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Abstract. Function secret sharing(FSS) was introduced by Boyle et al.
in Eurocrypt 2015, which allowed a dealer to split a secret function f into
n separate pieces such that each piece enables the server who owns it to
generate a secret share of the evaluation of f(x). However, when just only
one collusive server returns a wrong result, reconstructing the secret will
fail. Therefore, we are required to find an applicable approach to check
the correctness of result returned by the untrusted server. To solve this
issue, we firstly introduce a primitive called Public Verifiable Function
Secret Sharing (PVFSS), and define three new important properties:
public delegation, public verification and high efficiency. Then we ini-
tiate a systematic study of PVFSS and construct a PVFSS scheme
for point function. Not only captures our scheme these three properties,
but also allows the client to verify the outcome in time constant i.e., in
indeed substantially less time than performing the computation locally.
We conducted a performance analysis, which manifested that our scheme
can be applied into practice such as cloud/outsource computing.

Keywords: PVFSS, high efficiency, public delegation, public verifica-
tion

1 Introduction

Previous researches on secret sharing scheme(SSS) [1,2,3,4,5] put lots of focus on
a real number rather than a function. These schemes allow one to split a secret(a
real number) s into n pieces and distribute them to participants respectively, such
that only universal set of the pieces can reconstruct it. However, as a matter of
fact, a function would have comparatively higher theoretical and practical value
than a point (a real number). Motivated by this, if only the secret was a function,
we would also deploy the SSS to cloud computing [6,7,8,9] to request a powerful
server to perform some heavy computations of a sub-function about the secret
on arbitrary input, such as a stock manipulation or cryptographic operator.
Finally, the server returns the results to a client with low computational ability.
Not until [10] implemented the Function Secret Sharing does this hot potato
seem to be worked out. At a high level, a p-party FSS scheme for a class F
of functions f allows a dealer to split an arbitrary sharing f ∈ F into p sub-

functions fi : {0, 1}n → G,1 ≤ i ≤ p,such that (1)
p∑
i=1

fi (x) = f (x), (2) each

fi is described by a short key ki and (3) any strict subset of the fi hides f , i.e.
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there doesn’t exist any key that can individually reveal information about which
function f has been shared.

However, once even only or no more than one malicious server outputs a
malicious or wrong result, the recovery may break down. Therefore, it is im-
perative to propose a mechanism or approach, in the perspective of security, to
enforce the integrity and correctness of the computations. This incentive triggers
an enormous challenge on prior secret sharing schemes. To deal with this great
challenge, chor et al. [11] introduced the cryptographic primitive of verifiable
secret sharing (VSS), where everyone can verify whether all received pieces is
valid or not so that only correct result will be received by the client. Similarly,
this concept is designed to verify a point rather than a function. Therefore, it is
impossible to use the method of [11] to settle this matter.

To solve the problems above and achieve this wishful thinking, to the best of
our knowledge, we firstly present the primitive called public verifiable function se-
cret sharing. Our concept is a (somewhat surprising) connection between the no-
tions of Function Secret Sharing (FSS) and verifiable computation [12,13,14,38].
Moreover, we propose three new properties as following:

-Public Delegation: everyone could be able to delegate computations to pow-
erful cloud servers, which means that a dealer desires to outsource the compu-
tation so that he or anybody can supply inputs to the function and perform the
delegation over and over again.

-Public Verification: the dealer needs to produce a public verifiable key, which
endows the client (verifier) the privilege to check the integrity and correctness
of the computation among untrusted servers. In other word, the wrong result
would never be received.

-High Efficiency: the verification of such correctness proof must cost substan-
tially less effort than the computation, otherwise the client would either not be
able to verify the proof, or execute computation by himself.

1.1 Our Results and Contributions

In this paper, we extend the work of [10] and propose a new paradigm called
PVFSS to check the correctness and integrity of the results returned by un-
trusted servers. We now consider the following scenario: allow a dealer to divide
a secret function into several sub-functions. Each sub-function is distributed or
outsourced to the server. On issuing a query, each server outputs evaluation of
their own sub-function, then the client can reconstruct the secret. However, once
no more than or at least one collusive server performs the procedure maliciously,
then a wrong result would be shared to the client. One of our technical highlights
is a new method that allows any client to verify whether the server returns a
malicious or wrong result.

Our major results and contributions are summarized as follows.

Definition of New Primitive. We are the first ones to formally define
public verifiable function secret sharing (PVFSS) and its security.
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Public Delegation. Our construction allows a dealer to divide the secret
function among lots of servers. Then arbitrary clients could be able to submit
inputs for delegation.

Public Verification. Our construction allows arbitrary clients and not just
the dealer to check the integrity and correctness of the computation. Namely, a
wrong result would never be received by the client.

High Efficiency. Our construction allows a computationally weak client to
verify the correctness of secret function in constant time. That costs substantially
less effort than performing a computation from scratch, otherwise the client
would either not be able to verify the proof, or execute the computation by
himself.

Ingenious Scheme for Point Function. Our construction for point func-
tion presents three types of results. First, we prove theoretically the existence
that two different hash functions Hy, Hr can map to an overall hash function Hw

by algebraic operation. Second, an approach was introduced to construct a hash
function Hw satisfying Hw = aHy + Hr. Third, our verifiable scheme captures
these three properties. Meanwhile, not only key size but also each algorithm
efficiency costs twice less effort than FSS’s.

Contrastive Analysis of PVFSS and FSS. The key length of PVFSS
is O(pµ · pn−1(λ ·+2 |y|)), which is far less than FSS’s O(2 · pµ · pn−1(λ ·+ |y|)).
A comparative experiment was conducted on PVFSS and FSS. The results of
the experiments manifest that PVFSS’s performance is similar to FSS’s.

Contribution to Cloud or Outsource Computing. A dealer holds a
secret function and hopes to share it among several clients without revealing
any information about the secret function f . However, the client could get the
evaluation f(x) . The property, Public verification, was added to FSS so that we
can deploy improved FSS to cloud computing. Our scheme allows the dealer to
execute an expensive splitting operation. Then the sub-function is distributed
or outsourced to the powerful but untrusted server. On issuing a query, the
untrusted server outputs a result. Finally, a client with a weak computational
ability can verify the result in a constant time. That satisfies the cost of verifi-
cation is far less than that of computation locally.

1.2 Related Work

Threshold cryptography [15] deals with the problem of sharing a highly sensi-
tive secret (a point) among a group of users so that only a sufficient number of
them gathering together can recover the secret. Typically, some classic methods,
reconstructing secret sharing, include polynomial interpolation [1], hyperplane
geometry [16], Chinese Remainder Theorem (CRT) [17]. All of these schemes
assumed that the dealer and sharers are absolutely reliable, however, there is
always some deviation in reality that server may misbehave and distribute incon-
sistent shares to participants or some hardware failures occurred. In this scenario,
participants will unable to reconstruct the secret. Not until the B. Chor et al.
[11] proposed Verifiable Secret Sharing, based on Shamir’s SSS, did this issue be
addressed. [11] achieve a significant property that not only the participants, but
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especially everybody can verify that the shares have been correctly distributed.
Markus Stadler [18] calls such schemes publicly verifiable secret sharing (PVSS)
schemes. These schemes have been extensively studied and used in threshold
cryptography and secure multiparty computation [19,20,36,37].

In the perspectives of authentication or verifiability, we consider that Fault-
Tolerant Key Agreement (FTKA) [21,22,33,34,35] belongs to PVSS for the rea-
son that the honest participants can agree on a common key even though there
exists some malicious participants, i.e., the honest can be able to check the in-
tegrity and correctness of the sharing secret (key). In 2015, [10] introduces the
new notion called FSS, which is a generalization of distributed point functions
(DPF) [23]. Amazingly, [10] achieves function secret which has comparatively
higher theoretical and practical value than the real number. We can deploy the
FSS to cloud computing to request a powerful server to perform some heavy
computation of a sub-function about the secret on arbitrary input. Finally, the
server returns the results to a computationally weak client. Inspired by that, we
come up with an idea that whether we could use the method of [11] to settle the
above matter in FSS. In other words, add a verifiable property to FSS. This may
sound like a vagarious thinking or in general impossible just because the secret
is a point rather than a function. So some difficulties still should be overcome.
Anyway, we must have to settle the verifiable problem.

Organization. The rest of this paper is organized as follows. Section 2 recalls
some knowledge needed in our scheme beforehand. Section 3 formally defines a
new primitive called PVFSS, describes the protocol, and gives the correctness
and security definition needed by our protocol, respectively. Section 4 provides
details of construction of the proposed scheme, correctness and security proof,
and analyzes theoretically the key length and each algorithm efficiency, respec-
tively. Furthermore, lots of comparative experiments are conducted between FSS
and PVFSS. Section 5 introduces some applications about our scheme. Finally,
section 6 makes a conclusion and extends some interesting and challenging open
problems.

2 Preliminaries

Definition 1. (Hash Function). Hash Function h : M → R is a map that can
be used to transform data of arbitrary size to data of fixed size. The hash value is
representative of the original string of characters, but is normally smaller than
the original. At a minimum, a secure hash function must have the following
properties:

-Pre-Image Resistance: Given a hash value y should be difficult to find
any message m such that y = h(m).

-Second Pre-Image Resistance: Given an input m1 it should be difficult
to find another input m2 such that h(m1) = h(m2).

-Collision Resistance: It should be difficult to find two different messages
m1 and m2 such that h(m1) = h(m2).
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Definition 2. (Point function). Point function is a function about a special
point (x, y). For x, y ∈ {0, 1}∗, the point function is defined as:

Px,y(x̂) =


y if x̂ = x

0 if x̂ 6= x

Definition 3. (Output Decoder). Output decoder is a decoding procedure DEC,
which is a tuple (S1, · · · , Sn, R,Dec) satisfying: share spaces S1, · · · , Sn among
n parties; output space R; and a decoder function Dec : S1×· · ·×Sn → R taking
n shares to an output over an Abelian group structure.

Definition 4. (Function Secret Sharing). A FSS scheme (Function Secret Shar-
ing) for a function family F is a tuple of triple PPT algorithms with the following
specification:

1. (EK1, · · · ,EKn)← FSS.KeyGen(1λ, f, n): Algorithm KeyGen takes as in-
put the security parameter λ, the number of sharers n and a function f belonging
to a function family F . It outputs key pairs (EK1, · · · ,EKn).

2. yi ← FSS.Eval(i, EKi, x): Algorithm Eval takes as input the a party index
i, key ki and input string x. It outputs a value yi ∈ Si for the function f(x).

3. y ← FSS.Dec(yi, · · · , yn): Algorithm Dec takes as input the n parties’
shares (yi, · · · , yn). It outputs a value y ∈ R, corresponding to the function
f(x).

For full version and concrete construction, we refer the reader to the full
version of this paper [10].

3 PVFSS Definition

In section 2, we describe a function secret sharing scheme, which splits the func-
tion secret into some sub-functions. Any strict subset of them hide the secret.
Meanwhile, an adversary can’t get any information about the secret function.
However, we assuredly have to solve security problem in that scheme, if we
can’t promise that the server (sharer) does not give a malicious sharing piece.
Namely, how to guarantee that the client surely receives a correct secret. Mo-
tivated by verifiable secret sharing, we firstly upgrade their definition and con-
struct a scheme by adding verification that checks the integrity and correctness of
the function secret sharing scheme, and call it Public Verifiable Function Secret
Sharing. Moreover, we propose three new properties of public verifiable function
secret sharing schemes, namely

Public Delegation. Our construction allows a dealer to divide the secret
function among lots of servers. Then arbitrary clients could be able to submit
inputs for delegation.

Public Verification. Our construction allows arbitrary clients and not just
the dealer to check the integrity and correctness of the computation. Namely, a
wrong result would never be received by the client.
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High Efficiency. Our construction allows a computationally weak client to
verify the correctness of secret function in constant time. That costs substantially
less effort than performing a computation from scratch, otherwise the client
would either not be able to verify the proof, or would execute the computation
by himself.

Together, a function secret sharing protocol that satisfies all properties is called
a public verifiable function secret sharing protocol. The following definition cap-
tures these three properties.

3.1 Model Definition

We now formally define our notion of a Public Verifiable Function Secret Sharing
scheme PVFSS = (Setup,KeyGen,Eval,Dec,Verify) consisting of the following
algorithms:

(SKf , V Kf ) ← Setup(1λ, f): The Setup algorithm takes as input security
parameter λ and secret function f . It outputs a secret key SKf and a public
verifiable key V Kf .

(EK1, · · · , EKn)← KeyGen(f, n, SKf ): The key generation algorithm takes
as the target function f , the number of sharers n and a secret key SKf . It
generates n evaluation keys (EK1, · · · , EKn), which are respectively represented
sub-functions (f1, · · · , fn).

(fi(x), ωfi(x)) ← Eval(i, EKi, x): The evaluation algorithm takes as input a
server index i, a evaluation key EKi and input string x. It returns a value fi(x)
and a witness ωfi(x) both at input x.

(y, ωf(x))← Dec(y1, ωf1(x), · · · , yn, ωfn(x)): The decoding algorithm takes as
input the n servers’ results pair (yi, ωfi(x)). It outputs the evaluation y, where
y = f(x) is the output of the function f at input x, together with a witness
ωf (x) at point x.

1 or ⊥ ← Verify(ωf(x), y, V Kf , x): The verification algorithm takes as input
the witness ωf(x), the result y and the public verifiable key V Kf . It outputs
either ⊥ or 1. Here, the special symbol ⊥ signifies that the verification algorithm
rejects the answer . Otherwise, it accepts the evaluation y.

Protocols. In this section, we briefly describe how the above algorithms of a
public verifiable function secret sharing scheme are applied in a three-party pro-
tocol, including a trusted dealer, an untrusted server and a client. Initially, the
dealer owns a function f and wants to share it with client without revealing any
information about the function. The dealer cut the secret into some slices, each
of which is outsourced to one untrusted server. On issuing a query, the server
returns a result together with a witness so that the client can leverage the wit-
ness to check the correctness of the computation. The dealer performs algorithm
Setup, which takes as input security parameter λ and a secret function f , gen-
erates a secret key SKf about the secret function f . Meanwhilealgorithm Setup
also gives a public verifiable key V Kf so that all of the clients will be able to
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verify the correctness of the results. Similarly, he runs algorithm KeyGen to pick
the keys (EK1, · · · , EKn), which is respectively distributed to the i-th server for
all i ∈ [n]. Then, the client issues a query x on all servers. On an input query x,
each server computes and replies with (fi(x), ωfi(x))← Eval(i, EKi, x). As soon
as the client receives all the result pairs (fi(x), ωfi(x)) from 1 to n, he would
decode and reconstruct result y, same as the witness ωf (x), by using algorithm
Dec. Finally, the client executes algorithm Verify, which takes ωf(x), y, V Kf , x
as input, in order to verify the correctness of result y. The result y is accepted if
and only if 1← Verify(ωf(x), y, V Kf , x). Otherwise, the client rejects the result
y.

3.2 Correctness and Security Definitions

In this section we give necessary definitions that will be used in the rest of the
paper. Let λ be a security parameter. We say that a function neg(λ) is a negligible
function of λ, if neg(λ) less than 1/p(λ), for all polynomials p(λ). PPT stands
for probabilistic polynomial time and A(·) stands for a probabilistic polynomial
time (PPT) algorithm. Given n ∈ N , let En and On denote subsets of binary
arrays of size n × 2n−1. Let En(On) denote the set of all arrays such that the
columns of each array are all n-bits strings with an even(odd) number of 1 bits.

A public verifiable function secret sharing scheme should be correct, secure
and privacy. Intuitively, this scheme is correct if whenever its algorithms are
executed honestly, it never rejects a correct answer. More formally:

Definition 5. (PVFSS Correctness). A Public Verifiable Function Secret Shar-
ing is correct. For any function f ∈ F , it runs the algorithm Setup to generate
a secret key SKf and a public verifiable key V Kf . The key generation algo-
rithm produces n keys (EK1, · · · , EKn)← KeyGen(f,n,SKf) such that, for any
x ∈ Domain(f), if, any (fi(x), ωfi(x))← Eval(i, EKi, x) for all i = 1, · · · , n, and
(y, ωf (x))← Dec(δf1(x), δωf1(x)

· · · , δfn(x), δωfn(x)
) then 1← Verify(ωx, y, SKf ).

Intuitively, verifiable function secret sharing is secure, which contains two
cases. One case is t-security that the adversary can’t tell the difference between
the two secrets, except with negligible probability. It is noted that t is smaller
than n. Another one is full security that the adversary cannot persuade a verifier
to accept a wrong computational result. More formally:

Definition 6. (PVFSS t-Security). Let PVFSS be a public verifiable function
secret sharing scheme for a function f ∈ F among n parties, and let A(·) =
(A0,A1) be a two-tuple of probabilistic polynomial-time machines. We define
security via the following experiment.
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Experiment EXPt−Sec
A [PVFSS, F, n, λ] :

(f0, f1, · · · )← A0(1λ);

b ∈R {0, 1};
(SKfb , V Kfb)← Setup(1λ, fb);

(EK1, · · · , EKn)← keyGen(fb, n, SKfb);

b̂← A1((ki)i∈T );

If b = b̂, output ′1′, else ′0′

The experiment is valid if f0, f1 ∈ F . Based on a typical indistinguishability
argument, we now define the advantage of the adversary for all T ⊂ [n] and
|T | ≤ t in all valid experiments above as

Advt−SecA (PVFSS, F, n, λ) =
∣∣Pr[EXPt−SecA [PVFSS, F, n, λ] = 1]− 1/2

∣∣
We say that PVFSS is a t-secure PVFSS scheme if AdvSecA (PVFSS, F, n, λ) ≤

neg(λ)

Definition 7. (PVFSS Strong Unforgeability). Let PVFSS be a verifiable
function secret sharing scheme for a function f ∈ F among n parties, and let
A(·) = (A0,A1,A2) be a triple-tuple of probabilistic polynomial-time machines.
We define security via the following experiment.

Experiment EXPV erify
A [PVFSS, F, n, λ] :

(SKf , V Kf )← Setup(1λ, f);

(EK1, · · · , EKn)← keyGen(f, n, SKf );

For i = 1, · · ·
xi ← A0(EK1, · · · , EKn, x1, ωf(x1), · · · , xi−1, ωf(xi−1);

x∗ ← A1(EK1, · · · , EKn, x1, ωf(x1), · · · );
ω̂f(x∗) ← A2(EK1, · · · , EKn, x

∗, ωf(x∗), · · · , x1, ωf(x1), · · · );

b̂← Verify(ω̂f(x∗), y, V Kf , x
∗);

If ω̂f(x∗) 6= ωf(x∗) and b̂ = 1, output ′1′, else ′0′;

The adversary succeeds if it produces an output that convinces the verification
algorithm to accept on the wrong witness for a given input value. We now define
the advantage of the adversary in the experiment above as:

AdvV erifyA (PVFSS, f, n, λ) = Pr
[
ExpV erifyA [PVFSS, f, n, λ] = 1

]
We say that PVFSS is strong unforgeable f , if AdvV erifyA (PVFSS, f, n, λ) ≤

neg(λ).
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Likewise, public verifiable function secret sharing is private when the outputs
of the problem generation algorithm over two different inputs are indistinguish-
able, i.e., an adversary cannot decide which encoding is the correct one for a
given input. More formally:

Definition 8. (PVFSS I/O Privacy). Let PVFSS be a public verifiable func-
tion secret sharing scheme for a function f ∈ F among n parties, and let
A(·) = (A0,A1,A2) be a triple-tuple of probabilistic polynomial-time machines.
We define privacy via the following experiment.

Experiment EXPPriv
A [PVFSS, F, n, λ] :

(SKf , V Kf )← Setup(1λ, f);

(EK1, · · · , EKn)← keyGen(f, n, SKf );

(x0, x1, · · · )← A0(1λ, f);

index← A1(1, · · · , n);

b ∈R {0, 1} ;

yindex,b ← Eval(EKindex, xb);

b̂← A2(f, n, x0, x1, yindex,b);

If b = b̂, output ′1′, else ′0′

Based on a typical indistinguishability argument, we now define the advantage
of the adversary in the experiment above as:

AdvPrivA (PVFSS, F, n, λ) =
∣∣Pr[EXPPrivA [PVFSS, F, n, λ] = 1]− 1/2

∣∣
We say that PVFSS is a private PVFSS scheme if AdvPrivA (PVFSS, F, n, λ) ≤

neg(λ).

A similar definition can be made for output privacy.

4 Construction for Point Function

We begin in section 4.1 by showing a main construction of a public verifiable
function secret sharing scheme for point functions. While section 4.2 make a
correctness and security proof required by our protocol. Section 4.3 presents a
performance analysis, including key size and algorithm efficiency. In algorithm
analysis stage, a few comparative experiments are conducted on each algorithm
between FSS and PVFSS. Finally, the resluts manifest that our scheme pos-
sesses lots of advantages.

4.1 Main Construction

[10] introduces a n-parties function secret sharing(FSS) scheme for point func-
tion. This scheme allows a dealer to split an arbitrary point function Px,y(x̂) over
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an Abelian group G into n sub-functions fi : {0, 1}∗ → G, 1 ≤ i ≤ n, such that
n∑
i=1

fi (x) = Px,y(x̂). Pairs of parties’ output shares for each input x can be sim-

ulated given just the corresponding outputs Px,y(x̂), and thus each sub-function
provides no information about the secret function individually. This scheme as-
sumed that the servers are absolutely reliable. However, there is always some
deviations in reality that severs may misbehave or return a malicious result of
sub-function. As a result, the client will reconstruct a wrong secret. Therefore, in
what ways can these issues be solved? [25,26,27,28] put forward a significant idea
that attach some luxurious information as a witness to check the correctness of
computation. More preciously, in [25], an additional function r(x) was added to
an overall witness ω(x) = af(x) + r(x) by algebraic operation, where the secret
keys are a and r(x). Noted that, anyone will get zero-knowledge of secret keys
from the integrated witness ω(x) except the owner of secret keys.

As an initial attempt towards solution, our scheme makes an analogy with
[25]. That is to say, it aims at constructing a witness in the shape of ay + r(x),
where secret keys a and r(x) are kept alone by the dealer. Nevertheless, FSS
scheme is on the basis of the Pseudo-Random Generation (PRG) H : {0, 1}n →
{0, 1}m, n,m ∈ Z+ over an Abelian Group G. The PRG [29,30] can be considered
as a hash function [31,32]. Hence, the overall witness Hω(x) is equal to the form
of aHy(x) +Hr(x). For the sake of convenience, let H represent H(x). Perhaps
frustrating, one difficulty is that due to the unpredictability of PRG’s output,
whether two completely different hash functions Hy and Hr can map to one
single and unbroken hash function Hω by algebraic operation. If not, secret will
be exposed to the public. The main reason is that the witness, aHy +Hr , can’t
be able to combined into a whole. Another difficulty is that how to find and
construct Hω, if there exists.

In order to handle the mentioned issues, we firstly prove theoretically the
existence of entirety PRG Hω, which is made up of a, Hr and Hy, where Hy and
Hr are represented to some PRGs over Abelian Group Gy abd Gr respectively.

Proof. By algebraic operation among Hy and Hr, the mapped group Gω is also
consider as an Abelian Group, and the identity element eω is equal to aey + er.

ut

Now, the main task is to construct an overall PRG Hω such that Hω =
aHy + Hr without revealing the secret keys. PRG can be consider as a hash
function, which can map data of arbitrary size to data of fixed size. Furthermore,
whatever mechanism we don’t have to know, we just only invoke it. Therefore, it
is difficult to find this approach directly or brutally. For constructing an overall
witness, the dealer should not have to understand the concrete implementation
methods or mechanisms about two different hash algorithm. Another reason
is that constructing Hω by learning two different mechanisms may cost sub-
stantially much more effort than function secret sharing scheme. In short, this
method is unreal with overwhelming probability.

One possible approach to correct this deficiency is shown as follows. In the
natural way, change witness PRG Hω = aHy + Hr into a witness function



11

Px,ay+r(x̂). When it comes to this innovation, one common method, the dealer
will split and distribute two point functions Px,y(x̂) and Px,ay+r(x̂), may occur
to us and is used to verify the correctness of the computation immediately. At
a high level, ay + r can be considered as a function concerning y (i.e. f(y) ) in
a much bolder way. Besides, there is no doubt that this construction may cost
twice effort than just only one function.By upgrading and extending the idea,
we construct an efficiency improved scheme, and whose efficiency is asymptotic
to that of FSS. A detailed description is given as below.

Algorithm (SKf , V Kf ) ← Setup(1λ, f): Suppose that the function is a point
function Px,y. The dealer, on input the point function Px,y with a security pa-
rameter, invokes a public hash algorithm hV Kf (·), which take as input y, to
generate a random value hV Kf (y) (of λ bits) as a secret key SKf and a public
verifiable key V Kf .

Algorithm (EK1, · · · , EKn) ← KeyGen(f, n, SKf ): The dealer, on input the
target function , piece numbers n and a secret key SKf = r, run KeyGen
algorithm once to output n evaluation (EK1, · · · , EKn) keys Px,y, which are
respectively represented sub-functions (f1, · · · , fn). We describe a construction
which is an upgraded of FSS’s in Algorithm 1.

Algorithm 1 KeyGen(f, n, SKf )

1: Let G : {0, · · · , p− 1}λ → {0, · · · , p− 1}|y|·pµ be a PRG (µ is defined in
line 2).

2: Let µ←
⌈
1
2 log(2|x| · 2n−1)

⌉
and ν ← |x| − µ.

3: Parse x as a pair x = (α, β), α ∈ [pµ], β ∈ [pν ].

4: Choose pµ arrays A1, · · · , Apµ randomly, s.t. Aα∈ROn and Aα̂∈REn for
α̂ 6= α.

5: Choose randomly and independently pµ · pn−1 seeds s1,1, · · · , s1,pn−1 , · · · ,
spµ,1, · · · , spµ,pn−1 ∈ {0, · · · , p− 1}λ.

6: Choose pn−1 random strings cw0
1
, · · · , cw0

pn−1
, cw1

1
, · · · , cw1

pn−1
∈

{0, · · · , p− 1}|y|·2µ s.t.
pn−1∑
j=1

cw0
j + G(sα,j) = eβ · y mod p

|y|·pµ

and
pn−1∑
j=1

cw1
j

+

G(sα,j) = eβ · SKf mod p
|y|·pµ

.

7: Set σi,α̂ ← (sα̂,1 · Aα̂[i, 1])|| · · · ||(sα̂,pp−1 · Aα̂[i,pn−1]) for 1 ≤ i ≤ n, 1 ≤
α̂ ≤ pµ.

8: Set σi = σi,1|| · · · ||σi,pµ for 1 ≤ i ≤ n.

9: EKi = (σi, cw
0
1
, · · · , cw0

pn−1
, cw1

1
, · · · , cw1

pn−1
) for 1 ≤ i ≤ n.

10: Return (EK1, · · · , EKn).
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Algorithm (fi(x), ωfi(x))← Eval(i, EKi, x): The server, on receiving index i, a
evaluation key EKi and input string x, returns a value fi(x) together with a wit-
ness ωfi(x) both at input x. For the sake of convenience and intuitive expression,
we directly achieve the detailed implement in Algorithm 2.

Algorithm 2 Eval(i, EKi, x)

1: Let G : {0, · · · , p− 1}λ → {0, · · · , p− 1}|y|·pµ be a PRG (µ is defined in
line 2).

2: Let µ←
⌈
1
2 log(2|x| · 2n−1)

⌉
and ν ← |x| − µ.

3: Parse x as a pair x = (α̂, β̂), α̂ ∈ [pµ], β̂ ∈ [pν ].
4: Regard EKi as EKi = (σi, cw

0
1
, · · · , cw0

pn−1
, cw1

1
, · · · , cw1

pn−1
).

5: Parse σi as σi = s1,1|| · · · ||s1,pn−1 || · · · ||spµ,1 · · · ||spµ,pn−1 .

6: Let yi ←
pn−1∑

j=1,Sα,j 6=0

cw0
j
+G(sα,j) mod p

|y|·pµ

and ωf
j
(x) ←

pn−1∑
j=1,Sα,j 6=0

cw1
j+

G(sα,j) mod p
|y|·pµ

.

7: Return (yi[β̂], ωfi(x), [β̂]).

Algorithm (y, ωf(x))← Dec(y1, ωf1(x), · · · , yn, ωfn(x)): The client, on receiving
n results pair (yi, ωfi(x)), compute the evaluation y, where y = f(x) is the output
of the function y at input x, together with a witness ωf(x) at point x.

Algorithm 1or⊥ ← Verify(ωf(x), y, V Kf , x): The client, on receiving the wit-
ness ωf(x), the result y and the public verifiable key V Kf outputs

y =


1 if ωf(x) = HV Kf (y)

⊥ if ωf(x) 6= HV Kf (y)

4.2 Correctness and Security Proof

Proof of correctness: Algorithm KeyGen(f, n, SKf ) generates (EK1, · · · , EKn),

then Dec(ŷ1, · · · , ŷn) =
n∑
i=1

Eval(i, EKi, x)[0] =
n∑
i=1

(
pn−1∑

j=1,Sα,j 6=0

cw0
j

+G(sα,j))[0, β̂] =

n∑
i=1

yi[β̂] mod p
|y|pµ

is same as Dec(ω̂f1(x), · · · , ω̂fn(x)). For each x̂ = (α̂, β̂),

Case 1 α̂ 6= α: Since Aα̂ belongs to Ep, each of the terms cw0
j + G(sα,j)

appears an even number of times such that all of them will cancel out (i.e.
Dec(ŷ1, · · · , ŷn) = 0).

Case 2 α̂ = α: Due to the definition of correction elements, we have
Case 2.1 β̂ 6= β such that ŷ = Dec(ŷ1, · · · , ŷn) = 0, otherwise, we have



13

Case 2.2 β̂ = β such that ŷ = Dec(ŷ1, · · · , ŷn) = y
Hence, all of these cases satisfy hV Kf (ŷ) = ωf(x). ut

Proof of t-Security: Generally speaking, PVFSS is t-security, because all
evaluation keys (EK1, · · · , EKn) are completely independent and random (i.e.
pseudo random). Or rather, each strict subset of evaluation includes at most n-1
strings σi = σi,1|| · · · ||σi,pµ . The distribution of seeds reflects the distribution of
1 bits in the i-th row of Aα̂, in string σi,α̂, which is uniformly distributed. Mean-
while, all of the pµ ·pn−1 seeds are sampled randomly and distributed identically.
Therefore, the views of the string σi do not give any knowledge about α. To-

gether, these elements cw0
j

+G(sα,j) satisfy
n∑
i=1

(
pn−1∑

j=1,Sα,j 6=0

cw0
j

+G(sα,j))[0, β] =

y. However, one of evaluation keys (EK1, · · · , EKn) does not include at least
one seed. Since total 2(n−1)·pn−1 random strings cw0

j
, G(sα,j) are indistinguish-

able, the task, finding the appropriate path, isn’t as easy as it seems regardless
of all the correction factors together. ut

Proof of Strong Unforgeability:

Initialization Stage: The challenger runs Setup(1λ, f) algorithm, and dis-
tributes the public verifiable key V Kf to the adversary A. Algorithm KeyGen(f,
n, SKf ) generates evaluation keys (EK1, · · · , EKn) and send them to the ad-
versary A.
Simulator Stage: Before adversary A first queries the evaluation algorithm
Eval(i, EKi, x), the simulator S = (Sinput, S1, · · · , Sn, SDec) performs the fol-
lowing for polynomial-many times.

i. The simulator Sinput needs to choose a random point x.
ii. On receiving input x, the simulator Si evaluates the i-th sub-function at

x, and create the corresponding witness ωf
i
(x) from i = 1 to n.

iii. After this, the simulator SDec will execute the decoder algorithm Dec(y1,
ωf1(x), · · · , yn, ωfn(x)) and return the result of secret function f(x) and entire
witness ωf(x) back to the adversary A.
Challenge Stage: The adversary A picks a input point x∗ The simulator S
executes the same processes as stated Stage 1 above. At last, the whole witness
ωf(x∗) and the result f(x∗) is public to the adversary A. At the same time, the
adversary A outputs a forgery ω̂f(x∗)) for the witness at point x∗ in order to
pass the verification algorithm.

Supposing the forgery is successful, which means 1← Verify(ω̂f(x∗), y
∗, V Kf , x

∗)
(i.e.HV Kf (f(x∗)) = ω̂f(x∗), 1← Verify(ω

f(x∗) , y
∗, V Kf , x

∗)), (i.e.HV Kf (f(x∗)) =
ωf(x∗)) and ωf(x∗) 6= ω̂f(x∗). Therefore, the following must be true:

HV Kf (f(x∗)) 6= HV Kf (f(x∗)).

Noted that it breaks the second pre-image resistance property for the hash
function. ut
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Proof of I/O Privacy: The adversary A picks two input point x0, x1, each
simulator Si performs evaluation algorithm Eval(i, EKi, x) twice, for each input
x0, x1, to outputs shares yi,0, yi,1, respectively. The shares yi,0, yi,1 are random
strings, which are simulated given just the corresponding outputs f(x). One step
further, the results of sub-function are indistinguishable.

A similar proof can be made for output privacy. ut

4.3 Performance Analysis

If we choose two point functions and perform FSS scheme, respectively. There
is no doubt that all performance, including key length and algorithm efficiency,
must cost twice effort than just only one. We introduce a primitive called Public
Verifiability Function Secret Sharing Scheme with asymptotic efficiency of FSS’s.
The scheme analysis will be presented in the following two aspects: key length
analysis and algorithm analysis.
Key Length Analysis: Note that the length of a key EKi in [10] that KeyGen
outputs is a sum of the length of δi, which is λ · pµ · pn−1 and the length of the
correction factor is |y|·pµ ·pn−1. Therefore, the key size is O(pµ ·pn−1(λ·+ |y|)). In
our PVFSS scheme, the length of a key EKi is similar to that in FSS. Nonethe-
less, we point out a large difference that our correction factor is twice of FSS in
length. Thus, the key size is O(pµ ·pn−1(λ ·+2 |y|))� O(2 ·pµ ·pn−1(λ ·+ |y|)).
Algorithm Analysis: We analysis algorithms of PVFSS scheme making lots
of comparative experiments. The two major metrics that we use to evaluate algo-
rithms are input length and output length. Finally, the results of the experiments
manifest or proof two significant benefits of PVFSS. One is that the PVFSS
efficiency is asymptotic to the FSS’s. Another is that verifying the result, which
is constant in time, costs substantially less time than performing the computa-
tion locally or by himself. We conduct all experiment on all servers with Intel(R)
Core(TM)i7-2600 CPU @ 3.40GHz, 8.00 GB RAM and a computationally weak
client with Intel(R) Core(TM)2 Duo CPU P9300 2.27GHz, 2GB RAM. Fig. 1(a),
1(b), 1(c), 1(d), contrast of PVFSS and FSS, plot the cost time influenced by
input length on algorithm KeyGen, algorithm Eval, algorithm Dec & Verify and
total time, respectively. In the above comparisons, each algorithm efficiency is
closed to the FSS’s in our scheme PVFSS. Intuitively, Fig. 2 shows our scheme
is not affected by the output length, which is similar to the behavior of FSS. A
contrast of between algorithm Verify and algorithm Eval on cost time is made
in Fig. 3. Also, the efficiency of algorithm Verify is constant, which is far less
than that of algorithm Eval. In short, our scheme can be applied into practice
such as cloud computing and outsource computing.

5 Applications

5.1 Cloud Computing

In the scenario of cloud computing a computationally weak client requests a semi-
trusted or untrusted but more powerful cloud to perform some complex tasks.
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The latter is expected to return the results. This paradigm is in the amortized
model of [12], in which the client invests a one-time expensive computation so
that the computational payment will be cost and shared by the server on many
inputs. Cloud computing relies on sharing powerful resources rather than having
local or personal devices to handle expensive applications, which bring so many
advantages and benefits., Without it, for instance, we should require buying
hundreds of physical devices when we process some expensive computation and
then sell them back as long as we do not need. Similarly, whatever physical
devices you possess, all of these low or weak devices can process heavy work. such
as mobilephones and wearable smart devices. Our PVFSS scheme can be applied
to the cloud computing. As an analogy between PVFSS and cloud computing
where this might come into handy, the dealer is similar to the delegator and key
generation stage can be considered as pre-processing stage (amortized model) in
cloud computing. Each piece represents an onerous task, which is outsourced to
a different powerful cloud server. Then the cloud responds with the evaluation
of the sub-function together with a witness. Finally, the client checks that the
result provided by the server is indeed the result of the function computed on the
input provided. It is worthy to note that constant verifiable time is absolutely
less than the that of performing the sub-function locally or by himself.

5.2 Other Applictations

There exist plenty of scenarios being applied to our scheme. For example, We
can extend a E-Voting to public verifiable E-Voting so that the servers can
cheat the voting institution. The institution initial a election function, which is
a point function. The input of this function is a candidate’s id, and output ’1’.
After the voter polls for the candidate, the counting agent can check and count
the bills. Similarly, [23] introduced three applications: computationally private
information retrieval, private information retrieval by keywords and worst-case
to average-case reduction. As well as, all of these not only are suitable for our
scheme, but also are added three properties above.

6 Conclusions and Future Work

In this paper, a novel primitive called public verifiable function secret sharing
(PVFSS) was introduced, which aimed to guarantee the correctness and in-
tegrity of the computation outsourced to an untrusted server. PVFSS allows a
dealer to split a secret function into some pieces, and then distribute and out-
source them to different servers. On issuing a query, the server returns a result
together with a witness to the client. The client can use the proof to verify the
correctness of the result. Meanwhile, we proposed three important properties as
following: high efficiency, public delegation and public verification. The primitive
adopted a point function to construct our scheme, which captures these three new
properties. This new construction for point function held a good performance,
especially in the verification cost. The cost time of verification is constant, and
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not depending on the input length. Moreover, a few comparative experiments
are conducted on each algorithm between FSS and PVFSS. The comparisons
were done using different algorithms on different input samples. Nevertheless,
the results of the experiments manifest the two significant benefits of PVFSS.
One that is the PVFSS’s efficiency is asymptotic to that of FSS. Another is
that verifying the result, which is constant in time, costs substantially less time
than performing the computation locally. In short, PVFSS is indeed practical.
However, some interesting and challenging open problems still stems from this
work. We will further adopt several functions, such as univariate polynomial
and multivariate polynomial, and construct fine-grained methods so that which
server returns a malicious result could be found.
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