the sample is from
X[Ψ], they will differ with probability greater than 1− ε(`(n), n)− 2δ(`(n), n)− negl(n). If on the
other hand the sample is from Y , then they will differ only with probability less than ε(`(n), n).
This concludes the proof of Lemma 16, subject to proving the claims.

It now remains to prove Claim 17 and Claim 18. The proof of the first property is relatively
straightforward, while the proof of the second property contains the technical key arguments that
we discussed above.

Proof of Claim 17. To prove the claim, we will argue that the following equalities hold:

Pr(k,s,C′)←$Y (1n)

[
C ′(x0 ⊕ s) 6= PRF(k, x0 ⊕ s)

]
(2)

= Prk,s←$ {0,1}n,C′ ←$O(Cprf[k])

[
C ′(x0 ⊕ s) 6= PRF(k, x0 ⊕ s)

]
(3)

= Prk,s←$ {0,1}n,C′ ←$O(Cprf[k])

[
C ′(s) 6= PRF(k, s)

]
(4)

≤ε(`(n), n) (5)

Equation 3 is simply a restatement of the claim. Given that s is uniformly and independently
distributed, s and x0 ⊕ s are distributed identically and therefore, also Equation 4 holds. Finally,
Equation 4 simply checks whether an obfuscated circuit does not agree with the original circuit
on a uniformly chosen input. This happens by definition of correctness with probability at most
ε(`(n), n), yielding Equation 5 and concluding the proof.

Proof of Claim 18. We first define the following game
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Game1(n)

(k, s, C ′)←$X[Ψ]

x0 := xΨ ⊕ s
b := PRF(k, x0)⊕ 1

return (C ′(x0)
?
=b)

and observe that

Pr(k,s,C′)←$X[Ψ](1n)

[
C ′(xΨ ⊕ s) 6= PRF(k, xΨ ⊕ s)

]
= Pr[Game1(n) = 1] .

We will now bound this probability using a series of game hops. To specify the game hops, we need
to specify an additional circuit Cpunct[k

∗, x0, b](x), that is parametrized by a punctured PRF key
k∗, an input x0 , and a bit b.

Cpunct[k
∗, x0, b](x)

if x = x0

return b

else

return PRF(k∗, x)

Note that Game2 is a re-write of Game1 by making Xd[Ψ] explicit.

Game2(n)

k←$ {0, 1}n

s←$ {0, 1}n

x0 := xΨ ⊕ s
b := PRF(k, x0)⊕ 1

C ′ := O(CX [k, s,Ψ])

return (C ′(x0)
?
=b)

Game3(n)

k←$ {0, 1}n

s←$ {0, 1}n

x0 := xΨ ⊕ s
b := PRF(k, x0)⊕ 1

k∗←$Puncture(k, x0; t)

C ′ := O(Cpunct[k
∗, x0, b])

return (C ′(x0)
?
=b)

Game4(n)

k←$ {0, 1}n

x0←$ {0, 1}n

b := PRF(k, x0)⊕ 1

k∗←$Puncture(k, x0; t)

C ′ := O(Cpunct[k
∗, x0, b])

return (C ′(x0)
?
=b)

obfuscation security perfect

puncturable prf

Game5(n)

k←$ {0, 1}n

x0←$ {0, 1}n

b := PRF(k, x0)

k∗←$Puncture(k, x0; t)

C ′ := O(Cpunct[k
∗, x0, b])

return (C ′(x0)
?
=b)

Game6(n)

k←$ {0, 1}n

x0←$ {0, 1}n

b := PRF(k, x0)

C ′ := O(Cprf[k])

return (C ′(x0)
?
=b)

puncturable prf

obfuscation security
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We will first bound the differences between each pair of consecutive games and then prove a
bound for Pr[Game6(n) = 1].

Hop from Game1 to Game2. The changes between the two games are purely syntactic. I.e., the
definition of the sampling process from X[Ψ] is explicitely written down in Game2. Therefore, the
two games are perfectly equivalent, and it holds that

Pr[Game1(n) = 1] = Pr[Game2(n) = 1] . (6)

Hop from Game2 to Game3. Here it is critical to observe that CX [k, s,Ψ] and Cpunct[k
∗, x0, b] are

functionally equivalent. Even though the key is punctured on x0 = xΨ ⊕ s in Cpunct, this makes no
difference, since PRF is never invoked on x0 in the circuit. Instead the circuit outputs the hardcoded
value b = PRF(k, x0)⊕1 on input x0, which is the same value output by CX [k, s,Ψ]. Therefore, the
two circuits are functionally equivalent and it follows from the statistical security of the obfuscator
that the statistical difference between the distributions of C ′ in the two games is at most δ(`(n), n).
It follows, that also the distribution of the outputs of Game2 and Game3 have a statistical distance
of at most δ(`(n), n). I.e.,

|Pr[Game3(n) = 1]− Pr[Game2(n) = 1]| ≤ δ(`(n), n). (7)

Hop from Game3 to Game4. Since s is no longer known to the obfuscator in Game3, x0 := xΨ⊕s
is simply a uniformly distributed value. Thus, x0 is distributed identically in Game3 and Game4

and it follows that
Pr[Game3(n) = 1] = Pr[Game4(n) = 1] . (8)

Hop from Game4 to Game5. Note that xΨ is no longer required to evaluate Game4 and Game5.
Therefore, the two games can be evaluated efficiently. This allows us to bound the difference
between the two games by the security of the puncturable pseudorandom function. To bound
the difference between games Game4(n) and Game5(n), we construct a distinguisher (A1,A2) with
advantage

1
2 · |Pr[Game4(n) = 1]− Pr[Game5(n) = 1]|

against the puncturable PRF as follows:

A1(1n; r1)

x0←$ {0, 1}n

return (⊥, x0)

A2(st, k∗, x0, b; r2)

C ′ := O(Cpunct[k
∗, x0, b])

return (C ′(x0)
?
=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1] = Pr[Game5(n) = 1] . (9)

If on the other hand, A2 receives a b chosen uniformly at random, then b is equal to PRF(k, x0)
and PRF(k, x0)⊕ 1 with probability 1

2 respectively, and it holds that

Prk,b,r1,t,r2 [A2(st, k∗, x0, b; r2) = 1] =
1

2
Pr[Game4(n) = 1] +

1

2
Pr[Game5(n) = 1] (10)
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By security of the puncturable PRF, it must hold that

|Prk,r1,t,r2 [A2(st, k∗, x0,PRF(k, x0); r2) = 1]− Prk,b,r1,t,r2 [A2(st, k∗, x0, b; r2) = 1] | ≤ negl(n)

Combining this with Equation 9 and Equation 10 yields∣∣∣∣Pr[Game5(n) = 1]− 1

2
Pr[Game4(n) = 1]− 1

2
Pr[Game5(n) = 1]

∣∣∣∣ ≤ negl(n)

=⇒ 1

2
|Pr[Game5(n) = 1]− Pr[Game4(n) = 1]| ≤ negl(n)

=⇒ |Pr[Game5(n) = 1]− Pr[Game4(n) = 1]| ≤ 2negl(n) . (11)

Hop from Game5 to Game6. Here it is critical to observe that Cpunct[k
∗, x0, b] and Cprf[k] are

functionally equivalent. Even though the key is punctured on x0 in Cpunct, this makes no difference,
since PRF is never invoked on x0 in the circuit. Instead the circuit outputs the hardcoded value
b = PRF(k, x0) on input x0. Therefore, the two circuits are functionally equivalent and it follows
from the statistical security of the obfuscator that the statistical difference between the distributions
of C ′ in the two games is at most δ(`(n), n). It follows, that also the distribution of the outputs of
Game5 and Game6 have a statistical distance of at most δ(`(n), n). I.e.,

|Pr[Game5(n) = 1]− Pr[Game6(n) = 1]| ≤ δ(`(n), n). (12)

It remains to bound the probability Pr[Game6(n) = 1]. Observe, that x0 is a uniformly chosen
input unknown to the obfuscator. Further, the Game6(n) simply checks whether the output of
circuit C ′ is the correct output value of the obfuscated circuit. Therefore, the correctness of the
obfuscator implies that

Pr[Game6(n) = 1] ≥ 1− ε(`(n), n). (13)

Finally, combining Equation 13 with Equations 6 through 12, we get

Pr[Game1(n) = 1]

≥Pr[Game6(n) = 1]− |Pr[Game1(n) = 1]− Pr[Game6(n) = 1]|
≥1− ε(`(n), n)− 2δ(`(n), n)− 2negl(n)

thus concluding the proof of Claim 18 and Theorem 9.
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A A positive result for Correlation Obfuscation

In this appendix, we instantiate approximately correct correlation obfuscation for a large class of
weak parameters. The idea of the construction is fairly simple and is based on two observations.
For circuits with only a single bit output, we can efficiently estimate the majority of the outputs
by using random sampling. This estimation depends only on the function computed by a circuit
and not on the circuit itself. Therefore an obfuscator that simply outputs the estimated majority

19

http://eprint.iacr.org/2015/720
http://eprint.iacr.org/2015/720


is fully secure but only correct with probability about 1/2. An obfuscator, that simply outputs the
circuit itself, on the other hand, is not secure at all (statistical distance is 1), but is fully correct.

By combining these two obfuscators and outputting the majority with probability 2ε and the
circuit itself with probability 1 − 2ε we can construct a roughly (1 − ε) approximatly correct and
(1 − 2ε) secure obfuscator Oε,µ as detailed below. The parameter µ is some inverse polynomial
function that describes the amount of approximation error that we allow (and that affects the
correctness of Oε,µ) when the obfuscators samples repeatedly from the output distribution of the
circuit to see whether the circuit is closer to the constant 1 or constant 0 function.

For any circuit C, in(C) denotes the number of input wires. For b ∈ {0, 1}, Constib is a canonical
circuit with input length i and constant output b. The Bernoulli distribution of a parameter
p ∈ [0, 1] is defined by Berp, i.e., it holds that Prb←$ Berp [b = 1] = p and Prb←$ Berp [b = 0] = 1− p.
Depending on the desired error parameter µ, the obfuscation proceeds as follows.

Oε,µ(C, 1n)

b←$ Ber2ε

if b = 1 :

m := EstMaj(C, µ, 1n)

C ′ := Constin(C)
m

else

C ′ := C

return C ′

EstMaj(C, µ, 1n)

for i := 1, . . . , d 4n
µ2 e

xi←$ {0, 1}in(C)

yi := C(xi)

return maj(y1, . . . , yd 4n
µ2
e)

Claim 19. On input (C, 1n), the obfuscator Oε,µ runs in time linear in 4n
µ2
|C| plus the time needed

to sample from Ber2ε and is an (1− (ε+ µ)) approximately correct and (1− 2ε) secure correlation
obfuscator for circuits with single bit output.

Proof. Efficiency follow by construction and so does security, because EstMaj only uses the input-
output behaviour of the circuit which is the same for two functionally identical circuits. If the
function induced by the circuit C is less than µ

4 from being balanced (i.e., 1 with probability 1
2

on a uniformly random input), then the correctness error is at most µ
2 , if b = 1, and 0, if b = 0

and hence, the overall correctness error is upper bounded by (1 − 2ε) · 0 + 2ε · µ2 = εµ ≤ ε + µ.
If the function induced by the circuit C outputs a fixed value, w.l.o.g. 1, with probability at
least 1

2 + µ
4 , then via a Chernoff bound, the probability that EstMaj(C, µ, 1n) outputs 1 is at least

1− negl(n) and in that case, the correctness error is at most 1
2 −

µ
4 and else, the correctness error

is at most 1. Hence, for the case that b = 1, we obtain an upper bound on the correctness error of
(1

2−
µ
4 ) ·(1−negl(n))+1 ·negl(n) = 1

2−
µ
4 +negl(n). As before, when b = 0, the correctness error is

0 and hence, we obtain as upper bound on the correctness error (1−2ε) ·0+2ε · (1
2 −

µ
4 +negl(n)) =

ε− µ
2 ≤ ε+ µ.

B Correctness and Security Parameters for sacO to build a Public-
Key Encryption scheme from a One-Way Function

By inspecting the Sahai-Waters [29] construction to transform a one-way function into a public-key
encryption scheme (PKE) by using obfuscation, Bitansky and Vaikuntanathan [4] and Mahmoody
et al. [25] observe that approximately correct iO suffices for this transformation. Both papers
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consider approximately correct variants of iO with “full” security, i.e., where the adversary has
only negligible advantage in distinguishing obfuscations of two functionally equivalent circuits. As
discussed in previous sections, approximately correct correlation obfuscation (sacO) with weaker
security might still be useful. We therefore work out the exact correctness and security parameters
required of a sacO for the Sahai-Waters transformation to work. Jumping ahead, we note that part
of the bounds that we obtain here are ruled out by our impossibility result, but not all of them.

For much weaker parameters, we earlier gave a trivial construction of sacO. We do not deem
this construction to be useful. As expected, there is a gap between the parameters that we can
construct trivially and the parameters that we can rule out (else, we would have a proof that
one-way functions imply the collapse of the polynomial hierarchy). Also, as expected, the trivial
bounds do not suffice to instantiate the Sahai-Waters construction (according to our analysis that
we have reasons to believe is tight).

On the other hand, our impossibility result does not rule out all useful bounds for sacO. It is
an interesting question to (1) show that also for the parameters in this small gap, sacO cannot
exist, or (2) show a construction for these parameters, and/or (3) improve the parameters that are
needed for meaningful applications. Note that even if it turns out that sacO for these parameters
cannot exist, (3) could still be a fruitful research direction, because it might be helpful to weaken
the parameters also on variants of acO with computational security in order to obtain constructions
from weaker assumptions.

We will consider sacO with (1−δ)-security and (1−ε) correctness, and we will also yield a PKE
that does not achieve full correctness and that does not achieve full security. In some cases, as
observed by Holenstein [17], via amplification, it is possible to achieve full security and correctness
with overwhelming probability. However, as we discuss now, amplification is not always possible.

B.1 Amplification

We define (1− εPKE)-correct and (1
2 − δPKE)-secure PKE as follows.

Definition 20 (Approximate Public Key Encryption). Let PKE = (KGen,Enc,Dec) be a public key
encryption scheme.

Correctness We say that PKE is (1− εPKE)-correct, if it holds that

Prb,KGen,Enc [Dec(sk,Enc(b, pk)) = b, (pk, sk)←$PKE.KGen(1n)] ≥ 1− εPKE(n).

Security We say that PKE is (1
2 − δPKE)-secure, if for all efficient adversaries A, there exists a

negligible function negl(n) such that

Prb←$ {0,1},KGen,Enc [A(pk,Enc(b, pk)) = b, (pk, sk)←$KGen(1n)] ≤ 1

2
+ δPKE(n) + negl(n)

We would like to amplify such a scheme into “standard” PKE, where εPKE and δPKE are neg-
ligible. We now discuss via a counterexample why such an amplification is not generally possible.
Take a bit encryption scheme that outputs the message bit with probability α and a random bit
with probability 1−α and where decryption is the identity function. This PKE scheme is (1

2 −
α
2 )-

secure and (1
2 + α

2 )-correct. Correctness parameters are thus only meaningful if εPKE and δPKE are
bounded away from 1

2 and if, moreover, there is a meaningful relationship between the security and
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the correctness parameter. Holenstein [17] shows (and we use the presentation of Mahmoody et
al. [25] here) that amplification is possible if there exists a polynomial poly(n) such that

(1− 2εPKE(n))2 > 2δPKE(n) +
1

poly(n)
.

Note that Holenstein also shows a tightness result for his amplification technique with respect to
restricted black-box reductions.

B.2 The Sahai-Waters Construction

We now present the Sahai-Waters [29] construction of a public-key encryption scheme from a
one-way function. We recall that by H̊astad et al. [16], Goldreich, Goldwasser and Micali [12], and
several independent proofs [5, 6, 21] that the GGM construction is a puncturable PRF, puncturable
PRFs and OWFs are existentially equivalent. The key generation of the Sahai-Waters construction
draws a key k for a puncturable PRF as the secret key sk and then outputs an obfuscation of the
following circuit CSW[k] as a public key pk:

CSW[k](m, r)

r′ := PRG(r)

c := m⊕ PRF(k, r′)

return (r′, c)

The encryption algorithm Enc(pk,m, r) interprets the public key pk as a circuit, runs it on (m, r)
and returns the result as a ciphertext. Finally, for decryption of a pair (r′, c), the decryption
algorithm Dec(sk, (r′, c)) outputs m := c⊕ PRF(sk, r′).

Claim 21 (Sahai-Waters). The Sahai-Waters construction instantiated with sacO with correctness
1 − ε and security 1 − δ yields a public-key encryption scheme with correctness error εPKE(n) =
ε(|C| , n) and a distinguishing advantage of δPKE(n) = δ(|C| , n) + ε(|C| , n)

Before we prove this claim, we will first illustrate what this implies for the bounds on parameters
allowing for Holenstein amplification. Combining the bound for Holenstein amplification with
Claim 21, we get that

2δPKE(n) +
1

poly(n)
< (1− 2εPKE(n))2 (14)

=⇒ 2δ(|C| , n) + 2ε(|C| , n) +
1

poly(n)
< (1− 2ε(|C| , n))2 (15)

=⇒ δ(|C| , n) <
1

2
− 3ε(|C| , n) + 2ε(|C| , n)2 − 1

2poly(n)
. (16)

We thus get the following corollary.

Corollary 22. Any (1 − ε) correct and (1 − δ) secure sacO implies a construction of public key
encryption from one-way functions, if there exists some polynomial poly(|C| , n) such that

δ(|C| , n) <
1

2
− 3ε(|C| , n) + 2ε(|C| , n)2 − 1

poly(n)
.

22



Proof of Claim 21. Note that correctness of the encryption scheme is over a random message, the
randomness of the key generation and the randomness of the encryption algorithm. The obfuscated
circuit is therefore invoked on a uniformly random input and the probability that it does not output
the correct ciphertext can thus be bounded by the correctness error of the obfuscator. Since the
decryption of the scheme is perfectly correct, we thus get that εPKE(n) = ε(|C| , n).

To prove securtity, we first define the following game

Game1(n)

k←$ {0, 1}n

r←$ {0, 1}n/2

pk←$O(CSW[k])

b←$ {0, 1}
c := pk(b, r)

b′←$A(pk, c)

return (b′
?
=b)

and observe that

Prb←$ {0,1},KGen,Enc [A(pk,Enc(b, pk)) = b, (pk, sk)←$KGen(1n)] = Pr[Game1(n) = 1] .

We will now bound this probability using a series of game hops.

Game2(n)

k←$ {0, 1}n

r←$ {0, 1}n/2

r′ := PRG(r)

pk←$O(CSW[k])

b←$ {0, 1}

c := (b⊕ PRF(k, r′), r′)

b′←$A(pk, c)

return (b′
?
=b)

Game3(n)

k←$ {0, 1}n

r′←$ {0, 1}n

pk←$O(CSW[k])

b←$ {0, 1}

c := (b⊕ PRF(k, r′), r′)

b′←$A(pk, c)

return (b′
?
=b)

Game4(n)

k←$ {0, 1}n

r′←$ {0, 1}n

k∗←$Puncture(k, r′; t)

pk←$O(CSW[k∗])

b←$ {0, 1}

c := (b⊕ PRF(k, r′), r′)

b′←$A(pk, c)

return (b′
?
=b)

Game5(n)

k←$ {0, 1}n

r′←$ {0, 1}n

k∗←$Puncture(k, r′; t)

pk←$O(CSW[k∗])

b←$ {0, 1}
s←$ {0, 1}
c := (b⊕ s, r′)
b′←$A(pk, c)

return (b′
?
=b)

obfuscation securityPRG security PRF security

We will first bound the differences between each pair of consecutive games and then argue a bound
for Pr[Game5(n) = 1].

Hop from Game1 to Game2. The change between the two games is that the ciphertext is now
no longer computed using the obfuscated circuit. Instead, it is computed as specified in the unob-
fuscated circuit CSW[k]. Since the input to the circuit is uniformly and independently distributed,
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we can bound the probability that the two computations differ by the correctness of the sacO. I.e.
it holds that

|Pr[Game1(n) = 1]− Pr[Game2(n) = 1]| ≤ ε(|C| , n). (17)

Hop from Game2 to Game3. The change between the two games is that the bitstring r′ is no
longer the output of a PRG and instead a uniformly chosen random string. We can thus bound
the difference between the two games using the security of the pseudorandom generator. I.e., we
can construct a distinguisher D with advantage |Pr[Game2(n) = 1]− Pr[Game3(n) = 1]| as follows

D(r′)

k←$ {0, 1}n

pk←$O(CSW[k])

b←$ {0, 1}
c := (b⊕ PRF(k, r′), r′)

b′←$A(pk, c)

return (b′
?
=b)

Observe, that in the case where D receives the output of the PRG, it holds that

Prr,D [D(PRG(r)) = 1] = Pr[Game2(n) = 1] . (18)

If on the other hand, D receives an r′ chosen uniformly at random, then it holds that

Prr′,D
[
D(r′) = 1

]
= Pr[Game3(n) = 1] . (19)

By definition of a secure PRG, there further exists a negligible function negl(n), such that∣∣Prr,D [D(PRG(r)) = 1]− Prr′,D
[
D(r′) = 1

]∣∣ ≤ negl(n) .

Combining this with Equation 18 and Equation 19, we get

|Pr[Game2(n) = 1]− Pr[Game3(n) = 1]| ≤ negl(n) (n). (20)

Hop from Game3 to Game4. In this hop, the obfuscated circuit is replaced. It is critical to
observe, that if r′ is not in the range of PRG, then the two circuits are functionally equivalent, since
the PRF will never be invoked on the point the key is punctured on. In this case, the distance
between the two games can therefore be bounded by the security of the sacO. If r′ is in the range
of PRG, then we have no guarantee, but this only occurs with probabilty 2−n/2. Thus it follows
that

|Pr[Game3(n) = 1]− Pr[Game4(n) = 1]| ≤ δ(|C| , n) + 2−n/2. (21)

Hop from Game4 to Game5. Note that in Game5, the PRF value is replaced with a uniformly
chosen random value. This allows us to bound the difference between the two games by the security
of the puncturable pseudorandom function. To bound the difference between games Game4 and
Game5, we construct a distinguisher (D1,D2) with advantage

|Pr[Game4(n) = 1]− Pr[Game5(n) = 1]|

against the puncturable PRF as follows:
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D1(1n; r1)

r′←$ {0, 1}n

return (⊥, r′)

D2(st, k∗, r′, s; r2)

pk←$O(CSW[k∗])

b←$ {0, 1}
c := (b⊕ s)
b′←$A(pk, c)

return (C ′(x0)
?
=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Prk,r1,t,r2
[
D2(st, k∗, r′,PRF(k, r′); r2) = 1

]
= Pr[Game4(n) = 1] . (22)

If on the other hand, D2 receives an s chosen uniformly at random, it holds that

Prk,s,r1,t,r2
[
D2(st, k∗, r′, s; r2) = 1

]
= Pr[Game5(n) = 1] (23)

By security of the puncturable PRF, it must hold that there exists a negligible function negl(n)
such that

|Prk,r1,t,r2
[
D2(st, k∗, r′,PRF(k, r′); r2) = 1

]
− Prk,s,r1,t,r2

[
D2(st, k∗, r′, s; r2) = 1

]
| ≤ negl(n)

Combining this with Equation 22 and Equation 23 yields

|Pr[Game5(n) = 1]− Pr[Game4(n) = 1]| ≤ negl(n) (24)

It remains to bound the probability Pr[Game5(n) = 1]. However, the ciphertext in Game5

is simply a uniformly distributed random value that does not reveal any information about b.
Therefore, it is easy to see that Pr[Game5(n) = 1] = 1

2 . Combining this with Equations 17, 20, 21,
and 24, we can conclude that

Pr[Game1(n) = 1] ≤ 1

2
+ δ(||C|| , n) + ε(||C|| , n),

thus concluding the proof.
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