
On a decentralized trustless pseudo-random
number generation algorithm

Serguei Popov

February 29, 2016

Department of Statistics, Institute of Mathematics, Statistics and Scientific Computation,
University of Campinas – UNICAMP, rua Sérgio Buarque de Holanda 651, 13083–859,
Campinas SP, Brazil
e-mail: popov@ime.unicamp.br

Abstract

We construct an algorithm that permits a large group of individ-
uals to reach consensus on a random number, without having to rely
on any third parties. The algorithm works with high probability if
there are less than 50% colluding parties in the group. We describe
also some modifications and generalizations of the algorithm.

Keywords: public randomness, collusion, algorithm works w.h.p.

1 Introduction and description of the basic

algorithm

Suppose that there is a (large) collection of n individuals which want to
reach consensus on a random number s ∈ {0, 1}N , but, in general, trust
neither each other, nor any third parties. The outcome should have the
uniform distribution, be unpredictable for everybody until revealed, and the
whole procedure should be transparent/verifiable to both participants and
outsiders.

Assume also that, among them, there are pn colluding parties that want
to mess with the procedure (e.g., force the “random” outcome to have a
specific value, or at least make it biased), where p ∈ (0, 1). We suppose that
they can exchange information freely and secretly from the others, and can
agree on a common strategy. Also, we make a “worst-case” assumption that,

1

on any stage of the algorithm, the colluding parties may first wait for the
others’ actions, and then choose what to do accordingly to the information
they currently have.

So, is it possible to do this random number generation under some reason-
able assumption of the number of colluding parties? First solution that comes
to mind is to ask the parties to choose their random numbers, reveal all them
at the same time, and then just apply the exclusive “or” (XOR) operation
to all these numbers. This, however, has a drawback that, in practice, one
cannot enforce that this revelation act happens precisely at the same moment
for all parties involved. The last one to reveal has, in fact, total control on
the outcome, which can be exploited by a malicious player. Even if we make
the parties commit on their numbers, the last one still has an option of never
revealing it, thus effectively introducing a bias to the final result. Therefore,
more complicated protocols have to be considered. Some solutions based on
public ledgers (such as the Bitcoin blockchain) were proposed, see [1]. An
interesting algorithm was proposed in [3]: first, inputs from many different
parties are collected, and the outcome is then computed as a deterministic
function of them; this computation, however, is deliberately made so slow
that no party is able to influence the result by submitting an entry at the
last moment. The paper [6] mentions a procedure that apparently has some
similarities with the one of the present paper, but without giving many de-
tails. We refer to the aforementioned papers for more discussion on public
randomness and related topics.

In the sequel, we describe a protocol that permits to achieve this goal
with high probability. First, each party secretly chooses its number from
some high-entropy random source. Then, it should commit on that number,
in some usual way: for instance, publishing its hash. In practice, when the
random number generation has to be performed many times in a row, the
parties may commit on a last number of a long hash chain (so that the
previous number is at the same time a commitment on the next one). That
is, each party then has options to reveal or withhold its number, but cannot
lie about it.

Next, let us randomly divide the crowd into n/k groups of size k (for
simplicity, we assume that n/k is integer). Such a division can be done in a
decentralized and verifiable way that cannot be manipulated too much. For
example (think about cryptocurrency accounts, such as Eth or Nxt), hash
the public keys of the parties’ accounts with some (sufficiently random, but
public) seed1 and order the results; then form the groups based on that order.

1e.g., generating signature of the last block of the blockchain, or the random number
obtained on the previous run of this algorithm, etc.

2

Now, our basic algorithm is described in the following way: first, the secrets
are shared within each group (so that any party that decides to withhold its
number will be eliminated on this step), and then any representative of a
group where this procedure did succeed (all members shared their numbers)
reveals the numbers and everything is XORed together. More specifically:

1. Members of each group share their numbers between them. One way
to do this would be that a party encrypts its secret number using the
public keys of the other k − 1 members of its group separately, and
then broadcasts the k − 1 outcomes.

2. Then, the group publishes a statement like “I know the secrets of all my
group” signed by everybody. It is unclear whether this step is strictly
necessary, but it is probably not a bad idea to do this way to assure
that the consensus on which groups successfully did the secrets’ sharing
is reached.

3. Any group that did not publish such a statement is eliminated. In fact,
any party can eliminate the group it belongs to by publishing a signed
statement that the secret sharing did not succeed within that group2.

4. Then, at least one representative of each group that was not eliminated
publishes all the numbers shared by the group members.

5. All the published numbers are XORed to obtain the final outcome.

Now, this algorithm indeed achieves our goals if

(a) there is at least one group which contains only honest3 members (so
that the colluding parties cannot know their numbers beforehand);

(b) no group consist entirely of colluding parties (otherwise, such a group
could introduce a bias to the final outcome by not revealing their num-
bers).

We denote the event from (a) by A, and the event from (b) by B. Also, let
us introduce the events

Aj = {all parties of jth group are honest},
Bj = {at least one party of jth group is honest}

2this can be useful if a party suspects that the other members of the group are delib-
erately delaying the procedure

3by definition, a party is honest if it follows the protocol without colluding with other
parties

3

for j = 1, . . . , n/k, so A =
⋃n/k
j=1Aj, and B =

⋂n/k
j=1Bj.

Now, we need to choose k in such a way that P[A ∩ B] is close to 1. Let
us try to set k = c lnn, where c > 0 is a parameter4, and estimate the prob-
abilities of the above events. Also, instead of fixing the number of colluding
parties, we rather just assume that each party is malicious with probability p,
independently of the others, and all the malicious parties collude. Clearly,
the situation remains essentially the same, but the calculations become much
easier.

First, we clearly have P[Aj] = (1− p)k = (1− p)c lnn = n−c ln(1−p)−1
, so we

can write

P[A] = 1− P
[n/k⋂
j=1

A{
j

]
= 1−

(
1− (1− p)k

)n/k
(1)

= 1−
(
1− n−c ln(1−p)−1) n

c lnn

' 1− exp
(
− n1−c ln(1−p)−1

c lnn

)
, (2)

and the value of the above expression is quite close to 1 if c ln(1− p)−1 < 1
and n is large enough.

Analogously, it holds that P[Bj] = 1− pk = 1− n−c ln p−1
, so

P[B] =
(
P[B1]

)n/k
= (1− pk)n/k (3)

=
(
1− n−c ln p−1) n

c lnn

' exp
(
− n−c ln p−1+1

c lnn

)
' 1− n−c ln p−1+1

c lnn
(4)

if c ln p−1 > 1. That is, we obtain that (at least for large n) c must satisfy
the following condition:

1

ln p−1
< c <

1

ln(1− p)−1
, (5)

which is clearly possible if and only if p < 0.5. So, we have just proved the
following result:

4to keep the things simple, we pretend in our calculations that c lnn is integer

4

Proposition 1.1. Assume that p < 0.5. Then

P[A ∩B] & 1− exp
(
− n1−c ln(1−p)−1

c lnn

)
− n−c ln p−1+1

c lnn
. (6)

Now, since p is generally unknown, we need to find a way to make a
choice for k = k(n) (that is, we need to chose c = k

lnn
), that does not depend

on p. One possible way to do this would be fixing a “reasonable” value of
p < 0.5 (e.g., p = 0.1), and then find c that maximizes the expression in the
right-hand side of (6). However, this may not be the best solution, due to
the following reason: if the event A{ occurs, this is much worse (from the
point of view of honest parties) than the occurrence of B{. Indeed, if there
is a group that consists entirely of colluding parties (i.e., B{ occurs), then
on the last stage of the procedure they have an option of not revealing their
numbers at all (after waiting all others to reveal), thus influencing the final
outcome. However, the bias introduced this way is typically not so strong
(there are only two options for the group, reveal or not reveal), and, perhaps
more importantly, the act of not revealing their numbers is practically a
confession “we are all malicious”5. In an ambiance where reputation (in any
reasonable sense of this word) matters, such a thing could be quite harmful
from the point of view of the colluding parties6.

On the other hand, on the event A{, there will be at least one “spy” in
each group, i.e., the colluders will know all secrets already on the first stage!
Of course, this opens many more possible ways for cheating: the colluding
parties may eliminate groups in any possible combinations thus making quite
broad adjustments to the final outcome, all this without raising a lot of
suspect.

So, an adequate way for choosing k(n) is rather the following: first, we
fix some p < 0.5 that we believe to be an upper bound on the proportion
of colluding parties. Then, we decide on the acceptable values of α = P[A{]
and β = P[B{], for instance, α = 0.005 and β = 0.05. If n is fixed, in general
we can hope to control only one of the quantities α, β (observe that, when n
is fixed and k increases, this causes α to increase and β to decrease). If one
wants to control both quantities at once, one may need to increase n. See
Table 1 for some numerical examples. Clearly, in practice it is better to use
the exact formulas (1) and (3) for calculations.

5while it is not unusual that a single party can go offline, it is extremely unlikely that
all the members of that group went offline at once just after signing the statement that
they knew all the group’s secrets

6think e.g. about delegates in a DPoS cryptocurrency, like BTSX; they can lose their
privileged positions in case of misbehaviour

5

p n k α = P[A{] β = P[B{]
0.1 60 6 0.00051 1× 10−5

0.1 60 5 2.2× 10−5 0.00012
0.1 60 3 4.6× 10−12 0.0198
0.2 60 6 0.0478 0.00064
0.2 60 5 0.00853 0.00383
0.2 60 3 5.8× 10−7 0.148
0.2 120 8 0.063 3.8× 10−5

0.2 120 6 0.00228 0.00128
0.2 120 5 7.2× 10−5 0.00765
0.3 120 8 0.41 0.00098
0.3 120 6 0.081 0.0145
0.3 120 5 0.0121 0.0567

Table 1: A few numerical examples

Notice that (recall (5)) c = 1
ln 2
≈ 1.443 works for any p < 0.5. In partic-

ular (recall (2) and (4)), the good news is that the decay of P[A{] is much
more rapid than the decay of P[B{] (stretched exponential vs. polynomial).
So, choosing k = b1.4 lnnc for given n is probably a good rule of thumb
(b·c stands for lower integer part, bxc is the largest integer not exceeding x).
Observe that this rule gives k = 5 for n = 60 and k = 6 for n = 120, compare
to Table 1.

Also, it should be observed that, although α and β can be made arbitrarily
small for any p < 0.5 (as we have just shown), the corresponding value of n
can be quite large (if p is very close to 0.5).

2 Some modifications and generalizations

Consider the following situation: the overall proportion of colluding parties
is small, but the nodes of the network are frequently offline, so, with high
probability, no group consists entirely of active (i.e. not offline) parties. In
this case, the algorithm of Section 1 will just halt, that is, will not produce any
outcome. Even worse, for some values of the parameters it may happen that,
with high probability, there are still some complete groups (i.e., everybody
in the group is online), but each group does contain at least one malicious
party (and, as discussed above, this means giving almost total control to the

6

colluding parties)7.
Therefore, in some situations it may be impractical to only accept the

complete groups. In this section, we consider some modifications of the
previous algorithm that address this issue.

The initial setup is the same: n parties are divided into n/k groups of
size k, and we assume that they all have committed on their secret numbers.
Then, again, they attempt to share their numbers between them, but now
there is no requirement that only complete groups pass to the next round;
instead, we consider the group valid if the number of parties that shared their
secrets8 is greater than k/2 (just to avoid dealing with several “conflicting”
subgroups of the same group).

Then, this algorithm works fine if

(a) there is at least one group such that more than k/2 of its members are
online and all of them are honest;

(b) no group contains more than k/2 malicious members.

Similarly, we denote the event from (a) by Ã, and the event from (b) by B̃.
Also, let us introduce the events

Ãj = {all parties of jth group are honest

and more than k/2 of them are online},

and

B̃j = {less than k/2 parties of jth group are malicious}

for j = 1, . . . , n/k, so, as before, Ã =
⋃n/k
j=1 Ãj, and B̃ =

⋂n/k
j=1 B̃j. Again, we

intend to choose k = c lnn in such a way that P[Ã∩ B̃] is close to 1. We keep
the assumption that p is the probability that a party is malicious; but we
assume also that a honest party is offline with probability r > 0 (that is, a
party is malicious, honest but offline, honest and online with probabilities p,
(1− p)r, (1− p)(1− r) correspondingly).

Let us denote by

Φ(k, q, s) =
∑
`<s

(
k

`

)
q`(1− q)k−`

7fortunately enough, one can detect such undesirable situations, because then the num-
ber of complete groups would be typically very low in comparison to n/k

8they have to sign and publish a statement of the sort “We are {i1, . . . , im} and all the
secrets of this subgroup are known to all its members”

7

the probability that the value of a binomial B(k, q) random variable is less
than s. Now, let us recall the usual Chernoff’s bound for the binomial dis-
tribution9: for any k and a with 0 < a < q < 1, we have

Φ(k, q, ak) ≤ exp
(
− kH(a, q)

)
, (7)

where

H(a, q) = a ln
a

q
+ (1− a) ln

1− a
1− q

> 0.

Also, it is easy to see that Φ(k, q, ak) is close to 1 when a > q (in that case,
one may write Φ(k, q, ak) = 1 − Φ(k, 1 − q, (1 − a)k) and apply the above
estimates).

We have

P[Ãj] = P[Aj]P[more than k/2 are online | Aj]
= (1− p)kΦ(k, 1− r, k/2). (8)

Assume for simplicity that r < 1
2
. Then, the last term in the right-hand side

of (8) is close to 1. So, in this case we have P[Ãj] ' P[Aj], and therefore (2)
still holds.

Next, we use (7) with k = c lnn, q = 1 − p, and a = 1
2

to obtain that
(note that H(a, q) then equals 1

2
ln(4p(1− p))−1)

P[B̃j] = 1− Φ(k, 1− p, k/2)

≥ 1− exp
(
− c lnn× 1

2
ln(4p(1− p))−1

)
= 1− n− c

2
ln(4p(1−p))−1

,

so

P[B̃] =
(
P[B̃1]

)n/k
=
(
1− n− c

2
ln(4p(1−p))−1) n

c lnn

& exp
(
− n1− c

2
ln(4p(1−p))−1

c lnn

)
' 1− n− c

2
ln(4p(1−p))−1+1

c lnn
(9)

9see e.g. Proposition 5.2 of Chapter 8 of [4], or Section 6 of Chapter I of [5]; also, the
inequality in (7) is, in some sense, “almost equality”, but more advanced means are needed
to justify that, see [2]

8

if c
2

ln(4p(1− p))−1 > 1. That is, we obtain that (for large n) c must satisfy
the following condition:

2

ln(4p(1− p))−1
< c <

1

ln(1− p)−1
. (10)

The left-hand side of (10) increases when p ∈ (0, 1
2
), and the right-hand side

decreases; so, the solution exists for p < 0.2 (if p = 0.2, both terms become
equal). So, we have just proved the following result:

Proposition 2.1. Assume that p < 0.2. Then

P[Ã ∩ B̃] & 1− exp
(
− n1−c ln(1−p)−1

c lnn

)
− n− c

2
ln(4p(1−p))−1+1

c lnn
.

Let us also briefly comment on the case r > 1
2
. The last term in the

right-hand side of (8) then would also be polynomially small in n, and (7)
can be used to estimate it (as we commented, the relation (7) is, in fact,
“almost equality”, so it gives essentially the correct order of decay). In the
same way, one can arrive to a modified version of (10), with

(
ln(1− p)−1 +

1
2

ln(4r(1− r))−1
)−1

in the right-hand side. This, in its turn, leads to a more
complicated existence condition involving p and r, which we prefer not to
write in an explicit way.

Next, as in Section 1, we can argue that Ã{ is much worse than B̃{;
Also, all the past discussion about how to choose n and k remains valid.
Observe, however, that the algorithm we just considered is less “robust”
than the one of the previous section, since it can fence off at most 20%
of colluding parties (vs. formerly 50%). Let us now briefly mention some
further modifications/generalizations of the algorithm, that aim to increase
its robustness. We do not present any further computations; we hope that
the reader agrees that the corresponding asymptotic analysis (as n → ∞)
can be done in the same way as above.

So, first, we may consider a subgroup (where all secrets were shared)
valid if there are at least γk members, where γ ∈ (0, 1) (for γ ∈ (0, 1

2
) we

need also to introduce some rules about which subgroup of a given group
should win if there are several of them). One can obtain that for γ ∈ (1

2
, 1)

the algorithm becomes resistant against a proportion pγ of colluding parties,
where 0.2 < pγ < 0.5.

Also, on the second stage, before XORing all the revealed numbers, we
may first eliminate, say, some fixed proportion of the lower-sized valid sub-
groups. This gives some additional chances to get rid of all-malicious sub-
groups, since those must typically be of smaller size.

9

Another possibly useful observation is the following. Notice that it may be
impractical to deal with very large n, due e.g. to the connection/synchronization
issues. However, we can take a larger crowd first, and then choose a propor-
tion of it at random. Thus, if some party wants to mess with this, it would
need to bribe really a lot of other parties.

Conclusions

1. We presented a protocol that, with high probability, allows a large
number of parties to agree on a random number in a decentralized and
trustless way.

2. Our basic algorithm is described in the following way: first, each party
chooses its secret number from some high-entropy source of random-
ness, and commits on it. Then, we form groups (of equal sizes) of par-
ties, and the secrets are shared within each group (so that any party
that decides to withhold its number will be eliminated on this step).
Next, any representative of a group where this procedure did succeed
(i.e., all members shared their secret numbers) reveals the numbers and
everything is XORed together.

3. Under the assumption that the proportion of colluding parties does not
exceed 50%, it is possible to show that the group size can be chosen
in such a way that, with high probability, there is at least one group
consisting entirely of honest parties, and no group consists entirely of
colluders. This ensures that the algorithm works as intended.

4. In practice, there can be no “universal” rule on how to choose n and k =
k(n), but a good rule of thumb is choosing n to be as large as possible,
and k = b1.4 lnnc.

5. We analyse also a modification of the above algorithm, where the re-
quirement that all members of the group must share their secrets is
relaxed. This may be useful when dealing with situations when honest
parties are frequently offline. We also propose some further modifica-
tions and generalizations.

References

[1] J. Bonneau, J. Clark, and S. Goldfeder (2015) On Bitcoin as a
public randomness source. http://eprint.iacr.org/2015/1015

10

[2] A. Dembo, O. Zeitouni (2010) Large Deviations Techniques and Ap-
plications. Springer.

[3] A.K. Lenstra and B. Wesolowski (2015) A random zoo: sloth,
unicorn, and trx. http://eprint.iacr.org/2015/366.pdf

[4] Sheldon M. Ross (2009) A First Course in Probability. 8th ed.

[5] A.N. Shiryaev (1996) Probability. Springer-Verlag, New York.

[6] E. Syta, I. Tamas, D. Visher, D.I. Wolinsky, L.
Gasser, N. Gailly, B. Ford (2015) Keeping authori-
ties “honest or bust” with decentralized witness cosigning.
http://arxiv.org/pdf/1503.08768v2.pdf

11

