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On Error Distributions in Ring-based LWE

W. Castryck, I. Iliashenko and F. Vercauteren

Abstract

Since its introduction in 2010 by Lyubashevsky, Peikert and Regev, the Ring Learning With
Errors problem (Ring-LWE) has become a popular building block for cryptographic primitives,
due to its great versatility and its hardness proof consisting of a (quantum) reduction from ideal
lattice problems. But for a given modulus q and degree n number field K, generating Ring-LWE
samples can be perceived as cumbersome, because the secret keys have to be taken from the
reduction mod q of a certain fractional ideal O∨K ⊂ K called the codifferent or ‘dual’, rather
than from the ring of integers OK itself. This has led to various non-dual variants of Ring-LWE,
in which one compensates for the non-duality by scaling up the errors. We give a comparison of
these versions, and revisit some unfortunate choices that have been made in the recent literature,
one of which is scaling up by |∆K |1/2n with ∆K the discriminant of K. As a main result, we
provide for any ε > 0 a family of number fields K for which this variant of Ring-LWE can be
broken easily as soon as the errors are scaled up by |∆K |(1−ε)/n.

1. Introduction: Ring-based versions of LWE

About a decade ago Regev [22] proposed a new hard problem for use in public-key
cryptography, namely the learning with errors problem (LWE), which informally stated is
about solving an approximate linear system

b1
b2
...
bm

 = A ·


s1
s2
...
sn

+


ε1
ε2
...
εm


for an unknown secret s = (s1, s2, . . . , sn) over Z/qZ, with q some integer modulus. The entries
of A are selected independently and uniformly at random in Z/qZ and the εi are small error
terms, obtained by sampling from a fixed Gaussian with mean 0 and standard deviation ρ ≥√

2n/π, and reducing the outcome mod q. These errors are elements of R/qZ, but in practice
they can be rounded to the nearest element of Z/qZ. To recover s uniquely, the system has to
be overdetermined, i.e. m > n. In fact in Regev’s model an attacker is allowed to ask for new
equations indefinitely, in the (conjecturally vain) hope of learning more information about s:
hence the terminology learning with errors.

The LWE problem is being acclaimed for three reasons. Firstly it enjoys a hardness proof
in the form of a reduction from worst-case forms of certain well-established lattice problems [22,
20, 3], providing security guarantees that are lacking for classical hard problems such as integer
factorization or discrete logarithm computation. Secondly, it seems that LWE would remain
hard in a post-quantum world, unlike the classical problems [23]. Thirdly, LWE has proven to
be very versatile for use in cryptography, enabling applications that were not known before,
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such as homomorphic encryption [5, 2]. Its major drawback however is that the key sizes
of the resulting cryptosystems are impractically large, because typically one needs the entire
(m× n)-matrix A.

One idea to address this [17, 19] is to use a ring structure Rq = Z[x]/(q, f(x)) for some
monic degree n polynomial f(x) ∈ Z[x] through the isomorphism (a priori of modules)

ϕ :

(
Z
qZ

)n
→ Rq : (s1, s2, . . . , sn) 7→ s1 + s2x+ · · ·+ snx

n−1 .

Each block of n rows of A is replaced with the matrix Aa of multiplication by a random ring
element a(x), say with respect to the polynomial basis 1, x, . . . , xn−1, in order to obtain an
approximate linear system of the form

b1
b2
...
bn

 = Aa ·


s1
s2
...
sn

+


ε1
ε2
...
εn

 , (1.1)

which using ϕ can be rewritten as b(x) = a(x) · s(x) + ε(x). When storing a(x) rather than
Aa one gains a factor n, thereby addressing the key size issue. The general setup above is
called Ring-based LWE (not to be confused with Ring-LWE) and the terminology allows
for any error distribution Ψ on Rq for the error terms ε(x). In the remainder of the article,
we will consider three variants, all of which sample the error terms from a linear transform of
an n-dimensional spherical Gaussian. More precisely, in each case there exists a fixed matrix
T ∈ Rn×n such that (ε1 ε2 . . . εn)t arises as the reduction modulo qZn of T · (e1 e2 . . . en)t,
where each ei is sampled independently from the same normal distribution N (0, ρ2) with mean
0 and standard deviation ρ, which we think of as depending on n only, in a non-negligible
and polynomially bounded way. Again in practice one can round εi to the nearest element of
Z/qZ, but for analytical reasons it is convenient not to do this. The different choices for T are
summarized in Table 1 and how these T arise is explained in detail in the next paragraphs.
Poly-LWE can be considered the most straightforward generalization of LWE, in that

each error εi is drawn independently from N (0, ρ2). In particular, the matrix T is simply the
identity matrix. For the sake of analogy one could again impose ρ ≥

√
2n/π, although there

is no theoretical basis for this. Indeed, restricting to multiplication matrices comes at the cost
of giving up on the uniform randomness, thereby invalidating Regev’s hardness proof, and
in fact it is possible to cook up instances of the problem having certain flaws. For example
if f(1) ≡ 0 mod q then b(1) ≡ a(1) · s(1) + e(1) mod q, which can in certain special cases be
exploited to obtain information about the secret [13], thereby mimicking an attack on early
versions of NTRU that use arithmetic modulo f(x) = xn − 1, see [16]. This concern is partly
addressed by restricting to irreducible f(x) ∈ Z[x], which we do from now on.
Ring-LWE was introduced by Lyubashevsky, Peikert and Regev in [19] and admits a

hardness proof akin to the one for general LWE. The main difference is that the error terms
are generated in a way that is canonical for the underlying number field K defined by f(x)
and in particular, does not depend on the choice of the defining polynomial f(x) itself (unlike
Poly-LWE). For the purpose of this introduction, it suffices to think of Ring-LWE samples as

Poly-LWE Ring-LWE SCG Ring-based LWE

T In×n Af ′(x) ·B−1 λ ·B−1

Table 1. Noise distributions T · N (0, ρ2)n in three instantiations of Ring-based LWE, with B the
(real) canonical embedding matrix, Af ′(x) the matrix of multiplication by f ′(x), and λ ∈ R≥1.
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above, except that the spherical error vector (e1 e2 . . . en) is being transformed in the following
specific way: 

b1
b2
...
bn

 = Aa


s1
s2
...
sn

+Af ′(x) ·B−1 ·


e1
e2
...
en

 . (1.2)

Here B ∈ Rn×n is the Vandermonde matrix (αj−1i )i,j generated by the roots α1, α2, . . . , αn ∈ C
of f(x), turned into a real matrix using an easy unitary transformation. The factor B−1

expresses that Ring-LWE errors are actually generated in the codomain of the canonical
embedding of the number field K = Q[x]/(f(x)). On the other hand Af ′(x) is the matrix of
multiplication by the derivative f ′(x) of our defining polynomial. It compensates for the fact
that we sampled the secret s(x) from the reduction mod q of R = Z[x]/(f(x)), rather than
from the reduction mod q of a certain fractional ideal R∨ ⊂ K, called the dual of R. It is
convenient to think of Af ′(x) as an integral matrix, i.e. as the matrix of multiplication by f ′(x)
in R with respect to the Z-basis 1, x, . . . , xn−1, so that Ring-LWE is just Ring-based LWE with
T = Af ′(x) ·B−1.

The matrix Af ′(x) ·B−1 transforms our spherical distribution into an ellipsoidal one. In
particular the errors in certain coordinates might be systematically much larger than those in
others, and they might no longer be independent. But it is crucial to observe that the error
coordinates are being scaled up on average, in the sense of the geometric mean. Indeed, one
can show that

∣∣detAf ′(x)
∣∣ = ∆ and that |detB| =

√
∆, where ∆ denotes the absolute value of

the discriminant of f(x). Thus ∣∣det
(
Af ′(x) ·B−1

)∣∣ =
√

∆,

meaning that on average the errors tend to grow by a factor ∆1/2n.
SCG Ring-based LWE where SCG stands for Scaled Canonical Gaussian, was analyzed

in a series of papers [14, 7, 8] where it was called non-dual Ring-LWE. In this version, one
considers samples of the form

b1
b2
...
bn

 = Aa


s1
s2
...
sn

+ λ ·B−1 ·


e1
e2
...
en

 , (1.3)

where λ ≥ 1 denotes a fixed real number. This variant basically replaces the matrix Af ′(x) in
Ring-LWE by a scalar matrix. The authors called this variant non-dual Ring-LWE since the
matrix Af ′(x) corresponds to the factor coming from working with the dual. However, we will
avoid using this terminology, in order not to get confused with non-dual instantiations of actual
Ring-LWE, as in (1.2).

Note that one cannot simply remove Af ′(x) (i.e. take λ = 1), since the remaining factor

B−1 has determinant 1/
√

∆, which typically scales down the errors to a point where they
become negligible, leading to exact equations in s1, s2, . . . , sn that can be solved using linear
algebra. This is of course highly undesirable, and to remedy this the authors of [14, 7, 8] used
λ = ∆1/2n, in order to undo the factor B−1 determinant-wise.

This choice of scalar indeed takes back the errors to a reasonable size, but only on average.
If the ellipsoidal distribution induced by B−1 is extremely skew then there might be error
coordinates that remain negligibly small after scaling. The following example, introduced in
[14] and revisited in [6], illustrates this: for f(x) = x256 + 8190 the successive radii of the
corresponding 256-dimensional ellipsoid go down geometrically, as is illustrated in Figure 1. It
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turns out that with

ρ = 8.35 and λ =
√

∆
1/256

≈ 1422.72,

the coordinates at the highest 45 indices become zero after rounding, with overwhelming
probability. Thus each sample yields 45 exact equations in s1, s2, . . . , sn, and about six samples
suffice to recover the entire secret. If one would take λ = 1 the effect is even more pronounced
since then over 240 errors are negligible, and one only requires 2 samples. In general, for this
attack to work it is enough that B−1 admits a very short Z-linear combination of its rows.
See [21] for a more thorough analysis of all this.
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Figure 1. Coordinate-wise error distributions for f(x) = x256 + 8190, ρ = 8.35, and λ =
√

∆
1/256

.

To us it seems more natural to take λ = ∆1/n: in this way one compensates determinant-
wise for the removal of Af ′(x). For this choice of scalar we are unaware of any attacks on SCG
Ring-based LWE and it would be interesting to know whether a variant of the hardness proof
of [19] applies here.

The main result of this article is that ∆1/n is a lower bound for λ, in the following sense: for
each ε > 0 we provide a family of irreducible polynomials f(x) ∈ Z[x] of increasing degree n,
for which O(n) SCG samples of the form (1.3) with λ = ∆(1−ε)/n are sufficient to recover the
entire secret using standard linear algebra.

In fact, as we will see, the analogous result also applies to Ring-LWE, for the same families of
polynomials. In other words, as soon as one scales down the right-most term in (1.2) by ∆ε/n

then the corresponding samples leak exact equations, again allowing one to find the entire
secret easily. However, as suggested by a reviewer, in this case the statement admits an easier
proof, based on the trivial fact that 1 ∈ R.

The article is organized as follows. In Section 2 we give a more formal introduction to Ring-
LWE, while Section 3 is devoted to the SCG Ring-based LWE version that was studied in [14,
7, 8]. Apart from providing more details, these descriptions will differ slightly from the one
given in the introduction: instead of Z[x]/(f(x)) we will work in the potentially larger ring of
integers OK of K. Then in Section 4 we state a rigorous version of our tightness result on the
scaling factor λ, and provide a proof. Finally in Section 5 we make some additional comments
from the point of view of Galois theory.

2. Ring-LWE set up formally

The actual Ring-LWE problem is formulated using the ring of integers R = OK of a given
degree n number field K, which one considers along with a modulus q ∈ Z. A central role is
played by the codifferent R∨ of K, which is defined as the inverse (fractional) ideal of the
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different ideal ∂ ⊂ R. Alternatively it can be viewed as the dual of R with respect to the trace
pairing:

R∨ = {x ∈ K |TrK/Q(xR) ⊂ Z}. (2.1)

The reductions of R and R∨ modulo qR resp. qR∨ are denoted by Rq and R∨q , respectively.
The Ring-LWE problem is then about finding a fixed secret s ∈ R∨q from an arbitrary number
of approximate equations of the form

b = a · s + ε, (2.2)

where a ∈ Rq is chosen uniformly at random and ε is a small error term sampled from a
distribution that will be described in the next paragraph. Recall that everything is to be
interpreted modulo qR∨. After agreeing upon a Z-basis of R∨ this can be rewritten as

b1
b2
...
bn

 = Aa ·


s1
s2
...
sn

+


ε1
ε1
...
εn


where the si are the coordinates of s, the bi are the coordinates of b, the εi are the coordinates of
ε, and Aa is the matrix of multiplication by a with respect to the chosen Z-basis, all considered
modulo qZn.

As for the error distribution, the main role is played by the canonical embedding

σ : K → Cn : α 7→ (σ1(α), . . . , σn(α)),

where σ1, . . . , σs are the real ring monomorphisms from K to R and σs+1, . . . , σs+2t are the
complex ring monomorphisms from K to C (so that n = s+ 2t), ordered such that σs+i =
τ ◦ σs+t+i for i = 1, . . . , t, where τ : C→ C : z 7→ z denotes complex conjugation. Thus σ takes
values in

H = { (z1, . . . , zn) ∈ Cn | z1, . . . , zs ∈ R and zs+i = zs+t+i for i = 1, . . . , t },

which when equipped with the Hermitian inner product 〈·, ·〉 is seen to be isomorphic
to the standard inner product space Rn, by considering the basis given by the columns
of the unitary matrix

U =

Is×s 0 0
0 1√

2
It×t

i√
2
It×t

0 1√
2
It×t − i√

2
It×t

 .

It is well-known that under this identification of H with Rn, the image σ(I) of a fractional
ideal I ⊂ K is a lattice of rank n, and that σ(R∨) is the complex conjugate of the dual lattice

σ(R)∗ := {α ∈ H | 〈α, σ(R)〉 ⊂ Z },

as is immediate from (2.1); more generally σ(I)∗ = τ(σ(I∨)) where I∨ = (∂I)−1. Now consider
a spherical Gaussian on Rn, say with distribution function

Γnr (x) =
1

rn
exp

(
−π ||x||

2

r2

)
,

where we note that Γ1
r = N (0, r2/2π) and that

Γnr = Γ1
r × Γ1

r × · · · × Γ1
r.

We view Γnr as a distribution on H through the above identification with Rn. Pulling it back
along the canonical embedding and reducing it mod qR∨ results in a distribution Ψr on the
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torus

(R∨ ⊗Z R)/qR∨,

from which the errors are to be sampled.
We can now formulate the Ring-LWE problem precisely. Let U(Rq) and U(R∨q ) denote the

uniform distributions on Rq and R∨q , respectively. For s ∈ R∨q and r ∈ R>0 we let As,r be the
distribution over

Rq × (R∨q ⊗Z R)/qR∨

obtained by sampling a← U(Rq), ε← Ψr and returning (a,a · s + ε).

Definition 1 (Ring-LWE over a number fieldK with error parameter r). For a random but
fixed choice of s← U(R∨q ) the (search) Ring-LWE problem is to recover s with non-negligible
probability from arbitrarily many independent samples from As,r.

Here it is understood that r ≥ 2ω(
√

log n) for some superlinear function ω = ω(n). It may
seem surprising that this bound is less restrictive than in standard LWE, where one assumes
r =
√

2πρ ≥ 2
√
n. But this is only superficial: the lattice of possible products a · s is much

denser because s was sampled fromR∨q , and relative to this the Ring-LWE bound is considerably
larger.

In their seminal paper [19] Lyubashevsky, Peikert and Regev provided the following hardness
result. They actually deal with a slight variant called the Ring-LWE≤r problem, where each
sample is taken from As,r for some arbitrary fixed r taken from

{(r1, . . . , rn) ∈ (R+)n | ri ≤ r for all i = 1, . . . , s and rs+i = rs+t+i ≤ r for all i = 1, . . . , t}.

The distribution As,r is defined in roughly the same way as As,r, the main difference being that
the spherical Gaussian Γnr is to be replaced by the ellipsoidal Gaussian Γ1

r1 × Γ1
r2 × · · · × Γ1

rn .
If we think of the error width r ≥ 2ω(

√
log n) and the modulus q ≥ 2 as quantities that vary

with n, then the hardness result [19, Theorem 4.1] reads:

Theorem 2.1. For some negligible ε = ε(n) there is a probabilistic polynomial-time
quantum reduction from DGSγ to Ring-LWE≤r, where

γ : I 7→ max
{
ηε(I) · (

√
2q/r) · ω(

√
log n),

√
2n/λ1(I∨)

}
.

Here ηε(I) is the smoothing parameter of σ(I) with threshold ε, and λ1(I∨) is the length
of a shortest vector of σ(I∨).

The statement involves the discrete Gaussian sampling problem DGSγ , which is about
producing samples from a spherical Gaussian in H with parameter r′, restricted to the lattice
σ(I), for any given non-zero ideal I ⊂ R and any r′ ≥ γ(I). As discussed in [19] there are easy
reductions from standard lattice problems to the discrete Gaussian sampling problem.

3. SCG Ring-based LWE

To allow for a common framework for Poly-LWE and Ring-LWE, from now on we restrict
ourselves to number fields K for which the different ideal ∂ is principal, say generated by
θ ∈ R, so that R∨ = R/θ. This restriction is mainly for convenience: in general one can replace
θ in the discussion below by a so-called tweaking factor, see [9, 21]. But principality holds in
most cases of interest. For instance if K is monogenic, meaning that the ring of integers R is



ON ERROR DISTRIBUTIONS IN RING-BASED LWE Page 7 of 16

of the form Z[x]/(f(x)), then one can take θ = f ′(x). More generally ∂ is principal if and only
if R is a so-called complete intersection, i.e. of the form Z[x1, x2, . . . , xn]/(f1, f2, . . . , fn), in
which case one can take θ = |(∂fi/∂xj)i,j |; see [11].

Without loss of generality we can rewrite our sample (2.2) as

a · s
θ

=
b

θ
+ ε,

where now s ∈ Rq and ε is sampled from Ψr. Multiplying by θ then gives b = a · s + θ · ε. After
fixing a Z-basis α1, α2, . . . , αn of R we obtain

b1
b2
...
bn

 = Aa ·


s1
s2
...
sn

+Aθ ·B−1 ·


e1
e2
...
en

 , (3.1)

where the si are the coordinates of s, the bi are the coordinates of b, Aa is the matrix
of multiplication by a, Aθ is the matrix of multiplication by θ, and B = U · Σ with Σ the
matrix of the canonical embedding σ, all expressed with respect to the basis α1, α2, . . . , αn.
Note that Σ is just the complex matrix having σ(α1), σ(α2), . . . , σ(αn) as its columns. The
ei are sampled independently from the univariate Gaussian Γ1

r. The formula (3.1) is to be
considered modulo q, but note that in the case of the subexpression B−1 · (e1 e2 . . . en)t it
only makes sense to do so after elaborating the product. On average the factor Aθ ·B−1 causes
the errors to expand, because |detAθ| = ∆ and |detB| = |det Σ| = covol(σ(R)) =

√
|∆|, where

∆ = |∆K | is the absolute value of the discriminant of K; see [15].

Remark 1. In the monogenic case we can take θ = f ′(x) and work with respect to the
basis 1, x, . . . , xn−1. For these choices we exactly recover (1.2), and we enter the discussion
from the introduction. Note that ∆ = |disc f(x)| in this case.

Taking another generator θ of ∂ boils down to replacing the right-most term in (3.1), i.e. the
vector of coordinates of the error term θ · ε, by

M ·Aθ ·B−1 ·


e1
e2
...
en


for some matrix M ∈ GLn(Z). The same remark applies to switching to another basis of R,
in which case M arises as the corresponding matrix of base change. In particular, if for one
choice of basis a certain error coordinate is negligible, then for another choice of basis a certain
non-trivial Z-linear combination of the error coordinates will be negligible, and conversely.

Example 1. Let β1, β2, . . . , βn be the basis of R∨ that is dual to our given basis
α1, α2, . . . , αn of R with respect to the trace pairing. In other words σ(β1), σ(β2), . . . , σ(βn) ∈
Cn are the columns of the conjugate transpose τ(Σ)t of Σ. But then θ · β1, θ · β2, . . . , θ · βn is
also a basis of R, so we can change bases. In this case one verifies that the matrix of base
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change M is Bt ·B ·A−1θ , with respect to which our Ring-LWE samples becomes
b1
b2
...
bn

 = Aa ·


s1
s2
...
sn

+Bt ·


e1
e2
...
en

 . (3.2)

If we would express the Ring-LWE samples directly in terms of the basis β1, β2, . . . , βn of R∨

then we would find the same formula. Thus in some sense (3.2) is more in the actual spirit of
[19] than (3.1), but it is less suited for discussing the SCG Ring-based LWE version from [14,
7, 8]. �

Recall from the introduction that the SCG Ring-based LWE from [14, 7, 8] leaves out the
multiplication-by-θ step, and compensates for it by a scalar. Formally, one considers samples
of the form

b = a · s + λ · ε

where s is now taken from Rq rather than R∨q . As before let a← U(Rq) and ε← Ψr, and let
λ ≥ 1 be a fixed real scalar. Let Aλs,r be the resulting distribution over

Rq × (Rq ⊗Z R)/qR

returning (a,a · s + λ · ε). Then:

Definition 2 (SCG Ring-based LWE with scalar λ). For a random but fixed choice of
s← U(Rq) the problem is to recover s with non-negligible probability from arbitrarily many
independent samples from Aλs,r.

When expressed with respect to a basis α1, α2, . . . , αn of R, such a sample converts into an
expression of the form 

b1
b2
...
bn

 = Aa ·


s1
s2
...
sn

+ λ ·B−1 ·


e1
e2
...
en

 , (3.3)

Equivalently, one can also just remove the scalar λ and sample the errors ei from Γλ·r instead
of Γr. Here too switching to another basis amounts to multiplying the right-most factor from
the left with a matrix M ∈ GLn(Z).

As mentioned in the introduction, the authors of [14, 7, 8] took λ = ∆1/2n, while to us
the most natural choice of scalar seems λ = |∆|1/n, in order to compensate determinant-wise
for the removal of Aθ. It would be interesting to know whether the latter choice allows for a
hardness statement similar to Theorem 2.1. If Aθ happens to be a scalar matrix itself then both
problems are of course equivalent. For instance this is the case if K is the 2m-th cyclotomic
field for some m ≥ 2, where one can take λ = θ = 2m−1 = n.

Example 2. To illustrate these different flavors of Ring-based LWE, we analyze a simple
example that will act as one of the building blocks in our main theorem. Let d ≡ 1 mod 4 be a
positive squarefree integer and consider the real quadratic field K = Q(

√
d). It has discriminant

d and its ring of integers R = Z[(1 +
√
d)/2] admits the integral basis 1, (1 +

√
d)/2. The

different ideal ∂ is the principal ideal generated by θ =
√
d. With respect to this basis one
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has

Aθ =

(
−1 −1+d

2
2 1

)
, Σ−1 =

1√
d

(
−1+

√
d

2
1+
√
d

2
1 −1

)
, U = I2×2.

So a Ring-LWE sample reads(
b1
b2

)
= Aa ·

(
s1
s2

)
+Aθ ·B−1 ·

(
e1
e2

)
= Aa ·

(
s1
s2

)
+

(
−1+

√
d

2
−1−

√
d

2
1 1

)
·
(
e1
e2

)
,

while a SCG Ring-based LWE sample reads(
b1
b2

)
= Aa ·

(
s1
s2

)
+
√
d ·B−1 ·

(
e1
e2

)
= Aa ·

(
s1
s2

)
+

(
−1+

√
d

2
1+
√
d

2
1 −1

)
·
(
e1
e2

)
,

for scaling factor λ = |∆|1/n =
√
d. �

For the sake of completeness let us conclude with the setting where one considers (3.1)
with the entire matrix product Aθ ·B−1 replaced by a real scalar λ ≥ 1. In the monogenic
case R = Z[x]/(f(x)) where one takes λ = 1 and works with respect to the basis 1, x, . . . , xn−1,
one recovers the Poly-LWE problem from the introduction. Note that in order to compensate
for the removal of Aθ ·B−1 determinant-wise it is more natural to take λ = ∆1/2n (here too
it would be interesting to know whether the resulting problem enjoys a hardness proof). The
more aggressive choice for λ = 1 may be motivated by the error bound in Regev’s original
work on LWE [22] where there is no number field at play, and by NTRU where the errors are
bounded by a small constant. Taking smaller errors has advantages towards the efficiency of
the resulting cryptosystems, but the security risks of doing so are not fully understood.

4. Main theorem

Theorem 4.1. Let ρ : N→ R>0 be in poly(n), let (qn)n∈N be any sequence of integer
moduli, and let ε ∈ R>0 be fixed. Then there exists a family of number fields (K`)`∈N such
that the following properties are satisfied:

– Each K` is Galois over Q.
– The degree n` := [K` : Q] tends to infinity as ` does.
– Over K` the SCG Ring-based LWE problem with scalar |∆K`

|(1−ε)/n` , error parameter
r = ρ(n`) and modulus qn`

can be solved in time poly(n` · log qn`
) using O(n`) samples.

The same statement is true for actual Ring-LWE as soon as one scales down the errors by a
factor |∆K`

|ε/n` .

Remark 2. We certainly do not claim that all number fields become vulnerable after
scaling inappropriately: the fields K` that will be constructed below are very special, in the
sense that the lattices σ(OK`

) and σ(O∨K`
) are extremely ‘skew’, i.e. they have widely varying

successive minima. In particular our findings do not seem to apply to cyclotomic number fields,
which are the main candidates for making their way to daily-life cryptography. Therefore the
practical impact of Theorem 4.1 is limited.

Proof of Theorem 4.1: Fix an ` ≥ 2 and pick prime numbers p1, . . . , p` congruent to 1 mod 4
such that

m` := p1p2 · · · p` ≥
(

2
√
n`ρ(n`)

√
log n`

)2/ε
. (4.1)
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For each pi consider the corresponding quadratic field K`,i = Q(
√
pi). It has discriminant

pi and ring of integers R`,i = Z[(1 +
√
pi)/2], which we equip with the basis αi,1 = 1,

αi,2 = (1 +
√
pi)/2. We will analyze Ring-LWE and SCG Ring-Based LWE in the field

compositum

K` = Q(
√
p1,
√
p2, . . . ,

√
p`) ∼= K`,1 ⊗Q K`,2 ⊗Q · · · ⊗Q K`,`,

which is clearly of degree n` := 2`. Because the discriminants pi of Q(
√
pi) are mutually coprime

this tensor structure carries over to the integral elements [24, Thm. 2.6], i.e. the ring R`
of integers in K` reads

R` = Z[(1 +
√
p1)/2, (1 +

√
p2)/2, . . . , (1 +

√
p`)/2] ∼= R`,1 ⊗Z R`,2 ⊗Z · · · ⊗Z R`,`.

Please do not confuse this notation with our previous notation Rq for the reduction of
R mod q (in fact the modulus will not play an important role in the current proof).
Note that R` is a complete intersection, so the different ideal ∂` ⊂ R` is generated by
θ` =

√
p1
√
p2 · · ·

√
p` =

√
m`. Therefore the codifferent reads

R∨` =
1
√
m`

Z[(1 +
√
p1)/2, (1 +

√
p2)/2, . . . , (1 +

√
p`)/2] ∼= R∨`,1 ⊗Z R

∨
`,2 ⊗Z · · · ⊗Z R

∨
`,`,

i.e. it is again naturally compatible with the tensor structure of K`.
We begin with actual Ring-LWE, where we assume that the samples are expressed with

respect to the product basis

{α1,i1α2,i2 · · ·α`,i`}ι∈{1,2}` , (4.2)

where ι abbreviates (i1, i2, . . . , i`). With respect to this basis a Ring-LWE sample reads:

(bι)
t
ι = Aa · (sι)tι +Aθ` ·B−1 · (eι)tι. (4.3)

Here Aa and Aθ` are the matrices of multiplication by a resp. θ` =
√
m` and B−1 = Σ−1 is the

inverse of the canonical embedding matrix; note that U = In`×n`
because K` is totally real.

We think of the eι’s as being sampled independently from Γ1
r with r = ρ(n`)/|∆K`

|ε/n` , and
the whole expression is considered modulo qn`

.
Because we work with respect to the product basis, the matrix Aθ` ·B−1 arises as the Kro-

necker product of the corresponding matrices for the quadratic fields K`,i, which by Example 2
are given by (

−1+
√
d

2
−1−

√
d

2
1 1

)
.

Note that (
0 1

)
·
(
−1+

√
d

2
−1−

√
d

2
1 1

)
=
(
1 1

)
, (4.4)

so through the Kronecker product we find that(
0 0 . . . 1

)
·Aθ` ·B−1 =

(
1 1 . . . 1

)
,

where the row vector on the left has 0’s everywhere, except at index ι = (2, 2, . . . , 2) where it
has a 1.

Thus given a Ring-LWE sample (4.3), we can multiply both sides from the left by the row
vector (0 0 . . . 1) in order to end up with a single linear equation in the secret s = (sι)ι,
perturbed by an error of the form (

1 1 . . . 1
)
· (eι)tι,

which behaves as if it were sampled from a univariate Gaussian Γ1
r′ with r′ =

√
n` · r. Now

our primes pi have been chosen in such a way that this error is most likely negligible. More
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precisely, our bound (4.1) on m` implies that

r′ =

√
n` · ρ(n`)

|∆K`
|ε/n`

=

√
n` · ρ(n`)√
m`

ε ≤ 1

2
√

log n`
,

whose absolute value is less than 1/2 with overwhelming probability, so a mere rounding results
in an exact linear equation in the secret. In fact by the lemma below, with very high probability
we can successfully repeat this during n` consecutive rounds, to end up with an exact linear
system of n` equations in the n` unknowns sι. This system is likely to have full rank (if not
we can simply query a few more samples), so that the secret can be recovered using standard
linear algebra over Z/qn`

Z. This concludes the proof in the case of proper Ring-LWE.
To obtain the analogous result for SCG Ring-based LWE using scaling factor |∆K`

|(1−ε)/n` ,
one repeats the foregoing reasoning with Aθ` ·B−1 replaced by |∆K`

|1/n ·B−1. The analogue
of (4.4) reads (

0 1
)
·
(
−1+

√
d

2
1+
√
d

2
1 −1

)
=
(
1 −1

)
,

leading to (
0 0 . . . 1

)
· |∆K`

|1/n ·B−1 =
(
(−1)η(ι)

)
ι
,

where η(ι) denotes the number of 2’s appearing in ι ∈ {1, 2}`. The right-hand side is again
a norm

√
n` vector, which is the main ingredient needed for the rest of the proof to apply. �

Lemma 4.2. Let Pn denote the probability that n independent samples from the univariate
Gaussian Γ1

1/2
√
logn

are all at most 1/2 in absolute value. Then Pn → 1 as n→∞.

Proof. Write r = 1/2
√

log n and let z be sampled from Γ1
r. Then Pn equals(

1− 2P

(
z >

1

2

))n
=

(
1− 2

r

∫∞
1/2

exp

(
−πx

2

r2

))n
≥

(
1− 2

r

∫∞
1/2

2x exp

(
−πx

2

r2

))n
so

Pn ≥
(

1− exp (−π log n)

π
√

log n

)n
,

where the right hand side is seen to converge to 1 using l’Hôpital’s rule.

Remark 3. The fields K` that were constructed in the above proof are totally real, but
this is not essential. Indeed, if we would also allow primes pi ≡ 3 mod 4 and instead consider
the field

K` = Q(
√
p∗1,
√
p∗2, . . . ,

√
p∗` ),

where

p∗i = (−1)
pi−1

2 pi,

then the same conclusions would have followed.

As was pointed out to us by a reviewer, the part of Theorem 4.1 that deals with actual
Ring-LWE admits an easier and more broadly applicable proof. Just pick number fields having
large enough discriminants, such as the ones constructed in the above proof, and apply the
following observation:
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Theorem 4.3. Let (Kn)n∈N be a family of number fields of increasing degree n, let ρ : N→
R>0 be in poly(n), and let (qn)n∈N be any sequence of integer moduli. Then the Ring-LWE
problem in Kn with error parameter r = ρ(n) can be solved in time poly(n · log qn) using O(n)
samples as soon as the errors are being scaled down by at least 2ρ(n)

√
n log n.

Proof. This is based on the simple fact that 1 ∈ R, which implies that σ(R) always contains
the vector (1, 1, . . . , 1). Thus there always exists a Z-linear combination of the column vectors
of Σ = B · U−1 having norm

√
n. As a consequence the same Z-linear combination of the rows

of Bt is of said norm, meaning that given a Ring-LWE sample as in (3.2), one can extract
from it a linear equation in the coordinates of the secret s1, s2, . . . , sn that is perturbed by
an error sampled from Γ1

ρ(n)·
√
n
. As soon as one scales this down by a factor of size at least

2ρ(n)
√
n log n, by the previous lemma about O(n) samples suffice to recover s.

5. A cyclotomic point of view

The fields K` constructed in the previous section are abelian, more precisely they are Galois
with Galois group

Gal(K`/Q) ∼= C2 × C2 × · · · × C2,

where C2 denotes the group of order two. So by the Kronecker-Weber theorem it should
be a subfield of some cyclotomic field. The following lemma shows that it is a subfield
of K := Q(ζm`

). We identify the Galois group Gal(K/Q) with G := (Z/(m`))
×, where a ∈ G

acts on K as ζm`
7→ ζam`

.

Lemma 5.1. Let G2 be the subgroup of squares in G. Then K` is the subfield of K fixed
by G2.

Proof. Denote the subfield of K fixed by G2 as KG2

. For each c ∈ G/G2 consider

wc = TrK/KG2 (ζcm`
) =

∑
h∈G2

ζhcm`
∈ KG2

.

By the Chinese remainder theorem (CRT) we have the isomorphism

G ∼= F×p1 × F×p2 × · · · × F×p` ,

according to which the wc’s can be decomposed as follows:

wc =
∑
h∈G2

ζhcm`
=

∑
h1∈(F×p1 )

2

...
h`∈(F×p` )

2

ζh1c
p1 ζh2c

p2 · · · ζ
h`c
p`

=
∏̀
i=1

∑
h∈(F×pi )2

ζhcpi . (5.1)

Every sum in the last product is a so-called Gaussian period, where the exponents run through
either the quadratic residues or the quadratic non-residues modulo pi. As all pi’s are congruent
to 1 modulo 4, such sums result in

βi,1 :=
−1 +

√
pi

2
, resp. βi,−1 :=

−1−√pi
2

(see [10]). One sees that {wc}c is the product basis of K` obtained by equipping the R`,i’s
with the Z-bases βi,1, βi,−1 rather than αi,1, αi,2. In particular the wc’s generate K`, so

K` ⊂ KG2

and the lemma follows by comparing degrees.
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As a byproduct of the above proof, we obtain that the wc’s form a Z-basis of R`, which
is a special case of a more general statement [18, Prop. 6.1]. This kind of ‘trace basis’ is also
used in the recent work on SCG Ring-based LWE by Chen, Lauter and Stange [7], an example
of which we will analyze later in this section. It is interesting to have a quick look at our
proof of Theorem 4.1, where now we express the samples with respect to the basis {wc}c,
instead of (4.2). Here the factors in the Kronecker product decomposition of Aθ` ·B−1 read(−1−pi

2
−1+pi

2
1−pi
2

1+pi
2

)
· 1
√
pi

(
1−√pi

2

−1−√pi
2

−1−√pi
2

1−√pi
2

)
=

(
1−√pi

2

1+
√
pi

2
−1−√pi

2

−1+√pi
2

)
.

One sees that (
1 −1

)
·

(
1−√pi

2

1+
√
pi

2
−1−√pi

2

−1+√pi
2

)
=
(
1 1

)
.

So expanding the Kronecker product gives

(J(ι))ι ·Aθ` ·B−1 =
(
1 1 . . . 1

)
, (5.2)

where ι runs over all tuples (i1, i2, . . . , i`) ∈ {1,−1}` and

J(ι) = J(i1, i2, . . . , i`) =
∏̀
j=1

ij

(this formula explains why we indexed the βi’s by ±1 rather than 1, 2). The row vector
(1 1 . . . 1) on the right-hand side of (5.2) has norm

√
n`, so as before this can be used

to obtain linear equations in the coordinates of the secret s that carry negligible error terms,
allowing one to recover s by means of simple linear algebra.

Remark 4. As before, the same claims apply to SCG Ring-based LWE and/or to the
setting where we allow primes pi ≡ 3 mod 4, upon replacement of every appearance of

√
pi by√

p∗i .

Remark 5. The letter J refers to the Jacobi-symbol. Indeed, through the CRT we have

G/G2 ∼=
F×p1

(F×p1)2
×

F×p2
(F×p2)2

× · · · ×
F×p`

(F×p`)2
= {±1} × {±1} × · · · × {±1},

where if c ∈ G/G2 corresponds to ι = (i1, i2, . . . , i`) ∈ {1,−1}`, then wc = β1,i1β2,i2 · · ·β`,i` and
J(ι) = (c/m`). Thus if we prefer to think of the rows and columns of the matrices Aθ and M
as being indexed by c ∈ G/G2 rather than ι ∈ {1,−1}`, then (5.2) becomes((

c
m`

))
c
·Aθ` ·M−1 =

(
1 1 . . . 1

)
,

an identity which we found remarkable at first sight.

To conclude this article, we note that more generally, the presence of factors of the form
Z[(1 +

√
d)/2] for some d ≡ 1 mod 4 may lead to unexpectedly short linear combinations of the

rows of Aθ ·B−1 and B−1, and thus to weaker instances of Ring-LWE and SCG Ring-based
LWE than one might hope, for an aggressive choice of scaling factor.

For instance, let us analyze the first example listed in [7, §5.1]; the other examples admit a
similar analysis. Here Chen et al. let m = 2805 = 3 · 5 · 11 · 17 and they consider the fixed field
KG′ of K = Q(ζm) under the action of

G′ := 〈1684, 1618〉 ⊂ G = Gal(K/Q) = (Z/(m))
×
.
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Under the CRT decomposition (Z/(m))
× ∼= F×3 × F×11 × (Z/(85))× this subgroup corresponds

to {1} × {1} ×G′85 where G′85 denotes the index two subgroup of elements having Jacobi
symbol 1. We again work with respect to the trace basis

wc =
∑
h∈G′

ζhcm = ζc3 · ζc11 ·
∑
h∈G′85

ζhc85 ,

where c ∈ G/G′. The latter sum equals β1 := (1 +
√

85)/2 or β−1 := (1−
√

85)/2 depending
on whether

(
c
85

)
= 1 or not. So we conclude similarly as before that the ring of integers equals

R := OKG′ = Z[ζ3, ζ11, (1 +
√

85)/2] ∼= Z[ζ3]⊗Z Z[ζ11]⊗Z Z[(1 +
√

85)/2]

and that {wc}c is the product basis

{ζi3ζ
j
11βk} i=1,2

j=1,2,...,10
k=1,−1

.

As in [7], let us have a look at SCG Ring-based LWE with scaling factor |∆|1/2n, where ∆ =
∆KG′ = (−3) · (−119) · 85 and n = [KG′ : Q] = 40. Let M denote the matrix of the canonical
embedding of KG′ with respect to the above basis. Then the last Kronecker factor of |∆|1/2n ·
M−1 = |∆|1/80 ·M−1 is given by

1
4
√

85
·

(
1+
√
85

2
−1+

√
85

2
−1+

√
85

2
1+
√
85

2

)
.

So multiplying from the left by (1 − 1) leads to the row vector (1 1)/ 4
√

85 of norm ≈ 0.4658,
which is ‘unexpectedly short’. The other Kronecker factors correspond to cyclotomic fields and
have less surprising behavior. Here taking the first row (for instance) of each factor leads to
norms

√
2/ 4
√

3 ≈ 1.0746 and
√

10/
20
√

119 ≈ 1.0750, respectively. Thus multiplying |∆|1/80 ·B−1
from the left by

(1, 0)⊗ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)⊗ (1,−1)

yields a row vector of norm ≈ 1.0746 · 1.0750 · 0.4658 ≈ 0.5381. Since Chen et al. let r = 1,
this results in a linear equation in the secret s carrying an error term sampled from Γ1

0.5381,
roughly. By taking other rows of the cyclotomic parts one in fact finds 20 independent such
equations. This is insufficient to break this concrete instance of SCG Ring-based LWE using
mere rounding (a substantial number of equations will carry an error that exceeds 1/2 in
absolute value), but it is tight, so it provides an explanation why this was indirectly helpful
for Chen et al. to successfully apply their χ2-analysis.

6. Conclusion

In this paper we explained that if one wishes to set up SCG Ring-based LWE in a degree n
number field K, as was done in [14, 7, 8] in the context of potential attacks involving evaluation

at 1, then it is natural to scale up the errors by |∆K |1/n. More precisely we proved that for

each ε > 0 scaling up by |∆K |(1−ε)/n may indeed be insufficient, in the sense that there exist
number fields for which the corresponding problem is easily broken. These observations also
apply to proper Ring-LWE, in the sense that scaling down by |∆K |ε/n leads to vulnerable
families for any ε > 0. Some of our families implicitly exploit the structure of the Galois group,
which raises the question to what extent Galois theory can be used further in the analysis of
the hardness of Ring-LWE.

In any case we stress that the families constructed in this paper are very special. In particular
it is unlikely that they will ever be used in a cryptographic context. Our main aim is to help
delimit the room of flexibility there is in tweaking the parameters, or even the definition, of
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Ring-LWE as it was introduced in [19]. We refer the interested reader to the recent work of
Peikert [21] that has appeared in the meantime, in which a unifying framework is given.
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