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Abstract. May and Ozerov proposed an algorithm for the nearest-neighbor problem of vectors
over the binary field at EUROCRYPT 2015. They applied their algorithm to the decoding problem
of random linear codes over the binary field and confirmed the performance improvement. We
describe their algorithm generalized to work for vectors over the finite field Fq with arbitrary prime
power q. We also apply the generalized algorithm to the decoding problem of random linear codes
over Fq. It is observed by our numerical analysis of asymptotic time complexity that the May-
Ozerov nearest-neighbor algorithm may not contribute to the performance improvement of the
Stern information set decoding over Fq with q ≥ 3.
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1 Introduction

Background. Decoding random linear codes is a well-known combinatorial problem in coding
theory and cryptography. No efficient algorithm is found for this problem, and the intractability
is used to construct various cryptographic schemes. In particular, different from public key
cryptosystems based on factoring or discrete logarithms, public key cryptosystems based on
codes such as McEliece PKC [10] are expected to remain secure even if large-scale quantum
computers become available.

An [n, k] linear code over the finite field Fq is a k-dimensional subspace of Fn
q . n is the length

of the code and k/n is called the rate. An [n, k] linear code over Fq can be defined as a kernel

of a matrix H ∈ F(n−k)×n
q with rank n − k. H is called a parity check matrix. The distance d

of an [n, k] linear code is the minimum Hamming distance between its codewords.

A random parity check matrix H ∈ F(n−k)×n
q specifies a random [n, k] linear code. It is

shown that, for large n, virtually all random linear [n, k] codes over Fq achieve the Gilbert-
Varshamov bound k/n ≤ 1 −Hq(d/n), where Hq is the q-ary entropy function [3]. Thus, it is
assumed in this paper that d satisfies k/n = 1−Hq(d/n).

An instance of the decoding problem of random linear codes is a pair of a random parity

check matrix H ∈ F(n−k)×n
q and a vector x ∈ Fn

q . The required answer is a codeword with
minimum Hamming distance to x. This setting is called the full distance decoding. The other
setting, which is more typical in the application to cryptography, promises that there exists a
codeword c such that x = c+e and the Hamming weight of e is less than or equal to ⌊(d−1)/2⌋,
where d is the distance of the given code. This setting is called the bounded distance decoding,
which will be focused on in this paper. In the bounded distance decoding, it is ensured that the
answer c is unique.

Related Work. The important class of algorithms for decoding random linear codes is informa-
tion set decoding (ISD), which was first suggested by Prange [13]. ISD consists of two steps:
the first step is a permutation step and the second step is a search step. A successive execution
of these steps is iterated until an answer is obtained. In its basic form by Lee and Brickell [7],
in the first permutation step, one first permutes the columns of H randomly and transform



the permuted H into (R I) with Gaussian elimination, where R ∈ F(n−k)×k
q and I is the

(n− k)-dimensional identity matrix. The Gaussian elimination is also applied to the syndrome
s = Hx, which is transformed to s̃. In the second search step, for some fixed p, one searches a
linear combination of p columns of R whose Hamming distance to s̃ is w− p. For such a linear
combination, s̃ is obtained by adding a linear combination of w − p columns of I to the linear
combination. Thus, one can recover e and obtain c = x − e. p is chosen to optimize the time
complexity.

Stern reduced the time complexity of ISD using the meet-in-the-middle approach for the
search step [14]. The Stern ISD is the best algorithm in terms of time complexity for about
twenty years. Recently, several proposals for the search step have been made to further reduce the
time complexity. Bernstein, Lange and Peters introduced the ball-collision technique [2]. May,
Meurer and Thomae [8] used the representation technique introduced by Howgrave-Graham
and Joux [6] for the subset sum problem. Becker, Joux, May and Meurer [1] introduced an
interesting tweak to the algorithm by May, et al. [8]. May-Ozerov devised an algorithm to find
a pair of nearest neighbors [9].

The decoding problem of random linear codes is often discussed for codes over the binary
field. Still, some work has been done to generalize ISD for codes over other finite fields. Coffey
and Goodman [4] analyzed the complexity of the Prange ISD over Fq. Peters [12] generalized
the Stern ISD and its extension by Finiansz and Sendrier [5]. Meurer [11] generalized the BJMM
ISD [1] and analyzed its time complexity. May and Ozerov [9] claimed that they did not see
any obstacles in transferring their algorithm to Fq. However, the generalization does not seem
so straightforward as the generalization of the other algorithms.

Our Contribution. In this paper, the May-Ozerov algorithm for the nearest-neighbor problem
is generalized to work over Fq with any prime power q. The time complexity of the algorithm
is also analyzed. The analysis suggests that the May-Ozerov algorithm may not be practical
even for small q ≥ 3 due to the factors of the time complexity which does not appear in its Õ-
notation. Then, the May-Ozerov algorithm is applied to the decoding problem of random linear
codes over Fq. The asymptotic time complexity of the Stern ISD with the May-Ozerov nearest-
neighbor algorithm is analyzed by numerical optimization. It is observed by the analysis that the
May-Ozerov nearest-neighbor algorithm may not contribute to the performance improvement
of the Stern ISD over Fq with q ≥ 3.

Organization. The paper is organized as follows. Section 2 gives some notations and definitions.
The May-Ozerov algorithm for the nearest-neighbor problem over Fq is presented in Sect. 3.
The application of the May-Ozerov algorithm to the Stern ISD over Fq is described in Sect. 4.
Some numerical analyses of asymptotic time complexity of this algorithm is given in Sect. 5. A
concluding remark is given in Sect. 6.

2 Preliminaries

2.1 Notation

The q-ary entropy function is denoted by Hq. Namely,

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x) .

The binary entropy function H2 is often simply denoted by H.
Let Fq be the finite field for prime power q. Fq is also used to represent the set of elements

of the field.
Let w ∈ Fl

q be a vector. The Hamming weight of w is the number of its nonzero coordinates,
which is denoted by wH(w). The number of the coordinates of w is denoted by |w|, that is,
|w| = l.
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2.2 Multinomial Coefficient and Stirling’s Formula

The multinomial coefficient (
n

n1, n2, · · · , nτ

)
=

n!

n1!n2! · · ·nτ !

is the number of ways to split n distinct elements into τ disjoint groups with the size of the i-th
group ni for 1 ≤ i ≤ τ , where n = n1 + n2 + · · ·+ nτ and τ ≥ 2.

We will often use Stirling’s formula n! =
√
2πn(n/e)neo(1) and(

κn
µn

)
=

√
κ

2πµ(κ− µ)
2κH(µ/κ)n−o(n) = Θ̃

(
2κH(µ/κ)n

)
.

2.3 Nearest-Neighbor Problem over Fq

The nearest-neighbor (NN) problem over the binary field defined in [9] is generalized over other
finite fields:

Definition 1 (Nearest-Neighbor Problem over Fq). Let q be a prime power. Let m be a
positive integer. Let 0 < γ < 1/2 and 0 < λ < 1. The (m, γ, λ)-NN problem over Fq is defined
as follows:

Input U , V and γ, where U ⊂ Fm
q , V ⊂ Fm

q and |U| = |V| = qλm,
Output C ⊂ U × V which have (u∗,v∗) such that wH(u

∗ − v∗) = γm (if any).

It is also assumed that the vectors in U and V are chosen uniformly at random and pairwise
independent.

To simplify the description of the May-Ozerov algorithm for the NN problem, the balanced-
ness of a vector over Fq is defined:

Definition 2. A vector in Fl
q is called balanced if the number of its coordinates equal to x is

l/q for every element x ∈ Fq.

3 May-Ozerov Algorithm for Nearest-Neighbor Problem over Fq

The May-Ozerov algorithm for the nearest-neighbor problem over F2 [9] is generalized to work
over Fq with arbitrary prime power q. The generalized algorithm is given in Algorithm 1. An
overview of the algorithm is given below.

For a given pair of lists, U and V, the May-Ozerov NN algorithm creates exponentially
many pairs of sublists with sizes expected polynomial so that at least one of the pairs of sublists
contain an unknown solution with overwhelming probability. Since the sizes of the sublists are
expected to be polynomial, the naive search is carried out to find the unknown solution.

All the vectors in the given lists first randomized with a random permutation matrix P
and a random vector r. This randomization plays an important role in the algorithm. In the
description of Algorithm 1,

PU + r = {u′ |u′ = Pu+ r, u ∈ U} ,

and PV + r is defined similarly. P is used for random transposition of coordinates of each
vector.

Each pair of sublists are created first by choosing some of the coordinates of the vectors at
random. Let A be the set of the chosen coordinates with |A| = βm for 0 < β < 1. Then, a pair
of sublists consist of vectors satisfying that the number of coordinates in A equal to x ∈ Fq is
hxβm, where hx’s are positive and

∑
x∈Fq

hx = 1. Actually, the vectors are filtered gradually
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with recursive calls to the procedure NNR. Each vector is divided into t pieces with the size of
the i-th piece αim, where αi’s are positive and α1 + α2 + · · ·+ αt = 1. A is a union of disjoint
sets A1, A2, . . . , At, where the coordinates in Ai are from the i-th piece and |Ai| = βαim for
1 ≤ i ≤ t. The pair of sublists consist of vectors satisfying that the number of coordinates in Ai

equal to x ∈ Fq is hxβαim for 1 ≤ i ≤ t.

The recursive calls to the procedure NNR form a tree structure with the root corresponding
to the call from MO-NN. The last argument i of NNR represents the depth of the call in the
tree, where the depth of the root is 1 and the depth of a leaf is t+ 1.

Algorithm 1 May-Ozerov Algorithm for (m, γ, λ)-NN problem over Fq

1: procedure MO-NN(U ,V, γ)
2: y ← (1− γ)

(
Hq(β)− 1

q

∑
x∈Fq Hq

(
qhx−γ
1−γ

β
))

3: Select ε > 0
4: t← ⌈(log2(y − λ+ ε/2)− log2(ε/2))/(log2 y − log2 λ)⌉
5: α1 ← (y − λ+ ε/2)/y
6: αi ← (λ/y)αi−1 for 2 ≤ i ≤ t
7: for mO(1) times do
8: Select a permutation matrix P ∈ {0, 1}m×m u.a.r. ▷ u.a.r. means uniformly at random.
9: Select u.a.r. r = (r1, . . . , rt) ∈ Fm

q s.t. ri ∈ Fαim
q is balanced for every 1 ≤ i ≤ t

10: Ũ ← {ũ | ũ ∈ PU + r ∧ ∀j.(ũj ∈ Fαjm
q is balanced)} ▷ ũ = (ũ1, . . . , ũt) and 1 ≤ j ≤ t

11: Ṽ ← {ṽ | ṽ ∈ PV + r ∧ ∀j.(ṽj ∈ Fαjm
q is balanced)} ▷ ṽ = (ṽ1, . . . , ṽt) and 1 ≤ j ≤ t

12: return NNR(Ũ , Ṽ,m, t, γ, λ, α1, . . . , αt, y, ε, 1)
13: end for
14: end procedure

15: procedure NNR(Ũ , Ṽ,m, t, γ, λ, α1, . . . , αt, y, ε, i))
16: if i = t+ 1 then
17: C ← {(ũ, ṽ) | (ũ, ṽ) ∈ Ũ × Ṽ ∧ wH(ũ− ṽ) = γm} ▷ The naive algorithm is used.
18: end if
19: for Θ̃(qyαim) times do
20: Select Ai ⊂ {(α1 + · · ·+ αi−1)m+ 1, . . . , (α1 + · · ·+ αi)m} s.t. |Ai| = βαim u.a.r.
21: U ′ ← {u |u ∈ Ũ s.t. the number of coordinates in Ai equal to x ∈ Fq is hxβαim}
22: V ′ ← {v|v ∈ Ṽ s.t. the number of coordinates in Ai equal to x ∈ Fq is hxβαim} ▷

∑
x∈Fq hx = 1

23: if |U ′| and |V ′| are Õ
(
q(λ(1−

∑i
j=1 αj)+ε/2)m

)
then

24: C ← C ∪NNR(U ′,V ′,m, t, γ, λ, α1, . . . , αt, y, ε, i+ 1)
25: end if
26: end for
27: return C
28: end procedure

The time complexity of the May-Ozerov NN algorithm over Fq in Algorithm 1 is given by
the following theorem. The proof of this theorem proceeds in the same way as the proof of
Theorem 1 in [9].

Theorem 1. Let q be any prime power. Let γ be any real such that 0 < γ < 1/2. Let β be any
real such that 0 < β < 1. Let ε be any positive real and λ be any real such that

λ ≤ Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) (1)

with
∑

x∈Fq
hx = 1 and γ/q ≤ hx ≤ γ/q + (1− γ)/(qβ) for every x ∈ Fq. Let

y = (1− γ)

Hq(β)−
1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

) . (2)
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Then, the May-Ozerov algorithm solves the (m, γ, λ)-NN problem over Fq with overwhelming
probability in time Õ(q(y+ε)m).

Proof. First, notice that, if γ/q ≤ hx ≤ γ/q + (1− γ)/(qβ), then

0 ≤ qhx − γ

1− γ
β ≤ 1

and 0 < γβ < qhxβ < 1− (1−β)γ < 1. It is also shown with elementary calculation that λ < y.
It will be shown in Lemma 1 that, for the for-loop from the line 7 to the line 13 in the

procedure MO-NN, the probability that a solution randomized with a pair of P and r is included
in (Ũ , Ṽ) and given to the procedure NNR is 1/mO(1).

For the for-loop from the line 19 to the line 26 in the procedure NNR, from Lemma 2, if the
(randomized) solution is included in the pair of input lists (Ũ , Ṽ) of the call of NNR with depth
i, then the probability that the solution is also included in the lists (U ′,V ′) of the input to the
next call of NNR is 1/Θ̃ (qyαim) for a choice Ai of coordinates.

From Lemma 3, for 1 ≤ i ≤ t, if the lists of the input to the call of NNR with depth

(i + 1) includes the (randomized) solution, then their sizes are Õ
(
q(λ(1−

∑i
j=1 αj)+ε/2)m

)
with

overwhelming probability for any ε > 0.

From the discussions above, the total number of the calls to NNR with depth i is Õ
(
q(y

∑i−1
j=1 αj)m

)
and each run of NNR with depth i takes Õ

(
qyαim+(λ(1−

∑i−1
j=1 αj)+ε/2)m

)
time for 1 ≤ i ≤ t.

Thus, the total time complexity required to create the lists in the calls with depth i is

Ti = Õ
(
q(y

∑i
j=1 αj+λ(1−

∑i−1
j=1 αj)+ε/2)m

)
for 1 ≤ i ≤ t. The total time complexity required by the calls with depth (t+1) is Õ

(
q(y+ε)m

)
.

Let us assume that Ti = Ti+1 for any i such that 1 ≤ i ≤ t− 1. Then,

y
i∑

j=1

αj + λ

1−
i−1∑
j=1

αj

+ ε/2 = y
i+1∑
j=1

αj + λ

1−
i∑

j=1

αj

+ ε/2

αi+1 = (λ/y)αi .

Since λ < y from Lemma 4 and
∑t

j=1 αj = 1, α1 =
1−λ/y

1−(λ/y)t and

Ti = T1 = Õ
(
q(yα1+λ+ε/2)m

)
for 1 ≤ i ≤ t. Furthermore, if t is chosen to be⌈

log2(y − λ+ ε/2)− log2(ε/2)

log2 y − log2 λ

⌉
,

then T1 = Õ
(
q(y+ε)m

)
. It implies that the total time complexity of the May-Ozerov NN algo-

rithm is Õ
(
q(y+ε)m

)
. ⊓⊔

Lemma 1. Let (U ,V, γ) be an instance of the (m, γ, λ)-NN problem with unknown solution
(u∗,v∗) ∈ U ×V such that wH(u

∗−v∗) = γm. Let z∗ = u∗−v∗. Let t be a constant integer. Let
α1, α2, . . . , αt be positive reals satisfying α1+ · · ·+αt = 1. Let P be a permutation matrix chosen
uniformly at random from {0, 1}m×m. Let r ∈ Fm

q be a vector chosen uniformly at random such
that r = (r1, . . . , rt) with ri ∈ Fαim

q balanced for every 1 ≤ i ≤ t. Let

ũ∗ = Pu∗ + r = (ũ∗
1, ũ

∗
2, . . . , ũ

∗
t ) ,

ṽ∗ = Pv∗ + r = (ṽ∗
1, ṽ

∗
2, . . . , ṽ

∗
t ) ,

z̃∗ = ũ∗ − ṽ∗ = Pz∗ = (z̃∗
1 , z̃

∗
2 , . . . , z̃

∗
t ) ,
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where ũ∗
i ∈ Fαim

q , ṽ∗
i ∈ Fαim

q and z̃∗
i ∈ Fαim

q for every 1 ≤ i ≤ t. Then, the probability that both
ũ∗
i and ṽ∗

i are balanced and wH(z̃
∗
i ) = γαim for every 1 ≤ i ≤ t is

1

/
O

(
m

(q−1)2(q+1)t+t−1
2

)
.

Proof. For ũ∗
i and ṽ∗

i , let Bali be the event that both of ũ∗
i and ṽ∗

i are balanced. Let ũ∗
i − ri =

(û∗i,1, û
∗
i,2, . . . , û

∗
i,αim

) and ṽ∗
i − ri = (v̂∗i,1, v̂

∗
i,2, . . . , v̂

∗
i,αim

). Let Ŝx,y = {j | (û∗i,j = x) ∧ (v̂∗i,j = y)}
for (x, y) ∈ F2

q . Then, Bali occurs if ri is balanced on the coordinates in Ŝx,y for every (x, y) ∈ F2
q .

Thus,

Pr [Bali] ≥
(

αim
αim/q, . . . , αim/q

)−1 ∏
(x,y)∈F2

q

(
|Ŝx,y|

|Ŝx,y|/q, . . . , |Ŝx,y|/q

)

≈
(

qq

(2π)q−1

) (q−1)(q+1)
2

αim/
∏

(x,y)∈F2
q

|Ŝx,y|


q−1
2

= 1

/
O

(
m

(q−1)2(q+1)
2

)
.

For z̃∗, since P is chosen uniformly at random,

Pr

[
t∧

i=1

(wH(z̃
∗
i ) = γαim)

]
=

(
m
γm

)−1 t∏
i=1

(
αim
γαim

)
≈ (2πγ(1− γ))−

t−1
2 (α1 · · ·αt)

− 1
2m− t−1

2 = 1
/
Θ
(
m

t−1
2

)
.

Since P and r are independent of each other,

Pr

[
t∧

i=1

((wH(ẑ
∗
i ) = γαim) ∧ Bali)

]
= 1

/
O

(
m

(q−1)2(q+1)t+t−1
2

)
.

⊓⊔

From Lemma 1, with O
(
m

(q−1)2(q+1)t+t−1
2

)
executions of the for-loop from the line 7 to the

line 13, the randomized unknown solution satisfying the conditions in Lemma 1 is given to the
procedure NNR with overwhelming probability. Notice that the condition wH(z̃

∗
i ) = γαim for

1 ≤ i ≤ t cannot be checked since the solution is unknown. The proof of Lemma 1 validates the
algorithm only if each piece of vectors has at least q3 coordinates.

Lemma 2. For a recursive call to the procedure NNR in the May-Ozerov algorithm, suppose
that, for input (Ũ , Ṽ, m, t, γ, λ, α1, . . . , αt, y, ε, i), Ũ × Ṽ includes a (randomized) unknown
solution (ũ∗, ṽ∗). Then, the probability that the input U ′ × V ′ to the next call also includes
(ũ∗, ṽ∗) is 1/Õ(qyαim) if Ai is chosen uniformly at random.

Proof. From Lemma 1 and its proof, it is assumed that ũ∗
i and ṽ∗

i satisfy the conditions in
Lemma 1 and that ri is balanced on the coordinates in Ŝx,y for every (x, y) ∈ F2

q . Let ũ∗
i =

(ũ∗i,1, ũ
∗
i,2, . . . , ũ

∗
i,αim

) and ṽ∗
i = (ṽ∗i,1, ṽ

∗
i,2, . . . , ṽ

∗
i,αim

). Let S̃x,y = {j | (ũ∗i,j = x) ∧ (ṽ∗i,j = y)} for

(x, y) ∈ F2
q .

Since wH(ũ
∗
i − ṽ∗

i ) = γαim and ri is balanced on the coordinates in Ŝx,x for every x ∈ Fq,∣∣S̃x,x

∣∣ = (1− γ)αim/q and∑
y∈Fq\{x}

∣∣S̃x,y

∣∣ = ∑
y∈Fq\{x}

∣∣S̃y,x

∣∣ = αim

q
− (1− γ)αim

q
=

γαim

q

for every x ∈ Fq.
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For x ∈ Fq, let hx be positive reals such that
∑

x∈Fq
hx = 1. The number of x in coordinates

of ũ∗ in Ai is hxβαim if
∣∣Ai ∩ S̃x,y

∣∣ = β
∣∣S̃x,y

∣∣ for every y ∈ Fq \ {x} and
∣∣Ai ∩ S̃x,x

∣∣ =

hxβαim−
∑

y∈Fq\{x} β
∣∣S̃x,y

∣∣. Thus,
Pr

 ∧
x∈Fq

∣∣∣∣∣Ai ∩
∪
y∈Fq

S̃x,y

∣∣∣∣∣ = hxβαim


≥ Pr

 ∧
x∈Fq

∣∣∣Ai ∩ S̃x,x

∣∣∣ = hxβαim−
∑

y∈Fq\{x}

β
∣∣S̃x,y

∣∣ ∧
∧

y∈Fq\{x}

(∣∣∣Ai ∩ S̃x,y

∣∣∣ = β
∣∣S̃x,y

∣∣)
=

(
αim
βαim

)−1 ∏
x∈Fq

( |S̃x,x|
hxβαim−

∑
y∈Fq\{x} β|S̃x,y|

) ∏
y∈Fq\{x}

(
|S̃x,y|
β|S̃x,y|

)
= 1

/
Θ̃

(
2
(1−γ)

(
H(β)− 1

q

∑
x∈Fq H

(
qhx−γ
1−γ

β
))

αim
)

= 1/Θ̃ (qyαim) ,

where

y = (1− γ)

Hq(β)−
1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

) .

Since 0 ≤ qhx−γ
1−γ β ≤ 1, γ/q ≤ hx ≤ γ/q + (1− γ)/(qβ) for every x ∈ Fq.

Notice that, if

–
∣∣Ai ∩ S̃x,y

∣∣ = β
∣∣S̃x,y

∣∣ for every (x, y) ∈ F2
q such that x ̸= y, and

–
∣∣Ai ∩ S̃x,x

∣∣ = hxβαim−
∑

y∈Fq\{x} β
∣∣S̃x,y

∣∣ for every x ∈ Fq,

the number of x in coordinates of ṽ∗ in Ai is also hxβαim for every x ∈ Fq. ⊓⊔

Lemma 3. For the (m, γ, λ)-NN problem over Fq, suppose that

λ ≤ Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) ,

where
∑

x∈Fq
hx = 1 and γ/q ≤ hx ≤ γ/q+(1−γ)/(qβ) for every x ∈ Fq. For a recursive call to

NNR with depth i in the May-Ozerov algorithm, if the input lists Ũ × Ṽ include a (randomized)

unknown solution, then the probability that |U ′| and |V ′| are Õ
(
q(λ(1−

∑i
j=1 αj)+ε/2)m

)
is at least

1− 1/qεm for the input lists U ′ and V ′ to the next call which include the (randomized) unknown
solution.

Proof. Let us call a sequence of calls to NNR from the root to a leaf a good computation path
if the sequence finally outputs an unknown solution. For 1 ≤ i ≤ t, let U∗

i and V∗
i be the

lists computed at depth i on the good computation path. |U∗
i | is evaluated below. |V∗

i | can be
evaluated in the same way. Notice that hx’s are denoted by h0, h1, . . . , hq−1 in this proof.

Let Xu
i be a random variable for u ∈ U such that

Xu
i =

{
1 if ũ ∈ U∗

1 ∧ ũ ∈ U∗
2 ∧ · · · ∧ ũ ∈ U∗

i

0 otherwise.
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Then, for every u ∈ U \ {u∗},

Pr[Xu
i = 1]

=

i∏
j=1

(
βαjm

h0βαjm, . . . , hq−1βαjm

)(
(1− β)αjm(

1
q − h0β

)
αjm, . . . ,

(
1
q − hq−1β

)
αjm

)(
αjm

αjm
q , . . . ,

αjm
q

)−1

= 1

/
Θ̃

(
q

(
1−(1−β) logq

(
1
β
−1

)
+β

∑q−1
x=0

(
hx logq hx+

(
1
qβ

−hx

)
logq

(
1
qβ

−hx

)))∑i
j=1 αjm

)
= 1

/
Θ̃

(
q

(
Hq(β)− 1

q

∑
x∈Fq Hq(qhxβ)

)∑i
j=1 αjm

)
≤ 1

/
Θ̃
(
qλ

∑i
j=1 αjm

)
,

where h0, h1, . . . , hq−1 are chosen to satisfy

λ ≤ Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) .

Let Xi =
∑

u∈U Xu
i . Then,

E[Xi] ≤ 1 + (qλm − 1)
/
Θ̃
(
qλ

∑i
j=1 αjm

)
= Θ̃

(
qλ(1−

∑i
j=1 αj)m

)
.

From Chebyshev’s inequality,

Pr
[
|Xi − E[Xi]| ≥ q

ε
2
mE[Xi]

]
≤ V[Xi]

qεm(E[Xi])2
≤ 1

qεmE[Xi]
≤ 1

qεm
,

where, since Xu
i ’s are pairwise independent and Xu

i is 0 or 1,

V[Xi] = V

[∑
u∈U

Xu
i

]
=
∑
u∈U

V[Xu
i ] =

∑
u∈U

(
E[(Xu

i )
2]− E[Xu

i ]
2
)
≤
∑
u∈U

E[Xu
i ] = E[Xi] .

Thus, with probability at least 1− 1/qεm, |U∗
i | = Õ

(
qλ(1−

∑i
j=1 αj)m+ ε

2
m
)
. ⊓⊔

Lemma 4. Let q be any prime power. Let γ be any real such that 0 < γ < 1/2. Let β be any
real such that 0 < β < 1. Then,

Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) ≤ (1− γ)

Hq(β)−
1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

)
for all hx’s such that

∑
x∈Fq

hx = 1 and γ/q ≤ hx ≤ γ/q + (1− γ)/(qβ) for every x ∈ Fq. The

equality is satisfied iff hx = 1/q for every x ∈ Fq. In this case, both sides are equal to 0.

A proof of Lemma 4 is given in Apendix A.

4 Stern ISD Using May-Ozerov NN Algorithm over Fq

May and Ozerov applied their algorithm for the nearest-neighbor problem to the Stern ISD for
linear codes over F2 [9]. It is quite straightforward to generalize it for linear codes over other
finite fields with the algorithm presented in the previous section. The generalized decoding
algorithm is given in Algorithm 2. As was mentioned earlier, the bounded distance decoding
is considered. It is also assumed that, for a given instance (n, k,H,x), the distance d satisfies
k/n = 1−Hq(d/n) and the distance between x and the closest codeword is w = ⌊(d− 1)/2⌋.
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Algorithm 2 Stern ISD with May-Ozerov Nearest-Neighbor Algorithm over Fq

1: procedure ISD(n, k,H,x) ▷ H ∈ F(n−k)×n
q , x ∈ Fn

q

2: s←Hx
3: d← H−1

q (1− k/n) · n
4: w ← ⌊(d− 1)/2⌋
5: Select p ▷ max{1, w + k − n} ≤ p ≤ min{k,w}
6: repeat
7: repeat
8: Select a permutation matrix P ∈ {0, 1}n×n u.a.r.
9: ( · Q)←HP
10: until Q is non-singular
11: H̃ ← Q−1HP
12: s̃← Q−1s
13: U ← {u |u = H̃e1 for e1 ∈ Fk/2

q × {0}k/2 × {0}n−k s.t. wH(e1) = p/2}
14: V ← {v |v = H̃e2 + s̃ for e2 ∈ {0}k/2 × Fk/2

q × {0}n−k s.t. wH(e2) = p/2}
15: C ← MO-NN(U ,V, (w − p)/(n− k)) ▷ Run the May-Ozerov NN algorithm over Fq

16: until there exists (u∗,v∗) ∈ C s.t. wH(u
∗ − v∗) = w − p

17: return P (e∗
1 − e∗

2 − (0k∥(u∗ − v∗))) ▷ u∗ = H̃e∗
1 and v∗ = H̃e∗

2 + s̃
18: end procedure

Theorem 2. For any ε > 0, the Stern ISD with the May-Ozerov NN algorithm solves the
decoding problem of random [n, k] linear codes over Fq with overwhelming probability in time

min
p,β,{hx |x∈Fq}

Õ
(
qg(q,n,k,w,p,β,{hx |x∈Fq},ε)

)
,

where

g (q, n, k, w, p, β, {hx |x ∈ Fq}, ε) =

(logq 2)

(
nH

(w
n

)
− kH

(p
k

)
− (n− k)H

(
w − p

n− k

))
+ (y + ε)(n− k)

and

y = (1− γ)

Hq(β)−
1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

)
with γ = (w − p)/(n− k). The conditions on p, β and {hx |x ∈ Fq} for minimization are

– max{1, w + k − n} ≤ p ≤ min{k,w},
– 0 < β < 1,

–
∑
x∈Fq

hx = 1,

– γ/q ≤ hx ≤ γ/q + (1− γ)/(qβ), and

–
(k/2)Hq(p/k)

n− k
< Hq(β)−

1

q

∑
x∈Fq

Hq(qhxβ).

Proof. The expected number of iterations of the repeat-until-loop from the line 6 to the line 16
in Algorithm 2 is

Õ


(
n
w

)
(
k/2
p/2

)2(
n− k
w − p

)
 = Õ

(
2(nH(w/n)−kH(p/k)−(n−k)H((w−p)/(n−k)))

)
.

9



The sizes of the lists U and V are

|U| = |V| =
(
k/2
p/2

)
(q − 1)p/2 = Õ

(
q(k/2)Hq(p/k)

)
.

Thus, MO-NN is given an instance of the (m, γ, λ)-NN problem with

m = n− k , γ =
w − p

n− k
, λ =

(k/2)Hq(p/k)

n− k
.

Lemma 3 only requires

λ ≤ Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) .

On the other hand,

Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ) < y .

Thus, for the minimization of the time complexity, it is assumed that

λ = Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ)

without loss of generality. ⊓⊔

5 Numerical Analysis of Time Complexity

Some numerical analyses are given to the asymptotic time complexity of the Stern ISD using
the May-Ozerov NN algorithm over Fq.

For the time complexity of the Stern ISD with May-Ozerov NN algorithm over Fq, let

T (q, n, k, w) = min
p,β,{hx |x∈Fq}

qg(q,n,k,w,p,β,{hx |x∈Fq},ε) .

Then, limn→∞
1
n logq T (q, n, k, w) is a function of q and R = k/n. Let us denote it by f(q,R). The

asymptotic time complexity is evaluated with f(q,R). Since ε > 0 is arbitrary from Theorem 2,
it is neglected in the analysis given below.

To obtain the values of f(q,R), the numerical optimization problem given in Theorem 2 is
solved for q = 2, 3, 4. For q = 3, 4, the optimal values are obtained for hx’s such that all but
one of them have the same value. Thus, for some larger values of q, the optimization problem
is solved on the assumption that all but one of hx’s are equal to each other.

The curves of f(q,R) for q = 2, 3, 4, 5, 7, 8, 11 are given in Figure 1. f(q,R) gets smaller as
q gets larger.

Table 1 presents the asymptotic time complexity of the worst cases for bounded distance
decoding. In this table, Stern-MO represents the Stern ISD with the May-Ozerov NN algorithm,
and Stern represents the Stern ISD given in Algorithm 3. fS(q,R) is defined for the Stern ISD
similarly to f(q,R). The results for q = 2 are consistent with the results by May and Ozerov in
[9]. It is shown that, in this analysis, the Stern-MO algorithm outperforms the Stern algorithm
only over F2. For q ≥ 5, as q gets larger, the degradation of the Stern-MO algorithm gets smaller.

6 Conclusion

The paper have shown the generalization of the May-Ozerov NN algorithm over Fq with any
prime power q. The complexity analysis suggests that the May-Ozerov NN algorithm over Fq

may not be practical even for small prime q ≥ 3 due to the huge polynomial which does not
appear in the Õ notation of its time complexity. It is an open problem if more rigorous analysis
or some other generalization over Fq reduces the time complexity. It is also left as future work
to analyze the complexity of the BJMM information set decoding with the May-Ozerov NN
algorithm over Fq.
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Fig. 1: Asymptotic time complexity of the Stern ISD with the May-Ozerov NN algorithm over
Fq. q = 2, 3, 4, 5, 7, 8, 11 in the decreasing order.

Table 1: Asymptotic time complexity of worst cases for bounded distance decoding. ∆ =
f(q,Rw)− fS(q,R

′
w). For Stern-MO, all but one of hx’s are equal to h.

Stern-MO Stern
q f(q,Rw) Rw p/n β h fS(q,R

′
w) R′

w ∆

2 .05498 .4663 .003848 .4998 .3981 .05563 .4655 −.00065
3 .05242 .4736 .002979 .1792 .2322 .05217 .4742 .00025
4 .05032 .4796 .002201 .0932 .1644 .04987 .4801 .00045
5 .04864 .4843 .001704 .0593 .1279 .04815 .4844 .00049
7 .04614 .4909 .001164 .0326 .0893 .04571 .4907 .00043
8 .04519 .4933 .001006 .0263 .0778 .04478 .4931 .00041

11 .04299 .4989 .000727 .0166 .0563 .04266 .4985 .00033
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A Proof of Lemma 4

Let

G(h) = Hq(qhβ)− (1− γ)Hq

(
qh− γ

1− γ
β

)
− γHq(β) .
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Then,

(1− γ)

Hq(β)−
1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

)−

Hq(β)−
1

q

∑
x∈Fq

Hq(qhxβ)


= −γHq(β)− (1− γ)

1

q

∑
x∈Fq

Hq

(
qhx − γ

1− γ
β

)
+

1

q

∑
x∈Fq

Hq(qhxβ)

=
1

q

∑
x∈Fq

G(hx) .

It is shown that G(h) ≥ 0 for every h such that γ/q ≤ h ≤ γ/q + (1− γ)/(qβ).

dG

dh
= qβ logq(q − 1)− qβ logq(qhβ)− qhβ

1

qhβ ln q
(qβ)

+ qβ logq(1− qhβ)− (1− qhβ)
1

(1− qhβ) ln q
(−qβ)

− qβ logq(q − 1) + qβ logq

(
qh− γ

1− γ
β

)
+ (qh− γ)β

1− γ

(qh− γ)β ln q
· qβ

1− γ

− qβ logq

(
1− qh− γ

1− γ
β

)
+ (1− γ − (qh− γ)β)

1− γ

(1− γ − (qh− γ)β) ln q

(
− qβ

1− γ

)
= qβ

(
− logq(qhβ)−

1

ln q
+ logq(1− qhβ) +

1

ln q

+ logq

(
qh− γ

1− γ
β

)
+

1

ln q
− logq

(
1− qh− γ

1− γ
β

)
− 1

ln q

)
= qβ

(
− logq(qhβ) + logq(1− qhβ) + logq

(
qh− γ

1− γ
β

)
− logq

(
1− qh− γ

1− γ
β

))
= qβ

(
logq

(
1

qhβ
− 1

)
− logq

(
1− γ

(qh− γ)β
− 1

))
.

It is easy to see that

dG

dh


< 0 if γ < qh < 1

= 0 if qh = 1

> 0 if 1 < qh < γ + (1− β)/γ .

If qh = 1, then G(1/q) = 0. This completes the proof.

13


