
Smooth NIZK Arguments with Applications to
Asymmetric UC-PAKE

Charanjit S. Jutla1 and Arnab Roy2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
2 Fujitsu Laboratories of America, Sunnyvale, CA

Abstract. We introduce a novel notion of smooth (-verifier) non- inter-
active zero-knowledge proofs (NIZK) which parallels the familiar notion
of smooth projective hash functions (SPHF). We also show that the re-
cent single group element quasi-adaptive NIZK (QA-NIZK) of Jutla and
Roy (CRYPTO 2014) for linear subspaces can be easily extended to be
computationally smooth. One important distinction of the new notion
from SPHFs is that in a smooth NIZK the public evaluation of the hash
on a language member using the projection key does not require the wit-
ness of the language member, but instead just requires its NIZK proof.
This has the remarkable consequence that in the Gennaro-Lindell para-
digm of designing universally-composable password-authenticated key-
exchange (UC-PAKE) protocols, if one replaces the traditionally em-
ployed SPHFs with the novel smooth QA-NIZK, one gets highly efficient
UC-PAKE protocols that are secure even under dynamic corruption. The
new notion can be seen as capturing the essence of the recent UC-PAKE
protocol of Jutla and Roy (AsiaCrypt 2015) which is secure under dy-
namic corruption but uses intricate dual-system arguments.
This simpler and modular design methodology allows us to give the first
single-round asymmetric UC-PAKE protocol, which is also secure under
dynamic corruption in the erasure model. Previously, all asymmetric UC-
PAKE protocols required at least two rounds. In fact, our protocol just
requires each party to send a single message asynchronously. In addition,
the protocol has short messages, with each party sending only four group
elements. Moreover, the server password file needs to store only one group
element per client. The protocol employs asymmetric bilinear pairing
groups and is proven secure in the (limited programmability) random
oracle model and under the standard bilinear pairing assumption SXDH.

Keywords: QA-NIZK, PAKE, bilinear pairings, SXDH, MDDH, SPHF,
hash proof, password, online attack, server compromise, dual system.

1 Introduction

Ever since the remarkably efficient non-interactive zero knowledge (NIZK) [BFM88]
proofs for algebraic statements were developed by Groth and Sahai [GS08], there
have been significant efficiency improvements and innovations in the construction
of cryptographic protocols. Jutla and Roy [JR13, JR14] and Libert, Peters, Joye



and Yung [LPJY14] further improved the efficiency of algebraic NIZK proofs,
culminating in constant size NIZK proofs for linear subspaces, independent of
the number of equations and witnesses. This efficiency improvement came in the
weaker Quasi-Adaptive setting [JR13], which nevertheless proved sufficient for
many applications.

Quasi-adaptive NIZK (QA-NIZK) proofs were further extended to provide
simulation soundness [LPJY14, KW15] and dual-system simulation soundness
[JR15], thus lending applicability to many more applications, such as, structure
preserving signatures, password authenticated key exchange in the UC model
and keyed homomorphic CCA-secure encryption.

In this paper, we further extend QA-NIZK proofs to provide an additional
property called smooth soundness. The idea is to have a verifier that consists of
three algorithms: a randomized hash key generation algorithm, a public hashing
algorithm and a private hashing algorithm. The setting allows computation of
a private hash given the private hash key and the word, while the public hash
can be computed using the public or projection hash key and just a QA-NIZK
argument for the word - neither the word nor the witness is required. Com-
pleteness states that the private hash is equal to the public hash for a language
member and correct QA-NIZK proof. Computational soundness states that it is
hard to come up with a proof such that a non-language word passes the same
check. The new smoothness property states that for any non-language word, the
private hash algorithm outputs a value (computationally) indistinguishable from
uniform, even when the projection key is given to the adversary.

Comparison with SPHFs. The new primitive is modeled after smooth projective
hash functions (SPHF [CS02]). An SPHF also generates public and private hash
keys and defines a private hash and a public hash. Further, similar properties
hold where (1) for a language member, private hash equals public hash, (2) for
a non-language member, private hash is uniformly random. The crucial differ-
ence is that, whereas the SPHF public hash computation requires a witness of
the language member, the smooth QA-NIZK public hash requires only a NIZK
proof of the member. This allows for hiding of the witness, even when using
the public hash key. On the other hand, our constructions only allow compu-
tational smooth-soundness, while for SPHFs these properties hold information
theoretically.

Trapdoor SPHFs as introduced by [BBC+13] allow a simulation world to have
a trapdoor to evaluate a hash over a word without a witness and without having
full access to the private hash key. This is different from smooth NIZK proofs
which allow public hashing in the real world without a witness, but instead with
a NIZK proof.

Password Authenticated Key Exchange. The problem of setting up a secure chan-
nel between two parties that only share a human-memorizable password (or a
low-entropy secret) was first studied by Bellovin and Merritt [BM92], and Jiang
and Gong [JG04]. Since then, this problem has been extensively studied and is
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called the password-authenticated key-exchange (PAKE) problem, while a pro-
tocol solving this problem is referred to as a PAKE protocol. Note that neither
of the two parties is assumed to have a public key (for instance, if a public key
infrastructure is not available or is considered insecure), and one of the main
challenges in designing such protocols is the intricacy in the natural security
definition which requires that the protocol transcripts cannot be used to launch
offline dictionary attacks. While an adversary can clearly try to guess the (low-
entropy) password and impersonate one of the parties, its advantage from the
fact that the password is of low entropy should be limited to such online imper-
sonation attacks. An example of an insecure protocol is one where the honest
message flow includes a (deterministic) hash of the password, as then an adver-
sary can launch an offline dictionary attack on the hash obtained from a single
transcript.

In a subsequent paper, Bellovin and Merritt [BM93] also considered a stronger
model of server compromise such that if a server’s password file is revealed to the
adversary it cannot directly impersonate a client (cf. if the password was stored
in the raw at the server). The adversary should be able to impersonate the client
only if it succeeds in an offline dictionary attack on the revealed server password
file. Clearly, this requires that the server does not store the password as it is
(or in some reversibly-encrypted form), and protocols satisfying this stronger
security requirement are referred to as asymmetric PAKE protocols.

Canetti et al [CHK+05] also considered designing (symmetric) UC-PAKE
protocols in the universally-composable (UC) framework [Can01]. One of their
main contributions was the definition of a natural UC-PAKE ideal functionality
(Fpake). Gentry et al [GMR06] extended the functionality of symmetric UC-
PAKE [CHK+05] to the asymmetric setting (FapwKE) and gave a general method
of extending any symmetric UC-PAKE protocol to an asymmetric UC-PAKE
protocol (from now on referred to as UC-APAKE). Their general method adds
an additional round to the UC-PAKE protocol. Moreover, their general two-
round method requires that the environment somehow gets to know that in the
UC-PAKE protocol both parties remain fresh, and this led them to define the
functionality FapwKE to have additional TestAbort functions.

Our Contributions. In this paper, we give the first single-round UC-APAKE
protocol (realizing FapwKE). In fact, both parties just send a single message
asynchronously. Since this is a single round protocol, we can realize FapwKE

without the additional (and cumbersome) TestAbort function mentioned above.
The protocol is realized in the (limited programmability [FLR+10]) random-
oracle [BR93] hybrid-model under standard static assumptions for bilinear groups,
namely SXDH [BBS04] and the general MDDH assumption. Our protocol is also
secure against adaptive corruption (in the erasure model) and is very succinct,
with each message consisting of only four group elements. Moreover, for each
client the server need store only one group elements as a “password hash”. Many
non-UC asymmetric PAKE protocols are at least two rounds [HK98, BPR00,
BMP00, Mac01, Boy09]. Benhamouda and Pointcheval [BP13] proposed the first
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single round asymmetric PAKE protocol, but in a game-based model built on
the BPR model [BPR00].

The first single-round UC-secure symmetric PAKE protocol was given in
[KV11] (using bilinear pairings), which was then further improved (in the num-
ber of group elements) in subsequent papers [JR12, BBC+13]. Recently [JR15],
a single round UC-PAKE protocol (in the standard model and using bilinear
pairings) was also proven secure against adaptive corruption using ideas from
the dual-system IBE construction of Waters [Wat09]. However, the [JR15] con-
struction did not employ their Dual-System Simulation Sound QA-NIZK proofs
(DSS-QA-NIZK) in a black box manner. Instead, it used ideas from the DSS-
QA-NIZK construction and properties as the underlying intuition for the proof.

In this paper, we show that the UC-PAKE of [JR15] can be built in a black
box manner using smooth QA-NIZK arguments. The proof only uses the def-
initional properties of the smooth QA-NIZK, without referring to its specific
construction.

Next, we build on the Verifier-based PAKE (VPAKE) construction of [BP13],
to construct a new single round UC-APAKE protocol. The intuition behind
VPAKEs is as follows. Clearly, the server has to store some form of encryption
or (probabilistic or deterministic) hash of the password, so that an adversary
on obtaining this server password file has to, at the very least, perform offline
tests to recover the password. It is not difficult to see that offline tests suffice
as the following argument shows: consider an adversary that has obtained this
hash of the password from the server password file. Next, it impersonates the
client by guessing a password pw′, and impersonates the server using the hash
of the password that it has obtained, and checks if both ends compute the same
session key to verify if pw′ was the correct guess.

Unfortunately, in the UC framework, the simulator has to detect these offline
password guesses by an adversary which steals the server password file, and for
provable security this seems to inevitably require the random oracle model. Non-
UC asymmetric PAKE protocols, do not suffer from the same drawback. In fact,
the focus of [BP13] was to propose a security definition and constructions which
could be proven secure in the standard model.

In our protocol, each party sends an ElGamal style encryption of the (hash
of) the password pw to the other party, along with an SPHF of the underlying
language and a projection verification hash key of a smooth QA-NIZK of the
underlying language (augmented with the SPHF). If such a message is adversar-
ially inserted, the simulator must have the capability to extract password pw′

from it, so that it can feed the ideal functionality FapwKE to test this guess of
the password. Thus, the NIZK proof must have simulation-sound extractability.
It was shown in [JR15] that dual-system simulation soundness suffices for this
purpose (and that makes the protocol very simple). When using smooth QA-
NIZK, this dual-system simulation-soundness can be attained by simply sending
an SPHF (see above).

More details can be found in Sections 6.2 and 6.3, where we also explain how
the random oracle is used to extract the password efficiently from the exponent.
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This leads to a security reduction which has an additive computational overhead
of n∗m∗poly(q), where n is the number of random oracle calls,m is the number of
online attacks and q is the security parameter. We remark that the random oracle
model uses only limited programmability as defined by Fischlin et al. [FLR+10].
Basically, the output values of the random oracle are all randomly chosen, but
different inputs can be assigned dynamically to these outputs.

The rest of the paper is organized as follows. In Section 2 we recall SPHFs. In
Section 3 we introduce the new notion of smooth QA-NIZK proofs. In Section 4,
we recall the MDDH assumptions and establish a useful technical theorem re-
lating the assumptions. In Section 5, we give the single group element smooth
QA-NIZK construction for linear subspaces. In Section 6, we describe the ideal
functionality FapwKE for asymmetric password-authenticated key-exchange, con-
struct the new single-round UC-APAKE protocol and provide its proof of UC-
realization of ideal functionality FapwKE.

2 Preliminaries: Smooth Projective Hash Functions

Since we are interested in distributions of languages, we extend the usual def-
inition of smooth projective hash functions (SPHFs) [CS02] to distribution of
languages. So consider a parametrized class of languages {Lρ}ρ∈Lpar with the

parameters coming from an associated parameter language Lpar. An SPHF con-
sists of the following efficient algorithms.

– hkgen(ρ), which generates two keys, a private key called hk, and a public key
called hp.

– privH(hk, x, l), computes a hash (in set Π) using the private key on input word
x and label l .

– pubH(hp, x, l ;w) computes a hash (in set Π) using the public key on an input
word x with witness w (for language Lρ) and label l .

The correctness of SPHF family states that for all languages Lρ in the param-
etrized class, for all x ∈ Lρ (with witness w), and for all labels l ,

privH(hk, x, l) = pubH(hp, x, l ;w).

A projective hash function family is called smooth if for all x 6∈ Lρ, privH(hk,
x, l) is statistically indistinguishable from a random element in Π, even given
hp. It is called smooth2 if for all x 6∈ Lρ, privH(hk, x, l) is statistically indis-
tinguishable from a random element in Π, even given hp and one evaluation of
privH(hk, x∗, l∗) for any (x∗, l∗) 6= (x, l).

3 Smooth Quasi-Adaptive NIZK Proofs

We start by reviewing the definition of Quasi-Adaptive computationally-sound
NIZK proofs (QA-NIZK) [JR13]. A witness relation is a binary relation on pairs
of inputs, the first called a (potential) language member and the second called
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a witness. Note that each witness relation R defines a corresponding language
L which is the set of all x for which there exists a witness w, such that R(x,w)
holds.

We will consider QA-NIZK proofs for a probability distribution D on a collec-
tion of (witness-) relations R = {Rρ} (with corresponding languages Lρ). Recall
that in a QA-NIZK, the CRS can be set after the language parameter has been
chosen according to D. Please refer to [JR13] for detailed definitions.

Definition 1. ([JR13]) We call (pargen, crsgen, prover, ver) a (labeled) quasi-
adaptive non-interactive zero-knowledge (QA-NIZK) proof system for witness-
relations Rλ = {Rρ} with parameters sampled from a distribution D over as-
sociated parameter language Lpar, if there exist efficient simulators crssim, sim
such that for all non-uniform PPT adversaries A1,A2,A3 we have (in all of
the following probabilistic experiments, the experiment starts by setting λ as
λ← pargen(1m), and choosing ρ as ρ← Dλ):

Quasi-Adaptive Completeness:

Pr

[
crs← crsgen(λ, ρ); (x,w)← A1(crs, ρ);π ← prover(crs, x, w) :

ver(crs, x, π) = 1 if Rρ(x,w)

]
= 1

Quasi-Adaptive (Computational) Soundness:
Pr[crs← crsgen(λ, ρ); (x, π)← A2(crs, ρ) : x 6∈ Lρ ∧ ver(crs, x, π) = 1] ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr[crs← crsgen(λ, ρ) : Aprover(crs,·,·)
3 (crs, ρ) = 1] ≈

Pr[(crs, trap)← crssim(λ, ρ) : Asim∗(crs,trap,·,·)
3 (crs, ρ) = 1],

where sim∗(crs, trap, x, w) = sim(crs, trap, x) for (x,w) ∈ Rρ and both oracles
(i.e. prover and sim∗) output failure if (x,w) 6∈ Rρ.

We call a QA-NIZK smooth (-verifier) QA-NIZK if the verifier ver con-
sists of three efficient algorithms ver = (hkgen, pubH, privH), and it satisfies the
following modified completeness and soundness conditions. Here, hkgen is a prob-
abilistic algorithm that takes a crs as input and outputs two keys, hp, a pro-
jection hash key, and hk, a private hash key. The algorithm privH takes as input
a word (e.g. a potential language member), and a (private hash) key, and out-
puts a string. Similarly, the algorithm pubH takes as input a proof (for instance
generated by prover), and a (projection hash) key hp, and outputs a string.

The above completeness property is now defined as:

Pr

[
crs← crsgen(λ, ρ); (x,w)← A1(crs, ρ);π ← prover(crs, x, w);
(hp, hk)← hkgen(crs) : privH(hk, x) = pubH(hp, π) if Rρ(x,w)

]
= 1

The QA-NIZK is said to satisfy smooth-soundness if for all words x 6∈ Lρ,
privH(hk, x) is computationally indistinguishable to the Adversary from uni-
formly random, even when the Adversary is given hp, and even if it produces x
after receiving hp.

More precisely, Quasi-Adaptive Smooth-Soundness is the following prop-
erty (let U be the uniform distribution on the range of privH, which is assumed to
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be of cardinality exponential in m): for every two-stage efficient oracle adversary
A

crs← crsgen(λ, ρ); (hp, hk)← hkgen(crs); (x∗, π∗, σ)← AO(crs, ρ, hp);u← U :

Pr[AO(privH(hk, x∗), σ) = 1 | Q]− Pr[AO(u, σ) = 1 | Q] ≈ 0

where the oracle O is instantiated with privH(hk, ·), and Q is the condition that
x∗ is not in the language Lρ and all oracle calls by the adversary in both stages
are with Lρ-language members. Here, σ is a local state of A.

Note that as opposed to the information-theoretic smoothness property of
projective hash functions, one cannot argue here that privH(hk, x) for x ∈ Lρ
can instead just be computed using hp, as that would also require efficiently
computing a witness for x. Hence, the need to provide oracle access to privH(hk, ·)
for language members.

Also, note that smooth-soundness implies the earlier definition of sound-
ness [JR13] if verification of (x, π) is defined as privH(hk, x) = pubH(hp, π).

To differentiate the functionalities of the verifier of a QA-NIZK from simi-
lar functionalities of an SPHF, we will prepend the SPHF functionalities with
keyword sphf and the QA-NIZK verifier functionalities with the keyword ver.

4 Matrix Decisional Assumptions

We will consider bilinear groups that consist of three cyclic groups of prime
order q, G1,G2 and GT with an efficient bilinear map e : G1×G2 → GT . Group
elements g1 and g2 will typically denote generators of the group G1 and G2

respectively. Following [EHK+13], in this section and the next we will use the
notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively and
use additive notations for group operations. When talking about a general group
G with generator g, we will just use the notation [a] to denote ag. However, in
the UC-PAKE constructions, we will switch to multiplicative notation for easy
readability.

We recall the Matrix Decisional Diffie Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Zl×kq which is full-ranked with overwhelming
probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Zkq , s′ ← Zlq, the tuple ([A], [As]) is computationally indistin-
guishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by Dk.

Intuitively, a Dl,k-MDDH assumption allows us to generate l (computation-
ally) independently random group elements from an initial k independently ran-
dom exponents. A Dk-MDDH assumption allows us to generate one extra ran-
dom group element. In this section, we will establish that, in fact, a Dk-MDDH
assumption can be boosted to generate additional (computationally) indepen-
dently random elements. This will be useful to us in the next section to prove
the smoothness property of our construction.
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We remark that boosting is different from the random self-reducibility of
Dl,k-MDDH assumptions, as described by [EHK+13]. While the former aims to
generate extra randomness from the same initial sample of vector of random
exponents, the latter talks about results from several independent samples of
vector of random exponents. Boosting can be seen as an abstraction of the
switching lemma of [JR14] and follows the same blueprint for the proof.

For an l× k matrix A, we denote Ā to be the top k× k square sub-matrix of
A and A to be the bottom (l − k)× k sub-matrix of A.

Definition 2. We say that a matrix distribution Dk on Z(k+1)×k
q is boostable to

a matrix distribution Dl,k on Zl×kq , where l > k, if there are efficiently samplable

distributions E on Z(l−k)×k
q and F on Z(l−k)×(k+1)

q , such that the following hold:

– For A← Dk,B← Dl,k,E← E ,F← F , we have:

B̄ ≈ Ā, B ≈ EĀ ≈ FA.

– For F← F , with overwhelming probability, all entries of the rightmost column
Fr of F are non-zero.

Theorem 1. If a matrix distribution Dk on Z(k+1)×k
q is boostable to a ma-

trix distribution Dl,k on Zl×kq then the Dk-MDDH assumption implies the Dl,k-
MDDH assumption.

Proof of this theorem can be found in Appendix A.

Corollary 1. Any Dk distribution can be boosted to a Dl,k distribution which
inherits the distribution of the top k × k matrix of the samples.

This can be seen by setting the top k × k matrix of a Dl,k sample to be the
top k×k matrix of a Dk sample and setting the bottom (l−k)×k sub-matrix of

the Dl,k sample to be uniformly random in Z(l−k)×k
q . The required distributions

E and F are just the uniform distributions on their respective domains.
This corollary allows us to retain the representation size of the top square

matrix of a Dk distribution sample, while boosting it to an assumption required
for security proofs. In particular, in applications such as this paper, this can lead
to shorter public keys.

5 Smooth Quasi-Adaptive NIZKs for Linear Subspaces

In this section we show that the single element QA-NIZK [JR14, KW15] for
witness-samplable linear subspaces can easily be extended to be smooth QA-
NIZK. Particularly, under SXDH, the public hash key hp generated by ver.hkgen
consists of a single group element. Following [KW15], the result is proven under
the more general MDDH assumption in bilinear groups.

We follow additive notation for group operations in this section. In later
sections we will use product notation.
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Linear Subspace Languages. We consider languages that are linear subspaces of
vectors of G1 elements. In other words, the languages we are interested in can
be characterized as languages parametrized by [M]1 as below:

L
[M]1

= {[M]1x ∈ Gn1 | x ∈ Ztq}, where [M]1 is an n× t matrix of G1 elements.

Here [M]1 is an element of the associated parameter language Lpar, which
is all n × t matrices of G1 elements. The parameter language Lpar also has
a corresponding witness relation Rpar, where the witness is a matrix of Zq
elements : Rpar([M]1,M) iff [M]1 = M · g1.

Robust and Efficiently Witness-Samplable Distributions. Let the t × n dimen-
sional matrix [M]1 be chosen according to a distribution D on Lpar. The dis-
tribution D is called robust if with probability close to one the left-most t
columns of [M]1 are full-ranked. A distribution D on Lpar is called efficiently
witness-samplable if there is a probabilistic polynomial time algorithm such
that it outputs a pair of matrices ([M]1,M) that satisfy the relation Rpar (i.e.,
Rpar([M]1,M) holds), and further the resulting distribution of the output [M]1
is same as D. For example, the uniform distribution on Lpar is efficiently witness-
samplable, by first picking M at random, and then computing [M]1.

Smooth QA-NIZK Construction. We now describe a smooth computationally-
sound Quasi-Adaptive NIZK (K0,K1,P,V) for linear subspace languages {L

[M]1
}

with parameters sampled from a robust and efficiently witness-samplable distri-
bution D over the associated parameter language Lpar and given a Dk-MDDH
assumption.

Algorithm K1: The algorithm K1 generates the CRS as follows. Let [Mn×t]1 be
the parameter supplied to K1. It generates an n× k matrix K with all elements
chosen randomly from Zq and a (k+1)×k matrix A from the MDDH distribution
Dk. Let Ā be the top k × k square matrix of A.

The common reference string (CRS) has two parts CRSp and CRSv which
are to be used by the prover and the verifier respectively.

CRSt×kp := ([P]1 = [M>K]1) CRSv := ([C]n×k2 = [KĀ]2, [Ā]k×k2 )

Prover P: Given candidate [y]1 = [M]1x with witness vector xt×1, the prover
generates the following proof consisting of k elements in G1:

π := x>CRSp

Verifier V: The algorithm hkgen is as follows: Sample s← Zkq . Given CRSv as
above, compute hk and hp as follows:

hk := [C]2 s, hp := [Ā]2 s

The algorithms pubH and privH are as follows: Given candidate [y]1, and
proof π, compute:

privH(hk, [y]1) := e([y]>1 , hk), pubH(hp, π) := e(π, hp)
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Theorem 2. The above algorithms (K0,K1,P,V) constitute a smooth computa-
tionally -sound Quasi-Adaptive NIZK proof system for linear subspace languages
{L

[M]1
} with parameters [M]1 sampled from a robust and efficiently witness-

samplable distribution D over the associated parameter language Lpar, given any
group generation algorithm for which the Dk-MDDH assumption holds for group
G2.

Proof. We now give a proof for smoothness. The proofs of completeness, zero
knowledge and soundness are same as [KW15].

Smoothness: First, note that the range of privH is exponential in the security
parameter, for otherwise an adversarial circuit can compute discrete logarithms
with non-negligible probability. We prove smoothness by transforming the sys-
tem over a sequence of games. Game G0 just replicates the construction, but
samples A from a distribution Dk+n−t,k obtained by boosting the given distri-
bution Dk by Corollary 1. The construction only uses the top k × k sub-matrix
Ā of the sample which is distributed identically for both Dk and Dk+n−t,k. Let
A be the bottom (n− t)× k sub-matrix of A.

In Game G1, the challenger efficiently samples [M]1 according to distribution
D, along with witness M (sinceD is an efficiently witness samplable distribution).
Since M is an n× t dimensional rank t matrix, there is a rank n− t matrix M⊥

of dimension n× (n− t) whose columns form a complete basis for the kernel of
M>, which means M>M⊥ = 0t×(n−t). In this game, the NIZK CRS is computed
as follows: Generate matrix K′ uniformly randomly from Zn×kq and compute the

matrix T(n−t)×k, such that TĀ = A. Implicitly set: K = K′ + M⊥T. Therefore
we have,

CRSt×kp = [M>K]1 = [M>(K′ + M⊥T)]1 = [M>K′]1

[C]n×k2 = [(K′ + M⊥T)Ā]2 = K′[Ā]2 + M⊥[A]2,

hk = [C]2 s, hp = [Ā]2 s

In Game G2, we sample a fresh random vector s′ in Zn−tq and modify the
simulated computations as follows:

CRSt×kp = [M>K′]1, [C]n×k2 = K′[Ā]2 + M⊥[A]2,

hk = K′[Ās]2 + M⊥[s′]2, hp = [Ās]2

Given aDk+n−t,k challenge which is either “real”: ([A]2, [Ās]2, [As]2) or “fake”:
([A]2, [Ās]2, [s

′]2), we observe that the real tuple can be used to simulate Game
G1, while the fake tuple can be used to simulate Game G2. Thus the games
G1 and G2 are indistinguishable by the Dk+n−t,k-MDDH assumption, which in
turn is implied by the Dk-MDDH assumption by Theorem 1.

Now in Game G2 we have,

privH(hk, [y∗]1) = e
(

[y∗]>1 ,K
′[Ās]2 + M⊥[s′]2

)
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For the oracle queries where [y∗]1 ∈ L
[M]1

, we have y∗>M⊥ = 01×(n−t).

Hence the simulator responds with e
(
[y∗]>1 ,K

′[Ās]2
)
. Note that s′ does not ap-

pear in this response.
For the adversary supplied [y∗]1 /∈ L[M]1

, we have y∗>M⊥ 6= 01×(n−t). There-

fore privH(hk,y∗) is uniformly random, as s′ is independently random of every-
thing else given to the adversary. ut

6 Asymmetric UC-PAKE: UC-APAKE

6.1 The UC Ideal Functionality for Asymmetric PAKE

Based on the UC-PAKE functionality of [CHK+05], Gentry et al [GMR06] gave
another UC functionality for asymmetric PAKE (UC-APAKE). A salient fea-
ture of the UC-PAKE functionality [CHK+05] is that it models the security
requirement that an adversary cannot perform efficient off-line computations on
protocol transcripts to verifiably guess the low-entropy password. An adversary
can only benefit from the low-entropy of the password by actually conducting an
on-line attack (i.e. by impersonating one of the parties with a guessed password).
This is modeled in the ideal world with a TestPwd capability available to the
ideal world adversary: if TestPwd is called with the correct password, the ideal
world adversary is allowed to set the session key. Moreover, in this functionality
if any of the parties is corrupted, then the ideal world adversary is given the
registered password.

In asymmetric PAKE [GMR06], the ideal functionality also allows an adver-
sary to steal the password file stored at the server (while not necessarily cor-
rupting the server). However, this by itself does not directly provide the actual
password to the adversary. However, after this point the adversary is allowed to
perform OfflineTestPwd tests to mimic a similar capability in the real world (in
fact, the ideal world adversary is even allowed to perform OfflineTestPwd tests
before it steals the password file, but it does not get a confirmation of the guess
being correct until after it steals the password file).

Moreover, after the “steal password file” event the adversary is also allowed
to impersonate the server to a correctly guessed client, even without providing
the actual password (as it can clearly do so in the real world). However, com-
promising impersonation of the client still requires providing a correct password.
This differentiation in capabilities also becomes important when characterizing
the complexity of a simulator in terms of the real world adversary, as we will see
later.

The Fpake functionality for UC-PAKE was a single-session functionality.
However, asymmetric PAKE requires that a password file be used across multiple
sessions, so the FapwKE functionality for UC-APAKE is defined as a multiple-
session functionality. Note that this cannot be accomplished simply using com-
position with joint state [CR03] because the functionality itself requires shared
state that needs to be maintained between sessions.

The complete UC-APAKE functionality FapwKE is described in detail in
Fig. 1.
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Functionality FapwKE

The functionality FapwKE is parameterized by a security parameter k. It interacts with
an adversary S and a set of parties via the following queries:

Password Storage and Authentication Sessions
Upon receiving a query (StorePwdFile, sid, Pi, pw) from party Pj :

If this is the first StorePwdFile query, store password data record (file, Pi, Pj , pw) and
mark it uncompromised.

Upon receiving a query (CltSession, sid, ssid, Pi, Pj , pw) from party Pi:
Send (CltSession, sid, ssid, Pi, Pj) to S. In addition, if this is the first CltSession query
for ssid, then store session record (Clt, ssid, Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (SvrSession, sid, ssid) from party Pj :
If there is a password data record (file, Pi, Pj , pw), then send
(SvrSession, sid, ssid, Pj , Pi) to S, and if this is the first SvrSession query for
ssid, store session record (Svr, ssid, Pj , Pi, pw), and mark it fresh.

Stealing Password Data
Upon receiving a query (StealPwdFile, sid) from adversary S:

If there is no password data record reply to S with ’no password file’. Otherwise, do
the folloing: If the password data record (file, Pi, Pj , pw) is marked uncompromised,
mark it compromised. If there is a tuple (offline, pw′) stored with pw′ = pw then send
pw to S, otherwise reply to S with ’password file stolen’.

Upon receiving a query (OfflineTestPwd, sid, pw′) from Adversary S:
If there is no password data record, or if there is a password data record
(file, Pi, Pj , pw) that is marked uncompromised, then store (offline, pw′). Otherwise do:
if pw = pw′, send pw back to S. If pw 6= pw′, reply with ’wrong guess’.

Active Session Attacks
Upon receiving a query (TestPwd, sid, ssid, Pi, pw

′) from the adversary S:
If there is a session record of the form (role, ssid, Pi, Pj , pw) which is fresh, then do:
If pw = pw′, mark the record compromised and reply to S with “correct guess”. If
pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (Impersonate, sid, ssid)
If there is a session record of the form (Clt, ssid, Pi, Pj , pw) which is fresh, then
do: then if there is a password data record file (file, Pi, Pj , pw) that is marked
compromised, mark the session record compromised and reply to S with ’correct guess’,
else mark the session record interrupted and reply with wrong guess.

Key Generation and Authentication
Upon receiving a query (NewKey, sid, ssid, Pi, sk) from S, where |sk| = k:

If there is a session record of the form (role, ssid, Pi, Pj , pw) that is not marked
completed,
– If this record is compromised, or either Pi or Pj is corrupted, then output

(sid, ssid, sk) to player Pi.
– If this record is fresh, and there is a session record (role, ssid, Pj , Pi, pw

′) with
pw′ = pw, and a key sk′ was sent to Pj , and (role, ssid, Pj , Pi, pw) was fresh at the
time, then output (sid, ssid, sk′) to Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, ssid, sk′)
to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, P ) from S: if there is a (Clt, sid, P, P ′, pw) recorded,
return pw to S, and mark Pi corrupted. If there is a (Svr, sid, P, P ′, pw) recorded,
then mark P corrupted and (internally) call (StealPwdFile, sid).

Fig. 1. The password-based key-exchange functionality FapwKE

6.2 UC-APAKE based on VPAKE and Smooth-NIZK

We now design an asymmetric UC-PAKE based on Verifier-based PAKE or
VPAKE of Benhamooda and Pointcheval [BP13] and the novel Smooth NIZK
proofs. The essential idea of [BP13] is that while the Client holds the actual
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Generate g← G1; a1, a2, bc, bs ← Zq and let ρ = {a1 = ga1 ,a2 = ga2 ,bc = gbc ,bs = gbs}.

Define languages

[
Lc = {(R,S,H) | ∃r, p : R = gr, S = ar

1b
p
c, H = bp

s}
Ls = {(R,S) | ∃r : R = gr, S = ar

2}

]
Let (hkc, hpc)← sphf(Lc).hkgen and (hps, hks)← sphf(Ls).hkgen.
Define languages:[

L+
c = {(R,S,H, T, l) | ∃r, p : R = gr, S = ar

1b
p
c, H = bp

s , T = sphf.pubH(hpc, 〈R,S,H〉, l ; r, p)}
L+
s = {(R,S, T, l) | ∃r : R = gr, S = ar

2, T = sphf.pubH(hps, 〈R,S〉, l ; r)}

]
Let (pargenP , crsgenP , proverP , verP ) be Smooth QA-NIZKs for languages L+

P , with P ∈ {C, S}.
Let crsP ← crsgenP (ρ) and H be a collision resistant hash function.
Let RO be a random oracle and let phash = RO(sid, Pi, Pj ,pwd).

CRS := (ρ, hpc, hps,crsc,crss,H).

Server Persistent State := bphash
s .

Client Pi Network

Input (CltSession, sid, ssid, Pi, Pj , pwd).
Choose r1 ← Zq and (hk1,hp1)← vers.hkgen(crss).

Set R1 = gr1 , S1 = ar1
1 bphash

c ,
R1,S1,T1,hp1−−−−−−−−−→ Pj

T1 = sphfc.pubH(hpc, 〈R1, S1,b
phash
s 〉, i1; r1, phash),

W1 = proverc(crsc, 〈R1, S1,b
phash
s , T1, i1〉; r1,phash),

where i1 = H(sid, ssid, Pi, Pj , R1, S1,hp1).
Erase r1, send (R1, S1, T1,hp1) and retain (W1,hk1).

Receive (R′
2, S

′
2, T

′
2,hp

′
2).

If any of R′
2, S

′
2, T

′
2,hp

′
2 is not in their respective group or is 1, set sk1

$←− GT ,

else compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S

′
2,hp

′
2),

R′
2,S

′
2,T

′
2,hp

′
2←−−−−−−−−− Pj

and sk1 = vers.privH(hk1, 〈R′
2, S

′
2/b

phash
s , T ′

2, i
′
2〉) · verc.pubH(hp′

2,W1).
Output (sid, ssid, sk1).

Server Pj Network

Input (SvrSession, sid, ssid, Pj , Pi, Server Persistent State) .
Choose r2 ← Zq and (hk2,hp2)← verc.hkgen(crsc).

Set R2 = gr2 , S2 = ar2
2 bphash

s ,
R2,S2,T2,hp2−−−−−−−−−→ Pi

T2 = sphfs.pubH(hps, 〈R2, S2/b
phash
s 〉, i2; r2),

W2 = provers(crss, 〈R2, S2/b
phash
s , T2, i2〉; r2),

where i2 = H(sid, ssid, Pj , Pi, R2, S2,hp2).
Erase r2, send (R2, S2, T2,hp2) and retain (W2,hk2).

Receive (R′
1, S

′
1, T

′
1,hp

′
1).

If any of R′
1, S

′
1, T

′
1,hp

′
1 is not in their respective group or is 1, set sk2

$←− GT ,

else compute i′1 = H(sid, ssid, Pi, Pj , R
′
1, S

′
1,hp

′
1),

R′
1,S

′
1,T

′
1,hp

′
1←−−−−−−−−− Pi

and sk2 = verc.privH(hk2, 〈R′
1, S

′
1,b

phash
s , T ′

1, i
′
1〉) · vers.pubH(hp′

1,W2).
Output (sid, ssid, sk2).

Fig. 2. Single round RO-hybrid UC-APAKE protocol under SXDH assumption.
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password, the Server does not hold password in the clear. Instead the Server
stores a hard to invert function called PHash (password hash) evaluated over the
password and a random “salt” (PSalt) published in the CRS. While executing a
session, the client sends encryptions of the password or another function called
PPreHash (password pre-hash) evaluated on the password. Correspondingly, the
server sends encryptions of the stored PHash.

Of course, some kind of zero-knowledge proof must accompany these en-
cryptions, and to that end [BP13] can utilize the new smooth projective hash
functions (SPHF) for CCA2-encryption [BBC+13] such as Cramer-Shoup en-
cryption [CS02]. In each session, both parties generate fresh SPHF private and
projection keys (to be employed on incoming messages). The projection key is
sent (piggy-backed) along with the encrypted message. If the encrypted mes-
sages use the correct password (meaning both parties have the same password
or its PHash), then SPHF computed on the message by the receiving party using
the SPHF hash key it generated equals the SPHF computed on the message
by the sending party using the SPHF projection key it received. Thus, these
SPHF hashes can be used to compute the session key. Smoothness property of
the SPHF guarantees security of the VPAKE scheme.

Unfortunately, each party must retain the witness used in the CCA2 encryp-
tion, as computing the SPHF projection-hash of its outgoing encrypted message
using the received projection key requires this witness. In the strong simulation
paradigm of universally composable security, this leads to a problem if an Adver-
sary can corrupt a session dynamically after the outgoing message has been sent
and the incoming message has not yet been received. Thus, this SPHF methodol-
ogy can only handle static corruption. While Jutla and Roy [JR15] have recently
given an efficient UC-PAKE protocol which can handle dynamic corruption, the
construction uses ideas from dual-system simulation-sound QA-NIZK that they
introduce there. These ideas are rather intricate and do not seem to allow a
modular or generic design of such UC password-authenticated protocols.

In this paper, we show that the new notion of Smooth QA-NIZK allows
easy to understand (and equally efficient) modular or generic design. Just as
QA-NIZK proofs can be seen as generalization of projective hash proof systems
to public verifiability (and also assuring zero-knowledge), the novel notion of
Smooth QA-NIZK naturally generalizes the notion of smooth projective hash
functions where instead of the witness, the publicly verifiable proof can be used
to evaluate the projection-hash. The zero-knowledge property of this publicly
verifiable proof assures that this proof and hence the projection-hash can be
generated by a simulator with no access to the witness. In particular, each party
in the UC-PAKE protocol can generate an encryption of the password and gen-
erate this publicly verifiable QA-NIZK proof, send the encryption to the other
party, erase the witness and retain just the proof for later generation of session
key.

The natural question that arises is whether one needs a notion of smooth-
soundness under simulation. Indeed, one does need some form of unbounded
simulation-soundness as the UC simulator generates QA-NIZK proofs on non-
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language members without access to the password. Unfortunately, the recent
efficient unbounded simulation sound QA-NIZK construction of [KW15] does
not extend to be smooth under unbounded simulation (or at least current tech-
niques do not seem to allow one to prove so). The dual-system simulation sound
QA-NIZK [JR15] does satisfy smoothness property, but it would need introduc-
tion of various new intricate definitions and complicated proofs. One may also
ask whether CCA2 encryption by itself provides the required simulation sound-
ness, but that is also not the case, as CCA2 encryption by itself does not give
a privately-verifiable (say, via its underlying SPHF as in Cramer-Shoup encryp-
tion) proof that it is the password that is being encrypted.

In light of this, it turns out that the simplest way to design the UC-APAKE
(or UC-PAKE) protocol is to use an El-Gamal encryption of the password (or
its PPreHash or PHash) and augment it with an SPHF proof of its consistency,
and finally a Smooth QA-NIZK on this augmented El-Gamal encryption. (If the
reader is interested in the simpler UC-PAKE protocol secure under dynamic
corruption in the new Smooth QA-NIZK framework, the protocol and proof are
provided in the Appendix.)

We will also need the random oracle hybrid model to achieve the goal of
a UC-APAKE protocol, as explained next. The focus of [BP13] was to design
protocols which can be proven secure in the standard model. They formalized
a security notion for APAKEs modifying the game-based BPR model [BPR00].
However, our focus is to construct an APAKE protocol in the UC model. In the
UC model of [GMR06], the UC simulator must be able to detect offline password
guess attempts of the adversary. This is not possible in the standard model as
offline tests can be internally performed by the adversary. In order to intercept
offline tests by the adversary, it thus becomes inevitable to use an idealized
model, such as the random oracle model.

So in particular, we adapt the random oracle-based password hashing scheme
of [BP13]. In the scheme, the public parameters are param = bc,bs randomly
sampled from G1 and a random oracle RO. Define phash = RO(sid, Client-
id, Server-id, pwd), where Client-id, Server-id are the ids of the participating
parties, sid is the common session-id for all sessions between these parties and
pwd is the password of the client. We set:

PPreHash(param,pwd) = bphash
c

PSalt(param) = bs
PHash(param,pwd) = bphash

s

Corresponding to the asymmetric storages of the client and the server, we
define the following languages, one for each party, which implicitly check the
consistency of correct elements being used:

Lc = {(R,S,H) | ∃r, p : R = gr, S = ar1b
p
c, H = bps}

Ls = {(R,S) | ∃r : R = gr, S = ar2}

We now plug these languages into UC-PAKE methodology described above.
The client sends ElGamal encryption of bpc, as in (R,S) of Lc, while the server
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supplies the last element H for forming a word of Lc. The server sends ElGamal
encryption of bps, while the client divides out bps from the second component to
form a word of Ls.

The CRS provides public smooth2 SPHF keys for the languages Lc and Ls,
which are used by the client and server respectively to compute T1 and T2 for
their flows.

Lastly, we use Smooth QA-NIZK proofs for generating a public hash key
and a private hash key over the above languages augmented with the SPHFs as
below:

L+
c =

{
(R,S,H, T, l) | ∃r, p : R = gr, S = ar1b

p
c, H = bps,

T = sphf.pubH(hpc, 〈R,S,H〉, l ; r, p)

}
L+

s = {(R,S, T, l) | ∃r : R = gr, S = ar2, T = sphf.pubH(hps, 〈R,S〉, l ; r)}

The client generates a Smooth QA-NIZK verification key pair for the server
language L+

s , retains the private key hk1 and sends the public key hp1 along
with the ElGamal encryption and the SPHF. The client computes a QA-NIZK
proof W1 of (R1, S1,b

phash
s , T1) ∈ L+

c with label i1 = H(sid, ssid, Pi, Pj , R1, S1,
T1, hp1) and retains that for later key computation.

Similarly, the server generates a Smooth QA-NIZK verification key pair for
the client language L+

c , retains the private key hk2 and sends the public key
hp2 along with the ElGamal encryption and the SPHF. The server computes a
QA-NIZK proof W2 of (R2, S2/b

phash
s , T2) ∈ L+

s with label i2 = H(sid, ssid, Pj ,
Pi, R2, S2, T2, hp2) and retains that for later key computation.

In the second part of the protocol, after receiving the peer flow, each party
computes the final secret key as the product of the private Smooth QA-NIZK
hash of the peer flow with own private Smooth QA-NIZK key and the public
Smooth QA-NIZK hash of the (retained) QA-NIZK proof of own flow with the
peer public Smooth QA-NIZK hash key. Formally the client computes:

vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2, i

′
2〉) · verc.pubH(hp′2,W1).

Similarly, the server computes:

verc.privH(hk2, 〈R′1, S′1,b
phash
s , T ′1, i

′
1〉) · vers.pubH(hp′1,W2).

Given the completeness property of the Smooth QA-NIZK, it is not difficult
to see that legitimately completed peer sessions end up with equal keys. In the
next section, we prove that this protocol securely realizes FapwKE, as stated in
the theorem below.

The complete protocol is described in detail in Figure 2. The SPHF sphf is
required to be a smooth2 projective hash function (see Section 2 for definitions).
For simplicity, in this paper we focus on constructions based on D1-MDDH
assumptions, and in particular the SXDH assumption (see Appendix B).

Theorem 3. Under the D1-MDDH assumption SXDH, the protocol in Fig. 2
securely realizes the FapwKE functionality in the (Fcrs,FRO)-hybrid model, in
the presence of adaptive corruption adversaries. The number of unique password
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arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the (Fcrs,FRO)-hybrid
world.

6.3 Main Idea of the UC Simulator

The UC simulator S works as follows: It simulates the random oracle calls and
records all the query response pairs. It will generate the CRS for F̂pake using the
real world algorithms, except for the Smooth QA-NIZK, for which it uses the
simulated CRS generator. It also retains the private hash keys of the SPHF’s. The
next main difference is in the simulation of the outgoing message of the real world
parties: S uses a dummy message µ instead of the real password which it does
not have access to. Further, it postpones computation of W till the session-key
generation time. Finally, another difference is in the processing of the incoming
message, where S decrypts the incoming message R′2, S

′
2 and runs through the

list of random oracle queries to search for a pwd′, such that the decryption is

b
RO(sid,Pi,Pj ,pwd′

)
s , which it uses to call the ideal functionality’s test function.

It next generates an sk similar to how it is generated in the real-world. It sends
sk to the ideal functionality to be output to the party concerned.

Since the (R1, S1) that it sends out is no longer such that (R1, S1,b
phash
s ) in

the language Lc, it has to use the private key of the SPHF in order to compute
T1 on (R1, S1,b

phash
s ) and the QA-NIZK proof simulator to compute W1.

There are other special steps designed to simulate stealing the password file
and then impersonating the server to the client. Specifically, when the password
file is stolen, the simulator still may not know pwd. It then preemptively sets
phash to a random value and pretends that this is the random oracle response
with the correct pwd query. Later on when there is a successful pwd query, which
the simulator can find out by the online or offline testpwd ideal functionality
calls, it sets the record accordingly.

In case of a stolen password file, the simulator includes a “Client Only Step”
which lets it test (modified) server flows for consistency and call the Impersonate
functionality if consistency checks out. The server simulation steps do not include
such a step to model the security notion that even if the password file is stolen,
the adversary should still not be able to impersonate the client.

6.4 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the
real-world protocol, follows essentially from the properties of the Smooth QA-
NIZK and smooth2 SPHF, and we give a broad outline here. The proof will
describe various experiments between a challenger C and the adversary, which
we will just assume to be the environment Z (as the adversary A can be as-
sumed to be just dummy and following Z’s commands). In the first experiment
the challenger C will just be the combination of the code of the simulator S
above and F̂pake. In particular, after the environment issues a CltSession request
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with a password pwd, the challenger gets that password. So, while in the first
experiment, the challenger (copying S) does not use pwd directly, from the next
experiment onwards, it can use pwd. Thus, the main goal of the ensuing experi-
ments is to modify the fake tuples gr1 ,ar11 bµc ·gr

′
by real tuples (as in real-world)

gr1 ,ar11 bphash
c , since the challenger has access to pwd, and hence phash. This is

accomplished by a hybrid argument, modifying one instance at a time using
DDH assumption in group G1.

The guarantee that the client cannot be impersonated by the adversary, even
when the password file is stolen is established by noting that bphash

c , which is
what the client encrypts in its flows, is hard to compute given the server per-
sistent state bphash

s . This is formally captured in the proof by using a DDH

transition from (bs,bc,b
phash
s ,bphash

c ) to (bs,bc,b
phash
s ,bzc), where z is inde-

pendently random from phash.
Once all the instances are corrected, i.e.R1, S1 are generated as gr1 ,ar11 bphash

c ,

the challenger can switch to the real-world because the tuples R1, S1,b
phash
s are

now in the language Lc. This implies that the session keys are generated exactly
as in the real-world.

6.5 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption
of parties by the Adversary in the erasure model. In the real-world when the
adversary corrupts a client (with a Corrupt command), it gets the internal state
of the client. Clearly, if the party has already been invoked with a CltSession
command then the password pwd is leaked at the minimum, and hence the ideal
functionality Fpake leaks the password to the Adversary in the ideal world. In
the protocol described above, the Adversary also gets W1 and hk1, as this is
the only state maintained by each client between sending R1, S1, T1,hp1, and
the final issuance of session-key. Simulation of hk1 is easy for the simulator S
since S generates hk1 exactly as in the real world. For generating W1, which
S had postponed to computing till it received an incoming message from the
adversary, it can now use the pwd which it gets from F̂pake by issuing a Corrupt
call to F̂pake. More precisely, it issues the Corrupt call, and gets pwd, and then
calls the QA-NIZK simulator with the tuple (R1, S1,b

phash
s , T1, i1) to get W1.

Note that this computation of W1 is identical to the postponed computation of
W1 in the computation of client factor of sk1 (which is really used in the output
to the environment when pwd′ = pwd).

In case of server corruption, the simulator does not get pwd, but is able to
set phash which also enables it to compute W2 using the QA-NIZK simulator
on (R2, S2/b

phash
s , T2, i2).

6.6 Simulator for the Protocol

We will assume that the adversary A in the UC protocol is dummy, and essen-
tially passes back and forth commands and messages from the environment Z.
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Thus, from now on we will use environment Z as the real adversary, which out-
puts a single bit. The simulator S will be the ideal world adversary for FapwKE.
It is a universal simulator that uses A as a black box. For each instance (session
and a party), we will use a prime, to refer to variables received in the message
from Z (i.e. A). We will call a message legitimate if it was not altered by Z, and
delivered in the correct session and to the correct party.

Responding to random oracle queries. Let the input be m. If there is a
record of the form (m, r), that is, m was queried before and was responded with
r, then just return r.

Otherwise, if m is of the form (sid, Pi, Pj , x), for some x and the password file
has been stolen then call OfflineTestPwd with x. If the test succeeds then return
phash, which must already have been set (see Stealing Password File below),
and record (m,phash).

In all other cases, generate r ← Zq, record (m, r) and return r.

Setting the CRS. The simulator S picks the CRS just as in the real world,
except the QA-NIZK CRS-es are generated using the crs-simulators, which also
generate simulator trapdoors τc, τs. It retains a1, a2, τc, τs, hkc, hks as trapdoors.

New Client Session: Sending a message to Z. On message (CltSession, sid,
ssid, Pi, Pj) from FapwKE, S starts simulating a new instance of the protocol for
client Pi, server Pj , session identifier ssid, and CRS set as above. We will denote
this instance by (Pi, ssid) and call it a client instance.

To simulate this instance, S chooses r1, r
′
1, r
′′
1 , s1 at random, and sets R1 =

gr1 , S1 = ar11 bµc · gr
′
1 and T1 = gr

′′
1 (note the use of arbitray constant µ in-

stead of phash). Next, S generates (hk1,hp1)← ver.hkgen(crsc) and sets i1 =
H(sid, ssid, Pi, Pj ,R1, S1,hp1). It retains (i1,hk1). It then hands (R1, S1, T1,hp1)
to Z on behalf of this instance.

New Server Session: Sending a message to Z. On message (SvrSession,
sid, ssid, Pj , Pi) from FapwKE, S starts simulating a new instance of the protocol
for client Pi, server Pj , session identifier ssid, and CRS set as above. We will
denote this instance by (Pj , ssid) and call it a server instance.

To simulate this instance, S chooses r2, r
′
2, r
′′
2 , s2 at random, and sets R2 =

gr2 , S2 = ar22 bµs · gr
′
2 and T1 = gr

′′
2 (note the use of arbitrary constant µ in-

stead of phash). Next, S generates (hk2,hp2) ← ver.hkgen(crss) and sets i2 =
H(sid, ssid, Pj , Pi,R2, S2,hp2). It retains (i2,hk2). It then hands (R2, S2, T2,hp2)
to Z on behalf of this instance.

On Receiving a Message from Z. On receiving a message R′2, S
′
2, T

′
2, ρ̂
′
2 from

Z intended for a client instance (P, ssid), the simulator S does the following:

1. If any of the the real world protocol checks, namely group membership and
non-triviality fail it goes to the step “Other Cases” below.

2. If the message received from Z is same as message sent by S on behalf of
peer P ′ in session ssid, then S just issues a NewKey call for P .
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3. (“Client Only Step”): If StealPwdFile has already taken place then do the fol-

lowing: If S′2 = R′a22 bphash
s , then S calls FapwKE with (Impersonate, P, sid, ssid)

and skips to the “Key Setting” step below, and otherwise go to the step
“Other Cases”.

4. It searches its random oracle query response pairs {(mk, hk)}k and checks
whether for some k = x we have S′2 = R′a22 bhx

s and mx is of the form
(sid, Pi, Pj ,pwd′). If so, then S calls FapwKE with (TestPwd, ssid, P , pwd′)
else it goes to the step “Other Cases” below. If the test passes, it sets phash =
hx and goes to the “Key Setting” step below, else it goes to the step “Other
Cases” below.

5. (“Key Setting Step”): Compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2).

If T ′2 6= sphfs.privH(hk, 〈R′2, S′2/b
phash
s 〉, i′2) then goto the step “Other Cases”.

Else, compute W1 = sim(crsc, τc, 〈R1, S1,b
phash
s , T1, i1〉). Issue a NewKey

call to F̂pake with key

vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2, i

′
2〉) · verc.pubH(hp′2,W1)

6. (“Other Cases”): S issues a TestPwd call to F̂pake with the dummy password
µ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party P .

On receiving a message R′1, S
′
1, T

′
1,hp

′
1 from Z intended for a server in-

stance (P, ssid), the response of the simulator S is symmetric to the response
described above for client instances, except the above step “Client Only Step”
is skipped.

Stealing Password File. If there was a successful online TestPwd call by
the simulator, before this StealPwdFile call, the corresponding random oracle
response hk was already assigned to the variable phash. Otherwise, the simula-
tor runs through the set of random oracle query response set of the adversary
{(mk, hk)}k, which were not used for an online TestPwd call. For all the mk’s
of the form (sid, Pi, Pj ,pwd′), it calls (OfflineTestPwd, sid,pwd′). Next, S calls
StealPwdFile. If StealPwdFile returns pwd then it must equal pwd′ in some mk.
Assign to the variable phash the value hk from the earlier recorded random oracle
response to mk. Otherwise, phash is assigned a fresh random value. The Server
Persistent State bphash

s is computed accordingly and given to the adversary.
Client Corruption. On receiving a Corrupt call from Z for client instance Pi
in session ssid, the simulator S calls the Corrupt routine of FapwKE to obtain pwd.
If S had already output a message to Z, and not output sk1 it computes

W1 = simc(crsc, τc, 〈R1, S1,b
phash
s , T1, i1〉).

and outputs this W1 along with pwd, and hk1 as internal state of Pi. Note that
this computation of W1 is identical to the computation of W1 in the computation
of sk1 (which is really output to Z only when pwd′ = pwd).

Without loss of generality, we can assume that in the real-world if the Adver-
sary (or Environment Z) corrupts an instance before the session key is output
then the instance does not output any session key. This is so because the Ad-
versary (or Z) either sets the key for that session or can compute it from the
internal state it broke into.
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Server Corruption. On receiving a Corrupt call from Z for server instance Pj
in session ssid, the simulator S first performs the steps in the section on Stealing
Password File above. In particular this sets the value of phash. It then calls the
Corrupt routine of FapwKE. If S had already output a message to Z, and not
output sk1 it computes

W2 = sims(crss, τs, 〈R2, S2/b
phash
s , T2, i2〉).

and outputs this W2 along with hk2 as internal state of Pj . Note that pwd is
not given out.

Complexity of the simulator. Observe that on stealing the password file, the
function OfflineTestPwd is only called once for each random oracle input, which
was not already tested by calling TestPwd. Hence the number of unique password
arguments passed to TestPwd and OfflineTestPwd of FapwKE combined in the ideal
world is at most the number of random oracle calls in the hybrid model.

Time complexity-wise, most of the simulator steps are log q-time, where q is
the security parameter. Due to Step 4 of the simulator code, where for each of
the m sessions, in the worst case, it might go through all the n random oracle
calls, there is an additive component of m ∗n ∗ log q time. So the simulator runs
in O(mn log q)-time.

6.7 Proof of Indistinguishability - Series of Experiments.

We now describe a series of experiments between a probabilistic polynomial time
challenger C and the environment Z, starting with Expt0 which we describe next.
We will show that the view of Z in Expt0 is same as its view in UC-APAKE
ideal-world setting with Z interacting with FapwKE and the UC-PAKE simulator
S described above in Section C.2. We end with an experiment which is identical
to the real world execution of the protocol in Fig 2. We will show that the
environment has negligible advantage in distinguishing between these series of
experiments, leading to a proof of realization of FapwKE by the protocol Π.

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. Responding to a random oracle query on input m: If there is a record of the
form (m, r), then just return r. Otherwise, generate r ← Zq, record (m, r)
and return r.

2. The challenger C picks the CRS just as in the real world, except the QA-
NIZK CRS-es are generated using the crs-simulators, which also generate
simulator trapdoors τc, τs. It retains a1, a2, τc, τs, hkc, hks as trapdoors.
Next, (on StorePwdFile) the challenger calls the random oracle with query
(sid, Pi, Pj ,pwd). It sets phash equal to the random oracle response and sets

the server persistent state as bphash
s .

Define PhashIsSet to be true after either StealPwdFile has been called or
the random oracle has been called with (sid, Pi, Pj ,pwd) by the adversary,
and false before.
Define PwdCalled to be true after the random oracle has been called with
(sid, Pi, Pj ,pwd) by the adversary, and false before.
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3. On receiving (CltSession, sid, ssid, Pi, Pj) from Z, C generates (hk1,hp1)←
vers.hkgen(crss). Next, C chooses r1, r

′
1, r
′′
1 , s1 at random, and sets R1 = gr1 ,

S1 = ar11 bµc ·gr
′
1 and T1 = gr

′′
1 . It then hands (R1, S1, T1,hp1) to Z on behalf

of this instance.
4. On receiving (R′2, S

′
2, T

′
2,hp

′
2) from Z, intended for client session (Pi, ssid)

(and assuming no corruption of this instance):

(a) If the received elements are either not in their respective groups, or are
trivially 1, output sk1 ← GT .

(b) If the message received is identical to message sent by C in the same
session (i.e. same ssid) on behalf of the peer, then output sk1 ← GT
(unless the simulation of peer also received a legitimate message and its
key has already been set, in which case the same key is used to output
sk1 here).

(c) If PhashIsSet is false, then output sk1 ← GT .

(d) If S′2 6= R′a22 bphash
s , then output sk1 ← GT .

(e) At this point we must have S′2 = R′a22 bphash
s .

Compute: i′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2).

If T ′2 6= sphfs.privH(hk, 〈R′2, S′2/b
phash
s 〉, i′2) then output sk1 ← GT .

Else, compute W1 = simc(crsc, τc, 〈R1, S1,b
phash
s , T1, i1〉). Output:

sk1 = vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2, i

′
2〉) · verc.pubH(hp′2,W1)

5. On a Corrupt call for client Pi, output pwd. If Step 3 has already happened
then also output hk1 and W1 = simc(crsc, τc, 〈R1, S1,b

phash
s , T1, i1〉).

6. On receiving (SrvSession, sid, ssid, Pj , Pi) from Z, follow steps symmetric
to Step 4, swapping subscripts and languages accordingly and replacing the
condition PhashIsSet by PwdCalled in Step 4c.

7. On a Corrupt call for server Pj , if Step 3 has already happened then out-

put hk2, and W2 = sims(crss, τs, 〈R2, S2/b
phash
s , T2, i2〉). Finally, execute a

StealPwdFile call, as described below.
8. On a StealPwdFile call, return bphash

s as the Server Persistent State to the
adversary.

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned
above for ease of exposition).

Note that each instance has two asynchronous phases: a phase in which C
outputs R1, S1, ... to Z, and a phase where it receives a message from Z. How-
ever, C cannot output sk1 until it has completed both phases. These orderings
are dictated by Z. We will consider two different kinds of temporal orderings. A
temporal ordering of different instances based on the order in which C outputs
sk1 in an instance will be called temporal ordering by key output. A tem-
poral ordering of different instances based on the order in which C outputs its
first message (i.e. R1, S1, ...) will be called temporal ordering by message
output. It is easy to see that C can dynamically compute both these orderings
by maintaining a counter (for each ordering).
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We now claim that the view of Z in Expt0 is statistically indistinguishable
from its view in its combined interaction with FapwKE and S. The CRS is set
identically by both C and S. While C has access to pwd from the outset and
sets up the random oracle output phash corresponding to (sid, Pi, Pj , ssid) at
the beginning, S doesn’t have access to pwd at the beginning and hence defers
this step till the point where either (1) a correct online guess has been made, (2)
the password file was stolen and a correct offline guess was made, (3) the client
was corrupted. In all these three cases the simulator gets to know pwd and has
the chance to set phash. At the point when password file is stolen, the correct
pwd may not have been guessed, but phash has to be set in order to output
the server persistent state. In that case S generates a random phash, remembers
it and assigns it to the correct input when the actual password is queried. At
all points, although their algorithms differ, we can see that C and S respond to
random oracle queries identically.

Both C and S generate the client and server flows identically. In particular,
observe that the condition PhashIsSet exactly captures the state of S for a
client session where it knows phash and can compute the relevant elements and
keys. C uses the condition PhashIsSet to do the same computations. Similarly
for the server sessions with the condition PwdCalled. The stronger condition
for the server reflects the absence of the “Client Only Step” in the server sessions
simulation. In the steps where a party receives a message from the adversary,
both C and S end up computing keys identically. While C directly checks by
exponentiation with phash in the case that pwd was guessed correctly, S goes
through the list of random oracle calls to see which response was used for expo-
nentiation as it may not know pwd or phash at this point.

Expt1 : In this experiment, Step 4c is removed from both client and server instances.

For client instances, observe that if the condition PwdCalled does not hold,
then phash remains information theoretically unknown to the adversary. Hence
the simulator code has statistically negligible chance to reach Step 4e.

For server instances (see step 6), it remains to be proven that even if the

adversary steals bphash
s , there is negligible chance of it passing the condition

S′1 = R′a11 bphash
c , unless it queries the random oracle with the correct password.

This can be proved by employing DDH on (bs,bc,b
phash
s ,bphash

c ). Observe
that if the random oracle is not called on the correct password, then the whole
experiment can be simulated without phash in the clear and just using (bs,bc,

bphash
s ,bphash

c ). In particular the condition S′1
?
= R′a11 bphash

c can be switched

by DDH to S′1
?
= R′a11 bzc, where z is independently random from phash. At

this point, we see again that the adversary has statistically negligible chance of
making it to Step 4e.

Once the Step 4c is removed, we switch back to the real DDH tuple, thus
reaching Expt1.

Expt2 : In this experiment Step 4d is dropped altogether and Step 4e altered as

follows: The condition T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b
phash
s 〉, i′2) in Step 4e in
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Expt0 is replaced by:

(S′2 6= R′a22 bphash
s ) or (T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b

phash
s 〉, i′2)).

Rest of the computation of sk1 in Step 4e remains the same.

This is just combining Steps 4d and 4e.

Expt3 : In this experiment, in Step 4e, the condition is replaced by just T ′2 6=
sphfs.privH(hks, 〈R′2, S′2/b

phash
s 〉, i′2), i.e. the disjunct (S′2 6= R′a22 bphash

s ) is
dropped.

First note that T1 is being computed randomly. The experiment Expt3 is then
statistically indistinguishable from Expt2 by smoothness of sphfs (note that it
can be shown that the polynomial number of extra bits of information leaked
by the conditions T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b

phash
s 〉, i′2) themselves have a

negligible effect on the smoothness of sphfs – this argument is employed in the
Cramer-Shoup CCA2-encryption scheme [CS02]).

Correcting Message Outputs to use pwd

Expt4 : In this experiment the challenger in Step 3 computes S1 in each client in-

stance as ar11 bphash
c · gr

′
1

1 . Symmetrically, for the server instance. Note the use
of phash instead of µ.

This is statistically the same, as in each instance the challenger picks a fresh and
random r′1, and it is not used anywhere else.

Expt5 : In each instance, S1 is computed as follows: ar11 bphash
c . Further, T1 is com-

puted as follows: T1 = sphfc.pubH(hpc, 〈R1, S1,b
phash
s 〉, i1; r1,phash). Sym-

metrically, for the server instances.

To show that Expt4 is computationally indistinguishable from Expt5, we define
several hybrid experiments Expt4,i inductively. Experiment Expt4,0 is identical
to Expt4. If there are a total of N instances, Expt4,N will be identical to Expt5.
Experiment Expt4,i+1 differs from experiment Expt4,i in only (temporally ordered
by message output) the (i+1)-th instance. While in Expt4,i, the (i+1)-th instance
is simulated by C as in Expt4, in Expt4,i+1 this instance is simulated as in Expt5.

Lemma 1. For all i : 0 ≤ i ≤ N , the view of Z in experiment Expt4,i+1 is
computationally indistinguishable from the view of Z in Expt4,i.

Proof. We define several hybrid experiments. Experiment G0 is identical to
Expt4,i. We describe the client sessions here - the server sessions are symmetrical.

In G1, in the (i+ 1)-th instance T1 is computed differently:

T1 = sphfc.privH(hkc, 〈R1, S1,b
phash
s 〉, i1) (1)

This is statistically the same as all other T1 are either randomly computed
(in instances greater than (i+1)), or are computed using the public hash with hp
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(in instances less than (i+ 1)). Then the claim follows by smoothness of sphfc,

and noting that S1 6= Ra11 bphash
c in instance (i+ 1) (by construction of Expt4,i).

In the next experiment G2, the challenger generates the S1 in the (i+ 1)-th

instance as follows: S1 = ar11 bphash
c . That the view of Z in experiments G1 and

G2 are computationally indistinguishable follows from the DDH assumption in
group G1 (note a1 is not being used by the challenger, now that Step 4d is no
more).

In the next experiment G3, change the computation of T1 in session (i+ 1)

to use the public hash (of sphfc) and witness r1. Since, now (R1, S1,b
phash
s ) is

in the language Lc, indistinguishabilty from the previous experiment follows by
correctness of sphfc. ut

Expt6 : In this experiment, the crs is generated using crsgen instead of the crs-
simulator, and W1 is computed everywhere by prover of the QA-NIZK instead
of the proof simulator.

Indistinguishability from the previous experiment follows by zero-knowledge
property of the QA-NIZK, noting that all proofs being generated are on lan-
guage memebers.

At this point, the complete experiment Expt6 can be described as follows:

1. Responding to a random oracle query on input m: If there is a record of the
form (m, r), then just return r. Otherwise, generate r ← Zq, record (m, r)
and return r.

2. The challenger C picks the CRS just as in the real world. It retains a1, a2, hkc,
hks as trapdoors. Next the challenger calls the random oracle with query
(sid, Pi, Pj ,pwd). It sets phash equal to the random oracle response and sets

the server persistent state as bphash
s .

3. On receiving (CltSession, sid, ssid, Pi, Pj) from Z, C generates (hk1,hp1)←
vers.hkgen(crss). Next, C chooses r1 at random, and sets R1 = gr1 , S1 =

ar11 bphash
c and T1 = sphfc.pubH(hpc, 〈R1, S1,b

phash
c 〉, i1; r1,phash). It then

hands (R1, S1, T1,hp1) to Z on behalf of this instance.
4. On receiving (R′2, S

′
2, T

′
2,hp

′
2) from Z, intended for client session (Pi, ssid)

(and assuming no corruption of this instance):

(a) If the received elements are either not in their respective groups, or are
trivially 1, output sk1 ← GT .
(b) If the message received is identical to message sent by C in the same
session (i.e. same ssid) on behalf of the peer, then output sk1 ← GT (unless
the simulation of peer also received a legitimate message and its key has
already been set, in which case the same key is used to output sk1 here).
(e) Compute: i′2 = H(sid, ssid, Pj , Pi, R

′
2, S
′
2,hp

′
2).

If T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b
phash
s 〉, i′2) then output sk1 ← GT .

Else, compute W1 = proverc(crsc, 〈R1, S1,b
phash
s , T1, i1〉). Output:

sk1 = vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2, i

′
2〉) · verc.pubH(hp′2,W1)

25



5. On a Corrupt call for client Pi, output pwd. If Step 3 has already happened
then also output hk1 and W1 = proverc(crsc, 〈R1, S1,b

phash
s , T1, i1〉).

6. On receiving (SrvSession, sid, ssid, Pj , Pi) from Z, follow steps symmetric to
Step 4, swapping subscripts and languages accordingly.

7. On a Corrupt call for server Pj , if Step 3 has already happened then out-

put hk2, and W2 = provers(crss, 〈R2, S2/b
phash
s , T2, i2〉). Finally, execute a

StealPwdFile call, as described below.
8. On a StealPwdFile call, return bphash

s as the Server Persistent State to the
adversary.

Handling Legitimate Messages

Expt7 : In this experiment the Step 4b is modified as follows:
Step 4b: If the message received is identical to message sent by C in the same
session (i.e. same ssid) on behalf of the peer, and if simulation of peer also
received a legitimate message and its key has already been set, then output
that same key here. Else, go to Step 4e.

To show that Expt7 is indistinguishable from Expt6 we need to go through
several hybrid experiments. In each subsequent hybrid experiment one more
instance is modified, and the order in which these instances are handled is de-
termined by temporal order of key output. In the hybrid experiment Expt6,i

(N ≥ i ≥ 1), the Step 3(b) in the i-th temporally ordered instance is modified as
required in Expt7 description above. Experiment Expt6,0 is same as experiment
Expt6, and experiment Expt6,N is same as experiment Expt7.

Lemma 2. For all i ∈ [1..N ], experiment Expt6,i is computationally indistin-
guishable from Expt6,i−1.

Proof. The lemma is proved using several hybrid experiments of its own. The
experiment H0 is same as Expt6,i−1.

In experiment H1 the CRS is set as in the real world, except that the QA-
NIZK crsc is set using the crs simulators crssimc (the challenger retains the
trapdoors τc output by the crs simulator). All proofs W1 are still computed
using proverc. Experiments H0 and H1 are indistinguishable as the QA-NIZK
has the property that the simulated CRS and the real-world CRS are statistically
identical.

In experiment H2, in instance i, the value W1 (in Step 4e or corruption) is
generated using the proof simulator using trapdoor τ . Indistinguishability follows
by zero-knowledge property of the QA-NIZK as the proof being generated is on
a language member.

In experiment H3, in instance i, the value T1 is generated using the private
hash key hkc, and the private hash function sphfc.privH (thus eliminating the use
of witness r1). Experiments H2 and H3 are indistinguishable by the correctness
of sphfc.

In experiment H4, in instance i, the values R1, S1 are generated as R1 = gr1 ,
S1 = ar11 bphash

c · gr′1 . where r1, r
′
1 are random and independent. This follows by

employing DDH on g,gr1 ,a1 and either ga1r1 or ga1r1+r′1 .
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In experiment H5, in peer of instance i, in Step 4e the condition T ′1 6=
sphfc.privH(hkc, 〈R′1, S′1,b

phash
s 〉, i′1) is replaced by (S′1 6= R′a11 bphash

c ) or T ′1 6=
sphfc.privH(hkc, 〈R′1, S′1,b

phash
s 〉, i′1). Indistinguishability from experiment H4 fol-

lows by smooth2 property of sphfc, noting that at most one bad sphfc.privH is
being output to the Adversary (namely T1 in instance i).

In experiment H6, in instance i, change Step 4b as follows: If the message
received is identical to message sent by C in the same instance (i.e. same SSID)
on behalf of the peer,

– If simulation of peer also received a legitimate message and its key has already
been set, then output that same key here. If peer is corrupted, output the key
supplied by the Adversary.

– Else, compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2), Output

vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2〉, i′2) ·verc.privH(hk2, 〈R1, S1,b

phash
s , T1〉, i1)

Here hk2 is the hk output by vers.hkgen in the peer instance of instance i.
The experiments H6 and H5 are computationally indistinguishable by noting

the following three facts:

1. In the peer of instance of instance i (which generated hk2), in Step 4e the
computation verc.privH(hk2, ·) is on a language member, as this computation
is only reached if the the incoming tuple is in the language.

2. Also, note that only one QA-NIZK proof is being simulated and that is in
this same instance, but in a mutually exclusive step (Step 4e or corruption).
Moreover, the CRS generated by the crs simulator is statistically identical
to the CRS generated by crsgenc.

3. Then, verc.privH(hk2, 〈R1, S1,b
phash
s , T1〉, i1) is random even when the ad-

versary is given hp2 by smoothness of the QA-NIZK, since S1 6= Ra11 bphash
c .

In experiment H7, in peer of instance i, in Step 4e the condition “(S′1 6=
R′a11 bphash

c ) or T ′1 6= sphfc.privH(hkc, 〈R′1, S′1,b
phash
c 〉, i′1)” is replaced by “T ′1 6=

sphfc.privH(hkc, 〈R′1, S′1,b
phash
c 〉, i′1)”. Indistinguishability from experiment H6

follows by smooth2 property of the sphfc, noting that at most one bad sphfc.privH
is being output to the Adversary (namely T1 in instance i).

In experiment H8, in instance i, R1, S1 are generated as R1 = gr1 , S1 =
ar11 bphash

c , by employing DDH.
In experiment H9, in instance i, T1 is generated using the public hash key

hpc, and witness r1. Indistinguishability follows by correctness of the sphf.
In experiment H10, the QA-NIZK is generated using the real world CRS

generator. Moreover, in instance i, in Step 4e and corruption step, W1 is com-
puted using the real world prover. Indistinguishability follows by zero-knowledge
property of the QA-NIZK.

In experiment H11, in Step 4b the key is output as follows:

– Else, compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2).

Compute W1 = proverc(crsc, 〈R1, S1,b
phash
s , T1, i1〉, r1). Output

vers.privH(hk1, 〈R′2, S′2/b
phash
s , T ′2〉, ι′2) · verc.pubH(hp′2,W1)
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Indistinguishability follows by noting that hp′2 is exactly the hp2 computed by
the challenger in the peer instance. The claim then follows by completeness of
the smooth QA-NIZK.

The induction step is complete now, as the above computation of the session
key is same as in Step 4e. ut

Handling Adversarial Messages

Expt8 : In this experiment in Step 4e the condition is changed to “(S′2 6= R′a22 bphash
s )

or T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b
phash
s 〉, i′2)”. In other words, the disjunct

(S′2 6= R′a22 bphash
s ) is introduced.

Indistinguishability follows by the same argument as employed in experiments
Expt3 and Expt2.

Expt9 : In this experiment Step 4e is dropped altogether.

We first show that if the condition:

(S′2 6= R′a22 bphash
s ) or T ′2 6= sphfs.privH(hks, 〈R′2, S′2/b

phash
s 〉, i′2)

holds, then (R′2, S
′
2/b

phash
s , T ′2, i

′
2) is not in language L+

s (for which the QA-NIZK
is defined). Clearly, if the first disjunct does not hold then the tuple is not in

the language. So, suppose (S′2 = R′a22 bphash
s ), with witness r2 for R′2. Then, by

correctness of the sphf,

sphfs.privH(hks, 〈R′2, S′2/b
phash
s 〉, i′2) = sphfs.pubH(hps, 〈R′2, S′2/b

phash〉, i′2; r2).

Therefore, again, the tuple is not in the language.
Thus, vers.privH(hk1, 〈R′2, S′2/b

phash
s , T ′2〉, i′2) is random, even when the Ad-

versary is given hp1, by smooth-soundness of the QA-NIZK.

Expt10 : In this experiment the Step 4b is dropped. In other words, the challenger
code goes straight from Step 4a to Step 4e.

Experiments Expt10 and Expt9 produce the same view for Z, since if both peers
(of a instance) received legitimate messages forwarded by Z, then Step 4e com-
putes the same instance key in both instances.

Finally, a simple examination shows that the view of Z in Expt10 is identical
to the real world protocol. That completes the proof of Theorem 3. ut
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A Proof of Theorem 1

Theorem 1. (re-stated) If a matrix distribution Dk on Z(k+1)×k
q is boostable to

a matrix distribution Dl,k on Zl×kq then the Dk-MDDH assumption implies the
Dl,k-MDDH assumption.

Proof. We prove this by a sequence of hybrids, where in the i-th hybrid we
transform row k + i from that of [Bs] to uniformly random. We start off with
i = 0, where we have the real output [Bs] and end with i = l− k where we have
the fake output which is uniformly random in Zlq.

The i-th hybrid ([B], [b]) is computed as follows. We sample [A] from Dk and
s from Zkq . We set [B̄] as [Ā] and, if i 6= 0, the row i of [B] as the row i of F[A].

All other rows j 6= i of [B] are set to the j-th row of E[Ā]. We set the top k
elements of [b] to be [Ās] and choose all the (k+ j)-th elements, where j < i, of
[b] uniformly at random from Zq. If i 6= 0, we set the (k + i)-th element of [b]
to be the i-th element of F[As]. For all j > i, we set the (k + j)-th element of
[b] to be the j-th element of E[Ās]. To summarize, [b] is computed as:

[Ās]
$
...
$

(F[As])i
(E[Ās])j=(i+1) to (l−k)


We observe that the 0-th hybrid has the distribution of ([B], [Bs]) and the (l−k)-
th hybrid has the distribution of ([B], [s′]), with s′ uniform in Zlq.

Now, (F[As])i = (Fl)i[Ās] + (Fr)i[As], where Fl is the first k-column sub-
matrix of F and Fr is the last column of F. Suppose we are given a Dk-MDDH
challenge ([A],χ = [As] or [s′]). If χ = [As], then (Fχ)i is distributed as
(F[As])i. Else, if χ = [s′], then (Fχ)i is distributed uniformly randomly in Zq,
since (Fr)i is overwhelmingly non-zero by design. Next we transition to an in-
termediate hybrid i′ where [b] is computed as:

[Ās]
$
...
$
$

(E[Ās])j=(i+1) to (l−k)


As shown above, the hybrid i′ is indistinguishable from hybrid i by the Dk-

MDDH assumption. Next we transition to the hybrid i+1 where [b] is computed
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as: 

[Ās]
$
...
$
$

(F[As])(i+1)

(E[Ās])j=(i+2) to (l−k)


The hybrid i + 1 is indistinguishable from hybrid i′, as EĀ is identically dis-
tributed as FA. The theorem is thus established by chaining all the hybrids.

B Hardness Assumptions

Definition 3 (DDH [DH76]). Assuming a generation algorithm G that out-
puts a tuple (q,G,g) such that G is of prime order q and has generator g, the
DDH assumption asserts that it is computationally infeasible to distinguish be-
tween (g, a ·g, b ·g, c ·g) and (g, a ·g, b ·g, ab ·g) for a, b, c← Zq. More formally,
for all PPT adversaries A there exists a negligible function ν() such that∣∣∣∣Pr[(q,G,g)← G(1m); a, b, c← Zq : A(g, a · g, b · g, c · g) = 1]−

Pr[(q,G,g)← G(1m); a, b← Zq : A(g, a · g, b · g, ab · g) = 1]

∣∣∣∣ < ν(m)

Note that this is a D1-MDDH assumption with the matrix A being the 2× 1
matrix which is the transpose of (a 1).

Definition 4 (SXDH [BBS04]). Consider a generation algorithm G taking
the security parameter as input, that outputs a tuple (q,G1,G2,GT , e,g1,g2),
where G1,G2 and GT are groups of prime order q with generators g1,g2 and
e(g1,g2) respectively and which allow an efficiently computable Zq-bilinear pair-
ing map e : G1 ×G2 → GT . The Symmetric eXternal decisional Diffie-Hellman
(SXDH) assumption asserts that the Decisional Diffie-Hellman (DDH) problem
is hard in both the groups G1 and G2.

C Single-Round UC Password-Based Key Exchange

The essential elements of the Universal Composability framework can be found
in [Can01]. In the following, we adopt the definition for password-based key
exchange (UC-PAKE) from Canetti et al [CHK+05].

C.1 UC-PAKE Definition

Just as in the normal key-exchange functionality, if both participating parties
are not corrupted, then they receive the same uniformly distributed session key
and the adversary learns nothing of the key except that it was generated. How-
ever, if one of the parties is corrupted, then the adversary determines the session
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Functionality Fpake

The functionality Fpake is parameterized by a security parameter k. It interacts with an
adversary S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query,
or if this is the second NewSession query and there is a record (Pj , Pi, pw

′), then record
(Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark
the record compromised and reply to S with “correct guess”. If pw 6= pw′, mark the
record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi,
then:
– If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk)

to player Pi.
– If this record is fresh, and there is a record (Pj , Pi, pw

′) with pw′ = pw, and a key
sk′ was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to
Pi.

– In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.
Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, Pi) from S: if there is a (Pi, Pj , pw) recorded, return
pw to S, and mark Pi corrupted.

Fig. 3. The password-based key-exchange functionality Fpake

key. This power to the adversary is also given in case it succeeds in guessing the
parties’ shared password. Participants also detect when the adversary makes an
unsuccessful attempt. If the adversary makes a wrong password guess in a given
session, then the session is marked interrupted and the parties are provided ran-
dom and independent session keys. If however the adversary makes a successful
guess, then the session is marked compromised, and the adversary is allowed to
set the session key. If a session remains marked fresh, meaning that it is neither
interrupted nor compromised. uncorrupted parties conclude with both parties
receiving the same, uniformly distributed session key.

The formal description of the UC-PAKE functionality Fpake is given in Fig-
ure 3.

The real-world protocol we provide is also shown to be secure when different
sessions use the same common reference string (CRS) To achieve this goal, we
consider the Universal Composability with joint state (JUC) formalism of Canetti
and Rabin [CR03]. This formalism provides a “wrapper layer” that deals with
“joint state” among different copies of the protocol. In particular, defining a
functionality F also implicitly defines the multi-session extension of F (denoted
by F̂): F̂ runs multiple independent copies of F , where the copies are distin-
guished via sub-session IDs ssid. The JUC theorem [CR03] asserts that for any
protocol π that uses multiple independent copies of F , composing π instead with
a single copy of a protocol that realizes F̂ , preserves the security of π.
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Generate g1 ← G1,g2 ← G2 and a = ga
1 with a← Zq as DH parameters ρ.

Let H be a CRHF, and sphf be a smooth2 SPHF family for the DH family.
(hp, hk)← sphf.hkgen(ρ).
Let (pargen, crsgen, prover, ver) be a Smooth QA-NIZK for language L,
L = {R,S, T, l : ∃r,R = gr

1, S = ar, T = sphf.pubH(hp, 〈R,S〉, l ; r)}.
crs← crsgen(ρ).

CRS := (ρ, hp,crs,H).

Party Pi Network

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose r1
$←− Zq, (hk1,hp1)← ver.hkgen(crs).

Set R1 = gr1
1 , S1 = pwd · ar1 , T1 = sphf.pubH(hp, 〈R,S1/pwd〉, i1; r1),

R1,S1,T1,hp1−−−−−−−−−→ Pj

W1 = prover(crs, 〈R1, S2, T1, i1〉; r1), where i1 = H(sid, ssid, Pi, Pj , R1, S1,hp1).
Erase r1, send (R1, S1, T1,hp1) and retain (W1,hk1).

Receive R′
2, S

′
2, T

′
2,hp

′
2.

If any of R′
2, S

′
2, T

′
2,hp

′
2 is not in their respective group or is 1,

set sk1
$←− GT , else

compute i′2 = H(sid, ssid, Pj , Pi, R
′
2, S

′
2,hp

′
2),

R′
2,S

′
2,T

′
2,hp

′
2←−−−−−−−−− Pj

Compute sk1 = ver.privH(hk1, 〈R′
2, S

′
2/pwd, T ′

2, i
′
2〉) · ver.pubH(hp′

2,W1).
Output (sid, ssid, sk1).

Fig. 4. Single-round UC-PAKE protocol under SXDH assumption.

C.2 Proof of Realization of the UC-PAKE Functionality

In this section we state and prove that the protocol in Fig. 4 realizes the multi-
session ideal functionality F̂pake.

Theorem 4. Assuming the existence of SXDH-hard groups, the protocol in Fig 4
securely realizes the F̂pake functionality in the Fcrs hybrid model, in the presence
of adaptive corruption adversaries.

We start by defining the UC simulator in detail.

The Simulator for the UC Protocol. We will assume that the adversary A in
the UC protocol is dummy, and essentially passes back and forth commands and
messages from the environment Z. Thus, from now on we will use environment
Z as the real adversary, which outputs a single bit. The simulator S will be the
ideal world adversary for F̂pake. It is a universal simulator that uses A as a black
box.

For each instance (session and a party), we will use subscript 2 along with
a prime, to refer to variables received in the message from Z (i.e A), and use
subscript 1 to refer to variables computed in the instance under consideration.
We will call a message legitimate if it was not altered by Z, and delivered in the
correct session and to the correct party.
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The simulator S picks the CRS just as in the real world, except the QA-
NIZK crs is generated using the crs-simulator, which also generates a simulator
trapdoor τ . It retains a, τ, hk as trapdoors.

The next main difference in the simulation of the real world parties is that
S uses a dummy message µ instead of the real password which it does not have
access to. Further, it decrypts the incoming message R′2, S

′
2, T

′
2 to compute a

pwd′, which it uses to call the ideal functionality’s test function. If the test
succeeds, it produces a sk (see below) and sends it to the ideal functionality to
be output to the party concerned.

New Session: Sending a message to Z. On message (NewSession, sid, ssid, i,

j, role) from F̂pake, S starts simulating a new instance of the protocol Π for party
Pi, peer Pj , session identifier ssid, and CRS set as above. We will denote this
instance by (Pi, ssid). To simulate this instance, S chooses r1, r

′
1, r
′′
1 at random.

Also, (hk1,hp1)← ver.hkgen(crs). It sets R1 = gr11 , S1 = µ ·ar1 ·gr
′
1

1 , T1 = g
r′′1
1 .

Let ι1 = H(sid, ssid, Pi, Pj , R1, S1,hp1). (Note the use of µ instead of pwd).
It retains r1, r

′
1, r
′′
1 , ι1,hk1 (and µ if chosen randomly). It then handsR1, S1, T1,

hp1 to Z on behalf of this instance.

On Receiving a Message from Z. On receiving a message R′2, S
′
2, T

′
2,hp

′
2

from Z intended for this instance (Pi, ssid), the simulator S makes the real
world protocol checks, namely group membership and non-triviality. If any of
these checks fail, it issues a TestPwd call to F̂pake with the dummy password
µ, followed by a NewKey call with a random session key, which leads to the
functionality issuing a random and independent session key to the party Pi
(regardless of whether the instance was interrupted or compromised).

Otherwise, if the message received from Z is same as message sent by S on
behalf of peer Pj in session ssid, then S just issues a NewKey call for Pi.

Else, it computes pwd′ by decrypting S′2, i.e. setting it to S′2/(R
′
2)a. S then

calls F̂pake with (TestPwd, ssid, Pi, pwd′). Regardless of the reply from F , it then
issues a NewKey call for Pi with key computed as follows (recall, R1, S1, ι1, r

′
1, r
′′
1

from earlier in this instance when the message was sent to Z). Let,

ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2),

W1 = sim(crs, τ, 〈R1, S1/pwd′, T1, ι1〉)

If T ′2 6= sphf.privH(hk, 〈R′2, (R′2)a〉, ι′2) then call F̂pake’s NewKey with a random
key else call NewKey with key

ver.privH(hk1, 〈R′2, (R′2)a, T ′2, ι
′
2〉) · ver.pubH(hp′2,W1).

By definition of F̂pake, this has the effect that if the pwd′ was same as the
actual pwd previously recorded in F̂pake (for this instance) then the session key
is determined by the Simulator as above, otherwise the session key is set to a
random and independent value.
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Corruption On receiving a Corrupt call from Z for instance Pi in session ssid,
the simulator S calls the Corrupt routine of F̂pake to obtain pwd. If S had already
output a message to Z, and not output sk1 (via a call to NewKey) it computes

W1 = sim(crs, τ, 〈R1, S1/pwd, T1, ι1〉).

and outputs this W1 along with pwd, and hk1. as internal state of Pi. Note that
this computation of W1 is identical to the computation of W1 in the computation
of key above used to call NewKey (which is really output to Z only when pwd′ =
pwd).

Without loss of generality, we can assume that in the real-world if the Adver-
sary (or Environment Z) corrupts an instance before the session key is output
then the instance does not output any session key. This is so because the Ad-
versary (or Z) either sets the key for that session or can compute it from the
internal state it broke into.

Proof of Indistinguishability - Series of Experiments. We now describe a series
of experiments between a probabilistic polynomial time challenger C and the en-
vironment Z, starting with Expt0 which we describe next. We will show that the
view of Z in Expt0 is same as its view in UC-PAKE ideal-world setting with Z
interacting with F̂pake and the UC-PAKE simulator S described above. We end
with an experiment which is identical to the real world execution of the protocol
in Fig 4. We will show that the environment has negligible advantage in distin-
guishing between these series of experiments, leading to a proof of realization of
Fpake by the protocol Π.

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. The challenger C picks the CRS just as in the real world, except the QA-
NIZK crs is generated using the crs-simulator crssim, which also generates
a simulator trapdoor τ . C retains a, τ, hk.

2. On receiving NewSession, sid, ssid, Pi, Pj ,pwd, role from Z, C generates (hk1,
hp1) by running ver.hkgen(crs). Next, it generates R1, S1, T1 by choosing

r1, r
′
1, r
′′
1 at random, and setting R1 = gr11 , S1 = µ · ar1 · gr

′
1

1 , T1 = g
r′′1
1 . It

sends these values along with hp1 to Z.
3. On receiving R′2, S

′
2, T

′
2,hp

′
2 from Z, intended for session ssid and party Pi

(and assuming no corruption of this instance)
(a) if the received elements are either not in their respective groups, or are

trivially 1, output sk1 chosen randomly and independently from GT .
(b) Otherwise, if the message received is identical to message sent by C in the

same session (i.e. same ssid) on behalf of the peer, then output sk1
$←− GT

(unless the simulation of peer also received a legitimate message and its
key has already been set, in which case the same key is used to output
sk1 here).

(c) Else, compute pwd′ = S′2/(R
′
2)a. If pwd′ 6= pwd (note pwd was given

in NewSession request), then output sk1 randomly and independently
from GT .
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(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2).

if T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2) then output a random value in
GT .
Else, compute W1 = sim(crs, τ , 〈R1, S1/pwd, T1, ι1〉), where ι1 = H(sid,
ssid, Pi, Pj , R1, S1,hp1), and output

ver.privH(hk1, 〈R′2, S′2/pwd, T2, ι
′
2〉) · ver.pubH(hp′2,W1).

4. On a Corrupt call, if Step 2 has already happened then output hk1, pwd and
W1 = sim(crs, τ, 〈R1, S1/pwd, T1, ι1〉),

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned
above for ease of exposition).

Note that each instance has two asynchronous phases: a phase in which C
outputs R1, S1, ... to Z, and a phase where it receives a message from Z. How-
ever, C cannot output sk1 until it has completed both phases. These orderings
are dictated by Z. We will consider two different kinds of temporal orderings. A
temporal ordering of different instances based on the order in which C outputs
sk1 in an instance will be called temporal ordering by key output. A tem-
poral ordering of different instances based on the order in which C outputs its
first message (i.e. R1, S1, ...) will be called temporal ordering by message
output. It is easy to see that C can dynamically compute both these orderings
by maintaining a counter (for each ordering).

It is straightforward to inspect that the view of Z in Expt0 is identical to its

view in its combined interaction with F̂pake and S, as C has just combined the
code of F̂pake and S (noting that in Step 3(d), pwd = pwd′)

Expt1 : In this experiment Step 3(c) is dropped altogether and Step 3(d) altered as
follows: In Step 3(d) in Expt0, the condition T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)
is replaced by “if (S′2 6= pwd ·(R′2)a) or T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)”.
Rest of the computation of sk1 in Step 3(d) remains the same.

We claim that the view of Z is statistically identical in Expt0 and Expt1. This
follows by noting that S′2 6= pwd·(R′2)a is equivalent to the condition pwd′ 6= pwd
in Expt0. The condition S′2 = pwd · (R′2)a held in Step 3(d) in Expt0, as that step
was only reached if this condition held.

Expt2 : In this experiment, in Step 3(d) the condition is replaced by just “if T ′2 6=
sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)”, i.e. the disjunct (S′2 6= pwd·(R′2)a) is dropped.

First note that T1 is being computed randomly. The experiment Expt2 is then
statistically indistinguishable from Expt1 by smoothness of sphf (note that it
can be shown that the polynomial number of extra bits of information leaked by
the conditions T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2) themselves have a negligible
effect on the smoothness of the sphf – this argument is employed in the Cramer-
Shoup CCA2-encryption scheme [CS02]).
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Correcting Message Outputs to use pwd

Expt3 : In this experiment the challenger in Step 2 computes S1 in each instance as

pwd · ar1 · gr
′
1

1 . Note the use of pwd instead of µ.

This is statistically the same, as in each instance the challenger picks a fresh and
random r′1, and it is not used anywhere else.

Expt4 : In each instance, S1 is computed as follows: pwd·ar1 . Further, T1 is computed
as follows: T1 = sphf.pubH(hp, 〈R1, S1/pwd〉, ι1).

To show that Expt3 is computationally indistinguishable from Expt4, we define
several hybrid experiments Expt3,i inductively. Experiment Expt3,0 is identical
to Expt3. If there are a total of N instances, Expt3,N will be identical to Expt4.
Experiment Expt3,i+1 differs from experiment Expt3,i in only (temporally ordered
by message output) the (i+1)-th instance. While in Expt3,i, the (i+1)-th instance
is simulated by C as in Expt3, in Expt3,i+1 this instance is simulated as in Expt4.

Lemma 3. For all i : 0 ≤ i ≤ N , the view of Z in experiment Expt3,i+1 is
computationally indistinguishable from the view of Z in Expt3,i.

Proof. We define several hybrid experiments. Experiment G0 is identical to
Expt3,i.

In G1, in the (i+ 1)-th instance T1 is computed differently:

T1 = sphf.privH(hk, 〈R1, S1/pwd〉, ι1) (2)

This is statistically the same as all other T1 are either randomly computed
(in instances greater than (i+ 1)), or are computed using the public hash with
hp (in instances less than (i+1)). Then the claim follows by smoothness of sphf,
and noting that Ra1 6= S1/pwd in instance (i+ 1) (by construction of Expt3,i).

In the next experiment G2, the challenger generates the S1 in the (i+ 1)-th
instance as follows: S1 = pwd · ar1 . That the view of Z in experiments G1 and
G2 are computationally indistinguishable follows from the DDH assumption in
group G1 (note a is not being used by the challenger, now that Step 3(c) is no
more).

In the next experiment G3, change the computation of T1 in session (i+ 1)
to use the public hash (of sphf) and witness r1. Since, now R1 and S1/pwd are
in the Diffie Hellman language, indistinguishabilty from the previous experiment
follows by correctness of sphf. ut

Expt5 : In this experiment, the crs is generated using crsgen instead of the crs-
simulator, and W1 is computed everywhere by prover of the QA-NIZK instead
of the proof simulator.

Indistinguishability from the previous experiment follows by zero-knowledge
property of the QA-NIZK, noting that all proofs being generated are on lan-
guage memebers.

At this point, the complete experiment Expt5 can be described as follows:
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1. The challenger C Picks the CRS just as in the real world. It retains a, hk.
2. On receiving NewSession, sid, ssid, Pi, Pj ,pwd, role from Z, C generates (hk1,

hp1) by running ver.hkgen(crs). Next, it generates R1, S1, T1 by choosing
r1 at random, and setting R1 = gr11 , S1 = pwd · ar1 , T1 = sphf.pubH(hp,
〈R1, S1/pwd〉, ι1), where ι1 = H(sid, ssid, Pi, Pj , R1, S1,hp1). It sends these
values along with hp1 to Z.

3. On receiving R′2, S
′
2, T

′
2,hp

′
2 from Z, intended for session ssid and party Pi

(and assuming no corruption of this instance)

(a) if the received elements are either not in their respective groups, or are
trivially 1, output sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the

same session (i.e. same ssid) on behalf of the peer, then output sk1
$←− GT

(unless the simulation of peer also received a legitimate message and its
key has already been set, in which case the same key is used to output
sk1 here).

(c) -
(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R

′
2, S
′
2,hp

′
2).

if T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2) then output randomly from GT .
(e) Else, Compute W1 = prover(crs, 〈R1, S1/pwd, T1, ι1〉; r1). Output

ver.privH(hk1, 〈R′2, S′2/pwd, T2, ι
′
2〉) · ver.pubH(hp′2,W1).

4. On a Corrupt call, if Step 2 has already happened then output hk1, pwd and
W1 = prover(crs, 〈R1, S1/pwd, T1, ι1〉; r1),

Handling Legitimate Messages

Expt6 : In this experiment the Step 3(b) is modified as follows:
Step 3(b): Otherwise, if the message received is identical to message sent by C
in the same session (i.e. same SSID) on behalf of the peer, and if simulation
of peer also received a legitimate message and its key has already been set,
then output that same key here. Else, go to Step 3(e).

To show that Expt6 is indistinguishable from Expt5 we need to go through
several hybrid experiments. In each subsequent hybrid experiment one more
instance is modified, and the order in which these instances are handled is de-
termined by temporal order of key output. In the hybrid experiment Expt5,i

(N ≥ i ≥ 1), the Step 3(b) in the i-th temporally ordered instance is modified as
required in Expt6 description above. Experiment Expt5,0 is same as experiment
Expt5, and experiment Expt5,N is same as experiment Expt6.

Lemma 4. For all i ∈ [1..N ], experiment Expt5,i is computationally indistin-
guishable from Expt5,i−1.

Proof. The lemma is proved using several hybrid experiments of its own. The
experiment H0 is same as Expt5,i−1.
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In experiment H1 the CRS is set as in the real world, except that the QA-
NIZK crs is set using the crs simulator crssim (the challenger retains the trap-
door η output by the crs simulator). All proofs W1 are still computed using
the prover. Experiments H0 and H1 are indistinguishable as the QA-NIZK has
the property that the simulated CRS and the real-world CRS are statistically
identical.

In experiment H2, in instance i, the value W1 (in Step 3(e) or corruption) is
generated using the proof simulator using trapdoor η. Indistinguishability follows
by zero-knowledge property of the QA-NIZK as the proof being generated is on
a language member.

In experiment H3, in instance i, the value T1 is generated using the private
hash key hk, and the private hash function sphf.privH (thus eliminating the use
of witness r1). Experiments H2 and H3 are indistinguishable by the correctness
of sphf.

In experiment H4, in instance i, the values R1, S1 are generated as R1 = gr11 ,

S1 = pwd · ar1 · gr
′
1

1 . where r1, r
′
1 are random and independent. This follows by

employing DDH on g1,g
r1
1 ,a and either gar11 or g

ar1+r′1
1 .

In experiment H5, in peer of instance i, in Step 3(d) the condition T ′2 6=
sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2) is replaced by “if (S′2 6= pwd · (R′2)a) or T ′2 6=
sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)”. Indistinguishability from experiment H4 fol-
lows by smooth2 property of the sphf, noting that at most one bad sphf.privH is
being output to the Adversary (namely T1 in instance i).

In experiment H6, in instance i, change Step 3(b) as follows: Step 3(b):
Otherwise, if the message received is identical to message sent by C in the same
instance (i.e. same SSID) on behalf of the peer,

– if simulation of peer also received a legitimate message and its key has already
been set, then output that same key here. If peer is corrupted, output the key
supplied by the Adversary.

– Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2), Output

ver.privH(hk1, 〈R′2, S′2/pwd, T ′2〉, ι′2) · ver.privH(hk2, 〈R1, S1/pwd, T1〉, ι1)

Here hk2 is the hk output by ver.hkgen in the peer instance of instance i.
The experiments H6 and H5 are computationally indistinguishable by noting

the following three facts:

1. In the peer of instance of instance i (which generated hk2), in Step 3(e)
the computation ver.privH(hk2, ·) is on a language member, as Step 3(e) is
only reached if the condition in Step 3(d) is false (which implies language
membership of the incoming tuple).

2. Also, note that only one QA-NIZK proof is being simulated and that is in
this same instance, but in a mutually exclusive step (Step 3(e) or corruption).
Moreover, the CRS generated by the crs simulator is statistically identical
to the CRS geenrated by crsgen.

3. Then, ver.privH(hk2, 〈R1, S1/pwd, T1〉, ι1) is random even when the adver-
sary is given hp2 by smoothness of the QA-NIZK, since S1/pwd 6= Ra1 .
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In experiment H7, in peer of instance i, in Step 3(d) the condition “if
(S′2 6= pwd · (R′2)a) or T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)” is replaced by “if
T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)”. Indistinguishability from experiment H6

follows by smooth2 property of the sphf, noting that at most one bad sphf.privH
is being output to the Adversary (namely T1 in instance i).

In experiment H8, in instance i, R1, S1 are generated as R1 = gr1 , S1 =
pwd · ar1 , by employing DDH.

In experiment H9, in instance i, T1 is generated using the public hash key
hp, and witness r1. Indistinguishability follows by correctness of the sphf.

In experiment H10, the QA-NIZK is generated using the real world CRS
generator. Moreover, in instance i, in Step 3(e) and corruption step, W1 is com-
puted using the real world prover. Indistinguishability follows by zero-knowledge
property of the QA-NIZK.

In experiment H11, in Step 3(b) the key is output as follows:

– Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2,hp

′
2).

Compute W1 = prover(crs, 〈R1, S1/pwd, T1, ι1〉, r1). Output

ver.privH(hk1, 〈R′2, S′2/pwd, T ′2〉, ι′2) · ver.pubH(hp′2,W1)

Indistinguishability follows by noting that hp′2 is exactly the hp2 computed by
the challenger in the peer instance. The claim then follows by completeness of
the smooth QA-NIZK.

The induction step is complete now, as the above computation of the session
key is same as in Step 3(e). ut

Handling Adversarial Messages

Expt7 : In this experiment in Step 3(d) the condition is changed to “if (S′2 6= pwd ·
(R′2)a) or T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2)”. In other words, the disjunct
(S′2 6= pwd · (R′2)a) is introduced.

Indistinguishability follows by the same argument as employed in experiments
Expt2 and Expt1.

Expt8 : In this experiment Step 3(d) is dropped altogether.

We first show that if (S′2 6= pwd ·(R′2)a) or T ′2 6= sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2),
then R′2, S

′
2/pwd, T ′2 and ι′2 are not in language L (for which the QA-NIZK is

defined). Clearly, if the first disjunct does not hold then the tuple is not in
the language. So, suppose S′2 = pwd · (R′2)a, with witness r2 for R′2. Then, by
correctness of the sphf,

sphf.privH(hk, 〈R′2, S′2/pwd〉, ι′2) = sphf.pubH(hp, 〈R′2, S′2/pwd〉, ι′2; r2).

Then again, the tuple is not in the language.
Thus, ver.privH(hk1, 〈R′2, S′2/pwd, T ′2〉, ι′2) is random, even when the Adver-

sary is given hp1, by smooth-soundness of the QA-NIZK.
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Expt9 : In this experiment the Step 3(b) is dropped. In other words, the challenger
code goes straight from 3(a) to 3(e).

Experiments Expt9 and Expt8 produce the same view for Z, since if both peers
(of a instance) received legitimate messages forwarded by Z, then Step 3(e)
computes the same instance key in both instances.

Finally, a simple examination shows that the view of Z in Expt9 is identical
to the real world protocol.
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