
Fixed Point Arithmetic in SHE Schemes

A. Costache1, N.P. Smart1, S. Vivek1, and A. Waller2

1 University of Bristol, UK
2 Thales Research, Reading, UK.

Abstract. The purpose of this paper is to investigate fixed point arith-
metic in ring-based Somewhat Homomorphic Encryption (SHE) schemes.
We provide three main contributions: Firstly, we investigate the repre-
sentation of fixed point numbers. We analyse the two representations
from Dowlin et al, representing a fixed point number as a large integer
(encoded as a scaled polynomial) versus a polynomial-based fractional
representation. We show that these two are, in fact, isomorphic by pre-
senting an explicit isomorphism between the two that enables us to map
the parameters from one representation to another. Secondly, given a
computation and a bound on the fixed point numbers used as inputs
and scalars within the computation, we achieve a way of producing lower
bounds on the plaintext modulus p and the degree of the ring d needed to
support complex homomorphic operations. Finally, we investigate an ap-
plication in homomorphic image processing. We have an image given in
encrypted form and are required to perform the standard image process-
ing pipeline of Fourier Transform–Hadamard Product–Inverse Fourier
Transform. In particular we examine applications in which the specific
matrices involved in the Hadamard multiplication are also encrypted.
We propose a mixed Fourier Transform Algorithm which aims to strike
a compromise between the number of homomorphic multiplications and
the parameter sizes of the underlying SHE scheme.

1 Introduction

The efficiency of Somewhat Homomorphic Encryption (SHE) schemes has im-
proved dramatically in the seven years since their discovery by Gentry in 2009 [7].
The main effort in research now is to obtain practical schemes for a given class
of interesting functions; since practical Fully Homomorphic Encryption seems
out of reach using existing techniques.

When proposing to use SHE schemes in an application a key issue is how to
map the data types of the application to the supported data types of the SHE
scheme. Most theoretical treatments consider SHE schemes which work over
bits, and the application is assumed to be the evaluation of some binary circuit.
In practice this is likely to be very costly, and so some authors have considered
other scenarios in which the computations are performed over arithmetic circuits
or polynomial rings [6, 8, 10].

At their heart almost all SHE schemes make use of a plaintext space Rp,
which is the reduction modulo p of a polynomial ring over the integers R. We



shall refer to p as the plaintext modulus, which is often selected to be a prime.
The ring is frequently selected to be the ring of integers of a cyclotomic number
field; i.e.

R = Z[X]/Φm(X).

In considering an application one has a number of factors to balance; first the
SHE multiplicative depth of the functions which can be evaluated; secondly the
plaintext modulus p and thirdly the security level required. These all imply
bounds on the degree of the ring one is using; and hence the efficiency of the
application3. Of importance in what follows is that a SHE scheme has a max-
imum multiplicative depth bounding what can be evaluated. In practice this
consists of a number of levels, where each ciphertext is associated to a specific
level. Multiplication of ciphertexts at levels i0 and i1 results in a ciphertext
at level max(i0, i1) + 1; whereas scalar multiplication is equivalent to the ad-
dition of roughly half a level. Once the maximum level is obtained, no further
homomorphic operations are possible.

The first obvious method to move away from binary circuits is to consider
plaintext moduli other than p = 2, and hence to evaluate arithmetic circuits.
Indeed the first application of SHE schemes to obtain an efficiency improvement
upon other technologies did precisely this; for example the use of large plaintext
moduli p in the SPDZ protocol [5]. However, using arithmetic circuits is also
limited. For example, suppose one wished to perform integer arithmetic. In that
case, naively increasing p to a large enough value to cope with the largest integer
the application could obtain would impose considerable performance penalties.

One can think of using a large plaintext modulus p as using a plaintext space
which is long and thin. Some authors have tried to balance the choice of p and the
degree d of the ring R to obtain more efficient representation of integers, akin
to a more short and fat plaintext space [10]. A problem overlooked by many
authors is to how to select p and d to enable such a plaintext representation
of integer valued payloads; and in particular to bound p and d as a complex
homomorphic operation is performed. This is the first problem we consider in
this paper. Given a computation on integers, and a bound on the input integers,
we are able to produce lower bounds on p and d needed to support such a
homomorphic calculation. Our main general technical contribution is to derive
such lower bounds on p and d.

Given an ability to process plaintext messages consisting of large integers the
next task is to process fixed-point numbers. A number of authors have consid-
ered methodologies for this, most notably Dowlin et al [6]. Dowlin et al present
two efficient methods to represent fixed-point numbers. In the first they encode
a fixed point number as a scaled integer (which they then encode as a polyno-
mial), whilst in the second they utilize a fractional representation (also based on
polynomials). The advantage of the former method is that it is easier to analyse
and it can be applied for any polynomial plaintext ring Rp. However, it also

3 In this paper we will ignore issues such as SIMD operations obtained by selecting p
and m in an special manner, see [12, 4, 8] for details



requires complex bookkeeping of the homomorphic ciphertexts during a calcula-
tion to ensure that the fixed-point numbers are correctly scaled. The fractional
representation avoids such bookkeeping, but it appears harder to analyse so as
to derive parameters which will support the homomorphic operations. Further,
it requires R to be selected to be a cyclotomic ring Z[X]/Φm(X), where m is a
power of two. We show show that the two representations are in fact isomorphic,
when used with the same power of two cyclotomic ring; we present a concrete
isomorphism between the two underlying rings and hence are able to map our
parameters from the first representation to the second.

Our third contribution is to analyse a relatively complex but useful fixed-
point algorithm namely the Fast Fourier Transform (FFT). This is needed to
perform applications such as homomorphic image processing. When examining
our fixed point algorithms for addition and multiplication it will be immediately
seen that one needs to consider the homomorphic levels which a given calcu-
lation will consume. Additionally, one must also consider how much the fixed
point calculation increases the demands on the plaintext space, with repeated
scalar multiplication being particularly costly. This is particularly interesting for
the FFT algorithm, since at its heart the FFT algorithm is a linear operation
performed in a recursive manner (with an FFT of size n reduced to two FFTs of
size n/2). This recursion decreases the number of scalar multiplications needed,
but increases the depth of the scalar multiplications needed. The naive Fourier
Transform is also a linear operation, but it consists of only scalar multiplica-
tions of depth one. Thus one has a trade off between reducing the number of
operations against the required depth.

Previous authors have examined homomorphic evaluation of the Fourier
transform [2, 3]. Indeed by exploiting the linear nature of the calculation they uti-
lized an encoding of fixed point numbers via scaled integers. Then they used the
additively homomorphic Paillier encryption algorithm to perform the homomor-
phic evaluation of the Fourier transform. This has a number of disadvantages.
Firstly by encoding in a purely integer manner the Paillier plaintext modulus
space N increases dramatically if one is to perform an FFT, followed by a lin-
ear map, followed by an inverse FFT. In addition it requires all homomorphic
operations in an application to be linear.

We consider a standard image processing pipeline of FFT, followed by ap-
plication of some operation in the Fourier domain, followed by an inverse FFT.
The use of additively homomorphic encryption would imply that the operation
in the Fourier domain would also need to be linear. Even the simplest form of
such processing (Hadamard multiplication by a given matrix) would require that
the matrix be public and not also encrypted.

Thus in the third part of this paper we consider the homomorphic evalua-
tion of such an image processing pipeline using Hadamard multiplication by an
encrypted matrix as our main processing step. We examine the resulting ho-
momorphic algorithms, given bounds on the plaintext spaces derived from our
earlier analysis, and present runtimes obtained from an implementation using
the using the HELib library [9]. Whilst we are not able to process large images



in the encrypted domain, one notes that processing of tiny (32 × 32 pixel) im-
ages have found application in some domains, e.g. [13]. In addition even when
processing large images, they are often divided into smaller patches during the
processing pipeline.

2 Integer Arithmetic

We first consider the simpler case of integer arithmetic; it will turn out that
once this is solved fixed point arithmetic can be built on top of the integer
arithmetic. We wish to process an arithmetic circuit over the integers where the
input encrypted integers, and scalars, come from multiple ranges [−Li, . . . , Li].
Allowing different ranges for different inputs and scalars will result more accurate
bounds when we come to consider the FFT algorithm later. Clearly as the circuit
is computed the bound on the size of the integers increases, and it is this growth
in size which we need to deal with if we are to be able to cope with integers
encrypted via our SHE scheme.

As a warm up we consider the simpler case where we we wish to compute a
“regular” integer circuit which consists of at most A ≥ 0 additions at each “level”
in the circuit, and then, at each level, a layer of multiplications are performed.
The multiplicative depth of the circuit will be denoted by M ≥ 1. In addition to
simplify this initial discussion we assume all scalars and inputs are in the same
range, i.e. we fix Li = L for all i. Clearly the output values from such a circuit
will have absolute value bounded by

LA,Mmax :=
(

2
PM

i=1 2i·A
)
· L2M

= 2A(2M+1−2) · L2M

. (1)

As explained in the introduction, natively the SHE scheme will encrypt polyno-
mials modulo p, with degree bounded by d. The obvious natural encoding for
integers is the scalar encoding method. In this encoding method an integer is
encoded as the constant polynomial, then integer addition and multiplication
become addition and multiplication modulo p. To ensure correctness we then
require than p > 2 · LA,Mmax , and hence p has to be very large indeed. This would
make the SHE scheme highly inefficient, even for very low depth circuits.

2.1 Representing Integers As Polynomials

This led some authors, e.g. [10], to introduce the following method of encoding
an integer, which we call the non-balanced base-B encoding method. We encode
integers as an integer polynomial in base B, for some base value B to be deter-
mined. The polynomial will have negative coefficients for negative integers, and
positive coefficients for positive integers. Thus we encode the integer as a poly-
nomial with coefficients in the range [−(B − 1), . . . , (B − 1)]. In particular this
implies an integer in the range [−Li, . . . , Li] on input is encoded as a polynomial
of degree at most

dnon−Bal
i = blogLi/ logBc.



We are interested in how the infinity norm, and degree, of the polynomials
increases as we pass through the circuit. Where for a polynomial P (X) = p0 +
p1 ·X + · · · pd ·Xd we have ‖P‖∞ = maxi=0,...,d |pi|. Thus for this input/scalar
integer at circuit level 0 the infinity norm of our polynomials is bounded by
Bnon−Bal
i,0 = B − 1.

Another method, considered in [6], is the balanced base-B encoding. The
integer is now encoded as a polynomial with coefficients in the range [−(B −
1)/2, . . . , (B − 1)/2] for an odd integer B ≥ 3. Any polynomial can now have
both non-negative and negative coefficients. This method overcomes a limitation
of the previous method that wasted part of the plaintext space by allowing only
polynomials with coefficients of the same sign. At level 0, our integer is encoded
as a polynomial of degree at most

dBal
i = dlog(2 · Li + 1)/ logBe − 1. (2)

the infinity norm of our input polynomials is bounded by BBal
i,0 = (B − 1)/2.

In a later section we outline how to obtain bounds on the degree and infinity
norm of the polynomials as we perform a calculation via an integer circuit. It will
turn out that the optimal choice in the above two polynomial representations
is to use the balanced base B = 3 representation, so in particular we select
BBal
i,0 = 1 for the rest of this paper.

3 Fixed Point Arithmetic

We present two encoding methods for fixed point arithmetic, introduced in [6].
We then show that these two representations are isomorphic. To illustrate the
techniques, we will use the two fixed numbers below throughout

y = 6.370370 . . . =
172
27

and y′ = 2.6666666 . . . =
8
3
,

which in balanced base B = 3 representation are given by

y = 110.101 and y′ = 10.1,

where 1 = −1.

3.1 Balanced Base-B Encoding

Our first method represents a fixed point number as two integers, one repre-
senting the number and the one representing by which power of B one needs
to decode. Thus this method requires a level of book keeping in order to keep
track of the second integer. Let y be a real fixed-point number, and denote by
y = y+.y− its integer and fractional parts in balanced base-B representation.
We then let I+ be one less than the number of integer digits and I− be equal to
the number of fractional digits; thus we can write

y+ = bI+ ·BI
+

+ bI+−1 ·BI
+−1 + · · ·+ b1 ·B + b0,

y− = b−I− ·B−I
−

+ b−I−+1 ·B−I
−+1 + · · ·+ b−2 ·B−2 + b−1 ·B−1



where bi ∈ [−(B − 1)/2, . . . , (B − 1)/2]. Thus we can express y as

y =
I+∑

i=−I−
bi ·Bi.

We then represent y as the pair of integers (y · BI− , I−) = (ŷ, i). The integer
ŷ can then be represented by a polynomial q(X), by replacing B in the above
expression by X, to obtain the final representation (q, i). Thus we have

q0(X) = bI+ ·XI+ + bI+−1 ·XI+−1 + · · ·+ b1 ·X + b0,

q1(X) = b−I− + b−I−+1 ·X + · · ·+ b−2 ·XI−−2 + b−1 ·XI−−1,

q(X) = q0(X) ·Xi + q1(X).

The degree of the polynomial q(X) above is deg(q) = I− + I+, and to recover
the fixed point number y from a pair (q, i) we compute

y = q(B) ·B−i.

For our two example fixed point numbers above we have y ≡ (q, i) and y′ ≡ (q′, i′)
where i = 3 and i′ = 1 and

q(X) = (X2 −X) ·X3 + (X2 + 1) = X5 −X4 +X2 + 1,

q′(X) = X ·X − 1 = X2 − 1.

Given this encoding we can now define how to perform basic arithmetic on the
encoding.

Addition: Suppose we have two pairs (q, i) and (q′, i′) encoding the fixed point
numbers, y and y′ respectively. Write them as above, namely q(X) = q0(X) ·
Xi + q1(X) and similarly for q′(X). Now if i 6= i′, this means that the encodings
are not at the same “fixed-point level”4 and thus the numbers they represent
are expressed with a different number of significant digits. Thus, before adding
two encodings we must ensure that they are at the same level, by multiplying
one by a suitable power of X. Thus if we let I = max(i, i′), we have that
(q, i) + (q′, i′) = (Q, I), where

(Q, I) =

{
(q + q′ ·XI−i′ , i) if i > i′

(q′ + q ·XI−i, i′) if i′ ≥ i.

4 Note to be confused with the associated level in the SHE scheme once we encrypt
the polynomial.



To see this indeed corresponds to fixed point multiplication, notice that, assum-
ing i ≤ i′, that

Q(B) ·B−I = (q + q′ ·BI−i
′
) ·B−I

= q ·B−I + q′ ·BI−i
′
·B−I

= q ·B−i + q′ ·B−i
′

= y + y′.

For our two example numbers we have, i = 3 > i′ = 1, that

Q = q + q′ ·X2 = (X5 −X4 +X2 + 1) + (X2 − 1) ·X2 = X5 + 1,

and I = max(3, 1) = 3. To check correctness, notice that Q(B) · B−3 = B2 +
B−3 = 9 + 1/27 = 9.037037 as required.

Multiplication: Multiplication is more straightforward, we simply perform(
q, i
)
·
(
q′, i′

)
=
(
q · q′, i+ i′

)
= (Q, I),

with correctness being obvious. For our two example fixed point numbers we
have the product representation being given by

Q = (X5 −X4 +X2 + 1) · (X2 − 1)

= X7 −X6 −X5 + 2 ·X4 − 1

and I = i + i′ = 3 + 1 = 4. To check correctness we not that Q(B) · B−4 =
1376/34 = 16.987654 as required.

The ring R1: We now define a ring R1 out of the above operations. For
reasons which will become apparent later we define the ring as pairs (q, i) where
q ∈ Z[X]/Φm(X) and i ∈ Z/φ(m)Z. In practice we will take m to be a power of
two. We define addition and multiplication as above, but now take the resulting
pair modulo Φm(X) and φ(m). The proof of the following theorem is given in
Section A.1 of the Supplementary Material.

Theorem 1. With the above definitions R1 is a ring.

This representation of fixed point numbers in the ring R1 enables us to bound
the degree of the polynomial and the coefficients, after a number of homomorphic
operations relatively easy, using the techniques in the next section. Of course
it also implies that if we perform too many operations the degree of q will
become too large and the polynomial will wrap around modulo Φm(X). Thus
the complexity of the operations one performs not only provides a lower bound on
p, i.e. an upper bound on the polynomial coefficients, but also a lower bound on
the ring degree. These bounds enable us to set parameters for the SHE scheme
relatively easy. However, in performing homomorphic operations we not only
need for each pair (q, i) to keep a homomorphic encryption of the plaintext q,
we also need to keep track (albeit in the clear) the value i.



3.2 Fractional Encoding

Our second representation of fixed point numbers dispenses with the need to
keep the second component i of our first representation. On the other hand it
requires us work in the cyclotomic ring R = Z[X]/(Xn + 1), where n is a power
of two. Again we let y = y+.y− denote the fixed point number as above, written
in balanced base-B representation with I+ + 1 digits in y+ and I− digits in y−.
We again write

y+ = bI+ ·BI
+

+ bI+−1 ·BI
+−1 + · · ·+ b1 ·B + b0,

y− = b−I− ·B−I
−

+ b−I−+1 ·B−I
−+1 + · · ·+ b−2 ·B−2 + b−1 ·B−1

where bi ∈ [−(B − 1)/2, . . . , (B − 1)/2]. We then encode the fixed point number
y in the ring R by the polynomial

p =
∑
i≤I+

Xibi −
∑

0<i≤I−
Xn−ib−i

= p0(X) + p1(X) ·Xn−d1

where p0(X) =
∑
i≤I+ X

ibi and p1(X) = −
∑

0<i≤I− b−i ·XI−−i, with d0 and
d1 being the degrees of p0(X) and p1(X) respectively Thus d0 = I+ is one less
than the number of digits in the integer part y+ and d1 = I− is the number of
digits in the fractional part y−.

Given a polynomial q(X) of this form we recover the fixed point number it
represents. We will need to know an upper bound for our calculation on p0(X),
which can be easily calculated from the formulae below. We then take p(X) and
split it into p0 and p1 as above (using the upper bound on the degree of p(X)),
and we recover y by setting

y = p0(B)− p1(B) ·B−d1

where we utilize the ring equation Xn + 1 = 0.
For our two example numbers y = 6.370370 . . . and y′ = 2.666666 . . . we have

y ≡ p and y′ ≡ p′ where

p = (X2 −X)− (X2 + 1) ·Xn−3

p′ = X − (−1) ·Xn−1.

Notice that we have in both cases that in terms of our prior representation of
(q = q0 ·Xi + q1, i) that

p0 = q0 and p1 = q1.

We have d0 = 2, d′0 = 1, d1 = 3 and d′1 = 1.
Our second ring R2 is the representation above, i.e. the set of polynomials

modulo Xn + 1, which is trivially a ring. We now show that addition and multi-
plication in this ring corresponds to addition and multiplication of the encoded
fixed point values.



Addition: Let p(X) = p0(X) + p1(X) · Xn−d1 and p′(X) = p′0(X) + p′1(X) ·
Xn−d′1 be two elements such as described above, encoding y and y′, respectively.
To perform the addition we simply add the associated polynomials as follows,
without loss of generality, assume that d1 ≤ d′1,

p+ p′ = (p0 + p1 ·Xn−d1) + (p′0 + p′1 ·Xn−d′1)

= (p0 + p′0) + P1 ·Xn−d1

= P0 + P1 ·Xn−d1 .

where P0 has degree max(d0, d
′
0) and P1 has degree max(d1, d

′
1). The polynomial

P1 will in fact be P1 = p1 + p′1 ·Xd1−d′1 .
For our two example numbers, their addition therefore has the encoding

p+ p′ =
(
(X2 −X)− (X2 + 1) ·Xn−3

)
+
(
X − (−1) ·Xn−1

)
= X2 −Xn−1 −Xn−3 +Xn−1

= X2 −Xn−3,

which agrees with the numerical value of their sum.

Multiplication: Let p(X) = p0(X) + p1(X) · Xn−d1 and p′(X) = p′0(X) +
p′1(X) ·Xn−d′1 be as above. We write

p0 · p′1 = r0 + r1 ·Xd′1

and

p′0 · p1 = r′0 + r′1 ·Xd1 ,

where deg(r0) ≤ d′1 − 1, deg(r1) ≤ d0 + d′1 − d′1 = d0, deg(r′0) ≤ d1 − 1, and
deg(r′1) ≤ d′0 + d1 − d1 = d′0, Then the product y · y′ is encoded by the product
of the two polynomials modulo Xn + 1,

p · p′ =
(
p0 + p1 ·Xn−d1

)
·
(
p′0 + p′1 ·Xn−d′1

)
= p0 · p′0 + p0 · p′1 ·Xn−d′1 + p′0 · p1 ·Xn−d1 + p1 · p′1 ·X2n−d1−d′1

= p0 · p′0 + p1 · p′1 ·X2n−d1−d′1

+ (r0 + r1 ·Xd′1) ·Xn−d′1 + (r′0 + r′1 ·Xd1) ·Xn−d1

= p0 · p′0 + p1 · p′1 ·Xn−d1−d′1 ·Xn

+ r0 ·Xn−d′1 + r1 ·Xn + r′0 ·Xn−d1 + r′1 ·Xn

= (p0 · p′0 − r1 − r′1) +
(
−p1 · p′1 + r0 ·Xd1 + r′0 ·Xd′1

)
·Xn−d1−d′1

= P0(X) + P1(X) ·Xn−d2 ,

where deg(P0) = max(deg(p0 ·p′0),deg r1,deg r′1) = max(d0+d′0, d0, d
′
0) = d0+d′0,

and deg(P1) ≤ d2 = max(deg(p1 ·p′1), d1 +deg r0, d′1 +deg r1) = max(d1 +d′1, d1 +
d′1, d

′
1 + d1) = d1 + d′1.



For our two example numbers, we have

p · p′ =
(
(X2 −X)− (X2 + 1) ·Xn−3

)
+
(
X − (−1) ·Xn−1

)
= (X3 −X2) + (X2 −X) ·Xn−1(−X3 −X) ·Xn−3 + (−X2 − 1) ·X2·n−4

= (X3 −X2) + (X5 −X4) ·Xn−4(−X4 −X2) ·Xn−4 + (X2 + 1) ·Xn−4

= (X3 −X2) + (X − 1) ·Xn −Xn −X2 ·Xn−4 + (X2 + 1) ·Xn−4

= (X3 −X2 −X + 2) +Xn−4

= P0 + P1 ·Xn−d2 ,

where d2 = d1 + d′1 = 3 + 1 = 4. To check this gives the correct value we note
that

P0(3)− P1(3) · 3−4 =
1376
81

.

3.3 Relating R1 to R2

On one hand the ring representation of fixed point numbers in the ring R1

allows us to bound the resulting degree and infinity norm of the associated
polynomials encoding the fixed point numbers relatively easily (see the next
section). In addition it allows a wide choice of underlying rings, which could
enable SIMD computation of specific fixed point operations. However, it requires
the “bookkeeping” of base power which is needed to map the encoded integer
into a fixed point number.

The ring R2 on the other hand requires no such bookkeeping, although lim-
ited book keeping is needed to ensure decoding after decryption works correctly.
In addition it requires that we work in the ring defined by polynomial arithmetic
modulo Xn + 1, where n is a power of two. A major drawback seems to be that
one cannot derive obvious bounds on the degree and coefficients in the fractional
representation, something which is crucial in order to set parameters of the SHE
scheme. However, such bounds can be derived for the fractional representation,
since this representation is isomorphic to the representation using the ring R1.

Let φ be as follows,

φ :
{

R1 → R2

(q = q0 ·Xi + q1, i) 7→ q0 − q1 ·Xn−i

Theorem 2. If R is defined by Z[X]/Xn + 1 then φ is a ring isomorphism

The proof of this theorem is given in Section A.1 of the Supplementary Material.

4 Bounds on Integer Arithmetic

Considering the balanced base B method for encoding integers as polynomials
we need to estimate, for a given calculation, a lower bound on the p and d. This
is to determine parameters our SHE scheme needs to support to enable a given



calculation to be performed correctly. In previous works this problem was not
addressed. In this section we provide a methodology to produce tight bounds on
the size of p, for any given computation.

To perform our analysis, we first note that as we pass through a general
integer circuit each encrypted polynomial expression we are processing will be
of the form

M∑
d=0

( ∑
d1<d2<...<dt

( ∑
e1+e2+···+ek=d

(
c∗

t∏
i=1

pei

di,∗

)))
.

where t is the number of distinct ranges [−Li, . . . , Li] for input/scalar values.
pdi,∗ is a polynomial of degree di with infinity norm BBal

i,0 = 1. The c∗ are
some constants and the value M is the maximal depth. Here we count scalar
multiplication as consuming one level of depth. If we wish to determine the
infinity norm of such a term we can simplify the discussion by just considering
terms of the form

t∏
i=1

(1 + x+ x2 + . . .+ xdi)ei . (3)

Indeed we define

c[(d1,e1),...,(dt,et)] =
∥∥∥ t∏
i=1

(1 + x+ x2 + . . .+ xdi)ei

∥∥∥
∞
.

In what follows, to ease discussion, the subscript indices are ordered such that

di · ei ≤ (di+1 · ei+1) and in the case of equality di < di+1.

For two terms of the form c[(d1,e1),...,(dt,et)] and c[(d1,e′1),...,(dt,e′t)]
we define

c[(d1,e1),...,(dt,et)] ⊗ c[(d1,e′1),...,(dt,e′t)]
= c[(d1,e1+e′1),...,(dt,et+e′t)]

.

We can now bound the infinity norm of any polynomial P obtained in evaluating
the integer circuit by an expression of the form

LP =
∑

e1,...,et

a[(d1,e1),...,(dt,et)] · c[(d1,e1),...,(dt,et)],

where a[(d1,e1),...,(dt,et)] are constants depending on the precise polynomial P ,
and we think of this (for now) as a formal sum in the variables c[(d1,e1),...,(dt,et)].
For an input or scalar value from the range [−Li, . . . , Li] the infinity norm of
the polynomial P0 is bounded by

LP0 = c[(d1,0),...,(di−1,0), (di,1), (di+1,0),...,(dt,0)].

We can derive upper bounds on the infinity norm of the polynomials as we pass
through the integer circuit using the following rules. Given upper bounds on the



infinity norm of polynomials P and P ′ in this form given by

LP =
∑

e1,...,et

a[(d1,e1),...,(dt,et)] · c[(d1,e1),...,(dt,et)],

LP ′ =
∑

e′1,...,e
′
t

a[(d1,e′1),...,(dt,e′t)]
· c[(d1,e′1),...,(dt,e′t)]

,

we can derive upper bounds on the infinity norm of the sum and the product of
these polynomials terms via the equations

LP+P ′ = LP + LP ′ ,

LP ·P ′ =
∑

e1,...,et,e′1,...,e
′
t

(
a[(d1,e1),...,(dt,et)] · a[(d1,e′1),...,(dt,e′t)]

)
·
(
c[(d1,e1),...,(dt,et)] ⊗ c[(d1,e′1),...,(dt,e′t)]

)
Is it clear that the degree of the sum of two polynomials is the maximum of the
degrees, and the degree of the product is the sum of the degrees.

4.1 Bounding c[(d1,e1),...,(dt,et)]

To use these bounds we eventually obtain a formal expression for infinity norm
of the output of the circuit consisting of a linear polynomial in the terms
c[(d1,e1),...,(dt,et)]. We thus are left with simply bounding c[(d1,e1),...,(dt,et)]. We
perform this bounding at the end, rather than as we go, as these leads to much
tighter bounds on the infinity norm of the output polynomial.

We first present some basic facts on the case of a single pair of terms (d, e).
Let d, e ≥ 0 be integers, and define ai for 0 ≤ i ≤ d · e as

(1 + x+ x2 + . . .+ xd)e =
d·e∑
i=0

ai · xi. (4)

We then define

cd,e =
∥∥∥(1 + x+ x2 + . . .+ xd)e

∥∥∥
∞

= max
0<i<d·e

ai. (5)

Naively we can obtain upper and lower bounds on cd,e as follows:

(d+ 1)e

d · e+ 1
≤ cd,e ≤ (d+ 1)e . (6)

The upper bound is obtained by evaluating (4) at x = 1 and the lower bound is
obtained from the upper bound by noting that there are only d ·e+1 coefficients
ai in (4). We have the trivial bounds cd,0 = cd,1 = 1 and cd,2 = (d+ 1).

The parameter cd,e is also of interest in probability theory and bounds on its
value have been previously analysed [1, 11]. The following upper bound follows
from the main theorem in [11] (see also [1] for a relation between the parameter
cm,n and the main parameter studied in [11]).



Theorem 3. If e 6= 2 or d ∈ {1, 2, 3}, then

cd,e <

√
6

π · d · e · (d+ 2)
· (d+ 1)e. (7)

The above upper bound is optimal in the following sense [11, Remark (a)].

Corollary 1. lime→∞
√
e·cd,e

(d+1)e =
√

6
π·d·(d+2) .

Although it is unknown whether the above convergence is uniform as d varies as
well.

Given this bound on terms cd,e we can now derive bounds on our terms
c[(d1,e1),...,(dt,et)] as follows. Recalling our ordering of the pairs in the subscript
of di · ei ≤ (di+1 · ei+1) and in the case of equality, di < di+1. We (recursively)
use the following bound, where dk is the first value of di in the subscript for
which the associated ek value is non-zero,

c[(d1,e1),...,(dt,et)] ≤ (dk · ek + 1) · cdk,ek
· c[(d1,e′1),...,(dt,e′t)]

, (8)

where e′i = ei except that e′k = 0.

4.2 Applying The Bounds

We can now estimate the size of p and d needed to ensure correctness when
evaluating our example balanced integer circuit that consists of M levels and A
additions per level. The infinity norm bound on our polynomials becomes

BM = cd,2M · 2A(2M+1−2),

assuming the input values are in the range [−L, . . . , L] and using a balanced
base-3 representation of the input values, so d = dBal = dlog(2 ·L+1)/ log 3e−1.
The degree bound for our circuit output value is dout = 2M · d0. From Theorem
3, a sharp upper bound on BM (for M > 1, or d > 3 if M = 1) is

BM <

√
6

π · 2M · d(d+ 2)
· (d+ 1)2

M

· 2A(2M+1−2).

To ensure correctness, when we encrypt and manipulate these polynomials ho-
momorphically, we need to ensure that our SHE scheme supports a plaintext
with

p > 2 ·BM ,
deg(R) > dM .

The most stringent constraint is that on p, and we give examples in Section A.2
of the Supplementary Material.

Of course given a specific circuit we could derive other values of dM and BM ,
the above are just examples in the case of our regular circuit with multiplicative
depth M and A additions per level. See later for an application using the FFT
where our more general analysis becomes applicable.



5 Homomorphic Image Processing via the Fourier
Transform

A standard image processing pipeline is to take an image (consisting of n pixels),
pass it into the frequency domain by applying the Fourier transform, apply an
operation in the Fourier domain, and then map back to the image space by
applying the inverse Fourier transform. The operation in the Fourier domain in
its simplest form could be the Hadamard component wise multiplication of the
data by a fixed matrix. For example this is used when applying Gabor filters,
which feature prominently in applications that are motivated by biological vision.

In this section we examine the application of our fixed point analysis to the
case of image processing in which the initial image and the Hadamard trans-
formation data are both encrypted using a SHE scheme. It is well known that
the Fourier transform is a linear operation, and hence only requires (in theory)
an additively homomorphic encryption scheme to obtain an encrypted version.
However, our requirement that the processing in the frequency domain is also
unknown to the evaluator implies that our overall operation is non-linear. For
means of comparison of parameters with prior work [2, 3], which used Paillier
encryption and only processed a single FFT operation, we also provide a com-
parison of parameters in that case.

5.1 The Mixed Fourier Transform Algorithm

The standard method to apply the (radix-2) Fourier transform5 is to use the
Fast Fourier Transform (FFT) which is a recursive algorithm requiring O(log n)
depth of scalar multiplications and a total of O(n · log n) scalar multiplications in
total. As we have seen the need to perform a large depth of scalar multiplications
will imply a large plaintext modulus for our SHE scheme. The naive method of
performing the Fourier transform is to simply apply a matrix-vector product.
This requires only depth one of scalar multiplications but on the other hand
requires O(n2) scalar multiplications. We will refer to this method as the Naive
Fourier Transform (NFT).

There is an obvious balance to be struck here, which we present in Figure
1. This is an algorithm, which we dub the Mixed Fourier Transform (MFT)
algorithm. It executes standard recursive FFT algorithm down to a given depth
blog2(B)c, and then at this lower level executes the naive Fourier transform
method.

When we execute MFT (x, n, 1) we perform the full traditional Fast Fourier
Transform method, while when we execute MFT (x, n, n) we perform the naive
Fourier transform method. All values of B in between execute a hybrid approach.
By varying B we can trade a reduced depth of scalar multiplications for an
increased total number of multiplications. It is obvious that the depth of scalar

5 Other FFT’s, e.g. the radix-4 method, can be analysed using similar techniques to
those in this paper.



MFT (x, n,B)

if n ≤ B then
for 0 ≤ k ≤ n− 1 do

yk ←
Pn−1

j=0 xj · exp(−2 · π ·
√
−1 · j · k/n).

end for
else

m← n/2.
z0, · · · , zn/2−1 ←MFT ((x0, x2, x4, . . . , xn−2),m,B).
zn/2, · · · , zn ←MFT ((x1, x3, x5, . . . , xn−1),m,B).
for 0 ≤ k ≤ n/2− 1 do

s← exp(−2 · π ·
√
−1 · k/n) · zk+n/2.

t← zk.
yk ← t+ s.
yk+n/2 ← t− s.

end for
end if
return y

Fig. 1. The Mixed Fourier Transform Algorithm

multiplications required is given by

depth(n,B) = log2(n)− log2(B) + 1.

Computing the total number of scalar multiplications requires a little more
thought. For n = 2N and B = 2B , the first level of the FFT operation has

mults(n,B) = 2 ·mults(n/2,B) + 2N−1

multiplications. Doing FFT until we reach B gives

mults(n,B) = 2N−B ·mults(B,B) + (N −B) · 2N−1.

Solving this yields

mults(n,B) = n ·B + (log2(n)− log2(B)) · n
2

as the number of multiplications performed in a MFT circuit.

5.2 Comparison With Prior Work

In [2, 3] the authors present work on implementing a radix-2 FFT in the en-
crypted domain using the Paillier encryption algorithm. As a means of compar-
ison of their work with ours we examine how their Paillier parameters would
compare to our Ring-LWE parameters in their setting. The first key aspect is
the precision of the input values, the roots of unity and the output precision.
Both [2, 3] and ourselves use a fixed point encoding in which precision is never



lost. But if one implemented FFT on a machine with b bits of floating point
precision one would loose precision as the calculation proceeds. This means that
to obtain the same output as running in the clear on a standard machine using
floating point arithmetic, we can adapt the precision of the roots of unity.

In particular, we let b1 denote the bits of precision in the input data (which is
typically eight), b2 denote the bits of precision in the roots of unity and b denote
the bits of equivalent output bits of precision in an in-the-clear implementation.
Then [2, 3] show that for a single iteration of the FFT algorithm on data of size
2v, one can take

b2 =
⌈
b− v

2
+

1
2

⌉
.

Using this they are able to implement the FFT in the encrypted domain using
a Paillier modulus of bit size

nP ≥ v + α · b2 + b1 + 4,

where α = 1 for the naive Fourier transform, and α = v − 2 for the full FFT;
they do not consider a mixed Fourier Transform.

As a means of comparison we look at the same situation using our polyno-
mial encoding for use in the Ring-LWE system. The degrees of the associated
polynomails to encode the input data and the roots of unity, in balanced base 3
encoding, are

di = dlog(2 · 2bi + 1)/ log 3e − 1.

Applying the analysis from Section 4 to a single Fourier Transform execution,
we can obtain formulae for the infinity norm of the resulting polynomials via a
computer algebra system in the form of a linear sum of terms the following form

c[(d1,1),(d2,e2)],

where 0 ≤ e2 ≤ depth(n,B). Note that e1 = 1 as we are only executing a single
FFT operation.

Then using equations 7 and 8 and the fact that cd,1 = 1 we can give an upper
bound this quantity

c[(d1,1),(d2,e2)] ≤
{
c · (d1 + 1) · (d2 + 1)e2 Otherwise,

where

c =

√
6

π · d2 · e2 · (d2 + 2)
.

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. A similar method
allows us to upper bound the degree of the resulting polynomials. This itself leads
to a lower bound on the ring dimension deg(R) needed for the SHE scheme. We
summarize the results in Table 1 for emulating b = 32 bits of floating point
precision and b1 = 8 bit inputs.



FFT NFT
log2 p deg(R) nP log2 p deg(R) nP

n b2 d1 d2 ≥ ≥ ≥ ≥ ≥ ≥
64 30 5 19 35 138 138 11 24 48
256 29 5 18 45 167 194 13 23 49
1024 28 5 18 56 203 246 15 23 50

Table 1. Comparing Paillier vs Ring-LWE encoding parameters for a single NFT/FFT
execution for b = 32

5.3 FFT-Hadamard-iFFT Pipeline

We now turn to investigating the FFT-Hadamard-iFFT standard image process-
ing pipeline. Since we apply two Fourier transforms the precision of the roots of
unity we take to be

b2 =
⌈
b− v +

1
2

⌉
,

in order to retain the same precision as b bits of floating point precision on a
standard machine.

Applying the analysis from Section 4 again, we obtain formulae for the infinity
norm of the resulting polynomials in the form of a linear sum of terms of the
following form

c[(d1,2),(d2,e2)],

where 0 ≤ e2 ≤ depth(n,B). Then using equations 7 and 8, and the fact that
cd,2 = (d+ 1) we now upper bound this quantity via

c[(5,2),(10,e2)] ≤
{

36 If e2 = 1,
c · (2 · 5 + 1) · (5 + 1) · (10 + 1)e2 Otherwise,

where

c =

{√
6

π·10·e2·(10+2) If e2 > 2,

1 Otherwise.

Hence, we can upper bound the linear sum and so lower bound the plaintext
modulus p needed for the SHE scheme to ensure correctness. This results in the
parameters given in Table 2

We then took this bounds and instantiated an SHE system to evaluate the
pipeline using the HELib library [9]. The HELib library implements the BGV
[4, 8] Somewhat Homomorphic Encryption scheme, but restricts the plaintext
modulus to be at most 64 bits in length. Hence, our experiments are limited to
this reduced size of plaintext space.

In this scheme a plaintext m ∈ Rp is encrypted as a pair of elements in
(c0, c1) ∈ R2

q , such that

c0 − sk · c1 = m+ p · ε (mod q)



FFT B = 1 B =
√
n NFT B = n

log2 p deg(R) log2 p deg(R) log2 p deg(R)
n b2 d1 d2 ≥ ≥ ≥ ≥ ≥ ≥
16 29 5 18 54 190 37 118 25 46
64 27 5 17 74 248 49 146 29 44
256 25 5 16 93 298 61 170 33 42
1024 23 5 15 112 340 72 190 37 40

Table 2. Parameters for the FFT-Hadamard-iFFT pipeline

where sk is the secret key (a short element in Rq) and ε is a short “noise” element
in Rq. As homomorphic operations progress the value q of the ciphertext is
reduced, until it can be reduced no more. At this point, operations cease to be
possible. The reduction in q enables the noise value to be controlled, and each
reduction in q is said to consume a homomorphic “level”. Note, that the HELib
library due to its choice of moduli for each level actually consumes multiple
“internal levels” for each of these “external levels”.

In Table 3 we present our implementation results using the HELib. In each
case we used the plaintext modulus size derived from the Table 2, we note that in
all cases HELib selects a ring dimension for security reasons which is much larger
than we need for our application. This last fact means that by careful choice of
the plaintext modulus one can process many such operations in parallel using
standard SIMD tricks; with the amortization constant being (roughly) the actual
degree of R divided by the lower bound from 2. We note that we cannot obtain
results for the larger plaintext spaces as HELib has a restriction of 60 bits on the
plaintext modulus. In future work we aim to remove this restriction by utilizing
a different SHE library. All run times measure the time in seconds to evaluate
the FFT-Hadamard-iFFT pipeline in the homomorphic domain, and they are
obtained on a machine with six Intel Xeon E5 2.7GHz processors, and with 64
GB RAM.

HELib Amortization CPU Amortized
n B deg(R) log2 q Levels Amount Time Time

16 1 32768 710 33 172 188 1.09
16 4 32768 451 19 277 147 0.53
16 16 16384 192 9 356 106 0.3
64 8 32768 622 30 224 1500 6.69
64 64 16384 192 10 372 1582 4.25
256 256 16384 278 11 390 34876 89.4

Table 3. Results For Homomorphically Evaluating A Full Image Processing Pipeline



Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO and by the European Union’s H2020 Programme under grant
agreement number ICT-644209 (HEAT). The authors would like to thank Carl
Ek for input on image processing algorithms and Daniel P. Martin for valuable
inputs throughout.

References

1. Hecène Belbachir. Determining the mode for convolution powers of discrete uniform
distribution. Probability in the Engineering and Informational Sciences, 25:469–
475, 10 2011.

2. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. Comparison of different FFT
implementations in the encrypted domain. In 2008 16th European Signal Processing
Conference, EUSIPCO 2008, Lausanne, Switzerland, August 25-29, 2008, pages 1–
5. IEEE, 2008.

3. Tiziano Bianchi, Alessandro Piva, and Mauro Barni. On the implementation of
the discrete fourier transform in the encrypted domain. IEEE Transactions on
Information Forensics and Security, 4(1):86–97, 2009.

4. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS,
pages 309–325. ACM, 2012.

5. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini
and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

6. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Manual for using homomorphic encryption for bioinformatics,
2015. Available at http://research.microsoft.com/pubs/258435/ManualHE.pdf.
Last accessed on November 20, 2015 at 17:45.

7. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

8. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the
AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,
pages 850–867. Springer, 2012.

9. Shai Halevi and Victor Shoup. Algorithms in helib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part
I, volume 8616 of Lecture Notes in Computer Science, pages 554–571. Springer,
2014.

10. Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? IACR Cryptology ePrint Archive, 2011:405, 2011.

11. Lutz Mattner and Bero Roos. Maximal probabilities of convolution powers of
discrete uniform distributions. Statistics & Probability Letters, 78(17):2992 – 2996,
2008.



12. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic simd operations.
IACR Cryptology ePrint Archive, 2011:133, 2011.

13. Antonio Torralba, Robert Fergus, and William T. Freeman. 80 million tiny images:
A large data set for nonparametric object and scene recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 30(11):1958–1970, 2008.

A Supplementary Material

A.1 Proofs of Theorems

Proof of Theorem 1

Proof. The additive identity in R1 is the pair (0, 0), which corresponds to the
fixed point number 0. The additive inverse of any element (q, i) ∈ R1 is (−q, i).
It is clear that these two elements sum up to (0, 0). Thus R1 is an additive group;
the fact that it is abelian is immediate.

The multiplicative identity is (1, 0), corresponding to the fixed point number
1. The associativity of the multiplication is trivially implied by associativity of
(modular) polynomial multiplication and (modular) integer addition. We show
that distributivity of multiplication over addition holds, thus completing the
proof.

Let (q1, i1), (q2, i2) and (q3, i3) be three elements of R1. Without loss of gen-
erality, assume that i2 ≥ i3, then(
q1, i1

)
·
(
(q2, i2) + (q3, i3)

)
= (q1, i1) · (q2 + q3 ·Xi2−i3 , i2)

= (q1 · q2 + q1 · q3 ·Xi2−i3 , i1 + i2)

=
(
q1 · q2 + q1 · q3 ·Xi1+i2−i1−i3 ,max(i1 + i2, i1 + i3)

)
= (q1 · q2, i1 + i2) + (q1 · q3, i1 + i3)
= (q1, i1) · (q2, i2) + (q1, i1) · (q3, i3).

ut

Proof of Theorem 2

Proof. First note that

1. φ(1R1) = φ(1, 0) = φ(1 ·X0 + 0) = 1− 0 ·X0 = 1 = 1R2 .
2. Let (q, i) and (q′, i′) in R1; without loss of generality assume i ≥ i′. Then

(q, i) + (q′, i′) = q + q′ ·Xi−i′ = (Q, i).

Then

φ(Q, i) = φ(q + q′ ·Xi−i′ , i)

= φ
(
Xi(q0 + q′0) + (q1 + q′1), i

)
= (q0 + q′0)− (q1 + q′1) ·Xn−i

= (q0 − q1 ·Xn−i) + (q′0 − q′1 ·Xn−i)
= φ(q, i) + φ(q′, i′).



Notice that in the above, we have implicitly made use of addition properties
of R2.

3. Let q, q′ as above.

φ(q, i) · φ(q′, i′) = (q0 − q1 ·Xn−i) · (q′0 − q′1 ·Xn−i′)

= q0 · q′0 − q0 · q′1 ·Xn−i′

− q′0 · q1 ·Xn−i + q1 · q′1 ·Xn−I ,

Where I = i+ i′. Now computing (q, i) · (q′, i′) first,

q · q′ = q0 · q′0 ·XI + q0 · q′1 ·Xi

+ q′0 · q1 ·Xi′ + q1 · q′1.

Now, viewing this as the pair (Q = q · q′ mod Xn + 1, i + i′ mod n) =(
(q0 · q′0 + q1 · q′1 ·Xn−i−i′) ·Xi+i′) + (q0 · q′1 ·Xi + q′0 · q1 ·Xi′), i + i′

)
, we

get the following.

φ(q · q′, I) = φ
(
q0 · q′0 + q1 · q′1 ·Xn−i−i′) ·Xi+i′) + (q0 · q′1 ·Xi + q′0 · q1 ·Xi′), I

)
= q0 · q′0 + q1 · q′1 ·Xn−i−i′

− (q0 · q′1 ·Xi − q′0 · q1 ·Xi′) ·Xn−I

= q0 · q′0 − q0 · q′1 ·Xn−i′

− q′0 · q1 ·Xn−i + q1 · q′1 ·Xn−I

= φ(q, i) · φ(q′, i′),

so that φ is indeed a homomorphism between R1 and R2.

To finish the proof, we show that φ is bijective. For any y = q0 + q1 ·Xn−d1 in
R2, we have that (q, d1) = (q0 · Xd1 + q1, d1) maps to y so that the mapping
is surjective. To see that it is injective, suppose for p, p′ ∈ R1 we have that
φ(p) = φ(p′) = z ∈ R2. Remember both rings contain encoding of fractional
numbers written in balanced base B. Recall also that we recover the integers by
simply evaluating (in our case) z(B) = a ∈ Q, and since this is well-defined, a is
unique. Now encode a in the ring R1; the encoding operation (for both rings) is
well-defined, therefore a will have a unique image in the ring R1 and thus p = p′.
It follows that φ is an isomorphism. ut

A.2 Lower Bounds On p For Regular Circuits

Tables 5, 6, 7 lists the size in bits of the smallest prime satisfying the above
bounds and also lists the degree bound dM = 2M · d0 for small values of A and
M for balanced base encoding with B = 3, 5 and 7 and L = 219. For the sake
of comparison, we give also give Table 4 that suggests the size of the primes for
the non-balanced base encoding for B = 2 and L = 219. It is clearly evident that
using balanced base encoding with B = 3 yields the smallest primes, although
large multiplicative depth is hard to support in any method.



It should be noted that with current SHE schemes a ciphertext modulus over
256 bits in length seems currently infeasible for moderately sized circuits to be
evaluated. Thus it is clear that if anything but small values of M are to be
considered one needs a different way of encoding fixed point numbers. One such
possibility is via multiple encryptions using different plaintext moduli, and then
to use the Chinese Remainder Theorem to recover the final plaintext polynomial.

M 1 2 3 4 5 6 7 8 9 10

A = 0 6 14 31 65 133 271 547 1100 2206 4418

A = 1 8 20 45 95 195 397 801 1610 3228 6464

A = 2 10 26 59 125 257 523 1055 2120 4250 8510

A = 3 12 32 73 155 319 649 1309 2630 5272 10556

A = 4 14 38 87 185 381 775 1563 3140 6294 12602

A = 5 16 44 101 215 443 901 1817 3650 7316 14648

A = 6 18 50 115 245 505 1027 2071 4160 8338 16694

A = 7 20 56 129 275 567 1153 2325 4670 9360 18740

A = 8 22 62 143 305 629 1279 2579 5180 10382 20786

A = 9 24 68 157 335 691 1405 2833 5690 11404 22832

A = 10 26 74 171 365 753 1531 3087 6200 12426 24878

dM 38 76 152 304 608 1216 2432 4864 9728 19456

Table 4. Size (in bits) of the smallest p and the degree bounds for non-balanced
encoding with B = 2 and L = 219 .



M 1 2 3 4 5 6 7 8 9 10

A = 0 5 12 26 55 114 232 468 942 1888 3783

A = 1 7 18 40 85 176 358 722 1452 2910 5829

A = 2 9 24 54 115 238 484 976 1962 3932 7875

A = 3 11 30 68 145 300 610 1230 2472 4954 9921

A = 4 13 36 82 175 362 736 1484 2982 5976 11967

A = 5 15 42 96 205 424 862 1738 3492 6998 14013

A = 6 17 48 110 235 486 988 1992 4002 8020 16059

A = 7 19 54 124 265 548 1114 2246 4512 9042 18105

A = 8 21 60 138 295 610 1240 2500 5022 10064 20151

A = 9 23 66 152 325 672 1366 2754 5532 11086 22197

A = 10 25 72 166 355 734 1492 3008 6042 12108 24243

dM 24 48 96 192 384 768 1536 3072 6144 12288

Table 5. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 3 and L = 219 .

M 1 2 3 4 5 6 7 8 9 10

A = 0 7 14 31 64 130 263 529 1062 2129 4264

A = 1 9 20 45 94 192 389 783 1572 3151 6310

A = 2 11 26 59 124 254 515 1037 2082 4173 8356

A = 3 13 32 73 154 316 641 1291 2592 5195 10402

A = 4 15 38 87 184 378 767 1545 3102 6217 12448

A = 5 17 44 101 214 440 893 1799 3612 7239 14494

A = 6 19 50 115 244 502 1019 2053 4122 8261 16540

A = 7 21 56 129 274 564 1145 2307 4632 9283 18586

A = 8 23 62 143 304 626 1271 2561 5142 10305 20632

A = 9 25 68 157 334 688 1397 2815 5652 11327 22678

A = 10 27 74 171 364 750 1523 3069 6162 12349 24724

dM 16 32 64 128 256 512 1024 2048 4096 8192

Table 6. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 5 and L = 219 .



M 1 2 3 4 5 6 7 8 9 10

A = 0 8 16 34 70 143 289 582 1169 2342 4689

A = 1 10 22 48 100 205 415 836 1679 3364 6735

A = 2 12 28 62 130 267 541 1090 2189 4386 8781

A = 3 14 34 76 160 329 667 1344 2699 5408 10827

A = 4 16 40 90 190 391 793 1598 3209 6430 12873

A = 5 18 46 104 220 453 919 1852 3719 7452 14919

A = 6 20 52 118 250 515 1045 2106 4229 8474 16965

A = 7 22 58 132 280 577 1171 2360 4739 9496 19011

A = 8 24 64 146 310 639 1297 2614 5249 10518 21057

A = 9 26 70 160 340 701 1423 2868 5759 11540 23103

A = 10 28 76 174 370 763 1549 3122 6269 12562 25149

dM 14 28 56 112 224 448 896 1792 3584 7168

Table 7. Size (in bits) of the smallest p and the degree bounds for balanced encoding
with B = 7 and L = 219 .


