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Abstract. At Crypto 2015, Blondeau et al. showed a known-key analysis on the full PRESENT

lightweight block cipher. Based on some of the best differential distinguishers, they introduced
a meet in the middle (MitM) layer to pre-add the differential distinguisher, which extends the
number of attacked rounds on PRESENT from 26 rounds to full rounds without reducing differential
probability.
In this paper, we generalize their method and present a generic distinguisher on a kind of per-
mutations called PRESENT-like permutations. This generic distinguisher is divided into two phases.
The first phase is a truncated differential distinguisher with strong bias, which describes the un-
balancedness of the output collision on some fixed bits, given the fixed input in some bits, and
we take advantage of the strong relation between truncated differential probability and capacity
of multidimensional linear approximation to derive the best differential distinguishers. The second
phase is the meet-in-the-middle layer, which is pre-added to the truncated differential to propagate
the differential properties as far as possible. Different with Blondeau et al.’s work, we extend the
MitM layers on a 64-bit internal state to states with any size, and we also give a concrete bound to
estimate the attacked rounds of the MitM layer.
As an illustration, we apply our technique to all versions of SPONGENT permutations. In the trun-
cated differential phase, as a result we reach one, two or three rounds more than the results shown
by the designers. In the meet-in-the-middle phase, we get up to 11 rounds to pre-add to the dif-
ferential distinguishers. Totally, we improve the previous distinguishers on all versions of SPONGENT
permutations by up to 13 rounds.

Keywords: symmetric ciphers, PRESENT, SPONGENT, truncated differential, meet-in-the-middle,
multidimensional linear approximation.

1 Introduction

The design goal of cryptographic scheme is to meet the secure requirements, and the need
of resource restricted applications such as RFID and sensor networks makes the research of
lightweight cryptography naturally attract a lot of attention. Many lightweight cryptography
including stream ciphers like Trivium [1] and Grain [2], blockciphers like KATAN/KTANTAN [3],
PRESENT [4] and LED [5] etc. and hash functions like QUARK [6], SPONGENT [7,8] and PHOTON [9]
have been proposed in the past few years. The aim to correctly evaluate the security of these
proposals has become a primordial task. This has been proved by the big number of security
analyses of the previous primitives that has appeared in [10,11,12,13,14,15].

The block cipher PRESENT has become ISO/IEC standard [16] because of its impressive
hardware performance and strong security assurance. Inspired by the design of PRESENT, there
are a series of ciphers, e.g. SPONGENT [7,8], Puffin [17], PRINTcipher [18], MAYA [19], EPCBC [20],
and RECTANGLE [21]. The core parts of these PRESENT-like ciphers include three layers: a key
addition layer, a substitution layer realized by many parallel small scale Sboxes and a bit-wise
permutation layer. Recently, the SPONGENT family of hash functions has also become ISO/IEC
standard [22].
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In the context of lightweight cryptanalysis, quite a few security analyses are developed
for PRESENT-like ciphers, and the influence of differential and linear cryptanalysis are obvious.
Borghoff et al. [10] focused on the analysis of PRESENT-like ciphers with secret Sboxes and gave a
novel differential-style attack on MAYA which enabled us to find Sboxes in the first round one by
one. Cho [23] showed an attack on 26-round PRESENT using the easy-to-trace linear trails with
large correlations. Bulygin [13] found an efficient method to compute the capacities of EPCBC

to get the attack on the full round EPCBC-96, and also presented an attack on 26 rounds of
PRESENT-128 with more high success probability than Cho’s. For PRESENT, linear cryptanalysis-
based attacks were much more powerful against differential cryptanalysis-based attacks with 19
rounds attack, until Blondeau and Nyberg [24] presented a link between differential probability
and linear correlation, which converted a multidimensional linear distinguisher into a trun-
cated differential one which made truncated differential attacks up to 26 rounds of PRESENT.
Combining their 26-round truncated differential attack, Blondeau et al. [15] gave a full-round
known-key distinguisher valid for both PRESENT-80 and PRESENT-128. Firstly, they got one of
the best truncated differential distinguisher from [24] which showed a statistical bias of the
number of collisions on a few predetermined output bits under the fixed input bits. Secondly,
they extended the round number of the differential attack by prepending a meet-in-the-middle
(MitM) layer under the constraints that the output bits of the MitM layer must be exactly the
same with those set on the input bits of the truncated differential layer. Then enough number
of plaintexts are provided to make the distinguish attack succeed with high probability, where
the plaintexts satisfied the constraints on both input and output of the MitM layer.

1.1 Our Contribution

We firstly define a kind of permutations called PRESENT-like permutations, which capture various
cryptographic primitives such as PRESENT and SPONGENT. Then we propose a distinguisher for
such PRESENT-like permutations. Similar to Blondeau et al.’s distinguisher, it includes two layers,
that is, the MitM layer and the truncated differential distinguisher. The former is prepended to
the latter, and provides enough number of plaintexts to ensure the distinguisher succeed with
non-negligible probability.

In the MitM layer of Blondeau et al.’s distinguisher on PRESENT, the bits of internal state are
divided into four groups. One of our observations on this MitM layer is that the bits of internal
state can simply be divided into two groups. Noting that the internal state of PRESENT has 64
bits, one can easily generalize their method to obtain a similar MitM layer on any internal state
with power-of-2 bits. Nevertheless, it is not trivial to generalize the MitM layer for the other
cases. Our another observation on the MitM layer is that the number of its rounds is conducted
by two factors, one of which is related to the size n of the internal state and the other of which
is related to the factorization of the size n. Based on these observations, and according to the
characteristic of PRESENT-like permutations, we construct the MitM layer and show a lower
bound on the number of rounds extended by the MitM layer, for PRESENT-like permutations
with any sizes. This bound is explicitly formulated by the size of the permutations.

We use the truncated differential distinguisher built based on [24,23]. The truncated differen-
tial distinguishing property is a statistical bias of the number of collisions on a few predetermined
output bits when some predetermined input bits are fixed, which is related to the capacity of
a multidimensional linear approximation [24]. For PRESENT-like permutations, this capacity can
be obtained from the 1-bit linear trails, which benefits from the bit-permutation linear layer of
the permutations.

Finally, we apply our distinguisher on all the versions of SPONGENT permutations and sum-
marize our results compared with the previous distinguishers in Table 1. As shown in this table,
we can distinguish up to 13 more rounds than the analysis [7,8] provided by the designers on
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all versions, and 7 more rounds than the result [12] which shows a distinguisher on the special
version SPONGENT-88/80/8.

Table 1. Summary of Distinguishers of SPONGENT Permutations

Version b R r0 r1 r [7,8] [12] d

SPONGENT-88/80/8 88 45 7 23 30 22 23 7
SPONGENT-88/176/88 264 135 9 68 77 66 11

SPONGENT-128/128/8 136 70 7 36 43 34 9
SPONGENT-128/256/128 384 195 11 98 109 96 13

SPONGENT-160/160/16 176 90 7 46 53 44 9
SPONGENT-160/160/80 240 120 7 62 69 60 9
SPONGENT-160/320/160 480 240 9 123 132 122 10

SPONGENT-224/224/16 240 120 7 62 69 60 9
SPONGENT-224/224/112 336 170 9 86 95 84 11
SPONGENT-224/448/224 672 340 9 172 181 169 12

SPONGENT-256/256/16 272 140 9 69 78 68 10
SPONGENT-256/256/128 384 195 11 98 109 96 13
SPONGENT-256/512/256 768 385 11 194 205 192 13

b: the size of internal state
R: the number of full rounds
r0: the number of rounds of the MitM layer
r1: the number of rounds of truncated differential distinguisher
r: the total number of rounds of our distinguisher
d: the number of rounds we improve on the previous best distinguisher

1.2 Organization

This paper is organized as follows. In Section 2 the structures of PRESENT-like permutations and
SPONGENT are briefly described. The framework of our generic attack, including the truncated
differential distinguisher and the meet-in-the-middle layer, is shown in Section 3. The Section 4
presents the detailed distinguisher on all versions of SPONGENT. Section 5 concludes this paper.

2 Research Background

In this section, we start by briefly describing a generic view of a PRESENT-like permutation to
capture various cryptographic primitives such as PRESENT [4] and SPONGENT [7,8].

2.1 Brief Description of PRESENT-Like Permutations

We define a PRESENT-like permutation as a permutation that applies R rounds of a round function
to update an internal state consisting of n cells, where each of the cells has a size of c bits. In
this paper, we focus on the case c = 4, while our technique can also be adapted to the other
cases, e.g. for PRINTcipher [18], c = 3.

The round function uses a substitution-permutation network (SPN). It starts by xoring a
round-dependent constant to the state. Then, it applies a substitution layer which relies on a
c × c nonlinear bijective Sbox. Finally, the round function performs a bit-permutation linear
layer L, where

L(i) =

{
i · n mod (c · n− 1), if i ∈ {0, . . . , c · n− 2},
c · n− 1, if i = c · n− 1.

(1)
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Note that our distinguisher can also be adapted to other ciphers, such as PRINTcipher, which
use the inverse of L as their linear layer.

In the case of PRESENT-like block ciphers analyzed in the known/chosen-key model, the
subkeys generated by the key schedule are incorporated into the known constant addition layer.
We state here that for PRESENT-like block ciphers the generic distinguisher presented in this
paper is suitable in the known-key model.

2.2 Brief Description of SPONGENT

SPONGENT [7,8] is a sponge-based hash function family with 13 versions. Its various parameteri-
zations are refered to as SPONGENT-n/c/r for different hash sizes n, capacities c, and rates r, as
depicted in Table 1. All variants with the same output size of n bits are referred to as SPONGENT-
n, and there are five different output: SPONGENT-88, SPONGENT-128, SPONGENT-160, SPONGENT-224
and SPONGENT-256. In this section, we denote by b, n, c, r separately the size of the internal state,
hash size, capacity and rate.

SPONGENT construction is an iterated design with three phases: the initialization phase is to
pad the message into a multiple of r bits, and the absorbing phase is to xor the r-bit input
message blocks into the first r bits of the state, and the squeezing phase is to get the n-bit
output.

As a lightweight hash function, it does not use the lightweight block cipher as its core part,
and it introduces the PRESENT-like permutation as its core permutation. The permutation layer
operates linearly on the b bits as follows: the b bit state STATEi is firstly xored with round
constant Cb(i) at its leftmost bits and with round constant ICb(i) at its rightmost bits, where
Cb(i) is the state of an LFSR, and ICb(i) is the value of Cb(i) with its bits in reversed order.
Secondly, the 4-bit Sbox is described as follows:

S[·] = {0xE,0xD,0xB,0x0,0x2,0x1,0x4,0xF,0x7,0xA,0x8,0x5,0x9,0xC,0x3,0x6}.

Finally, the bit i of the state is moved to the bit position Pb(i), where

Pb(i) =

{
i · b/4 mod (b− 1), if i ∈ {0, . . . , b− 2},
b− 1, if i = b− 1.

(2)

It can be seen in Figure 1, which takes SPONGENT-88/80/8 as an example.
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Fig. 1. The bit permutation layer of SPONGENT-88/80/8

2.3 Previous Results on SPONGENT

As claimed in [25,26], the sponge construction can get the preimage security of 2r as well as
the second preimage and collision securities of 2c/2, if this core permutation does not have any
structural distinguishers. As far as we know, there are very few outside attacks on SPONGENT.
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Many analyses on the core permutation were considered. The designers [7,8] considered input
and output linear masks with hamming weight one, and showed that there were at most (R/2)-
round linear trail with correlation cw ≥ 2−b/2 (except that SPONGENT-160/320/160 allows 2+R/2
rounds). They also estimated longest differential characteristics holding with probability in the
range of 2−b. Different with block cipher PRESENT, SPONGENT permutations have at most one
linear trails with one active S-box in each round, so they cannot get the same high probability
linear approximations as PRESENT. Abdelraheem [12] and Bao [27] estimated the probabilities
of differential and linear approximations for SPONGENT. Abdelraheem [12] considered input and
output masks with Hamming weight ≤ 4 with large but sparse correlation matrix, which over-
came the memory and time problems, and improved the linear cryptanalysis on a special variant,
SPONGENT-88/80/8, by one more round than the result provided by the designers.

3 A Distinguisher for PRESENT-like Permutations

In this section, we present a generic distinguisher on PRESENT-like permutations that are defined
in Section 2.1. This distinguisher include two phases, the truncated differential distinguisher and
the meet-in-the-middle layer. The truncated differential phase describes the collision bias on the
predetermined bits of the ciphertexts whose plaintexts are the same on some bits, while the
meet-in-the-middle phase is prepended to the truncated differential to extend the distinguisher
to more rounds without reducing the success probability. The following two subsections give the
details of these two phases.

3.1 Truncated Differential Distinguisher

Definition of Truncated Differential Distinguisher. The technique of truncated differen-
tial attack was introduced by Knudsen [28]. Whereas ordinary differential cryptanalysis analyzes
the full difference between two texts, the truncated variant considers differences that are only
partially determined. That is, the attack makes predictions of only some of the bits instead of
the full block. Assuming that the permutation is F : Fn2 → Fn2 , x = (xs, xt) 7→ y = (yq, yr), we
consider a truncated differential composed of 2t input differences (0, δt) and 2r output differences
(0, ∆r). The truncated differential distinguisher describes the unbalance of the collisions on the
q bits of the output under the condition that the s bits of the input are fixed. The distinguishing
attack model is described as in Algorithm 1, see also [15,24].

Algorithm 1 Truncate differential distinguisher
Input: Given a plaintext set P including N plaintexts with the same value on the s bits and the truncated
differential (0, δt)→ (0,∆r) with probability p.

1: Set a counter D to 0 and a table T with size 2q to 0.
2: For each plaintext x = (xs, xt):

Compute (yq, yr) = EK(xs, xt),
T [yq] = T [yq] + 1.

3: Compute scoring function D =
∑

0≤l≤2q−1 T [l](T [l]− 1)/2 .
4: For threshold function τ , if D > τ , conclude that this is the cipher.

The success probability PS of the distinguisher is defined by the following equation:

PS(N2/2) = Φ(
µR + µW
σR − σW

),

where µR = N2/2 ·p, σ2R ≈ N2/2 ·2−q, µW = N2/2 ·2−q, σ2W = N2/2 ·2−q, and τ is the threshold
function satisfying τ = µR − σRφ−1(N2/2).
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Of course, as claimed in [15], the bias is usually small, so we cannot pre- or post-add other dif-
ferential characteristic to extend the attacked rounds number, which will cause lower differential
probability.

Truncated Differential for PRESENT-Like Permutations. In order to get a truncated differ-
ential with more strong bias, as more number of high differential characteristics as possible are
considered to improve the bias, especially for those ciphers with bad differential characteristics
and good linear approximation. But due to the limitation of time and memory complexity, only
few differentials are involved, which usually causes the truncated differential with low probability.
Blondeau and Nyberg [24] provided a link between truncated differential and multidimensional
linear properties to convert a multidimensional linear distinguisher into a truncated differential
distinguisher, which greatly balanced the differential-based attack and linear-based attack on
the same ciphers. For example, the link made it possible for the truncated differential attack up
to 26 rounds of PRESENT [24]. The following is the strong relation of the truncated differential
probability with the capacity of the multidimensional linear approximation.

Theorem 1 ([24]) Let F : Fs2 × F t2 → F
q
2 × Fr2 denote a vectorial Boolean function satisfying

s + t = q + r = n. Given a multidimensional approximation [(as, 0), (bq, 0)]as∈Fs2 ,bq∈F
q
2

with

capacity C and a truncated differential composed of 2t input differences (0, δt) ∈ {0} × F t2 and
2r output differences (0, γr) ∈ {0} × Fr2 with probability p, then

p = 2−q(C + 1).

Note that the above result applies to PRESENT-like permutations. Thus their truncated d-
ifferential with strong bias can be converted from multidimensional linear approximation. For
PRESENT-like permutations, their constructions are similar to the core part of PRESENT, then we
can find the multidimensional linear approximation for PRESENT-like permutations according to
the analysis on PRESENT presented by Cho [23]. We consider r1 = r∗1 + 2 rounds linear charac-
teristic as follows. In the first round, we consider that the c-bit (c is the size of the cell) input
mask α of the active Sbox can take arbitrary value from 1 to 2c and the output mask takes a
single-bit value. In the last round, we require that each input mask of the active Sbox takes a
single-bit value and the output mask β can take arbitrary value from 1 to 2c. Furthermore, we
limit that both the two rounds have only one active Sbox. In the middle r∗1 rounds, linear trails
satisfying input mask and output mask with hamming weight 1 in each round are considered.
We can set up the correlation matrix of one round to get the correlation of the middle r∗1 rounds.
The probability of truncated differential is computed as P = 2−q(1 +C) by the computation of
the correlation of multidimensional linear approximation.

3.2 Generic Meet-in-the-Middle Layer for PRESENT-Like Ciphers

In Blondeau et al.’s known-key attack on PRESENT [15], the key step was the MitM layer which
propagated the differential properties up to 26 rounds by prepending the extra 7 rounds to
the truncated differential distinguisher. In order to make the truncated differential distinguisher
valid, a set of plaintexts satisfying the input constraints of the truncated differential must be
identified. Namely, the internal states of these plaintexts after several rounds as the output of
the MitM layer should satisfy the input constraints of the truncated differential. In order to
efficiently identify such a set of plaintexts, after separately fixing the few bits of the input and
output of the plaintexts, their MitM layer carried out a forward computation to get partial
internal state bits after few rounds of the MitM layer by guessing just few bits and carried out
an independent backward computation to get partial internal state bits for the last one and half
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round of the MitM layer. Finally the set of plaintext was identified by carrying out a gradually
matching process. Because of the small Sbox and the bit-permutation linear layer of PRESENT,
partial output bits can be determined by guessing few bits. Benefitting from the 64-bit internal
states, the internal state can be divided into few groups, and gradually matching process can be
easily carrying out.

In the MitM layer of Blondeau et al.’s distinguisher on PRESENT, the bits of internal state are
divided into four groups. One of our observations on this MitM layer is that the bits of internal
state can simply be divided into two groups. Noting that the internal state of PRESENT has 64
bits, one can easily generalize their method to obtain a similar MitM layer on any internal state
with power-of-2 bits. Nevertheless, it is not trivial to generalize the MitM layer for the other
cases. Our another observation on the MitM layer is that the number of its rounds is conducted
by two factors, one of which is related to the size n of the internal state and the other of which
is related to the factorization of the size n. Based on these observations and according to the
characteristic of PRESENT-like permutations, we show a generic MitM layer for PRESENT-like
permutations with any sizes, and we also give a lower bound on the number of rounds extended
by this MitM layer.

Hereinafter, we assume that a PRESENT-like permutation uses an internal state of 4n bits,
that is, it consists of n 4-bit cells, for even n. We first provide the details of the procedure,
then discuss the number of rounds the generic MitM layer consists of and the complexity of this
procedure.

The Procedure. As in [15], we denote by Xi the internal state after i-th round of a PRESENT-
like permutation, and by Yi the internal state after applying Sbox layer to Xi. The detailed
procedure for generic MitM layer is described as below.

1. Set four bits input to a single Sbox of plaintexts to a randomly chosen 4-bit value, and
compute the corresponding bits of X1 in the forward direction. These bits are input to four
different Sboxes in the second round. Then we guess the other 12 bits input to these Sboxes,
and compute in the forward direction to get 16 bits of X2. Iteratively, we guess the other
4i − 4i−1 bits input to the 4i−1 active Sboxes of Xi−1 and compute in the forward direction
to get 4i bits of Xi, for i = 3, · · · , µn. In total we get a set of 24

µn−4 such values of Xµn and
each value has 4µn bits determined.

2. Similarly, set the four bits at expected positions of Yr0 to a randomly chosen 4-bit value, and
compute the corresponding bits of Yr0−1 in the backward direction. These bits are input to
the inversion of four different Sboxes in the (r0 − 1)-th round. Then we guess the other 12
bits input to the inversion of these Sboxes of Yr0−1, and compute in the backward direction
to get 16 bits of Yr0−2. Iteratively, we guess the other 4i − 4i−1 bits input to the inversion
of the 4i−1 active Sboxes of Yr0−i+1 and compute in the backward direction to get 4i bits of
Yr0−i, for i = 3, · · · , µn. In total we get a set of 24

µn−4 such values of Yr0−µn and each value
has 4µn bits determined.

3. For each partially determined value of Xµn and Yr0−µn , repeat the following:
(a) Divide the bits of Xµn into two disjoint groups, each of which contains half of determined

bits and half of undetermined bits. Each group consists of 2n bits which are input to
neighbouring 1

2n Sboxes. Then for each group, we guess the 2n − 1
24µn undetermined

bits of Xµn , and compute in the forward direction to get 2n bits of Xµn+tn . We store
in a table TX,i the values of partially determined Xµn+tn computed from the i-th group,
i = 0, 1.

(b) Similarly, divide the bits of Yr0−µn into two disjoint groups, each of which contains half of
determined bits and half of undetermined bits. Each group consists of 2n bits which are
input to the inversion of 1

2n Sboxes at carefully chosen positions. Then for each group, we
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guess the 2n− 1
24µn undetermined bits of Yr0−µn , and compute in the backward direction

to get 2n bits of Xµn+tn , which correspond to 2n bits of Yr0−µn−tn = Xµn+tn−1 up to a
bit-permutation linear layer. We store in a table TY,i the values of partially determined
Xµn+tn computed from the i-th group, i = 0, 1.

(c) Then merge those tables to find a set of fully-determined values of Xµn+tn .

i. Merge the tables TX,i and TY,i to Ti respectively for i = 0, 1. By merging these two
tables, we mean to merge every two partially-determined values of Xµn+tn , each from
a table and sharing the same bit values at the common determined bit positions,
into a new partially-determined value of Xµn+tn with all their determined bits, and
then to include this new value of Xµn+tn in table Ti. Note that each value of TX,i
and each value of TY,i share n determined bit positions (if the positions of Sboxes of
each group defined at Step 3b are carefully chosen). Hence table Ti has on average

22·(2n−
1
2
4µn )−n = 23n−4

µn
values, each of which has 2 · 2n− n = 3n bits.

ii. Merge T0 and T1. Notice that T0 and T1 share 2n determined bit positions of Xµn+tn .
Hence we obtain 22·(3n−4

µn )−2n = 24n−2·4
µn

values on average, each of which has
2 · 3n− 2n = 4n bits consisting of the full bits of Xµn+tn .

The algorithm is to find a set of internal state values of Xµn+tn , whose corresponding plain-
texts can satisfy the constraints on the input and output of the MitM layer. Totally, we obtain on
average 22·(4

µn−4) ·24n−2·4µn = 24n−8 plaintexts by inversely computing from the fully-determined
values of Xµn+tn , which satisfies the constraints on the input and output of the MitM layer.

The Number of Rounds. The number of rounds of the generic MitM layer is determined by
Step 1, Step 2, Step 3a and Step 3b. Notice that Step 1 and Step 2 are symmetric and thus
involve the same number of rounds. More exactly, they both involve µn = blog4 nc rounds, where
n is the total number of Sboxes. Also, Step 3a and Step 3b are symmetric and involve the same
number of rounds. Denote by tn the maximum integer such that 4tn | 2n = 4n

2 . Since in Step 3
the bits of the internal state are divided into two groups, Step 3a and Step 3b both involve tn
rounds. Totally, the number of rounds of the generic MitM layer is

r0 = 2(µn + tn)− 1 = 2blog4 nc+ 2tn − 1.

Taking PRESENT for example, n = 16, µn = 2, tn = 2, and thus r0 = 7, which is exactly the
number of rounds of the MitM layer for PRESENT presented in [15]. Taking SPONGENT-88/80/8
for example, n = 22, µn = 2, tn = 1, and thus r0 = 5, which is two less than that proposed in
Section 4.2. We will discuss later how to improve the generic MitM layer for same special cases
like SPONGENT-88/80/8.

Complexity. The complexity of the algorithm is dominated by Step 3. Since there are 24
µn−4

values of Xµn from the forward computations and 24
µn−4 values of Yr0−µn from the backward

computations, Step 3 is executed 22·(4
µn−4) times. The complexity of each execution is dominated

by Step 3(c)ii, that is merging T0 and T1, which needs 23n−4
µn

table lookups. Hence the total
complexity of Step 3 is 22·(4

µn−4) · 23n−4µn = 23n+4µn−8 ≤ 24n−8 table lookups. Once a match of
the MitM layer has been found, we can encrypt this value Xµn+tn over the r1+µn+tn−1 rounds
and increment the counter D given in the previous section. The memory complexity of this attack
is dominated by the storage of the table T0 and T1 which is 2 · 23n−4µn · 3n = 3n · 23n−4µn+1 bits.
To sum up, the total time complexity of the distinguisher is 23n+4µn−8 table lookups and 24n−8

encryptions, and the memory complexity is 3n · 23n−4µn+1 bits.
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Improved Greneric Meet-in-the-Middle Layer. For even n, we always have 4 | 2n and
thus tn ≥ 1. For the case that tn = 1 and 4n > 32 = 2 · 42, e.g. 4n = 88 for SPONGENT-88/80/8,
it is possible to improve the greneric MitM layer by two more rounds, consisting of one round in
forward direction and one round in backward direction, at the cost of increasing the complexity
by using the strategy as shown in Section 4.2.

4 The Distinguishers on SPONGENT Permutations

As an application of our generic distinguisher shown in Section 3, we first analyse the internal
permutation used in SPONGENT-88/80/8, and we obtain a 30-round truncated differential distin-
guisher including 7 rounds in MitM phase and 23 rounds in truncated differential phase. Then,
we apply the similar method to get the distinguishers for the other versions of SPONGENT.

4.1 Truncated Differentials with Strong Bias for SPONGENT Permutations

Truncated Differentials with Strong Bias for SPONGENT-88/80/8 Permutation. As de-
scribed in the previous section, the truncated differential with strong bias of SPONGENT-88/80/8
permutation can be converted from multidimensional linear approximation. According to The-
orem 1, the greater the total correlation of multidimensional linear approximation, the stronger
the bias of truncated differential. The Sbox in the SPONGENT permutation was chosen carefully to
avoid many linear trails with one active Sbox in each round existing on PRESENT, see [7,8]. For
instance in SPONGENT-88/80/8 permutation, there is only one trail that has one active Sbox at
each round. For other versions, the number of the trails satisfying input and output mask with
hamming weight 1 on each round is also less than five. So the designer claimed that there was lin-
ear distinguisher possible for not more than 22 rounds for SPONGENT-88/80/8 permutation when
only input mask and output mask with hamming weight 1 were considered. Abdelraheem [12]
increased the linear distinguisher to 23 rounds with capacity 2−87.5 considering linear character-
istic hamming weight at most 4. As shown in [12], however, the characteristics with Hamming
weight 4 contributed negatively to the total correlation. Furthermore, from their analysis, we
can see that correlation was not increased much more when linear characteristics with hamming
weight 3 or 4 were considered.

Our experiments show that the best capacity of multidimensional linear approximation is
2−84, where the number of rounds is r∗1 = 21 and the truncated differential characteristic is
(20,19). That is, the inputs share the same values at bits {80, 81, 82, 83}, i.e. the input bits to
S20, and the outputs share the same values at bits {76, 77, 78, 79}, i.e. the input bits to S19 for
the next round. In other words, bits {80, 81, 82, 83} of the input mask are non-zeros, and bits
{76, 77, 78, 79} of the output mask are non-zeros.

The details of the procedure are given as follows.

1. Set up the correlation matrix of one round considering linear trails with input mask and
output mask of hamming weight 1, and we get many 21-round linear approximation, where
a linear layer is included before the first found. We choose linear approximation whose output
mask reaches S19 after one round and input mask reaches S20 after one inversion round. The
capacity of these linear approximation is 2−84 and r∗1 = 21.

2. According to Parseval’s theorem:
∑15

αi=0 ρ(αi, 2
u)2 =

∑15
βj=0 ρ(2v, βj)

2 = 1 for any u, v ∈
{0, 1, 2, 3}, the input of S20 in the first round travel all the value from 0 to 15 and the output
of S19 in the 23 round travel all the value from 0 to 15. The capacity of the r1 = r∗1 + 2 = 23
is the same with the capacity of the middle r∗1 round, and the capacity of 23 round is 2−84.

Then for instance such truncated differential distinguisher on 23 rounds, we can compute
the probability of the distinguisher as p = 2−q(C+1) = 2−4(2−84 +1) = 2−4 +2−88 according to
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Theorem 1. Combining with a 7-round MitM layer, which will be shown in Section 4.2, we can
get 280 · (280 − 1)/2 ≈ 2159 pairs of messages which are under the constraint that their outputs
are the same at bits (80,81,82,83). Then we can distinguish 30-round of SPONGENT-88/80/8 from
a random permutation with success probability 50.22%.

Applictions to Other Vesions of SPONGENT Permutations. Similar, we apply the method
to other vesions of SPONGENT permutations for finding the best truncated differentials. The re-
sults are listed in Table 2, respectively for different versions, where b is the size of internal state,
R is the number of full rounds, r1 is the number of rounds of the truncated differential, C is
the capacity of the best multidimensional approximation which equals the probability of the
corresponding truncated differential according to Theorem 1, and PS is the success probability
of the truncated differential distinguisher. We also compare our results with the previous dis-
tinguishers in Table 1. As shown in this table, we can reach one, two or three rounds more than
the results shown by the designers.

Table 2. Differential Distinguishers of SPONGENT

Version b R r1 C Charac Ps

SPONGENT-88/80/8 88 45 23 -84 (20,19) 50.22%

SPONGENT-88/176/88 264 135 67 -259 (44,65) 50.44%

SPONGENT-88/176/88 264 135 68 -263 (44,65) 50.03%

SPONGENT-128/128/8 136 70 35 -131 (22,31) 50.44%

SPONGENT-128/128/8 136 70 36 -135 (20,31) 50.03%

SPONGENT-128/256/128 384 195 97 -376.678 (64,95) 52.20%

SPONGENT-128/256/128 384 195 98 -380.678 (64,95) 50.14%

SPONGENT-160/160/16 176 90 45 -170.415 (20,31) 50.66%

SPONGENT-160/160/16 176 90 46 -174.415 (20,40) 50.04%

SPONGENT-160/160/80 240 120 61 -233.415 (58,58) 51.32%

SPONGENT-160/160/80 240 120 62 -238 (58,59) 50.06%

SPONGENT-160/320/160 480 240 122 -475.3 (80,118) 50.36%

SPONGENT-160/320/160 480 240 123 -478.83 (80,112) 50.03%

SPONGENT-224/224/16 240 120 61 -233.415 (58,58) 51.32%

SPONGENT-224/224/16 240 120 62 -238 (58,59) 50.06%

SPONGENT-224/224/112 336 170 85 -329.415 (28,83) 51.32%

SPONGENT-224/224/112 336 170 86 -335 (60,78) 50.03%

SPONGENT-224/448/224 672 340 171 -666.95 (56,146) 50.46%

SPONGENT-224/448/224 672 340 172 -670.947 (56,146) 50.03%

SPONGENT-256/256/16 272 140 69 -268 (44,66) 50.22%

SPONGENT-256/256/128 384 195 97 -376.678 (64,95) 52.20%

SPONGENT-256/256/128 384 195 98 -380.678 (64,95) 50.14%

SPONGENT-256/512/256 768 385 193 -762.415 (128,191) 50.66%

SPONGENT-256/512/256 768 385 194 -766.415 (128,191) 50.04%

4.2 The Meet-in-the-Middle Layer for SPONGENT Permutations

The family of SPONGENT hash functions has totally 13 variants, which use 11 different sizes
of internal states. In this section, we first show an improved meet-in-the-middle approach on
SPONGENT-88/80/8 and then apply it to other variants.

The MitM Layer for SPONGENT-88/80/8. Next we illustrate the MitM layer for SPONGENT-
88/80/8. Notice that the size of its internal state is 88, which is not a power of 2 and makes the
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Fig. 2. MitM over the first 7 rounds of SPONGENT-88/80/8

MitM layer more complex than PRESENT. The MitM layer consists of 7 rounds. The constraints
on the inputs are that they share the same values at bits {24, 25, 26, 27}, i.e. the input bits to
S6. The constraints on the outputs are that they share the same values at bits {80, 81, 82, 83},
i.e. the input bits to S20 for the eighth round. As in [15], we denote by Xi the internal state
after i-th round of SPONGENT-88/80/8, and by Yi the internal state after applying Sbox layer to
Xi. The detailed procedure is described as below.

1. Set the bits {24, 25, 26, 27} of plaintexts to a randomly chosen 4-bit value, and compute bits
{6, 28, 50, 72} of X1 in the forward direction. These bits are input to Sboxes S1, S7, S12, S18
in the second round. Then we guess the other 12 bits input to these Sboxes, i.e. bits
{4, 5, 7, 29, 30, 31, 48, 49, 51, 73, 74, 75} of X1, and compute in the forward direction to get
16 bits of X2, i.e. bits {1, 7, 12, 18, 23, 29, 34, 40, 45, 51, 56, 62, 67, 73, 78, 84}. It is also depict-
ed as the first two rounds in Figure 2. Further, we guess the 6 bits {41, 42, 43, 44, 46, 47} of
X2, which are input to Sboxes S10 and S11, as shown in Figure 2 in cyan color. In total we
get a set of 218 such values of X2 and each value has 22 bits determined.

2. Similarly, set the bits {80, 81, 82, 83} of Y7 to a randomly chosen 4-bit value, and com-
pute bits {59, 63, 67, 71} of Y6 in the backward direction. These bits are input to the in-
version of Sboxes S14, S15, S16, S17 in the sixth round. Then we guess the other 12 bits
input to the inversion of these Sboxes, i.e. bits {56, 57, 58, 60, 61, 62, 64, 65, 66, 68, 69, 70}
of Y6, and compute in the backward direction to get 16 bits of Y5, i.e. bits
{3, 7, 11, 15, 19, 23, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86}. It is also depicted as the last two round-
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s in Figure 2. Further, we guess the 6 bits {20, 21, 22, 64, 65, 67} of Y5, which are input to
the inversion of Sboxes S5 and S16, as shown in Figure 2 in cyan color. In total we get a set
of 218 such values of Y5 and each value has 22 bits determined.

3. For each partially determined value of X2 and Y5, repeat the following:

(a) Divide the bits of X2 into two overlapping groups, whose intersection is the 8 bits input
to Sboxes S10 and S11. Then for each group, we guess the 33 undetermined bits of X2 and
2 bits ({10, 11} or {66, 67}) of X3, and compute in the forward direction to get 44 bits
of X4. We store in a table TX,i, i = 0, 1, the values of partially determined X4 computed
from the i-th group together with the 4 bits {10, 11, 66, 67} of X3. See Figure 2 for an
example group in orange color, where the guessed 2 bits of X3 are bits 10 and 11, which
are input to Sbox S5.

(b) Similarly, divide the bits of Y5 into two overlapping groups, whose common bits are
the 8 bits input to the inversion of Sboxes S5 and S16. Then for each group, we guess
the 33 undetermined bits of Y5 and 2 bits ({41, 43} or {44, 46}) of Y4, and compute
in the backward direction to get 44 bits of X4. We store in a table TY,i, i = 0, 1, the
values of partially determined X4 computed from the i-th group together with the 4
bits {41, 43, 44, 46} of Y4. See Figure 2 for an example group in orange color, where the
guessed 2 bits of Y4 are bits 44 and 46, which are input to the inversion of Sbox S11.

(c) Then merge those tables to find a set of fully-determined values of X4.

i. Merge the tables TX,i and TY,i to Ti respectively for i = 0, 1. By merging these two
tables, we mean to merge every two partially-determined values of X4, each from a
table and sharing the same bit values at the common determined bit positions, into
a new partially-determined value of X4 with all their determined bits, and then to
include this new value of X4 in table Ti. Note that each value of TX,i and each value
of TY,i share 22 determined bit positions. Hence table Ti has on average 22·35−22 = 248

values, each of which has 2 · (44 + 4)− 22 = 74 bits.
ii. Merge T0 and T1. Notice that T0 and T1 share 44 determined bit positions of X4, 4

determined bit positions of X3 and 4 determined bit positions of Y4. Hence we obtain
22·48−52 = 244 values on average, each of which has 2 · 74− 52 = 96 bits consisting of
the full 88 bits of X4, 4 bits of X3 and 4 bits of Y4.

The algorithm is to find a set of internal state values of X4, whose corresponding plaintexts
can satisfy the constraints on the input and output of the MitM layer. Totally, we obtain on
average 22·18 · 244 = 280 plaintexts by inversely computing from the fully-determined values of
X4, which satisfies the constraints on the input and output of the MitM layer.

Complexity. The complexity of the algorithm is dominated by Step 3. Since there are 218 X2

from the forward computations and 218 Y5 from the backward computations, Step 3 is executed
236 times. The complexity of each execution is dominated by Step 3(c)ii, that is merging T0 and
T1, which needs 248 table lookups. Hence the total complexity of Step 3 is 284 table lookups.
Once a match of the MitM layer has been found, we can encrypt this value X4 over the r1 + 3
rounds and increment the counter D given in the previous section. The memory complexity of
this attack is dominated by the storage of the table T0 and T1 which is 2 ·248 ·74 ≈ 255.2 bits. To
sum up, the total time complexity of the distinguisher is 284 table lookups and 280 permutation
queries.

The MitM Layer for All Versions of SPONGENT. The 13 versions of SPONGENT hash functions
use 11 different sizes of internal states. We have shown the MitM layer for SPONGENT-88/80/8.
The approach also applies to the other versions. Due to the similarity of the idea, we directly
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provide our results while omitting the details. These results are listed in Table 3, respectively
for different sizes of internal states. The numbers of rounds for generic approach are directly
derived from the results of Section 3.2, and the corresponding complexities can also be obtained.
Notice that by the improved approach, besides the size 88 we also increase two more rounds for
the sizes 136, 176, 240, 264, 272, 336, which are not divided by 2 · 42 = 32. The complexities of
these cases are 2n−4 table lookups and 2n−8 permutation queries.

Table 3. The number of rounds of the MitM layer for SPONGENT

Size of internal state 88 136 176 240 264 272 336 384 480 672 768

#Rounds (generic) 5 5 5 5 7 7 7 11 9 9 11

#Rounds (improved) 7 7 7 7 9 9 9 11 9 9 11

4.3 Summary

We have shown the meet-in-the-middle layers and the truncated differential distinguishers for
all versions of SPONGENT permutations. In the truncated differential phase, we take advantage of
the strong relation between truncated differential probability and capacity of multidimensional
linear approximation to derive the best differential distinguishers, and as a result we reach one,
two or three rounds more than the results shown by the designers. In the meet-in-the-middle
phase, we get up to 11 rounds to pre-add to the differential distinguishers. Totally, we improve
the previous distinguishers on all versions of SPONGENT permutations by up to 13 rounds. The
full results are summarized in Table 1, compared with the previous distinguishers.

5 Conclusion

In this paper, we present a general method to distinguish a PRESENT-like permutation with a
random permutation. This generic method is a truncated differential distinguisher which includes
two layers: a truncated differential layers for describing the collision bias on some predetermined
output bits and a MitM layer for extending the number of the attacked rounds without changing
the probability of truncated differential. We also estimated the number of attacked rounds of the
MitM layer. For a concrete permutation, the estimated bound can possibly be further improved.
For example, for SPONGENT-88/80/8 it can be improved to 7 rounds from 5 rounds. As an
application, we further show the distinguishers for all the versions of SPONGENT permutations,
which improve the previous results by up to 13 rounds.
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