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Abstract

We introduce a debiasing scheme that solves the more-noise-than-entropy problem which can
occur in Helper Data Systems when the source is very biased. We perform a condensing step,
similar to Index Based Syndrome coding, that reduces the size of the source space in such a
way that some source entropy is lost while the noise entropy is greatly reduced. In addition,
our method allows for even more entropy extraction by means of a ‘spamming’ technique.
Our method outperforms solutions based on the one-pass von Neumann algorithm.

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in the field of security with noisy data. In several security
applications it is necessary to reproducibly extract secret data from noisy measurements on a
physical system. One such application is read-proof storage of cryptographic keys using Physical
Unclonable Functions (PUFs) [17, 18, 16, 4, 14]. Another application is the privacy-preserving
storage of biometric data.
Storage of keys in nonvolatile digital memory can often be considered insecure because of the vul-
nerability to physical attacks. (For instance, fuses can be optically inspected with a microscope;
flash memory may be removed and read out.) PUFs provide an alternative way to store keys,
namely in analog form, which allows the designer to exploit the inscrutability of analog physi-
cal behavior. Keys stored in this way are sometimes referred to as Physically Obfuscated Keys
(POKs) [10]. In both the biometrics and the PUF/POK case, one faces the problem that some
form of error correction has to be performed, but under the constraint that the redundancy data,
which is visible to attackers, does not endanger the secret extracted from the physical measure-
ment. This problem is solved by a special security primitive, the Helper Data System (HDS). A
HDS in its most general form is shown in Fig. 1. The Gen procedure takes as input a measure-
ment X. It outputs a secret S and (public) Helper Data W . The helper data is stored. In the
reconstruction phase, a fresh measurement X ′ is obtained. Typically X ′ is a noisy version of X,
close to X (in terms of e.g. Euclidean distance or Hamming distance) but not necessarily identical.
The Rec (reconstruction) procedure takes X ′ and W as input. It outputs Ŝ, an estimate of S. If
X ′ is not too noisy then Ŝ = S.

Gen$ Rec$

storage 

W 

X X' 

S Ŝ 
Figure 1: Data flow in a generic Helper Data System.

Two special cases of the general HDS are the Secure Sketch (SS) and the Fuzzy Extractor (FE) [9].
The Secure Sketch has S = X (and Ŝ = X̂, an estimator for X). If X is not uniformly distributed,
then S is not uniform. The SS is suitable for privacy-preserving biometrics, where high entropy of
S (given W ) is required, but not uniformity. The Fuzzy Extractor is required to have a (nearly)
uniform S given W . The FE is typically used for extracting keys from PUFs and POKs.
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1.2 The Code Offset Method (COM)

By way of example we briefly present the Code Offset Method [3, 12, 9, 8, 19], the oldest and most
well-known HDS. The COM makes use of a linear code C with k-bit messages and n-bit codewords.
The syndrome function is denoted as Syn : {0, 1}n → {0, 1}n−k. The code supports a syndrome
decoding algorithm SynDec : {0, 1}n−k → {0, 1}n that maps syndromes to error patterns. Use is
also made of a key derivation function KeyDeriv : {0, 1}n × {0, 1}∗ → {0, 1}`, with ` ≤ k. Below
we show how the COM can be used as a FE for either uniform or non-uniform source X.
Enrollment:
The enrollment measurement gives X ∈ {0, 1}n. The helper data is computed as W = SynX.
The key is computed as S = KeyDeriv(X,R), where R is (optional) public randomness. The W
and R are stored.
Reconstruction:
A fresh measurement of the PUF gives X ′ ∈ {0, 1}n. The estimator for X is computed as
X̂ = X ′ ⊕ SynDec(W ⊕ SynX ′) and the reconstructed key is Ŝ = KeyDeriv(X̂, R).

1.3 The problem of bias

After seeing the helper data W as specified above, an attacker has uncertainty H(X|W ) about X.1

As W is a function of X, we have H(X|W ) = H(X|SynX) = H(X)−H(SynX). Let us consider the
simplest possible noise model, the Binary Symmetric Channel (BSC). In the case of a BSC with bit
error rate β, the code’s redundancy has to satisfy n− k ≥ nh(β) in order for the error-correction
to work. (Here h denotes the binary entropy function, h(β) = −β log β − (1− β) log(1− β), with
‘log’ the base 2 logarithm). More generally, H(SynX) has at least to be equal to the entropy of
the noise. Hence the COM helper data in the BSC case leaks at least nh(β) bits of information
about X. This becomes a problem when X itself does not have much entropy, which occurs for
instance if the bits in X are highly biased [11, 13]. Note that the problem is not fundamental: the
secrecy capacity is nh(p+ β − 2pβ)− nh(β), which is positive.
A solution was proposed by Maes et al. [15]. Their approach is to combine debiasing with error
correction. For the debiasing they use the von Neumann algorithm in a single-pass or multi-pass
manner. Their helper data comprises a selection ‘mask’ that helps the reconstruction algorithm
to identify the locations where von Neumann should yield output.
In this paper we follow a simpler approach similar to the Index Based Syndrome (IBS) method [20].
In IBS the helper data consists of an ordered list of pointers to locations in X; the content of X
in those locations together forms a codeword. IBS avoids the leakage caused by publishing error-
correcting-code syndromes.

1.4 Contributions and outline

We introduce an alternative solution to the bias problem in helper data systems. We follow
the condense-then-fuzzy-extract philosophy proposed by Canetti et al. [6] as one of the available
options when faced with ‘more noise than entropy’ scenarios. Condensing means mapping the
source variable X to a smaller space such that most of the entropy of X is retained, but the noise
entropy is greatly reduced. Our way of condensing the source is to restrict X to the bit positions
U where U ⊂ {1, . . . , n} is a random subset containing all the rare symbols. The set U becomes
part of the helper data.
Our U bears some similarity to the von Neumann mask in [15], but there are important differences.
(i) The size of U is tunable. (ii) We can extract source information based on the legitimate party’s
ability to distinguish U from fake instances of U when a ‘spamming’ technique similar to [19] is
applied.
The outline of this paper is as follows. Section 2 gives the details of the scheme. Section 3 presents
an analysis of the extractable entropy and of the practicality of the ‘spamming’ option. Section 4
summarises and suggests future work.

1The notation H stands for Shannon entropy. For information-theoretic concepts see e.g. [7].

2



2 Debiasing based on subset selection

We will use the following notation. The set {1, . . . , n} is written as [n]. The notation XU means
X restricted to the positions specified in U . Set difference is written as ‘\’. A string consisting
of n zeroes is written as 0n. The Hamming weight of X is denoted as w(X). We will consider
a source X ∈ {0, 1}n made up of i.i.d. bits Xi following a Bernoulli distribution with parameter
p, i.e. Pr[Xi = 1] = p. Without loss of generality we take p ∈ (0, 12 ). In particular we are
interested in the case p < β where direct application of the COM fails. The notation ‘log’
stands for the base-2 logarithm. Information distance (Kullback-Leibler divergence) is denoted as
D(p||q) = p log p

q + (1− p) log 1−p
1−q for p, q ∈ (0, 1).

2.1 The scheme

Below we present a barebones version of our proposed scheme. We omit details concerning the
protection of the stored data. There are well known ways to protect helper data, using either
Public Key Infrastructure or one-way functions [5]. We also omit details that have to do with the
verification of the reconstructed key. These details are trivially added.

System setup
The following system parameters are fixed. An integer u satisfying np < u < n, representing
the size of U ; a list length L; a pseudorandom generator f that takes as input a seed σ and a
counter j, and outputs a subset f(σ, j) ⊂ [n] such that |f(σ, j)| = u; a Secure Sketch (Gen, Rec)
that acts on a source in {0, 1}u and is able to handle bit error rate β; a key derivation function
KDF : {0, 1}u × [L]→ {0, 1}`. All these parameters are public.

Enrollment

E1. Measure X ∈ {0, 1}n.

E2. Draw a random subset U ⊂ [n] of size u such that X[n]\U = 0n−u.

E3. Compute Y = XU and W = Gen(Y ).

E4. Draw a random seed σ.

E5. Draw a random z ∈ [L]. Determine a permutation π : [n]→ [n] such that2 π(U) = f(σ, z).

E6. Derive the secret key as S = KDF(Y, z).

E7. Store σ, π,W .

Reconstruction

R1. Read σ, π,W .

R2. Measure X ′ ∈ {0, 1}n.

R3. Construct a set M′ = {i ∈ [n] : X ′i = 1}. Compute M = π(M′).
R4. Construct the list L = (f(σ, j))Lj=1.

R5. Determine the index ẑ ∈ [L] for which Lẑ has the largest overlap with M.

R6. Compute Û = πinv(Lẑ) and Ŷ = Rec(X ′Û ,W ).

R7. Reconstruct the key as Ŝ = KDF(Ŷ , ẑ).

There is a small probability that w(X) > u occurs, which would cause a problem in step E2.
However, we will typically consider u ≥ 2np, in which case the probability that step E2 fails is
exponentially small.

2π(U) means π applied to each element of U individually.
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2.2 Explanation of the scheme

The effect of steps E4,E5 is to create a list of U-candidates, of which only entry z is correct. To
an attacker (who knows u but does not know X or X ′) the L candidates are indistinguishable.3

Steps R3–R5 allow for a quick search to identify the index z of the correct U-candidate. Note
that the reconstruction algorithm compares a permutedM to L-entries instead ofM to permuted
L-entries; this improves speed. To further optimize for speed, steps R4 and R5 can be combined
to select good z values on the fly as soon as a new Lj is generated.
Note that extremely fast pseudorandom generators exist which spew out more than 8 bits per
clock cycle [1, 2]. This makes it practical to work with large values of L, as long as not too many
plausible z-candidates are generated. (See Section 3.3).
We did not explicitly specify how to map pseudorandom numbers to a size-u subset of [n]. A very
straightforward algorithm would be to keep uniformly picking locations in [n], until u different
ones have been found.
We did not specify an algorithm for determining the permutation π, nor did we specify in which
form π is stored. These are minor details and have no impact on the overall efficiency of the
scheme, since steps E5 and R3 are performed only once. The computational bottleneck is R4,R5.
Note that inputting z into the key derivation function increases the entropy of S by logL bits.

3 Analysis

3.1 Entropy after condensing

The Hamming weight of X carries very little information. Let’s assume for the moment that
T = w(X) ∈ {0, . . . , u} is known to the attacker4, just to simplify the analysis.
Even if the attacker knows t and U (i.e. z), there are

(
u
t

)
equally probable possibilities for Y .

Hence

H(Y |Z = z, T = t) = log

(
u

t

)
> uh(

t

u
)− 1

2
log

t(u− t)
u

− log
e2√
2π
. (1)

The inequality follows from Stirling’s approximation.
As (1) does not depend on z, the entropy H(Y |T = t) is also given by (1). A lower bound
on H(Y |T ) is obtained by taking the expectation over t. This turns out to be rather messy,
since the distribution of t is a truncated binomial. (It is given that t ≤ u, while originally
w(X) ∈ {0, . . . , n}). As t equals approximately np on average, the result is H(Y |T ) ≈ uh(npu ). A
more precise lower bound is given in Theorem 1 below.

Theorem 1 Let δ be defined as

δ = min{e−2np2( unp−1)2 , e−np 1
3 (

u
np−1), e−nD( un ||p)}. (2)

Let δ < p. Let u ≥ 2np/(1− δ). Then the entropy of Y given T can be lowerbounded as

H(Y |T ) > uh

(
np− nδ

u

)
− 1

2
log

np

1− δ − log
e2√
2π

+
1

2 ln 2

np− nδ
u

−u
{

1− p
np

+
2δ

p
+ δ +

δ3

p3

}
(1− δ)−1(1− δ

p
)−2. (3)

Proof: The proof in rather tedious and can be found in Appendix A. �
The entropy of Y is obtained as follows,

H(Y ) = H(Y T ) = H(T ) + H(Y |T ). (4)

The H(T ) is the entropy of the truncated binomial distribution.

3Given the i.i.d. model for creating X, the set U itself is uniformly random. If we want a different model for X,
e.g. with asymmetries between the positions, then L will need to be generated in a way that follows the statistics
of X.

4In the security analysis we denote random variables using capitals, and their numerical realisations in lowercase.
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Theorem 2 Let qt =
(
n
t

)
pt(1−p)n−t denote the probabilities in the full binomial distribution. Let

δ be defined as in Theorem 1.

H(T ) > log
2π

e

√
np(1− p) + log(1− δ)− (n− u)qu log

1

qu
. (5)

Proof: See Appendix B. �

Theorem 3 Let δ be defined as in Theorem 1. Let δ < p. Let u ≥ 2np/(1− δ).

H(Y ) > uh

(
np− nδ

u

)
+

1

2 ln 2

np− nδ
u

− log
e3

(2π)3/2
+

1

2
log(1− p) +

3

2
log(1− δ)

−(n− u)qu log
1

qu
− u

{
1− p
np

+
2δ

p
+ δ +

δ3

p3

}
(1− δ)−1(1− δ

p
)−2. (6)

Proof: Follows directly from Theorems 1 and 2 by adding H(T ) + H(Y |T ). �
The complicated expression (6) can be well approximated by uh(np/u)− u/np.
Note that the difference between the original source entropy H(X) = nh(p) and the condensed
form H(Y ) ≈ uh(np/u) − u/np is considerable. For example, setting n = 640, p = 0.1, u = 128
yields H(Y ) ≈ 126 and H(X) ≈ 300. A small part of this huge difference can be regained using
the trick with the entropy of Z. The practical aspects are discussed in Section 3.3.
Note also that our scheme outperforms simple von Neumann debiasing a factor of at least 2. The
von Neumann algorithm takes n/2 pairs of bits; each pair has a probability 2p(1−p) of generating
a (uniform) output bit; hence the extracted entropy is np(1 − p) < np. In our scheme, if we set
u ≈ 2np we get H(Y ) ≈ 2np− 2. Furthermore, H(Y ) is an increasing function of u.

3.2 Fuzzy Extraction after condensing

The Code Offset Method applied to Y ∈ {0, 1}u leaks at least uh(β) bits of information about Y .
In case of a ‘perfect’ error-correcting code, the length of a noise-robust key reconstructed with
the COM is H(Y )− uh(β). In Fig. 2 we plot H(Y )− uh(β) for some example parameter settings.
(Note that in all cases shown here β ≥ p holds; the COM acting on the original source X would
be unable to extract any entropy.) Clearly there is an optimum (n, u) for given (p, β).
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Theorem 2 Let qt =
�
n
t

�
pt(1�p)n�t denote the probabilities in the full binomial distribution. Let

� be defined as in Theorem 1.

H(T ) > log
2⇡

e

p
np(1 � p) + log(1 � �) � (n � u)qu log

1

qu
. (5)

Proof: See Appendix B. ⇤

Theorem 3 Let � be defined as in Theorem 1. Let � < p. Let u � 2np/(1 � �).

H(Y ) > uh

✓
np � n�

u

◆
+

1

2 ln 2

np � n�

u
� log

e3

(2⇡)3/2
+

1

2
log(1 � p) +

3

2
log(1 � �)

�(n � u)qu log
1

qu
� u

⇢
1 � p

np
+

2�

p
+ � +

�3

p3

�
(1 � �)�1(1 � �

p
)�2. (6)

Proof: Follows directly from Theorems 1 and 2 by adding H(T ) + H(Y |T ). ⇤
The complicated expression (6) can be well approximated by uh(np/u) � u/np.
Note that the di↵erence between the original source entropy H(X) = nh(p) and the condensed
form H(Y ) ⇡ uh(np/u) � u/np is considerable. For example, setting n = 640, p = 0.1, u = 128
yields H(Y ) ⇡ 126 and H(X) ⇡ 300. A small part of this huge di↵erence can be regained using
the trick with the entropy of Z. The practical aspects are discussed in Section 3.3.
Note also that our scheme outperforms simple von Neumann debiasing a factor of at least 2. The
von Neumann algorithm takes n/2 pairs of bits; each pair has a probability 2p(1�p) of generating
a (uniform) output bit; hence the extracted entropy is np(1 � p) < np. In our scheme, if we set
u ⇡ 2np we get H(Y ) ⇡ 2np � 2. Furthermore, H(Y ) is an increasing function of u.

3.2 COM secrecy extraction after condensing

The code o↵set method applied to Y 2 {0, 1}u leaks at least uh(�) bits of information about Y .
In Fig. ?? @@ we plot H(Y ) � uh(�) as a function of u for fixed n, p,�.

3.3 The list size L

4 Discussion
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A Proof of Theorem 1

We start with a number of definitions and supporting lemmas. We define the binomial probability
qt =

�
n
t

�
pt(1 � p)n�t. We define � = Pr[w(X) > u] =

Pn
t=u+1 qt and ⇡t = qt/(1 ��) for t  u,

such that the vector (⇡t) is the probability distribution of t from the attacker’s point of view.
The notation Et will refer to the binomial distribution (qt)

n
t=0, while Ẽ will refer to the truncated

binomial (⇡t)
u
t=0.

Lemma 1 Let k � 1, n � 2.

nh(
k

n
) � 1

2 log
k(n � k)

n
� log

e2

p
2⇡

 log

✓
n

k

◆
 nh(

k

n
) � 1

2 log
k(n � k)

n
� log

2⇡

e
. (7)

Proof: Follows directly from Stirling’s approximation. ⇤

Lemma 2 Let u > 2np.

�  � with �
def
= min{e�2np2( u

np�1)2 , e�np 1
3 ( u

np�1), e�nD( u
n ||p)}. (8)

Proof: These are the inequalities of Hoe↵ding, Cherno↵, Cherno↵-Hoe↵ding respectively. The
listed form of the Cherno↵ inequality needs u > 2np. ⇤

Lemma 3
Ẽt t > n(p � �). (9)

Proof:

Ẽt t =
1

1 ��

uX

t=0

qtt >

uX

t=0

qtt = np �
nX

t=u+1

qtt > np �
nX

t=u+1

qtn = np � n� � np � n�. (10)

In the last step we used Lemma 2. ⇤

Lemma 4
Ẽt t <

np

1 � �
. (11)

Proof:

Ẽt t =
1

1 ��

uX

t=0

qtt <
1

1 ��

nX

t=0

qtt =
np

1 ��
 np

1 � �
. (12)

In the last step we used Lemma 2. ⇤
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Figure 2: The key length H(Y )−uh(β) that the Code Offset Method can reproducibly extract after
the condensing step, plotted as a function of u for various parameter values. For H(Y ) the bound
in Theorem 3 is used.
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3.3 The list size L

We briefly discuss how large L can be made before the reconstruction procedure sketched in
Section 2 starts to produce too many candidates for z. We define p̃ = p+ β − 2pβ.
On the one hand there is the number of ‘1’ symbols in X ′U for the correct U . The number of 1’s
in XU is on average np. Of these, on average np(1− β) will be a ‘1’ in X ′. The (u− np) zeroes in
XU will generate on average (u − np)β 1’s in X ′. Hence the number of 1’s in X ′U is expected to
be around np(1− β) + (u− np)β = np+ (u− 2np)β.
On the other hand there is the number of 1’s for incorrect U-candidates. The number of 1’s in
X ′ is approximately np̃. We pretend that np̃ is integer, for notational simplicity. We denote by
A ∈ {0, . . . , np̃} the number of 1’s in X ′V for a randomly chosen subset V, with |V| = u. The A
follows a hypergeometric probability distribution

Pr[A = a] =

(
np̃
a

)(
n−np̃
u−a

)
(
n
u

) =

(
u
a

)(
n−u
np̃−a

)
(
n
np̃

) . (7)

The first expression looks at the process of selecting u out of n positions with exactly a 1’s hitting
the np̃ existing 1’s in X ′; the second expression looks at the process of selecting np̃ positions in X ′

such that exactly a of them lie in V. We have Ea a = up̃ and Ea(a−up̃)2 = up̃(1−p̃)(n−u)/(n−1) <
up̃. In other words, a is sharply peaked around up̃.
We can put a threshold θ somewhere in the gap between up̃ and np + (u − 2np)β, and declare a
U-candidate V to be bad if the Hamming weight of X ′V is lower than θ. Let’s set θ = np + (u −
2np)β − c · √np with c sufficiently large to avoid false negatives (i.e. missing the correct U). In a
way analogous to (2), we can bound the false positive probability as

Pr[A ≥ θ] < min{e−2up̃2(θ/up̃−1)2 , e−up̃ 1
3 (θ/up̃−1), e−uD( θu ||p̃)}. (8)

These bounds are obtained by applying (2) and replacing u → θ, n → u, p → p̃. Fig. 3 shows
how many bits of entropy (≈ − log Pr[A > θ]) can be obtained from z without running into false
positives in step R5. To extract b bits of entropy, a list length L = 2b is needed. Fig. 3 serves
just to show the orders of magnitude and is by no means an exhaustive treatment of the whole
parameter space n, p, β, u, θ. We remark that the curves depend quite strongly on the threshold
parameter c.
It is important to note that it is perfectly possible to make L extremely large. Then many
false positives occur, but this is not a fundamental problem. It requires extra work: one key
reconstruction and one verification (e.g. of a key hash) per false positive. Depending on the
available n, the computing platform etc. this may be a viable option.
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3.3 The list size L

We briefly discuss how large L can be made before the reconstruction procedure sketched in
Section 2.1 starts to produce too many candidates for z. We define p̃ = p + � � 2p�.
On the one hand there is the number of ‘1’ symbols in X 0

U for the correct U . The number of 1’s
in XU is on average np. Of these, on average np(1� �) will be a ‘1’ in X 0. The (u� np) zeroes in
XU will generate on average (u � np)� 1’s in X 0. Hence the number of 1’s in X 0

U is expected to
be around np(1 � �) + (u � np)� = np + (u � 2np)�.
On the other hand there is the number of 1’s for incorrect U -candidates. The number of 1’s in
X 0 is approximately np̃. We pretend that np̃ is integer, for notational simplicity. We denote by
A 2 {0, . . . , np̃} the number of 1’s in X 0

V for a randomly chosen subset V, with |V| = u. The A
follows a hypergeometric probability distribution

Pr[A = a] =

�
np̃
a

��
n�np̃
u�a

�
�
n
u

� =

�
u
a

��
n�u
np̃�a

�
�

n
np̃

� . (7)

The first expression looks at the process of selecting u out of n positions with exactly a 1’s hitting
the np̃ existing 1’s in X 0; the second expression looks at the process of selecting np̃ positions in X 0

such that exactly a of them lie in V. We have Ea a = up̃ and Ea(a�up̃)2 = up̃(1�p̃)(n�u)/(n�1) <
up̃. In other words, a is sharply peaked around up̃.
We can put a threshold ✓ somewhere in the gap between up̃ and np + (u � 2np)�, and declare a
U -candidate V to be bad if the Hamming weight of X 0

V is lower than ✓. Let’s set ✓ = np + (u �
2np)� � c · pnp with c su�ciently large to avoid false negatives (i.e. missing the correct U). In a
way analogous to (2), we can bound the false positive probability as

Pr[A � ✓] < min{e�2up̃2(✓/up̃�1)2 , e�up̃ 1
3 (✓/up̃�1), e�uD( ✓

u ||p̃)}. (8)

These bounds are obtained by applying (2) and replacing u ! ✓, n ! u, p ! p̃.

4 Discussion
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2np)β − c√np with c = 4. The Pr[A > θ] was obtained by numerical summation of (7).
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4 Summary

We have introduced a method for source debiasing that can be used in Helper Data Systems to
solve the ‘more noise than entropy’ problem. Our method applies the condense-then-fuzzy-extract
idea [6] in a particularly simple way: the space {0, 1}n is condensed to {0, 1}u in such a way
that all the rare symbols are kept; meanwhile the noise entropy is reduced from nh(β) to uh(β).
Theorem 3 gives a lower bound on the retained entropy H(Y ). Furthermore, there is the option of
extracting additional entropy from the index z, which points at the real subset U among the fakes.
Even in its bare form, without the fake subsets, our method outperforms basic von Neumann
debiasing by factor of at least 2.
Fig. 2 shows that after the condensing step the Code Offset Method can extract significant entropy
in a situation where the bare COM fails. It also shows the tradeoff between the reduction of source
entropy and noise entropy as u varies.
In Section 3.3 we did a very preliminary analysis of the practicality of extracting information from
the index z. More work is needed to determine how this works out for real-world parameter values
n, p, β and to see how the computations in steps R4 and R5 can be optimised for speed. Another
topic for future work is to study different noise models such as asymmetric noise.
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A Proof of Theorem 1

We start with a number of definitions and supporting lemmas. We define the binomial probability
qt =

(
n
t

)
pt(1 − p)n−t. We define ∆ = Pr[w(X) > u] =

∑n
t=u+1 qt and πt = qt/(1 −∆) for t ≤ u,

such that the vector (πt) is the probability distribution of t from the attacker’s point of view.
The notation Et will refer to the binomial distribution (qt)

n
t=0, while Ẽ will refer to the truncated

binomial (πt)
u
t=0.

Lemma 1 Let k ≥ 1, n ≥ 2.

nh(
k

n
)− 1

2 log
k(n− k)

n
− log

e2√
2π
≤ log

(
n

k

)
≤ nh(

k

n
)− 1

2 log
k(n− k)

n
− log

2π

e
. (9)

Proof: Follows directly from Stirling’s approximation. �

Lemma 2 Let u > 2np.

∆ ≤ δ with δ
def
= min{e−2np2( u

np−1)2 , e−np
1
3 (

u
np−1), e−nD( u

n ||p)}. (10)

Proof: These are the inequalities of Hoeffding, Chernoff, Chernoff-Hoeffding respectively. The
listed form of the Chernoff inequality needs u > 2np. �

Lemma 3
Ẽt t > n(p− δ). (11)

Proof:

Ẽt t =
1

1−∆

u∑

t=0

qtt >

u∑

t=0

qtt = np−
n∑

t=u+1

qtt > np−
n∑

t=u+1

qtn = np− n∆ ≥ np− nδ. (12)

In the last step we used Lemma 2. �
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Lemma 4
Ẽt t <

np

1− δ . (13)

Proof:

Ẽt t =
1

1−∆

u∑

t=0

qtt <
1

1−∆

n∑

t=0

qtt =
np

1−∆
≤ np

1− δ . (14)

In the last step we used Lemma 2. �

Lemma 5

Ẽt t2 <
(np)2 + np(1− p)

1− δ . (15)

Proof:

Ẽt t2 =
1

1−∆

u∑

t=0

qtt
2 <

1

1−∆
Et t2 =

(np)2 + np(1− p)
1−∆

≤ (np)2 + np(1− p)
1− δ . (16)

In the last step we used Lemma 2. �

Lemma 6 Let p ∈ [0, 1]. Let r ∈ (0, 12 ]. Then it holds that

h(p) ≥ Ωr(p) , Ωr(p) = h(r) + (p− r)h′(r)− (p− r)2
r2

[h(r)− rh′(r)]. (17)

The expression h(r)− rh′(r) is a nonnegative increasing function on r ∈ (0, 12 ].

Proof: Ωr is a parabola constructed such that Ωr(0) = 0, Ωr(r) = h(r) and Ω′r(r) = h′(r). The
property h(p) ≥ Ωr(p) is verified by visual inspection. We define g(r) = h(r) − rh′(r). We have
limr→0 g(r) = 0. Furthermore d

drg(r) = −rh′′(r) > 0, which proves that g is increasing. Together
with g(0) = 0 that implies that g(r) is nonnegative on the given interval. �

Lemma 7 Let δ < p and u ≥ 2np/(1− δ).

Ẽt h(
t

u
) > h(

np− nδ
u

)−
{

1− p
np

+
2δ

p
+ δ +

δ3

p3

}
(1− δ)−1(1− δ

p
)−2. (18)

Proof: We start from Lemma 6 to expand h( tu ) around t = Ẽt t,

h( tu ) ≥ h(Ẽt tu ) + linear− (t− Ẽt t)2

(Ẽt t)2
[h(Ẽt tu )− Ẽt[ tu ]h′(Ẽt tu )]. (19)

When we take the expectation Ẽt, the term linear in t− Ẽt t disappears,

Ẽth( tu ) ≥ h(Ẽt tu )− [
Ẽt t2

(Ẽt t)2
− 1]

[
h(Ẽt tu )− Ẽt[ tu ]h′(Ẽt tu )

]
. (20)

We use Ẽt t < u/2 to bound the second occurrence of h(Ẽt tu ) as h(· · · ) < 1 and to use h′ > 0. For

the first occurrence of h(Ẽt tu ) we use that h is an increasing function and apply Lemma 3.

Ẽth( tu ) > h(
np− nδ

u
)− [

Ẽt t2

(Ẽt t)2
− 1]. (21)

Finally we bound Ẽt t2 using Lemma 5 and we bound Ẽt t using Lemma 3. �
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Lemma 8

Ẽt log

(
u

t

)
> uẼth( tu )− log

e2√
2π
− 1

2 log
np

1− δ +
1

2 ln 2

np− nδ
u

. (22)

Proof: We start from Lemma 1 and write

log

(
u

t

)
≥ uh(

t

u
)− 1

2 log
t(u− t)

u
− log

e2√
2π
. (23)

We expand the second term as − 1
2 log t(u−t)

u = − 1
2 log t− 1

2 log(1− t
u ) > − 1

2 log t+ 1
2 ln 2

t
u . Then

we apply Ẽt. Jensen followed by Lemma 4 gives Ẽt log t ≤ log Ẽt t < log np
1−δ . Lemma 3 gives

Et tu >
np−nδ
u . �

With all these lemmas we can finally prove Theorem 1. From (1) we have

H(Y |T ) = ẼtH(Y |T = t) = Ẽt log

(
u

t

)
. (24)

We apply Lemma 8, and then Lemma 7 to lowerbound Ẽth( tu ).

B Proof of Theorem 2

We begin by lowerbounding the entropy of the un-truncated distribution (qt)
n
t=0.

Lemma 9

H(q) ≥ log
2π

e

√
np(1− p). (25)

Proof:

H(q) = −Et log[

(
n

t

)
pt(1− p)n−t] = (−Ett) log p− (n− Ett) log(1− p)− Et log

(
n

t

)

= nh(p)− Et log

(
n

t

)
≥ nh(p)− log

(
n

Ett

)
= nh(p)− log

(
n

np

)
. (26)

In the last line we used Jensen’s inequality for the function log
(
n
t

)
. We use Lemma 1 to upperbound

log
(
n
np

)
. �

Now we write

H(T ) = Ẽt log
1−∆

qt
= log(1−∆) +

1

1−∆

u∑

t=0

qt log
1

qt

> log(1− δ) +

u∑

t=0

qt log
1

qt
= log(1− δ) + H(q)−

n∑

t=u+1

qt log
1

qt

> log(1− δ) + H(q)−
n∑

t=u+1

qu log
1

qu
= log(1− δ) + H(q)− (n− u)qu log

1

qu
. (27)

In the last inequality we used that qt log 1
qt

is a decreasing function of t. Finally we lowerbound

H(q) with Lemma 9.
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