
Trick or Tweak:
On the (In)security of OTR's Tweaks

Raphael Bost1,2 and Olivier Sanders1

1 Direction Générale de l'Armement - Maîtrise de l'Information
2 Université de Rennes 1

Abstract. Tweakable blockcipher (TBC) is a powerful tool to design authenticated encryption
schemes as illustrated by Minematsu's O�set Two Rounds (OTR) construction. It considers an
additional input, called tweak, to a standard blockcipher which adds some variability to this prim-
itive. More speci�cally, each tweak is expected to de�ne a di�erent, independent pseudo-random
permutation.
In this work we focus on OTR's way to instantiate a TBC and show that it does not achieve
such a property for a large amount of parameters. We indeed describe collisions between the input
masks derived from the tweaks and explain how they result in practical attacks against this scheme,
breaking privacy, authenticity, or both, using a single encryption query, with advantage at least 1/4.
We stress however that our results do not invalidate the OTR construction as a whole but simply
prove that the TBC's input masks should be designed di�erently.

1 Introduction

Communications over an insecure channel usually rise the issue of con�dentiality and authenticity
of data exchanged through this channel. Although e�cient solutions are known for each of these
properties individually, their combination to ensure both is not obvious [BN00,Kra01] and has,
in practice, resulted in security breaches (e.g. [Kra01,AP13]). Also, the combination of di�erent
constructions, potentially relying on di�erent primitives, may reveal quite costly.

Designing an authenticated encryption (AE) scheme, which e�ciently achieves both authentic-
ity and con�dentiality, has thus become a major topic in cryptography, with many past contribu-
tions [Dwo04,Dwo07,MV04,BRW04,Rog04,KR11]. Since the beginning of the CAESAR competi-
tion [CAE14], a large number of new constructions have been proposed, from blockcipher modes
of operation [IMGM15,Min14,AFF+15,DN14,HKR15] to ad-hoc designs [Nik14], or sponge-based
constructions [BDP+14,ABB+14]. Among the former, OTR [Min14] follows an approach based
on tweakable blockciphers (TBC), a powerful primitive introduced by Liskov, Rivest and Wagner
[LRW02].

1.1 Tweakable Blockcipher

Compared to a regular blockcipher, a TBC Ẽ : K × T × {0, 1}n → {0, 1}n takes an additional
input T ∈ T , called a tweak, which adds some variability. As illustrated in [LRW02], a TBC
enables simpler designs and security proofs for AE schemes, and can be instantiated from a
blockcipher. To achieve e�ciency, the design of the input masks must take into account the fact
that the TBC is generally not used alone but rather in a mode of operation. In particular, the
cost of changing the tweak must be much smaller than the cost of changing the key.

The now common constructions to build a TBC out of a block cipher are the Xor-Encrypt
(XE) and Xor-Encrypt-Xor (XEX) constructions of [Rog04]. The principle of XE is to derive an
input mask ∆ from the tweak and xor it with the message before calling EK (XEX also xors
this mask to the output). The e�ciency comes from designing the input mask ∆ in such a way
that ∆i+1 (used to encrypt the i-th message block) can be easily derived from ∆i. For example,
in OCB2 [Rog04], ∆i+1 is obtained from ∆i by multiplying the latter by some elements of F2n

(namely X or (X + 1), where X generates F∗2n).
OTR's masks slightly di�ers from OCB2's one by using ∆i,0 = Xi+1δ for the 2i− 1-th block

and ∆i,1 = (Xi+1+1)δ for the 2i-th block (where δ is the encryption of the nonce). This approach
is very well suited to the Feistel-based construction of OTR.

1.2 Our Contribution

However, we show in this paper that this solution is, at best, unsafe and even totally insecure in
many cases. Indeed, the security of XE resides on the hardness of constructing collisions among
the input masks ∆i.

This can easily be proven for OCB2 due to the form of ∆ = Xi(X + 1)jEK(N). A collision
in the o�sets means that Xi(1 + X)j = Xi′(1 + X)j

′
and so that (1 + X)j−j

′
= Xi′−i. This

equation, along with the discrete logarithm of X+1 in base X, allows to de�ne bounds on i and
j excluding any collision. Unfortunately, this is no longer true for OTR due to the special form of
its o�sets. For example, if we just consider the input masks ∆i,0 = Xi+1δ and ∆i,1 = (Xi+1+1)δ,
it is impossible to formally exclude collisions: there are no algebraic reason why Xi should di�er
from Xj + 1 for any i, j ≤ B, for some bound B.

The simple fact that no formal proof can be provided should itself call for another design of
the masks, nevertheless one might still wonder if theses collisions are likely.

In this work, we investigate this issue and show that, for a large family of blocksize n ≤ 10000
(OTR is de�ned for any blockcipher size n ∈ N∗), standard choices of parameters lead to trivial
collisions. Moreover, we show that the block sizes outside this family are not necessarily secure
and need a speci�c, costly study to exclude collision for reasonable B. We focus on the most
popular choices, namely n = 64 and n = 128, and present a collision for the former case when
F264 is generated, as usual, using the primitive pentanomial P = X64 +X4 +X3 +X + 1. We
get similar results for n = 128 when F2128 is generated by some speci�c primitive pentanomials.
However, the latter do not include the usually used one, namely P = X128 +X7 +X2 +X + 1.
We therefore study more thoroughly this case and propose a bound B = 245 excluding collisions.
We do not claim that this bound is optimal but we provide evidence that collisions are likely to
occur between 245 and 264.

In a second part, we describe concrete attacks against privacy and authenticity resulting from
these collisions. They show that the latter do not simply invalidate the security proof but also
completely break the security of the construction.

Finally, we describe some ways of constructing the input masks which prevent collisions. We
therefore emphasize that our work does not question the intrinsic security of OTR seen as a TBC
mode of operation, but simply shows that the current instantiation of the TBC [Min14] should
be �xed.

2 Preliminaries

2.1 Basic Notations

For sake of clarity, we will use the same notations as the ones of [Min14]. The set of all �nite-
length binary strings, including the empty string ε, is denoted by {0, 1}∗. ∀S ∈ {0, 1}∗, |S|
denotes the length of S and |S|a = max{d(|S|/a)e, 1}. The concatenation of two binary strings S
and T is written ST . ∀S ∈ {0, 1}∗, (S[1], . . . , S[m])

n← S denotes the n-bit block partitioning of
S, i.e. S = S[1] . . . S[m], where |S[i]| = n for i < m and |S[m]| ≤ n (we thus have m = |S|n).
The sequence of a zeros is denoted by 0a. For all n ∈ N and S such that |S| ≤ n, Sn denotes the
padding S10n−|S|−1 if |S| < n and S otherwise. In the following, we will omit the subscript n if

it is made obvious by the context. For a �nite set S, we write S
$← S if S is uniformly chosen

from S.

2.2 Blockciphers and Tweakable Blockciphers

We review the standard de�nitions of blockciphers and tweakable blockciphers from [LRW02,Rog04].
A blockcipher is a function E : K × {0, 1}n → {0, 1}n where n ∈ N, K 6= ∅ is a �nite set and
E(K, .) = EK(.) is a permutation for each K ∈ K. The PRF and PRP advantages of E against
adversary A are de�ned as:

Adv
prf
E (A) = P[K $← K : AEK(.) ⇒ 1]− P[ρ $← Func(n) : Aρ(.) ⇒ 1]

Adv
prp
E (A) = P[K $← K : AEK(.) ⇒ 1]− P[π $← Perm(n) : Aπ(.) ⇒ 1]

2

where Func(n) (resp. Perm(n)) is the set of all the functions (resp. permutations) {0, 1}n →
{0, 1}n.

A tweakable blockcipher can be seen as a blockcipher with an additional input. It is formalized
as a function Ẽ : K × T × {0, 1}n → {0, 1}n where n ∈ N, K, T 6= ∅ are �nite sets and
Ẽ(K,T, .) = ẼK(T, .) = ẼTK(.) is a permutation for each K ∈ K and T ∈ T . The tweakable PRF
and tweakable PRP advantages of Ẽ against adversary A is de�ned as:

Adv
p̃rf

Ẽ
(A) = P[K $← K : AẼK(.,.) ⇒ 1]− P[ρ̃ $← Func(T , n) : Aρ̃(.,.) ⇒ 1]

Adv
p̃rp

Ẽ
(A) = P[K $← K : AẼK(.,.) ⇒ 1]− P[π̃ $← Perm(T , n) : Aπ̃(.,.) ⇒ 1]

where Func(T , n) (resp. Perm(T , n)) is the set of all mapping from T to functions (resp permu-
tations) {0, 1}n → {0, 1}n.

2.3 Authenticated Encryption

De�nition. An authenticated encryption AE[τ] having a τ -bit tag consists of an encryption
algorithm AE-Eτ and a decryption algorithm AE-Dτ . The former takes as input a key K ∈ Kae,
a nonce N ∈ Nae and an associated data A ∈ Aae along with a messageM ∈Mae and outputs a
ciphertext C ∈Mae as well as a tag TE ∈ {0, 1}τ . On input (K,N,A,C, TE), the latter outputs
a plaintext M such that |M | = |C| or an error symbol ⊥. The sets Kae, Nae, Aae andMae are
assumed to be non-empty and �nite.

Security Model. The security properties expected from an authenticated encryption scheme
are privacy and authenticity. The former informally requires that no adversary, even given access
to encryption queries, is able to distinguish AE[τ] from an oracle $ returning a random pair

(C, TE)
$← {0, 1}|M | × {0, 1}τ on input (N,A,M). This is formally de�ned by the following

advantage:

Adv
priv

AE[τ](A) = Pr[K
$← Kae : AAE−Eτ → 1]− Pr[A$ → 1].

We say an adversary A is nonce-respecting if it cannot submit two queries (Ni, Ai,Mi) and
(Nj , Aj ,Mj) with Ni = Nj for i 6= j. In this paper, we will always consider nonce-respecting

adversaries. It is claimed in [Min14] that Adv
priv

OTR[τ](A) ≤
6(q+σA+σM)2

2n where q is the number of

encryption queries and (σA, σM) = (
∑q

i |Ai|,
∑q

i |Mi|).
Authenticity informally requires that no adversary, even with access to encryption and decryp-

tion queries, is able to produce a valid tuple (N,A,C, TE), i.e. one such that AE-Dτ (N,A,C, TE) 6=⊥.
Obviously, (N,A,C, TE) must not have been returned by the encryption oracle. The authenticity
notion is de�ned by the advantage:

Advauth
AE[τ](A) = Pr[K

$← Kae : AAE−Eτ ,AE−Dτ forges]

where A forges if one of the decryption query (N ′i , A
′
i, C
′
i, T
′
E,i) does not return ⊥. Notice that

N ′i may be equal to Nj or N
′
i′ for all i, i

′ and j. It is claimed in [Min14] that Advauth
OTR[τ](A) ≤

6(q+q′+σA+σM+σA′+σC′)
2

2n where q (resp. q′) is the number of encryption (resp. decryption) queries,
(σA, σM) = (

∑q
i |Ai|,

∑q
i |Mi|) and (σA′ , σC′) = (

∑q
i |A′i|,

∑q
i |C ′i|).

2.4 Galois Field

For all non negative integers n, we denote by F2n the �eld with 2n elements and by F∗2n its
multiplicative group. To represent this �eld one usually [IK03,Rog04,Min14] selects the lexico-
graphically �rst polynomial P among the primitive polynomials of degree n with coe�cients in
F2 having a minimum number of non-zero coe�cients, and use F2[X]/P (X) as a representation
of F2n . [Ser98] provides such polynomials for n ≤ 10000. An element a ∈ F2n can then be written

3

N

pad

EK

δ

×x2

L

M [1] M [2]

⊕∆1,0

EK
⊕ẼN,1,0K

⊕
EK

∆1,1

ẼN,1,1K

⊕
C[0] C[1]

.

M [2`− 3] M [2`− 2]

⊕∆`−1,0

EK
⊕ẼN,`−1,0

K

⊕
EK

∆`−1,1

ẼN,`−1,1
K

⊕
C[2`− 3] C[2`− 2]

if m is even if m is odd authentication

M [m− 1] M [m]

⊕∆`,0

EK Z msb
⊕ẼN,`,0K

pad
⊕

EK

∆`,1

⊕
ẼN,`,1K

C[m− 1] C[m]

M [m]0n

⊕
msbEK

⊕
∆`,0

ẼN,`,1K

C[m]

Σ

⊕
∆∗,b1,b2

EK

TE

Ẽ∗,N,`,b1,b2K

Σ =M [2]⊕ . . .⊕M [m− 2]

⊕ Z ⊕ C[m]

Σ =M [2]⊕ . . .⊕M [m− 1]

⊕M [m]

Fig. 1 � Encryption core EFE of OTR for a message M = M [1] . . .M [m] and a blocksize n.
The integer ` is de�ned as dm2 e. ∆i,b = (Xi+1 + b)δ, for i = 1, . . . , ` and b ∈ {0, 1}. ∆∗,b1,b2 =
[(X + 1)X`+1 + X · b1 + b1 + b2]δ with b1 = 0 if m is odd and 1 otherwise while b2 = 0 if
|M [m]| < n and 1 otherwise. The dotted boxes represent the tweakable random functions of the
OTR construction.

as a formal polynomial b1X
n−1 + . . . + bn−1X + bn of degree n − 1 or equivalently as a n-bit

string b1 . . . bn. In the following, we will use both notations interchangeably.
For any a = b1X

n−1 + . . . + bn and c = b′1X
n−1 + . . . + b′n in F2n , the product a · c is

(
∑n

i=1 biX
n−i)(

∑n
j=1 b

′
jX

n−j) mod P (X). In particular, it is worthy to note that a · X can be
computed very e�ciently with a shift and a xor, hence the need for a low-weight polynomial P .
For example, for n = 119, one would select P (X) = X119 + X8 + 1 [Ser98], so a · X = (a <<
1)⊕ 0110b10

7b1.
The table in [Ser98] shows that, up to n = 10000, primitive trinomials exist for slightly over

one half of the values of n. In this case, the �eld F2n is usually generated by Xn+Xj+1 for some
j ∈ [1, n−1]. Otherwise, the table shows that, for n ≤ 10000, one can at least �nd an irreducible
pentanomial. For example, for n = 128, one can use P (X) = X128 +X7 +X2 +X + 1.

3 Description of OTR

Before describing our attack, we recall the AE scheme of [Min14], OTR[E, τ], parametrized by
a keyed permutation EK : {0, 1}n → {0, 1}n, and a tag length τ ≤ n. Its encryption algorithm
OTR-EE,τ consists of an encryption core EFE and an authentication core AFE which processes

4

the additional authenticated data. Since our attack applies on EFE , we omit the description of
this algorithm in Figure 1 and assume, without loss of generality, that the string A (authenticated
data) is empty.

EFE can be seen as a variation of the tweakable blockcipher based authenticated encryption
mode OCB [Rog04]. In OTR, tweakable blockciphers are instantiated using a two-rounds Feistel
permutation where internal round functions are PRFs with tweak-dependent input masks. Al-
gorithm 1 gives a formal description of the authenticated encryption algorithm EF[ρ̃, τ] that
uses a tweakable random function ρ̃. As de�ned in [Min14], the tweak space of ρ̃ is T =
({0, 1}n × N× {0, 1} ∪ {∗} × {0, 1}n)× (N× {0, 1} × {0, 1}).1

An important theorem in the security proof of OTR is that, if ρ̃ is a tweakable random
function, then EF[ρ̃, τ] is a secure authenticated encryption scheme.

Algorithm 1 Description of EF[ρ̃, τ].
1: Σ ← 0n

2: (M [1], . . . ,M [m])
n←M

3: `← dm/2e
4: for i = 1 to `− 1 do

5: C[2i− 1]← ρ̃N,i,0(M [2i− 1])⊕M [2i]
6: C[2i]← ρ̃N,i,1(C[2i− 1])⊕M [2i− 1]
7: Σ ← Σ ⊕M [2i]
8: end for

9: if m is even then

10: Z ← ρ̃N,`,0(M [i− 1])
11: C[m]← msb|M [m]|(Z)⊕M [m]
12: C[m− 1]← ρ̃N,`,1(C[m])⊕M [m− 1]

13: Σ ← Σ ⊕ Z ⊕ C[m]

14: if |M [m]| 6= n then TE ← ρ̃∗,N,`,1,0(Σ)
15: else TE ← ρ̃∗,N,`,1,1(Σ)
16: else . m is odd
17: C[m]← msb|M [m]|(ρ̃

N,`,0(0n))⊕M [m]
18: Σ ← Σ ⊕M [m]

19: if |M [m]| 6= n then TE ← ρ̃∗,N,`,0,0(Σ)
20: else TE ← ρ̃∗,N,`,0,1(Σ)
21: end if

22: C ← (C[1], . . . , C[m])
23: return (C, TE)

Theorem 1 (Theorem 3 of [Min14]). Fix τ ∈ {1, . . . , n}. For any adversary A,

Adv
priv

EF[ρ̃,τ](A) = 0.

Moreover, for any adversary A using q encryption queries and qv decryption queries,

AdvauthEF[ρ̃,τ](A) ≤
2qv
2n

+
qv
2τ
.

We refer to the original paper for the full proof of this theorem. Minematsu also instantiates ρ̃
using the XE approach [Rog04]:

ẼN,i,aK (P) = EK(∆i,a + P) with ∆i,a = Xi−1L+ a · δ

Ẽ∗,N,i,b1,b2K (P) = EK(∆∗,i,b1,b2 + P) with ∆∗,i,b1,b2 = (X + 1)(Xi−1L+ b1 · δ) + b2 · δ

where δ = EK(N) and L = X2δ. Once developed, the �nal expression of the ∆ values is

∆i,a = (Xi+1 + a)δ

∆∗,i,b1,b2 = (Xi+2 +Xi+1 + b1X + b1 + b2)δ.

To �nish the proof of security, [Min14] uses the Lemma 1, claiming the CPA security of the
tweakable PRF Ẽ, provided that E is a perfect blockcipher (a random permutation):

Lemma 2 (Lemma 1 of [Min14]). For any adversary A making q queries,

Adv
p̃rf

Ẽ
(A) ≤ 5q2

2n
.

The proof of Lemma 1 relies on the fact that the masks ∆ are assumed to be �di�erentially
uniform� for any two distinct inputs. However, we show below that this is not the case for a large
choice of parameters n, and that it actually completely breaks the security of OTR.

1 We slightly changed the notations from [Min14] to give a more formal construction of the tweakable PRF.

5

4 Collision in Masks Polynomials

4.1 Flaw in OTR's proof

In [Min14], all possible masks ∆ are regrouped in a set

S1(δ) =
{
Xi+1δ, (Xi+1 + 1)δ, (Xi+2 +Xi+1)δ,

(Xi+2 +Xi+1 +X)δ, (Xi+2 +Xi+1 + 1)δ, (Xi+2 +Xi+1 +X + 1)δ
}
i=1

(no upper bound on i is given but we can suppose that it is bounded by the maximum number
of blocks one can query for an encryption, and that is it at most 2n/2) and it is claimed that for
any ∆,∆′ ∈ S1(δ1) ∪ S1(δ2) such that ∆ and ∆′ are generated from two di�erent expressions,
and d ∈ {0, 1}n,

Pr
δ1,δ2

$←{0,1}n
[∆+∆′ = d] ≤ 1

2n

where the probability is taken over the random choices of δ1 and δ2. This is true if ∆ ∈ S1(δ1)
and ∆′ ∈ S1(δ2), but not if both ∆ and ∆′ are generated from the same δ.

Namely, suppose that there are two integers i and j ≥ 2 such that

Xi = Xj + 1 (1)

or Xi = Xj+1 +Xj + r(X) (2)

or Xi+1 +Xi = Xj+1 +Xj + r(X) (3)

with r(X) ∈ {0, 1, X,X + 1}. Then we directly have a collision inside S1(δ) for any δ. This
problem is not highlighted in the proof and we will show that we can actually �nd (and use)
such integers.

In the following, we will use the terms `type-1', `type-2', and `type-3' for collisions satisfying,
respectively, equations (1), (2) and (3).

4.2 Finding Collisions

The problem with the polynomials considered above is that it seems impossible, given n ∈ N
and a polynomial P generating F2n , to provide a formal argument excluding collisions for any
i, j ∈ [2, t] for some integer 2 < t ≤ 2n/2. One can note that we do not consider collisions in the
set {Xi}ti=2, as X is a generator of F∗2n (since P is primitive) and we chose t ≤ 2n/2.

Actually, we show that trivial collisions can be found when the de�nition polynomial P has
a special form, in particular when P is a trinomial or a pentanomial.

Case 1: F2n is generated by a trinomial P (X) = Xn +Xj + 1.
As explained in [Ser98], this is the standard choice for a majority of values n ≤ 10000. In

such a case, a collision in S1 is trivially given by P since Xn = Xj + 1 (this is thus a type-1
collision). Any encryption of a message M of m blocks such that dm2 e ≥ n− 1 will then lead to
the re-use of a mask and so to one of the attacks described in the next session.

One might argue that this can be avoided by generating F2n with a pentanomial instead of
a trinomial. However, this unconventional choice will negatively impact the performances of the
scheme and will not necessarily prevent collisions.

Case 2: F2n is generated by a pentanomial P (X) = Xn + Xj1 + Xj2 + Xj3 + 1. This case
includes, for example, n = 64 and n = 128. Although there is no trivial collision such as before,
it is still necessary to check, for the chosen n and P , that S1 only contains distinct elements,
which requires a signi�cant amount of computations and storage space. We here describe the
most popular cases:

6

� n = 64. The lexicographically �rst primitive pentanomial of degree 64 isX64+X4+X3+X+1
[Ser98]. It leads to a type-2 collision since X64 = X4 +X3 +X + 1.

� n = 128. Here again, the pentanomial generating F2128 may give an obvious collision. For
example, setting P = X128 +X68 +X67 +X + 1 leads to a type-2 collision X128 = X68 +
X67 + X + 1, and setting P = X128 + X127 + X61 + X60 + 1 leads to a type-3 collision
X128 +X127 = X61 +X60 + 1. However, this is not the case with the lexicographically �rst
primitive pentanomial of degree 128, P = X128 +X7 +X2 +X + 1, that one generally uses
to de�ne F2128 . The latter therefore needs a more thorough study that we defer to section 6.

5 Practical Attacks

One may wonder if the collisions found in the input masks simply invalidate the security proofs
of OTR. Unfortunately, this is not the case and we show below that any kind of collisions leads to
attacks breaking privacy and/or authenticity. We recall that, for sake of simplicity, authenticated
data are assumed to be empty in the following attacks. Attacks for non-empty authenticated data
can easily be derived from them.

5.1 Type-1 Collisions

A type-1 collision occurs when there are i and j such that Xi = Xj+1. We can assume, without
loss of generality, that j < i (since Xi = Xj + 1⇔ Xj = Xi + 1).

Breaking Authenticity To break authenticity, one can make a query on an arbitrary message
M = M [1] . . .M [2i − 3] for a nonce N , de�ning δ = EK(N) and L = X2δ, and receive the
ciphertext C = C[1] . . . C[2i− 3] along with the tag T = TE.

The message M has an odd number of blocks so C[2i− 3] = EK(X
iδ)⊕M [2i− 3].

Let C ′ = C ′[1] . . . C ′[2i−3]) such that C ′[k] = C[k] for k /∈ {2j−3, 2j−2, 2i−3}, C ′[2j−3] =
0n, C ′[2j − 2] =M [2j − 3]⊕ C[2i− 3]⊕M [2i− 3] and C ′[2i− 3] = C[2i− 3]⊕ C[2j − 3].

Then, the pair (C ′, TE) is valid: OTR-DE,τ (N, ε, C ′, T) = M ′[1] . . .M ′[2i − 3] 6=⊥. Indeed,
by construction, we have M ′[k] =M [k] ∀k /∈ {2j − 3, 2j − 2, 2i− 3}. Moreover, we have

M ′[2j − 3] = EK(C ′[2j − 3]⊕ (Xj + 1)δ)⊕ C ′[2j − 2]

= EK(0n ⊕ (Xj + 1)δ)⊕M [2j − 3]⊕ C[2i− 3]⊕M [2i− 3]

= EK((Xj + 1)δ)⊕M [2j − 3]⊕ EK(Xiδ)

=M [2j − 3]

and

M ′[2j − 2] = EK(M ′[2j − 3]⊕Xjδ)⊕ C ′[2j − 3]

= EK(M [2j − 3]⊕Xjδ)⊕ 0n

= C[2j − 3]⊕M [2j − 2].

Finally, we have M ′[2i− 3] =M [2i− 3]⊕ C[2j − 3]. Therefore:

Σ′ = Σ ⊕ C[2j − 3]⊕ C[2j − 3] = Σ

and the tag TE remains valid for C ′.
For an adversary A following this procedure,

Advauth
AE[τ](A) = 1.

7

Breaking Privacy. We describe here a way that an adversary A can use to break privacy with
advantage almost 1/4 with a single query. To break privacy, A queries the encryption oracle
with a random nonce N and a message M = M [1] . . .M [2i − 2] such that |M [2i − 2]| = 1 and
M [2j − 3] = 010n−2. A will receive C = C[1] . . . C[2i− 2] with |C[2i− 2]| = 1. If C[2i− 2] = 1
(which happens with probability 1

2), A just picks its output bit at random (she does not try
further up). Otherwise, we have C[2i− 2] = 010n−2 =M [2j − 3].

As a consequence, we get the following:

M [2i− 3] = EK(C[2i− 2]⊕ (Xi + 1)δ)⊕ C[2i− 3]

= EK(M [2j − 3]⊕Xjδ)⊕ C[2i− 3]

= C[2j − 3]⊕M [2j − 2]⊕ C[2i− 3]

andM [2j−2]⊕M [2i−3] = C[2j−3]⊕C[2i−3], which de�nes an e�cient distinguisher between
the random encryption oracle and the real encryption oracle. More formally,

Adv
priv

AE[τ](A) =
1

2

(
1− 1

2n

)
− 1

2
· 1
2
=

1

4
− 1

2n+1
.

5.2 Type-2 Collisions

A type-2 collision occurs when there are i and j such that Xi = Xj+1 + Xj + r(X) with
r(X) ∈ {0, 1, X,X + 1}. We show below how one can break authenticity if i ≥ j and privacy if
i < j.

Breaking Privacy for i < j. To break privacy, one submits a message M =M [1] . . .M [m] =
0n . . . 0nM [2i − 3]M [2i − 2]0n . . .M [m − 1]0|M [m]| where m, |M [m]|, M [2i − 3],M [2i − 2] and
M [m− 1] are de�ned as follows:

� If r(X) = X+1, then one sets m = 2(j−1), |M [m]| = n−1,M [2i−3] =M [2i−2] ∈ {0, 1}n
and M [m− 1] ∈ {0, 1}n.
Since the last block of M is 0n−1, the n − 1 most signi�cant bits of Z ⊕ C[m] are 0n−1.
Therefore, if the last bit of Z is 1 (which occurs with probability 1

2), Z ⊕ C[m] = 0n. Also,
in this case, Σ = M [2i − 2] = M [2i − 3]. If the last bit of Z is not 1, one simply submits
new messages with di�erent M [m− 1] until this condition is ful�lled.
The authentication tag TE then veri�es the following relation:

TE = EK(Σ ⊕∆∗,m,1,0)
= EK(M [2i− 3]⊕ (Xj+1 +Xj +X + 1)δ)

= EK(M [2i− 3]⊕Xiδ)

= C[2i− 3]⊕M [2i− 2]

Therefore, TE ⊕ C[2i− 3] =M [2i− 2], which breaks privacy.
� If r(X) = X, then one sets m = 2(j − 1), |M [m]| = n, M [2i− 3] =M [2i− 2] ∈ {0, 1}n and
M [m− 1] ∈ {0, 1}n. In such a case, Σ =M [2i− 2] =M [2i− 3] and the previous attack still
applies.

� If r(X) = 1, then one sets m = 2(j − 1) − 1, |M [m]| = n, M [2i − 3] = M [2i − 2] ∈ {0, 1}n
andM [m−1] = 0n. Here again, Σ =M [2i−2] =M [2i−3] so the equality TE⊕C[2i−3] =
M [2i− 2] still holds.

� Else, r(X) = 0. One then sets m = 2(j − 1) − 1, |M [m]| = n − 1, M [2i − 3] ∈ {0, 1}n,
M [m− 1] = 0n and M [2i− 2] is equal to M [2i− 3] except on the last bit. We then have:

Σ =M [2i− 2]⊕M [m]

=M [2i− 2]⊕ 0|M [m]|1

=M [2i− 3]

and TE ⊕ C[2i− 3] =M [2i− 2], as before.

8

In all these cases, we have a distinguishing criteria between the truly random oracle and the
real encryption oracle that can be trivially checked. An adversary A using this algorithm will
break the privacy with advantage 1

4 −
1

2n+1 with a single encryption query.

Breaking Authenticity for i ≥ j. The previous attacks against privacy shows that, for any
r(X), if there is a type-2 collision among the tweaks polynomials, with i < j, one can submit a
message M such that its encryption (C, TE) satis�es the equation TE = C[2i− 3]⊕M [2i− 2].
Informally, by taking this assertion backward, this means that one can can compute a valid tag
for some speci�c message from C[2i − 3] and M [2i − 2]. The idea of the authenticity attacks is
to query encryption for a message M such that |M | > 2in to get these two bitstrings and then
to truncate it to make TE a valid tag for a shorter message of size ≈ 2jn.

More speci�cally, we distinguish the following cases:

� If r(X) = X, then ∆i,0 = ∆∗,j,1,1. A selects an integer m > 2(i− 1) and submits a message
M =M [1] . . .M [m] such thatM [k] = 0n for k ∈ [1, 2(j−2)],M [2j−3],M [2j−2] ∈ {0, 1}n,
M [2i − 2] = M [2i − 3] = M [2j − 2] and M [k] ∈ {0, 1}n otherwise. Let (C, TE) be the
response to this encryption query. Then, the pair (C ′, TE′) ← (C[1] . . . C[2j − 4]C[2j −
2]C[2j − 3], C[2i− 3]⊕M [2i− 2]) is valid (recall that the last two blocks of C are switched
during the encryption process), and decrypts to M ′ = M [1] . . .M [2j − 3]. Indeed, if M ′ is
the decryption of C ′, M ′[k] = M [k] for k ≤ 2j − 2, Σ′ = M ′[2j − 2], the valid tag for C ′

should be

T̃E = EK(Σ′ ⊕∆∗,j,1,1)
= EK(M ′[2j − 2]⊕∆∗,j,1,1)
= EK(M [2i− 3]⊕∆i,0)

= C[2i− 3]⊕M [2i− 2]

= TE′

This clearly breaks the authenticity of the scheme.

� If r(X) = X+1 (and ∆i,0 = ∆∗,j,1,0), then one selects an integer n > 2(i−1) and queries the
messageM =M [1] . . .M [m] such thatM [k] = 0n for k ∈ [1, 2(j−2)],M [2j−3],M [2j−2] ∈
{0, 1}n,M [2i−2] =M [2i−3] =M [2j−2] andM [k] ∈ {0, 1}n are arbitrary strings otherwise.
With probability 1

2 , the last bit of C[2j−3] is 1. In this case, msbn−1(C[2j − 3]) = C[2j−3].
Let (C ′, TE′) = (C[1] . . . C[2j−4]C[2j−2]msbn−1(C[2j−3]), C[2i−3]⊕M [2i−2]) andM ′ the
decryption of C ′. Again, for k < 2j−3,M ′[k] =M [k], but we also haveM ′[2j−3] =M [2j−3]
and Z ′ = C[2j − 3]⊕M [2j − 2]:

M ′[2j − 3] = EK(C ′[2j − 2]⊕∆j,1)⊕ C ′[2j − 3]

= EK(msbn−1(C[2j − 3])⊕∆j,1)⊕ C[2j − 2]

= EK(C[2j − 3]⊕∆j,1)⊕ C[2j − 2]

=M [2j − 3]

Z ′ = EK(M ′[2j − 3]⊕∆j,0)

= EK(M [2j − 3]⊕∆j,0)

= C[2j − 3]⊕M [2j − 2]

As a direct consequence, we also have

Σ′ = Z ′ ⊕ C ′[2j − 2] = C[2j − 3]⊕M [2j − 2]⊕ msbn−1(C[2j − 3])

=M [2j − 2].

9

As a consequence, using similar equalities to the r(X) = X case, we can show that the

authentication tag for C ′ should be T̃E = C[2i−3]⊕M [2i−2] = TE′. This attack produces
a forgery with probability 1

2 .

� If r(X) = 1, ∆i,0 = ∆∗,j,0,1. A again selects m ≥ 2(i − 2) and queries encryption of M =
M [1] . . .M [m] such that M [k] = 0n for k ∈ [1, 2(j − 1)], M [2i− 3] = 0n and M [k] ∈ {0, 1}n
for k > 2i − 2. Let (C ′, TE′) = (C[1] . . . C[2j − 4]C[2j − 3], C[2i − 3] ⊕M [2i − 2]) and M ′

its decryption. Once again, we have M [k] =M ′[k] for k < 2j − 3. Moreover, as the number
of blocks in C ′ is odd,

M ′[2j − 3] = C ′[2j − 3]⊕ EK(∆j,0)

= C[2j − 3]⊕ EK(M [2j − 3]⊕∆j,0)

=M [2j − 2] = 0n

and hence Σ′ = 0n(=M [2i− 3]). Finally

TE′ = C[2i− 3]⊕M [2i− 2] = EK(M [2i− 3]⊕∆i,0)

= EK(Σ′ ⊕∆∗,j,0,1) = T̃E

where T̃E is the expected tag for C ′. Again, we are able to produce a forgery.

� If r(X) = 0, then one proceeds as in the previous case except that M [2i − 3] = 0n−11. We
will still have Σ′ = M [2i − 3] and the pair (C ′, TE′) = (C[1] . . . C[2j − 4]msbn−1(C[2j −
3]), C[2i− 3]⊕M [2i− 2]) is a valid forgery.

5.3 Type-3 Collisions

A type-3 collision occurs when there are ` and `′ such that X`+2+X`+1 = X`′+2+X`′+1+r(X),
with r(X) ∈ {0, 1, X,X + 1}. We assume, without loss of generality, that ` < `′.

The input masks of the form Xk+2 +Xk+1 + r(X) are the ones involved in the computation
of the tag TE. So a type-3 collision informally means that the input mask used to compute TE
for a message of length m′ such that `′ = dm′2 e is the same than the one used to compute TE
for a truncated message of length m verifying ` = dm2 e. Again, this leads to a practical attack
against authenticity.

Breaking Authenticity. As previously, the attack will slightly di�er according to r(X).

� If r(X) = X, ∆∗,`,0,0 = ∆∗,`′,1,1 A submits an encryption query for the message M [1] . . .
M [2`]M [2` + 1] . . .M [2`′ − 1]M [2`′] with M [2` − 1] = 0n, M [2`] has its last bit set to 1
(in particular msbn−1(M [2`]) = M [2`]), and M [i] = 0n for i ∈ [2` + 1, 2`′]. Upon receiving
(C[1] . . . C[2`′], TE), A forges (C ′, TE′) = (C[1] . . . C[2`− 2]msbn−1(C[2`− 1]), TE), which
is a valid ciphertext.
Indeed, if Σ is the checksum corresponding to (C[1] . . . C[2`′], TE) and Σ′ is the one corre-
sponding to the forged ciphertext, we have:

Σ′ =M [2]⊕ . . .⊕M [2`− 2]⊕ msbn−1(EK(∆`,0))⊕ C ′[2`− 1]

=M [2]⊕ . . .⊕M [2`− 2]⊕ msbn−1(EK(∆`,0)⊕ C[2`− 1])

=M [2]⊕ . . .⊕M [2`− 2]⊕ msbn−1(M [2`])

=M [2]⊕ . . .⊕M [2`− 2]⊕M [2`]

= Σ

Therefore, T̃E = EK(Σ
′ ⊕∆∗,`,0,0) = EK(Σ ⊕∆∗,`′,1,1) = TE, so the tag TE is also valid

for this truncated ciphertext C ′.

10

� if r(X) = X+1, one proceeds as in the previous case except that we take any value forM [2`]
and (C ′, TE′) = (C[1] . . . C[2` − 2]C[2` − 1], TE): we don't have to play with the padding.

Therefore, T̃E = EK(Σ′ ⊕ ∆∗,`,0,1) = EK(Σ ⊕ ∆∗,`′,1,1) = TE, and TE remains valid for
this truncated ciphertext.

� If r(X) = 1, ∆∗,`,0,0 = ∆∗,`′,0,1, and A will proceed as in the �rst case r(X) = X, except
that its �rst query will be with M with an odd number of blocks. A will query M =
M [1] . . .M [2`′+1] such thatM [2`−1] = 0n,M [2`] has its last bit set to 1, andM [i] = 0n for
i ∈ [2`+1, 2`′+1]. The forgery will be (C ′, TE′) = (C[1] . . . C[2`−2]msbn−1(C[2`−1]), TE).
The proof that (C ′, TE′) is a valid forgery proceeds exactly as for the r(X) = X case.

� if r(X) = 0, ∆∗,`,0,1 = ∆∗,`′,0,1, and A submits an encryption query onM =M [1] . . .M [2`′+
1] such that M [2` − 1] = 0n, and M [i] = 0n for i ∈ [2` + 1, 2`′ + 1]. The forgery will be
(C ′, TE′) = (C[1] . . . C[2`−2]C[2`−1], TE). The validity of the forgery can be easily proven
from the same arguments as before.

In every case, we are able to easily produce a valid forgery from a single encryption request.
For an adversary A following this procedure,

Advauth
AE[τ](A) = 1.

6 Practical security of OTR with 128 bits blocks

In the previous sections we exhibited tweak collisions on OTR breaking the security claim, in
particular for non generic block sizes (sizes that are not powers of 2) and for 64 bits wide block
ciphers. These collisions allows the adversary to break privacy and/or authenticity of the scheme
in two encryption/decryption requests with a small number of blocks. Here, we focus on the case
n = 128.

Also, note that for the sake of breaking OTR, we are only interested in collisions before the
birthday bound, i.e. collisions for which the maximum index i of the polynomials de�ned by ∆i,a

or ∆∗,i,b1,b2 is smaller than 2n/2. Higher order collisions are less interesting as OTR's proofs only
guarantees security below the birthday bound.

6.1 Analytical collisions

One strategy for quickly �nding collisions could rely on the fact that F2d ⊂ F2128 for any d
dividing 128. Indeed, any relation Y i = Y j + 1 for some Y ∈ F2d gives us a type-1 collision
Xa·i = Xa·j + 1 with a such that Y = Xa in F2128 . Such relations can easily be found in F2d for
d ∈ {16, 32, 64}, for example by computing the discrete logarithm of Y j +1 in base Y . However,

they do not lead to truly practical attacks because Y 2d−1 = 1 (as any element of F2d) which
implies that 2128 − 1|a · (2d − 1) (recall that X generates F∗2128) and so that (2128 − 1)/(2d − 1)
divides a. Therefore, such relations will only give collisions for quite large indices i (at least
greater than 264 + 1) and so beyond the birthday bound.

6.2 Searching for collisions exhaustively

We also tried to algorithmically and exhaustively �nd collisions among tweaks polynomials. This
can be done easily on a desktop computer for n = 64, but not for n = 128.

Indeed, to check collisions for tweak polynomials of index less than d, we need at least
2d · 128 bits of memory: the index i polynomials we are interested in are of the form Xi(+1)
and Xi +Xi−1(+X)(+1), so to save memory, we can only store Xi and Xi +Xi−1 mod P (X),
and do the collision search on the 126 high degree bits. To exhibit a genuine collision, we then

11

just have to recompute the di�erent possibilities for the polynomials and �nd the matching ones.
Also, for each polynomial, we have to store its `index' i, adding log d storage So if we were to
exhaustively search for all collisions for d < 264, we would need 2 · 264 · 192 bits, i.e. 24 exabytes.

On the computational point of view, the complexity of the algorithm is well-known, O(d log d),
as we can generate all the 2d polynomials, sort them using the lexicographic order on their bits,
and the search a collision in O(d).

It is also important to notice that the collision search is embarrassingly parallelizable: once
generated, we can put the polynomials in some bins, depending on the value of the high degree
bits, and limit the search to collisions inside each bin. This algorithm is described by Algorithm 2.

Algorithm 2 Our collision search algorithm
for k = 0 to 2p − 1 do . In parallel
Sk ← ∅ . Initialize bins

end for

for i = 0 to d do . In parallel
αi ← Xi mod P
kα ← msbp(αi)
Skα ← Skα ∪ (αi, i)
βi ← Xi+1 +Xi mod P
kβ ← msbp(βi)
Skβ ← Skβ ∪ (βi, i)

end for

for k = 0 to 2p − 1 do . In parallel
Lexicographically sort Sk
Sequentially scan Sk for a collision

end for

Algorithm 2 also o�ers a nice time/memory tradeo�: instead of keeping all bins in memory,
we can instead limit ourself to the bins �tting in memory, and run the algorithms several times
so that all the bins are spanned.

We coded this algorithm in C, using OpenMP and SSE instructions, and we were able to
show that there is no collisions among the tweak polynomials of index less than 245 for F2128

de�ned by X128 +X7 +X2 +X + 1, proving Proposition 3, which �xes Lemma 1 of [Min14].

Proposition 3. For any adversary A making q queries on Ẽ as de�ned in Section 3, with tweak

space T = {0, 1}128 × {0, . . . , 245} × {0, 1} ∪ {∗} × {0, 1}128 × {0, . . . , 245} × {0, 1} × {0, 1},

Adv
p̃rp

Ẽ
(A) ≤ 5q2/2128.

This exhaustive search took us around 15.5 CPU-years, using 3TB of RAM.

6.3 Probable collision before the birthday bound

The collisions exhibited earlier in the paper, for example in the n = 64 or n = 109 cases, use
the special form of the polynomial. For the latter, we use the fact that it is a trinomial, directly
giving a type-1 collision. For the former, as there are non zero coe�cients of two consecutive
degrees higher than 2, the polynomial gives a type-2 collision. One could wonder if, excepting
these `trivial' collisions, it is easy to �nd other before-birthday-bound collisions? Said otherwise,
what is the repartition of the indices of colliding polynomials? We can also remember that if the
tweak polynomials behaved randomly, we would expect a collision to be happening just before
the birthday bound.

We ran experiments for n = 16, 32 and 64, using (respectively) irreducible polynomials X16+
X5 +X3 +X +1, X32 +X7 +X3 +X2 +1 and X64 +X4 +X3 +X +1. They are summarized
in Table 1.

If we were to extrapolate, we would expect a collision for n = 128 using irreducible polynomial
X128 + X7 + X4 + X + 1 to also happen slightly before the birthday bound. We support this

12

n 16 32 64

polynomial (X + 1)X105 = (X + 1)X134 +X (X + 1)X30115 = X19743 +X X2242000936 = X2302312163 + 1

log(degree) 7.07 14.88 31.10

Table 1 � Lower indices of colliding tweak polynomials (excepted trivial ones).

claim with a few experiments we ran on smaller �elds. Figures 2 and 3 show the repartition of
the smallest collisions of tweak polynomials (i.e. the collision with the lowest index) depending
on the choice of the irreducible polynomial chosen to de�ne F2n . The graphs not only show that
the �rst collision is extremly likely to happen before the birthday bound, but also that it should
not happen too early before: we cannot really hope for gaining more than a few bits.

In this case the security proof of [Min14] is only invalidated by a small amount. However, we
do not have any formal argument to �ll the gap between 245 and 264.

4 ≤
d ≤

5

5 <
d ≤

6

6 <
d ≤

7

7 <
d ≤

8

8 <
d ≤

9

3

19

27

43

2

Fig. 2 � Log of the lowest indices of colliding tweak polynomials for every F216 representations
using the 94 degree 16 irreducible pentanomials over F2.

4 <
d ≤

5

5 <
d ≤

6

6 <
d ≤

7

7 <
d ≤

8

11
<
d ≤

12

12
<
d ≤

13

13
<
d ≤

14

14
<
d ≤

15

15
<
d ≤

16

16
<
d ≤

17

10
2 0 0 4 8

52

140

117

18

Fig. 3 � Log of the lowest indices of colliding tweak polynomials for every F232 representations
using the 351 degree 32 irreducible pentanomials over F2.

7 Other Instantiations of Input Masks

The previous collisions do not exclude GF doublings to derive the o�sets but simply show that
this should be done di�erently. One of the most obvious solution consists in de�ning the input
mask for the block M [i] as Xi+2δ and ∆∗ as X

m(X + 1)jδ where m is the number of blocks of

13

M and where j would depend on some properties of M , namely the parity and the number of
bits of M [m].

More speci�cally, the tweakable random function ρ̃ (see section 3) can be instantiated as
follows:

ẼN,i,aK (P) = EK(∆i,a + P) with ∆i,a = X2(i−1)+aL

Ẽ∗,N,i,b1,b2K (P) = EK(∆∗,i,b1,b2 + P) with ∆∗,i,b1,b2 = (X + 1)1+b2+2b1X2(i−1)L

where δ = EK(N) and L = X2δ, as previously.
A collision then only occurs if there are some i, j ∈ N∗ and a, b1, b2 ∈ {0, 1} such that:

X2(i−1)+a = (X + 1)1+b2+2b1X2(j−1) ⇔ X2(i−j)+a = (X + 1)1+b2+2b1

However, [Rog04] shows that the latter relation cannot hold for i, j ≤ 2115 (resp. i, j ≤ 251) when
F2128 (resp. F264) is generated by the standard polynomial. A collision attack would thus require
to query encryption for a huge message M , whose number of blocks would be far greater than
the birthday bound, which is impossible.

Unfortunately, such a solution entails a doubling of the number of multiplications, compared
to the original construction. It is therefore preferable to construct ρ̃ in a slightly di�erent way:

ẼN,i,aK (P) = EK(∆i,a + P) with ∆i,a = (X + 1)aXi−1L

Ẽ∗,N,i,b1,b2K (P) = EK(∆∗,i,b1,b2 + P) with ∆∗,i,b1,b2 = (X + 1)2+b2+2b1Xi−1L.

Here again, the argument of [Rog04] formally excludes any practical collision attack. The
point is that, since ∆i,1 = ∆i,0⊕∆i+1,0, almost one half of the o�sets only require one xor to be
computed. The cost is thus similar to the one of the original instantiation [Min14].

8 Conclusion

In this work, we have presented practical attacks against OTR resulting from collisions between
the input masks. Although the occurrence of such collisions depend on both the blocksize n and
on the polynomial generating F2n , we argue that the large number of parameters concerned calls
for another design of the input masks. We have therefore proposed some ways to immunize OTR
to these attacks which do not a�ect e�ciency while being provably secure.

Our results thus do not question the intrinsic security of OTR but simply point out a �aw
in the current instantiation.

Acknowledgements

We thank Jean-Gabriel Kammerer for useful discussions on the implementation of the collision
search algorithm, and Julien Devigne for his help.

References

ABB+14. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink, Nicky
Mouha, Qingju Wang, and Kan Yasuda. Primates. ht tp. competitions. cr. yp. to/caesar-submissions.
html, 2014.

AFF+15. Farzaneh Abed, Scott R. Fluhrer, Christian Forler, Eik List, Stefan Lucks, David A. McGrew, and
Jakob Wenzel. Pipelineable on-line encryption. In Carlos Cid and Christian Rechberger, editors,
FSE 2014, volume 8540 of LNCS, pages 205�223. Springer, Heidelberg, March 2015.

AP13. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record
protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526�540. IEEE Computer Society
Press, May 2013.

BDP+14. Guido Bertoni, Joan Daemen, Michaël Peeters, GV Assche, and RV Keer. Caesar submission: Keyak
v1. CAESAR 1st Round, competitions. cr. yp. to/round1/keyakv1. pdf, 2014.

14

BN00. Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume
1976 of LNCS, pages 531�545. Springer, Heidelberg, December 2000.

BRW04. Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX mode of operation. In Bimal K. Roy and
Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 389�407. Springer, Heidelberg, February
2004.

CAE14. Caesar: Competition for authenticated encryption: Security, applicability and robustness. http://
competitions.cr.yp.to/caesar.html. Technical report, 2014.

DN14. Nilanjan Datta and Mridul Nandi. ELmE: A misuse resistant parallel authenticated encryption. In
Willy Susilo and Yi Mu, editors, ACISP 14, volume 8544 of LNCS, pages 306�321. Springer, Heidelberg,
July 2014.

Dwo04. Morris J Dworkin. Recommendation for block cipher modes of operation: The ccm mode for au-
thentication and con�dentiality, sp 800-38c. Technical report, National Institute of Standards and
Technnology, 2004.

Dwo07. Morris J Dworkin. Recommendation for block cipher modes of operation: Galois/counter mode (gcm)
and gmac, sp 800-38d. Technical report, National Institute of Standards and Technnology, 2007.

HKR15. Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust authenticated-encryption AEZ and the
problem that it solves. In Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 15�44. Springer, Heidelberg, April 2015.

IK03. Tetsu Iwata and Kaoru Kurosawa. OMAC: One-key CBC MAC. In Thomas Johansson, editor,
FSE 2003, volume 2887 of LNCS, pages 129�153. Springer, Heidelberg, February 2003.

IMGM15. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authenticated encryption
for short input. In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume 8540 of LNCS,
pages 149�167. Springer, Heidelberg, March 2015.

KR11. Ted Krovetz and Phillip Rogaway. The software performance of authenticated-encryption modes. In
Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 306�327. Springer, Heidelberg, February
2011.

Kra01. Hugo Krawczyk. The order of encryption and authentication for protecting communications (or: How
secure is SSL?). In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 310�331. Springer,
Heidelberg, August 2001.

LRW02. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 31�46. Springer, Heidelberg, August 2002.

Min14. Kazuhiko Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom functions.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
275�292. Springer, Heidelberg, May 2014.

MV04. David A. McGrew and John Viega. The security and performance of the Galois/counter mode (GCM)
of operation. In Anne Canteaut and Kapalee Viswanathan, editors, INDOCRYPT 2004, volume 3348
of LNCS, pages 343�355. Springer, Heidelberg, December 2004.

Nik14. Ivica Nikolic. Tiaoxin-346. 2014.
Rog04. Phillip Rogaway. E�cient instantiations of tweakable blockciphers and re�nements to modes OCB and

PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 16�31. Springer,
Heidelberg, December 2004.

Ser98. Gadiel Seroussi. Table of low-weight binary irreducible polynomials, http://www.hpl.hp.com/

techreports/98/HPL-98-135.pdf?jumpid=reg_R1002_USEN. Technical report, HP, 1998.

15

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf?jumpid=reg_R1002_USEN
http://www.hpl.hp.com/techreports/98/HPL-98-135.pdf?jumpid=reg_R1002_USEN

	Trick or Tweak: On the (In)security of OTR's Tweaks
	Introduction
	Tweakable Blockcipher
	Our Contribution

	Preliminaries
	Basic Notations
	Blockciphers and Tweakable Blockciphers
	Authenticated Encryption
	Galois Field

	Description of OTR
	Collision in Masks Polynomials
	Flaw in OTR's proof
	Finding Collisions

	Practical Attacks
	Type-1 Collisions
	Type-2 Collisions
	Type-3 Collisions

	Practical security of OTR with 128 bits blocks
	Analytical collisions
	Searching for collisions exhaustively
	Probable collision before the birthday bound

	Other Instantiations of Input Masks
	Conclusion

