
Improved Side-Channel Analysis Attacks on
Xilinx Bitstream Encryption of 5, 6, and 7 Series

Amir Moradi and Tobias Schneider

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{amir.moradi, tobias.schneider-a7a}@rub.de

Abstract. Since 2012, it is publicly known that the bitstream encryp-
tion feature of modern Xilinx FPGAs can be broken by side-channel
analysis. Presented at CT-RSA 2012, using graphics processing units
(GPUs) the authors demonstrated power analysis attacks mounted on
side-channel evaluation boards optimized for power measurements. In
this work, we extend such attacks by moving to the EM side channel to
examine their practical relevance in real-world scenarios. Furthermore, by
following a certain measurement procedure we reduce the search space
of each part of the attack from 232 to 28, which allows mounting the
attacks on ordinary workstations. Several Xilinx FPGAs from different
families – including the 7 series devices – are susceptible to the attacks
presented here.

1 Introduction

Side-Channel Analysis (SCA) attacks have become a serious threat to crypto-
graphic implementations. This indeed has been highlighted by publicly reporting
several successful attacks on commercial devices, e.g., [1, 5, 9, 14, 15, 20]. One of
the well-known examples are the attacks on the bitstream encryption feature
of FPGA devices which also garnered the attention of (industry and academic)
FPGA communities.

The first SCA attack on the bitstream encryption of (out-dated and dis-
continued) Xilinx Virtex-II pro family has been presented in [11], where a full
168-bit key of the underlying triple-DES algorithm could be recovered by a sin-
gle power-up of the FPGA (≈ 70, 000 traces) by searching in a space of 26 for
each 6-bit part of the key. The second work [12] showed that a similar attack on
more recent Xilinx FPGA families (Virtex-4 and Virtex-5) is feasible. However,
due to the underlying AES-256 algorithm and the implementation architecture,
the presented attack could only recover the key by searching in a space of 232

for each 32-bit part of the key. To deal with such a complexity, the authors
made use of four graphics processing units (GPUs with a total of 4× 448 thread
processors) and mounted the attack on a single point of the 60, 000 power traces
collected from a single power-up of the FPGA. The full 256-bit key could be
recovered in 4.5 hours by such a setup while the attack on the second round (to
recover the second 128-bit key) was not as efficient as that on the first round. In
all the aforementioned attacks, power traces of various SASEBO or SAKURA

2 Amir Moradi and Tobias Schneider

boards have been collected. Since such boards are explicitly designed for power
analysis evaluation purposes, remounting the same attacks on real-work appli-
cations might be challenging, where PCB should be slightly modified to provide
a suitable measurement point.

As a side note, similar attacks on Altera FPGAs (Stratix-II and Stratix-II
families) have been later reported in [13,17]. Compared to that on Xilinx FPGAs,
the attacks required a reverse-engineering step (of the software development
tools) and a sophisticated measurement procedure to deal with the underlying
AES algorithm in counter mode.

Our Contribution. In this work we present an improved attack on bitstream
encryption of modern Xilinx FPGAs. Our achievements can be summarized as
follows:

– By further investigation of the design architecture of the AES decryption
module, we present a more suitable power model for the attacks, particularly
on the second cipher round.

– By means of a dedicated measurement setup, we reduce the search space
from 232 for each part of the attack to 28. Therefore, the attacks can be
performed using ordinary desktop computers.

– We present the result of the attacks on Virtex-5, Spartan-6, Kintex-7, and
Artix-7 FPGAs as the samples of 5, 6, and 7 series.

– In contrast to all reported attacks on Xilinx bitstream encryption, we present
the results via electro magnetic (EM) side channel.

In short, we avoid the need of using GPUs, and demonstrate strong and
efficient attacks on bitstream encryption of 7 series FPGAs of Xilinx which are
currently in production.

2 Preliminaries

2.1 Xilinx Bitstream Encryption

Bitstream encryption, in general, has been introduced to prevent cloning and
counterfeiting the user designs. In order to protect proprietary algorithms, secret
materials, and obfuscated designs from reverse engineering, it is essential for
the user to employ bitstream encryption. Xilinx products are mainly SRAM-
based FPGAs, which implies reconfiguration (loading bitstream into the FPGA)
every time the FPGA powers up. Since the bitstream has to be stored outside
the FPGA (in a non-volatile memory), bitstream encryption is a must-to-have
feature for the FPGA vendors, whose products are based on volatile memory
(e.g., Xilinx).

The current available FPGA series of Xilinx make use of AES-256 in cipher
block chaining (CBC) mode to encrypt the bitstream. Suppose that the bitstream
is divided into n 128-bit blocks pi∈{1,...,n}. The encrypted bitstream, which is
formed by n 128-bit blocks ci, is generated by

ci = AESENC
k (pi ⊕ ci−1),

3

assuming c0 = IV . The secret key k and the initialization vector IV can be
arbitrary selected by the user. The Xilinx development tools generate a human-
readable ASCI file (with .nky extension) of the selected key and IV , which is
given to the programming device to store the key inside the FPGA. As a side
note, although IV is written into the .nky file, the programming device stores
only the key into the FPGA via the JTAG port. Older versions of the Xilinx
FPGAs make use of only volatile memory for the key storage which requires
an external battery during power shortage. The newer families are, in addition,
equipped with one-time programmable fuses.

Although there are not many public documents about the details of the
structure of the bitstream file, with moderate efforts (similar to that of [11,12])
the essential information can be revealed (e.g., bit and byte endianness and
the size of the header before the encrypted part starts). Such an investigation
recovered that IV (in plain) is available in the bitstream before the encrypted
part starts. Further, this IV must not be necessary the same as the one which
has been formerly written into the .nky file.

2.2 Configuration and Measurement

The encrypted bitstream can be sent to the FPGA via several different protocols
(serial, parallel, master, slave, and JTAG). Since the JTAG port is dedicated to
configuration (and it has to be used for key programming), such a port is usually
available in most of the real-world applications (e.g., set up boxes). In [12], a
customized micro-controller (MCU) has been used to configure the FPGA (via
JTAG) and provide a trigger signal for the oscilloscope. In [11] and [12], by
monitoring the voltage drop of a resistor in VDDint path, power consumption
traces of the FPGA have been collected. The decryption module inside the FPGA
receives 128-bit ciphertext blocks ci∈{1,...,n} in a consecutive fashion, and derives
the plaintexts pi as

pi = AESDEC
k (ci)⊕ ci−1,

with c0 = IV .
It has been reported in [12] that – in addition to the decryption engine –

other modules of the FPGA are active whose energy consumption (as noise) are
visible through the measured power traces. Hence, filtering the traces to reduce
the noise was essential. As shown in Figure 1, the decryption of ci takes place
when the next block ci+1 is fed into the FPGA. Further, the decryption clock is
somehow synchronized with the JTAG clock.

2.3 Attack

Since AES-256 consists of 14 rounds, which fits to the 14 visible peaks in the
power trace, it has been assumed that the decryption module in the FPGA
realizes a round-based architecture of the AES-256, which performs one cipher
round at each single clock cycle [12]. Figure 2 shows the hypothetical design
architecture that has been considered in [12].

4 Amir Moradi and Tobias Schneider

0 10 20 30 40 50Time [μs]

ciphertext ci ciphertext ci+1

Fig. 1. A sample power trace of Spartan-6 (with 20MHz low-pass filter) during loading
an encrypted bitstream

128 128

128 128

128

128

CLKstart

128

128

128

128

k14

c

ki

p

R

Fig. 2. Hypothetical design architecture of the AES-256 decryption module of modern
Xilinx FPGAs (taken from [12])

Assuming such an architecture, the state register R stores R1 = c ⊕ k14

and R2 = MC−1
(

SR−1
(
SB−1 (c⊕ k14)

)
⊕ k13

)
at the first and second cipher

rounds respectively1. In general, at round 1 < i < 15 the content of the state

register is Ri = MC−1
(

SR−1
(
SB−1 (Ri−1)

)
⊕ k15−i

)
. Indeed, the above shown

hypothetical architecture has been verified by examining the correlation between
the measured power traces and the Hamming distance (HD) of the state register
in a known-key settings. As shown in Figure 3, the power traces show a clear
dependency on HD(R1, R2). However, such a dependency is strongly mitigated
(but still available) in the next cipher round, i.e., on HD(R2, R3).

Let us denote R1 ⊕ R2 by ∆R1,R2
and its byte at position i ∈ {0, . . . , 15}

with ∆
(i)
R1,R2

. Following the AES notations, we represent the first column of the

state R by R(0,1,2,3). Hence, due to the linear property of the MixColumns and
its inverse we can write

∆
(0,1,2,3)
R1,R2

=R
(0,1,2,3)
1 ⊕R(0,1,2,3)

2 (1)

=c(0,1,2,3) ⊕ k(0,1,2,3)14 ⊕M1C−1
(〈

S−1
(
c(0) ⊕ k(0)14

)
, S−1

(
c(13) ⊕ k(13)14

)
,

S−1
(
c(10) ⊕ k(10)14

)
, S−1

(
c(7) ⊕ k(7)14

)〉)
⊕M1C−1

(
k
(0,1,2,3)
13

)
,

1 MC: MixColumns, SR: ShiftRows, SB: SubBytes

5

Fig. 3. Spartan-6, correlation between power traces and HD(R1, R2) and HD(R2, R3)

where S−1 stands for the Sbox inverse, and M1C−1 for the inverse of the Mix-
Columns operation on a single column.

Since both k
(0,1,2,3)
14 and M1C−1

(
k
(0,1,2,3)
13

)
are fixed and independent of the

ciphertext c, correlation power analysis (CPA) [2] (respectively classical DPA [7])

attacks, that target bits of ∆
(0,1,2,3)
R1,R2

, can be performed by guessing four key bytes〈
k
(0)
14 , k

(13)
14 , k

(10)
14 , k

(7)
14

〉
. Such a 232-bit attack (on a single point of the power

traces) has been performed in [12] using GPUs. The same attack with the same
principle can be performed on the other columns of the ∆R1,R2

to recover full
128-bit round key k14.

Having k14, we can follow the same procedure for the second cipher round.

Let us denote MC−1
(

SR−1
(
SB−1 (c⊕ k14)

))
by c′ and MC−1 (k13) by k′13. As

an example, for the first column of ∆R2,R3 we can write

∆
(0,1,2,3)
R2,R3

=R
(0,1,2,3)
2 ⊕R(0,1,2,3)

3 (2)

=c′(0,1,2,3) ⊕ k′(0,1,2,3)13 ⊕M1C−1
(〈

S−1
(
c′(0) ⊕ k′(0)13

)
, S−1

(
c′(13) ⊕ k′(13)13

)
,

S−1
(
c′(10) ⊕ k′(10)13

)
, S−1

(
c′(7) ⊕ k′(7)13

)〉)
⊕M1C−1

(
k
(0,1,2,3)
12

)
.

The same attacks (as shown in [12]) can target the bits of ∆
(0,1,2,3)
R2,R3

and search

in a space of 232 to recover
〈
k
′(0)
13 , k

′(13)
13 , k

′(10)
13 , k

′(7)
13

〉
. The same procedure is

repeated for other columns of ∆R2,R3
, and after revealing k14 and k′13 the 256-

bit main key can be derived.

3 Our Analysis

3.1 Packaging

In contrast to all the reported SCA attacks mounted on bitstream encryption
of Xilinx devices, we concentrate on EM analysis. Figure 4 shows two different

6 Amir Moradi and Tobias Schneider

(a) (b) (c)

Fig. 4. Different packaging technologies: (a) wire-bond, (b) flip-chip, (c) flip-chip with
lid-heat spreader

packaging technologies flip-chip and wire-bond. In case of wire-bond, the metal
layers (of the FPGA chip) are at the top side, and the bonding wires are covered
by molding components (usually plastic, see Figure 4(a)). Since the main EM
radiations are due to the current flowing through VDD path(s), the EM probes
can be placed at the top of the chip, if the top metal layers include the VDDint

(see Figure 5(b)). For the flip-chip technology, sometimes the top of the chip
is covered by a lid-heat spreader (Figure 4(c)), which must be removed for EM
analysis. Compared to the wire-bond case, the silicon side of the chip (usually
a thick layer) is accessible, which prevents reaching the layers carrying VDD.
Hence, the EM signals are usually weak unless the thick silicon is thinned by
means of sophisticated polishing devices, that also allows using localized EM
microprobes [6].

3.2 Measurements

For the EM measurements we used a digital oscilloscope at a sampling rate of
5 GS/s and bandwidth of 1.5 GHz. We have employed only near-field probes of
LANGER EMV-Technik. Further, depending on the amplitude of the signal,
we made use of one or two high-bandwidth AC amplifiers ZFL-1000LN+ from
Mini-Circuits.

Depending on the packaging, type of the FPGA, and the visibility of the
signal, we used either RF-U5-2 or RF-R50-1 EM probes. In case of Virtex-5 and
Kintex-7 (both with flip-chip) as well as Artix-7 (wire-bond) we achieved the
best results with a RF-R50-1 probe, and for Spartan-6 (wire-bond) with a RF-
U5-2 probe (see Figure 5). Except removing the lid-heat spreader of the Virtex-5
FPGA, we did not modify the packaging of the FPGAs.

For the sake of simplicity, we concentrate on the Spartan-6 case, and discuss
the other FPGAs at the end of this section. We also developed a MCU-based de-
vice to configure the FPGAs through the JTAG port. Figure 6 shows a single EM
trace of the Spartan-6 FPGA (synchronized with that of Figure 1). As a proof
of concept, and to verify the hypothetical design architecture, in a known-key
scenario we measured 100, 000 traces and estimated the correlation considering
HD(Ri, Ri+1), 0 < i < 14. The results, which are shown in Figure 6, indicate

7

(a) Virtex-5 (b) Spartan-6 (c) Kintex-7 (d) Artix-7

Fig. 5. EM probes and different FPGAs, (a) XC5VLX50-1FFG324, (b) XC6SLX75-
2CSG484C, (c) XC7K160T-1FBGC, (d) XC7A35T-1CPG236C

that the high correlation only exist at the first cipher round, which makes the
attacks challenging at the second round.

We have tried many different hypotheses for the design architecture, and fi-
nally the highest correlation has been observed considering the same architecture
as shown in Figure 2 but with HD(R1, Ri+1), 0 < i < 14 model. Although no
design architecture can justify why the SCA leakage depends on the state regis-
ter at round i+ 1 and that of the first round, such a model leads to considerably
high correlations2 as shown in Figure 6.

The previous attacks have been based on measuring one or multiple power-
ups of the FPGA [12]. This means that the ciphertexts have been previously de-
fined (stored in a non-volatile external memory). Instead, we aim at selecting the
ciphertexts by our choice. Sending chosen cipherexts to the FPGA, however, has
a negative consequence on the interconnections of the FPGA.The switch boxes
and look-up tables are wrongly configured which leads to short circuits (high
power consumption and high temperature) and may destruct certain modules.
Therefore, in order to avoid such consequences, after sending one (or a couple
of) chosen ciphertext(s), the configuration process should be restarted. This can
be easily done by sending certain commands through the JTAG port, which
are available in Xilinx public documents, e.g., [18]. Following such instructions,
we adjusted our MCU-based programmer to perform a configuration reset after
each single measurement. In more details, after starting the configuration pro-
cess the MCU device sends the header (the unencrypted part of the bitstream),
the chosen ciphertext, and a dummy 128-bit ciphertext block. When the dummy
ciphertext is sent, the corresponding EM/power trace is measured, since – as
stated in Section 2 and shown in Figure 1 – the decryption of the first ciphertext
takes place when the second ciphertext block is sent.

3.3 Attacks

As explained in Section 2, the previous attack needs to search in a space of at
least 232. Recalling Equation (1), if ciphertext bytes c(13), c(10), and c(7) are

2 As a side note, we found this leakage model by coincidence, and it is valid for all
considered FPGAs and for both power and EM leakages.

8 Amir Moradi and Tobias Schneider

Fig. 6. Spartan-6, EM analysis, (top) a sample trace, (middle) correlation between
EM traces and HD(Ri, Ri+1) and (bottom) HD(R1, Ri+1), 0 < i < 14

constant we can write

∆
(0,1,2,3)
R1,R2

=c(0,1,2,3) ⊕ k(0,1,2,3)14 ⊕M1C−1
(〈

S−1
(
c(0) ⊕ k(0)14

)
, S−1

(
c(13) ⊕ k(13)14

)
,

S−1
(
c(10) ⊕ k(10)14

)
, S−1

(
c(7) ⊕ k(7)14

)〉)
⊕M1C−1

(
k
(0,1,2,3)
13

)

=
〈
{0e} • S−1

(
c(0) ⊕ k(0)14

)
⊕ c(0) ⊕ δ(0),

{09} • S−1
(
c(0) ⊕ k(0)14

)
⊕ c(1) ⊕ δ(1),

{0d} • S−1
(
c(0) ⊕ k(0)14

)
⊕ c(2) ⊕ δ(2),

{0b} • S−1
(
c(0) ⊕ k(0)14

)
⊕ c(3) ⊕ δ(3)

〉

= ∆
′(0,1,2,3)
R1,R2

⊕ δ(0,1,2,3), (3)

where constants {0e}, . . . , {0b} are with respect to the MixColumns Inverse
operation, and • the multiplication in GF(28). Further, δ(0), . . . , δ(3) represent
constants that depend on key k and ciphertext bytes 13, 10, and 7. If – in contrast
to [12] – we select the ciphertexts which are given to the decryption module, and
keep certain ciphertext bytes fixed (13, 10, and 7), we can perform CPA/DPA

attacks by searching in a shorter spaces – as explained below – to find k
(0)
14 .

Search in a space of 216. For example, based on Equation (3) ∆
(0)
R1,R2

can be

predicted by guessing k
(0)
14 and δ(0), i.e, 16 bits. Therefore, HD(∆

(0)
R1,R2

) can be

9

Fig. 7. Spartan-6, EM analysis, CPA in 216, HD(∆
(0)
R1,R2

) model, (a) using 100, 000
traces, (b) over the number of traces

used and a CPA can be performed accordingly. In this case, the disadvantage is

the way that the constant δ(0) contributes into the HD model. Since ∆
(0)
R1,R2

and

δ(0) are linearly proportional, the use of HD model faces the ghost peak issue [10].
The result of such a 216 attack with 100, 000 traces as well as over the number of

traces are shown in Figure 7. Similarly, other bytes ∆
(i∈{1,2,3})
R1,R2

can be predicted

to find k
(0)
14 by searching in a 216 space.

Search in a space of 28. Similar to that of [12], the CPA/DPA attacks can be

mounted targeting the bits of ∆
′(0,1,2,3)
R1,R2

by guessing only 8-bit k
(0)
14 (see Equa-

tion (3)). Due to the 32-bit size of ∆
′(0,1,2,3)
R1,R2

, 32 different attacks with the same

target k
(0)
14 can be performed. Since predicting one single-bit flip out of a 128-

bit register certainly leads to a low signal-to-noise ratio [10], it is favorable to
combine the results of these 32 different attacks.

Heuristics. For a guessed key byte k, let us denote the result of the i-th CPA

on sample point j by ρ
(i)
k,j . Following a similar approach to [3], we combine the

results of multiple CPAs with different models by summing them up. As the
constant is unknown we have to add the absolute values of the correlations as

ρk,j =

32∑

i=1

∣∣∣ρ(i)k,j
∣∣∣

to combine the results of all 32 attacks. Figure 8 shows the corresponding results.
It should be noted that – in contrast to their combination – none of the 32 single-

bit CPA attacks could clearly distinguish the correct key byte k
(0)
14 . Indeed, the

complexity of the attack in this setting is 32× 28.

Joint probability. Let us suppose that the result of each CPA is a set of prob-
abilities corresponding to the ranked key candidates. In other words, suppose

that the i-th CPA on sample point j returns p
(i)
k,j as the probability of the key

byte k being the correct one. Since the 32 CPAs are independent of each other,
we can combine the results as

pk,j =

32∏

i=1

p
(i)
k,j . (4)

10 Amir Moradi and Tobias Schneider

6.00 6.01 6.02 6.03 6.04
0

0.2

0.4

0.6

Time [μs]

∑
∣ ∣ ∣ ρ

∣∣∣

1 25 50 75 100
0

0.4

0.8

1.2

No. of Traces × 103

∑
∣ ∣ ∣ ρ

∣ ∣∣

Fig. 8. Spartan-6, EM analysis, bitwise CPAs in 28, targeting bits of ∆
′(0,1,2,3)
R1,R2

, com-
bined by absolute sum, (a) using 100, 000 traces, (b) over the number of traces

At this step, the question raised is how to project the correlation values, i.e.,
the result of the CPA, to probabilities? Following the concept presented in [10]
and also employed in [4], we can apply Fisher’s z-transform and normalize the
result as

r
(i)
k,j =

1

2
√
N − 3

ln

(
1 + ρ

(i)
k,j

1− ρ(i)k,j

)
,

where N is the number of traces used in the CPA. Now, r
(i)
k,j is a sample that

can be (approximately) interpreted according to the normal distribution N (0, 1).
Therefore, we can project it to probability by

p
(i)
k,j = 2

0∫

−
∣∣∣r(i)k,j

∣∣∣
PDFN (0,1)(t)dt = 1− 2CDFN (0,1)

(
−
∣∣∣r(i)k,j

∣∣∣
)
,

where PDFN (0,1) and CDFN (0,1) are respectively the probability density and
cumulative distribution functions of the standard normal distribution.

We have followed this procedure and calculated the joint probabilities based
on Equation (4). The corresponding results, shown in Figure 9, indicate that this
scheme is also able to combine the results of all 32 CPAs and finally reveal the
key. As a side note, the probabilities can also be combined following the Bayes’
theorem. However, since the Bayes’ theorem results in a set of probabilities with∑
∀k
p
(i)
k,j = 1, for the sample points where none of the key candidates shows a high

correlation, the probability of one key candidate (at that sample point) leads
to a significantly higher value compared to that of the other candidates. This
prevents us to find the most leaking sample points and distinguish the correct
key. Hence, the corresponding results are omitted.

Linear regression. From another perspective, we can map this problem to that
which has been solved by means of linear regression (also known as stochastic at-

tacks) [16]. In other words, we suppose that by guessing k
(0)
14 the bits of ∆

′(0,1,2,3)
R1,R2

contribute each with a certain weigth to the leakage with respect to constants
δ(0,1,2,3). In more details, it is assumed that the leakage l at sample point j can

11

6.00 6.01 6.02 6.03 6.04
0

0.2

0.4

0.6

Time [μs]

∏
p

1 25 50 75 100
0

0.2

0.4

0.6

No. of Traces × 103

∏
p

Fig. 9. Spartan-6, EM analysis, bitwise CPAs in 28, targeting bits of ∆
′(0,1,2,3)
R1,R2

, com-
bined by joint probability, (a) using 100, 000 traces, (b) over the number of traces

be written as

lj = β0,j +

32∑

b=1

βb,jgb,

where gb represents the b-th bit of ∆
′(0,1,2,3)
R1,R2

.

In order to find the coefficients βb,j ∈ R – by following the procedure of [16]
– for each guessed key, we form a matrix M as

M =

1 g11 g12 . . . g132
1 g21 g22 . . . g232
. . .
. . .
. . .
1 gN1 gN2 . . . gN32

,

where gib represents the b-th bit of the predicted ∆
′(0,1,2,3)
R1,R2

(based on the guessed

k
(0)
14) for the i-th measurement (trace). As shown in [8], by means of the least

square estimation, the vector of coefficients
#»

β j = (β0,j , . . . , β32,j) is estimated
as

#»

β j =
(
MTM

)
︸ ︷︷ ︸

A

−1
MT #»

l j︸ ︷︷ ︸
#»α j

,

where MT stands for the transpose of the matrix M, and
#»

l j for the vector of
leakages at sample point j (i.e., N measured traces at sample point j). A is a
matrix of 33×33 and independent of the sample points; hence, it can be derived
with processing only the associated ciphertexts. The vector #»αj (formed by 33
elements) is also obtained for each sample point independently. Therefore, for

each guessed k
(0)
14 , all the measured traces are processed once to derive A and

#»αj , ∀j. Consequently,
#»

β j , ∀j are derived by A−1 #»αj . At the next step, instead
of the HD, the following model at sample point j for the i-th measurement is

12 Amir Moradi and Tobias Schneider

6.00 6.01 6.02 6.03 6.04
0

0.05

0.1

0.15

Time [μs]

C
or
re
la
tio
n

1 25 50 75 100
0

0.1

0.2

0.3

No. of Traces × 103

C
or

re
la

tio
n

Fig. 10. Spartan-6, EM analysis, CPA in 28, weighted bits of ∆
′(0,1,2,3)
R1,R2

, recovered by
linear regression, (a) using 100, 000 traces, (b) over the number of traces

considered to perform a CPA:3

l̂ij = β0,j +

32∑

b=1

βb,jg
i
b.

In other words, for each key hypothesis k
(0)
14 , the measured traces are processed

two times (first to derive the coefficients β and second to estimate the correla-
tions). Figure 10 shows the results of this attack predicating that it outperforms
all above shown attacks. Although it leads approximately to the same results as
the heuristic approach (Figure 8), its complexity is lower.

Other key bytes. The above explained procedure can be repeated for other
key bytes. For example, by keeping the ciphertext bytes 0, 10, and 7 constant
during the measurements, we can write

∆
(0,1,2,3)
R1,R2

=
〈
{0b} • S−1

(
c(13) ⊕ k(13)14

)
⊕ c(0) ⊕ δ(0),

{0e} • S−1
(
c(13) ⊕ k(13)14

)
⊕ c(1) ⊕ δ(1),

{09} • S−1
(
c(13) ⊕ k(13)14

)
⊕ c(2) ⊕ δ(2),

{0d} • S−1
(
c(13) ⊕ k(13)14

)
⊕ c(3) ⊕ δ(3)

〉
, (5)

which allows the recovery of k
(13)
14 .

It should be noted that the process of each column – in the first cipher round
– is independent of the other columns. Hence, while all ciphertext bytes except
0, 4, 8, and 12 (the first row) are kept constant, four key recovery attacks (each
by searching in a space of 28 to find the corresponding key bytes 0, 4, 8, and 12 of
k14) can independently be mounted. At the next step, a set of traces with fixed
ciphertext bytes except the second row is measured which allows the recovery of
key bytes 1, 5, 9, and 13. In short, we need to measure four sets of measurements,

3 We have also followed the suggestions of [8] to examine the squared error between
the measured leakages l and estimated leakages l̂, but our analyses showed better
distinguishability when correlation is estimated instead.

13

8.00 8.01 8.02 8.03 8.04
0

0.01

0.02

Time [μs]

C
or

re
la

tio
n

1 50 100 150 200
0

0.03

0.06

0.09

No. of Traces × 103

C
or

re
la

tio
n

Fig. 11. Kintex-7, EM analysis, CPA in 28 second round, weighted bits of ∆
′(0,1,2,3)
R1,R2

,
recovered by linear regression, (a) using 200, 000 traces, (b) over the number of traces

in each of which only the ciphertext bytes of one row are selected randomly, while
the other 12 ciphertext bytes are kept constant (at any arbitrary value). With
these four sets we are able to recover the full 128-bit last round key k14.

Next round. As the target algorithm is AES-256, we need to extend the attacks
to the next decryption round. In contrast to that of [12], where ∆R2,R3

has been
considered, based on our findings (presented in Section 3.2) we target ∆R1,R3

,
i.e., the difference between the state register at the first and the third cipher
rounds.

Following the same principle as explained in Section 2.3 (particularly Equa-
tion (2)) we can write

∆
(0,1,2,3)
R1,R3

=R
(0,1,2,3)
1 ⊕R(0,1,2,3)

3 (6)

=c(0,1,2,3) ⊕ k(0,1,2,3)14 ⊕M1C−1
(〈

S−1
(
c′(0) ⊕ k′(0)13

)
, S−1

(
c′(13) ⊕ k′(13)13

)
,

S−1
(
c′(10) ⊕ k′(10)13

)
, S−1

(
c′(7) ⊕ k′(7)13

)〉)
⊕M1C−1

(
k
(0,1,2,3)
12

)
,

where c′ = MC−1
(

SR−1
(
SB−1 (c⊕ k14)

))
and k′13 = MC−1 (k13). By keeping

c′(13), c′(10), and c′(7) constant, we can write

∆
(0,1,2,3)
R1,R3

=
〈
{0e} • S−1

(
c′(0) ⊕ k′(0)13

)
⊕ c(0) ⊕ δ(0), (7)

{09} • S−1
(
c′(0) ⊕ k′(0)13

)
⊕ c(1) ⊕ δ(1),

{0d} • S−1
(
c′(0) ⊕ k′(0)13

)
⊕ c(2) ⊕ δ(2),

{0b} • S−1
(
c′(0) ⊕ k′(0)13

)
⊕ c(3) ⊕ δ(3)

〉
= ∆

′(0,1,2,3)
R1,R3

⊕ δ(0,1,2,3).

Since the last round key k14 has been recovered, c′ bytes can be arbitrary selected

and the corresponding ciphertext c = SB
(

SR
(
MC (c′)

))
⊕k14 can be derived to

be sent to the FPGA. Therefore, we followed the same procedure as explained
for the first decryption round, and collected four sets of measurements, in each
only one row of c′ is selected randomly and the other bytes kept constant. This

14 Amir Moradi and Tobias Schneider

Table 1. The attack performances

Family 5 6 7

FPGA Virtex-5 Spartan-6 Kintex-7 Artix-7

Package flip-chip wire-bond flip-chip wire-bond

Technology 65 nm 45 nm 28 nm 28 nm

Probe RF-R50-1 RF-U5-2 RF-R50-1 RF-R50-1

required traces
40,000 2,000 120,000 200,000

for each set (row)

allows us to perform exactly the same attacks (each with complexity of 28) to
find k′13 byte by byte to finally reveal the full 256-bit key. It is noteworthy that
– in contrast to that of [12] – the attacks on the second round are as efficient as
that on the first round since we are targeting ∆′R1,R3

instead of ∆′R2,R3
. As an

example, the results of the attack on k
′(0)
13 (on the Kintex-7 device) are shown

by Figure 11.

3.4 Comparisons

Table 1 presents the results of the EM attacks on different FPGA families with
different packaging. In general it can be concluded that the attacks on the devices
with flip-chip technology is harder than the wire-bond ones. However, by shrink-
ing the technology (from 65 nm to 28 nm) the attacks become harder as in case of
the Artix-7 FPGA we required around 200, 000 traces as one set of the measure-
ments (with a constant row) to reveal the secrets4, i.e, in total 2× 4× 200, 000
(1.6 million) traces. Since the FPGA device is in hand and control of the adver-
sary, collecting more traces with chosen ciphertexts (if required) does not face
a serious challenge. For example, with our setup we could collect each 100, 000
traces of the chosen chiphertexts in around 90 minutes, which means that all 1.6
million traces5 could be measured in less than a day.

For the analyses, as shown in the attack results (Figure 10 and Figure 11) we
have considered 200 sample points (either for the first or the second decryption
round). These 200 sample points have been selected around the corresponding
clock cycle based on the knowledge obtain from Figure 6. We split each attack
into two parts. The first part, which derives the matrix A and vectors #»αj=1,...,200,
for all 28 key candidates takes 21 minutes using an 8-core machine @3GHz on
100, 000 traces. The results are applied in the next corresponding key-recovery
CPA on the same 100, 000 traces, which also takes 12 minutes on the same
machine. In total, for a full recovery (on both rounds) using in total 1.6 million
traces we require 2 × 16 × 2 × (21 + 12) minutes (around 1.5 days) using the
aforementioned processing unit. These numbers for sure can be decreased by
more parallelization or by reducing the number of considered sample points. It

4 We realized that other components on the PCB (BASYS 3 from www.digilentinc.

com) introduce noise into the EM measurements.
5 It is done in two parts since the second part can be started when k14 has already

been recovered.

15

should be noted that since the attacks on Spartan-6 require far less number of
traces, the measurements and analyses can be done in significantly shorter time,
e.g., less than an hours for the measurements and the evaluations when each set
of measurements contains only 2, 000 traces.

3.5 Authentication

In Virtex-6 and 7 series devices, the bitstream encryption is integrated with an
on-chip bitstream keyed-Hash Message Authentication Code (HMAC). It aims at
authentication of the decrypted bitstream to prove that not even a single bit was
modified. Stated in [19] “Without knowledge of the AES and HMAC keys, the
bitstream cannot be loaded, modified, intercepted, or cloned. HMAC provides
assurance that the bitstream provided for the configuration of the FPGA was
the unmodified bitstream allowed to load”.

As it is also mentioned in Xilinx public documents, unlike the AES-256 key,
there is no storage place for the HMAC key on the FPGA. The HMAC key
is instead included in the bitstream. Our investigations revealed that the first
encrypted blocks (of the encrypted bitstream) carry the HMAC key. However,
since the authentication (examining the correctness of the HMAC) is performed
when all bitstream blocks are transferred and decrypted (i.e., at the end of
the configuration process), it does not harm the chosen ciphertext measurement
scenario explained above. Further, after recovering the AES-256 key, the first two
blocks of an original bitstream can be decrypted to derive the 256-bit HMAC
key. In short, the integrated authentication scheme of all 7 series devices does
not have any effect on the efficiency of our presented attack.

4 Conclusions

This work extended the known SCA attacks on the bitstream encryption fea-
ture of Xilinx. By means of a sophisticated measurement scenario, i.e., chosen
ciphertext, we could reduce the search space from 232 to 28 for each step of the
attack. This allows the attacks to be mounted by ordinary processing units, e.g.,
workstation PCs. We have also shown that in case of real-world attacks, the
EM analysis using common ordinary EM probes are also possible, where – in
contrast to all previous attacks on similar devices based on power consumption
– modification of the PCB (where the FPGA is embedded) is not required. Al-
though we have not presented the result of the attacks on Virtex-4 devices, all
FPGA families from 4, 5, 6, and 7 (where the same AES-256 decryption module
is integrated) are vulnerable to the attacks presented here.

We should refer to the design and architecture of more recent Xilinx fami-
lies UltraSCALE and UltraSCALE+, where several security features, e.g., DPA
countermeasures, have been integrated. Therefore, the attacks presented in this
work are not expected to be portable to the new series devices. However, to
the best of our knowledge, all 7 series devices (which are still in production)
follow the same architecture and design with respect to bitstream encryption,
that predicates on their susceptibility to our attacks.

16 Amir Moradi and Tobias Schneider

Acknowledgment

The authors would like to acknowledge Alexander Jakimowic and Oliver Mischke
for their help with development of the setup. The research in this work was
supported in part by the DFG Research Training Group GRK 1817/1.

References

1. J. Balasch, B. Gierlichs, R. Verdult, L. Batina, and I. Verbauwhede. Power Analysis
of Atmel CryptoMemory - Recovering Keys from Secure EEPROMs. In CT-RSA
2012, volume 7178 of LNCS, pages 19–34. Springer, 2012.

2. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In Cryptographic Hardware and Embedded Systems - CHES 2004, volume
3156 of LNCS, pages 16–29. Springer, 2004.

3. J. Doget, E. Prouff, M. Rivain, and F. Standaert. Univariate side channel attacks
and leakage modeling. J. Cryptographic Engineering, 1(2):123–144, 2011.

4. F. Durvaux and F. Standaert. From Improved Leakage Detection to the Detection
of Points of Interests in Leakage Traces. IACR Cryptology ePrint Archive, Report
2015/536, 2015.

5. T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M.
Shalmani. On the Power of Power Analysis in the Real World: A Complete Break
of the KeeLoq Code Hopping Scheme. In CRYPTO 2008, volume 5157 of LNCS,
pages 203–220. Springer, 2008.

6. J. Heyszl, S. Mangard, B. Heinz, F. Stumpf, and G. Sigl. Localized Electromagnetic
Analysis of Cryptographic Implementations. In CT-RSA 2012, volume 7178 of
LNCD, pages 231–244. Springer, 2012.

7. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO 1999,
volume 1666 of LNCS, pages 388–397. Springer, 1999.

8. K. Lemke-Rust. Models and Algorithms for Physical Cryptanalysis. PhD thesis,
Ruhr University Bochum, Jan. 2007.

9. J. Liu, Y. Yu, F. Standaert, Z. Guo, D. Gu, W. Sun, Y. Ge, and X. Xie. Small
Tweaks Do Not Help: Differential Power Analysis of MILENAGE Implementations
in 3G/4G USIM Cards. In Computer Security - ESORICS 2015, volume 9326 of
LNCS, pages 468–480. Springer, 2015.

10. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks - Revealing the
Secrets of Smart Cards. Springer, 2007.

11. A. Moradi, A. Barenghi, T. Kasper, and C. Paar. On the vulnerability of FPGA
bitstream encryption against power analysis attacks: extracting keys from xilinx
Virtex-II FPGAs. In Computer and Communications Security, CCS 2011, pages
111–124. ACM, 2011.

12. A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel Attacks Highlight the
Importance of Countermeasures - An Analysis of the Xilinx Virtex-4 and Virtex-5
Bitstream Encryption Mechanism. In CT-RSA 2012, volume 7178 of LNCS, pages
1–18. Springer, 2012.

13. A. Moradi, D. Oswald, C. Paar, and P. Swierczynski. Side-channel attacks on the
bitstream encryption mechanism of Altera Stratix II: facilitating black-box analysis
using software reverse-engineering. In FPGA 2013, pages 91–100. ACM, 2013.

14. D. Oswald and C. Paar. Breaking Mifare DESFire MF3ICD40: Power Analysis
and Templates in the Real World. In CHES 2011, volume 6917 of LNCD, pages
207–222. Springer, 2011.

17

15. J. R. Rao, P. Rohatgi, H. Scherzer, and S. Tinguely. Partitioning Attacks: Or How
to Rapidly Clone Some GSM Cards. In IEEE Symposium on Security and Privacy
2002, pages 31–41. IEEE Computer Society, 2002.

16. W. Schindler, K. Lemke, and C. Paar. A Stochastic Model for Differential Side
Channel Cryptanalysis. In CHES 2005, volume 3659 of LNCS, pages 30–46.
Springer, 2005.

17. P. Swierczynski, A. Moradi, D. Oswald, and C. Paar. Physical Security Evaluation
of the Bitstream Encryption Mechanism of Altera Stratix II and Stratix III FPGAs.
TRETS, 7(4):34:1–34:23, 2015.

18. Xilinx (Kyle Wilkinson). 7 Series FPGAs Configuration User Guide,
2015. http://www.xilinx.com/support/documentation/user_guides/ug470_

7Series_Config.pdf.
19. Xilinx (Kyle Wilkinson). Using Encryption to Secure a 7 Series FPGA Bit-

stream, 2015. http://www.xilinx.com/support/documentation/application_

notes/xapp1239-fpga-bitstream-encryption.pdf.
20. Y. Zhou, Y. Yu, F. Standaert, and J. Quisquater. On the Need of Physical Security

for Small Embedded Devices: A Case Study with COMP128-1 Implementations in
SIM Cards. In Financial Cryptography 2013, volume 7859 of LNCS, pages 230–238.
Springer, 2013.

