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Abstract. We revisit the exact round complexity of secure computation in the multi-party and two-
party settings. For the special case of two-parties without a simultaneous message exchange channel, this
question has been extensively studied and resolved. In particular, Katz and Ostrovsky (CRYPTO ’04)
proved that five rounds are necessary and su�cient for securely realizing every two-party functionality
where both parties receive the output. However, the exact round complexity of general multi-party
computation, as well as two-party computation with a simultaneous message exchange channel, is not
very well understood.

These questions are intimately connected to the round complexity of non-malleable commitments.
Indeed, the exact relationship between the round complexities of non-malleable commitments and
secure multi-party computation has also not been explored.

In this work, we revisit these questions and obtain several new results. First, we establish the following
main results. Suppose that there exists a k-round non-malleable commitment scheme, and let k

0 =
max(4, k + 1); then,

– (Two-party setting with simultaneous message transmission): there exists a k

0-round pro-
tocol for securely realizing every two-party functionality;

– (Multi-party setting): there exists a k

0-round protocol for securely realizing the multi-party
coin-flipping functionality.

As a corollary of the above results, by instantiating them with existing non-malleable commitment
protocols (from the literature), we establish that four rounds are both necessary and su�cient for both
the results above. Furthermore, we establish that, for every multi-party functionality five rounds are suf-
ficient. We actually obtain a variety of results o↵ering trade-o↵s between rounds and the cryptographic
assumptions used, depending upon the particular instantiations of underlying protocols.

1 Introduction

The round complexity of secure computation is a fundamental question in the area of secure com-
putation [Yao82,Yao86,GMW87]. In the past few years, we have seen tremendous progress on this
question, culminating into constant round protocols for securely computing any multi-party functional-
ity [BMR90,KOS03,Pas04,DI05,DI06,PPV08,Wee10,Goy11,LP11a,GLOV12]. These works essentially settle
the question of asymptotic round complexity of this problem.
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The exact round complexity of secure computation, however, is still not very well understood 1. For
the special case of two-party computation, Katz and Ostrovsky [KO04] proved that 5 rounds are necessary
and su�cient. In particular, they proved that two-party coin-flipping cannot be achieved in 4 rounds, and
presented a 5-round protocol for computing every functionality. To the best of our knowledge, the exact
round complexity of multi-party computation has never been addressed before.

The standard model for multi-party computation assumes that parties are connected via authenticated
point-to-point channels as well as simultaneous message exchange channels where everyone can send messages
at the same time. Therefore, in each round, all parties can simultaneously exchange messages.

This is in sharp contrast to the “standard” model for two-party computation where, usually, a simulta-
neous message exchange framework is not considered. Due to this di↵erence in the communication model,
the negative result of Katz-Ostrovsky [KO04] for 4 rounds, does not apply to the multi-party setting. In
particular, a 4 round multi-party coin-flipping protocol might still exist!

In other words, the results of Katz-Ostrovsky only hold for the special case of two parties without a
simultaneous message exchange channel. The setting of two-party computation with a simultaneous message
exchange channel has not been addressed before. Therefore, in this work we address the following two
questions:

What is the exact round complexity of secure multi-party computation?

In the presence of a simultaneous message exchange channel, what is the exact round complexity of secure
two-party computation?

These questions are intimately connected to the round complexity of non-malleable commitments [DDN91].
Indeed, new results for non-malleable commitments have almost immediately translated to new results for
secure computation. For example, the round complexity of coin-flipping was improved by Barak [Bar02], and
of every multi-party functionality by Katz, Ostrovsky, and Smith [KOS03] based on techniques from non-
malleable commitments. Pass [Pas04] constructed the first constant round bounded-concurrent protocol based
on polynomial-time assumptions, since the constant round protocol of [KOS03] relied on sub-exponential
hardness assumptions. Likewise, black-box constructions for constant-round non-malleable commitments
resulted in constant-round black-box constructions for secure computation [Wee10,Goy11]. However, all of
these results only focus on asymptotic improvements and do not try to resolve the exact round complexity,
thereby leaving the following fundamental question unresolved:

What is the relationship between the exact round complexities of non-malleable commitments and secure
computation?

This question is at the heart of understanding the exact round complexity of secure computation in both
multi-party, and two-party with simultaneous message transmission.

1.1 Our Contributions

In this work we try to resolve the questions mentioned above. We start by focusing on the simpler case of
two-party computation with a simultaneous message exchange channel, since it is a direct special case of the
multi-party setting. We then translate our results to the multi-party setting.

Lower bounds for coin-flipping. We start by focusing on the following question.

How many simultaneous message exchange rounds are necessary for secure two-party computation?

We show that four simultaneous message exchange rounds are necessary. More specifically, we show that:

1 Our rough estimate for the exact round complexity of aforementioned multi-party results in the computational
setting is 20-30 rounds depending upon the underlying components and assumptions.
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Theorem (Informal): Let  be the security parameter. Even in the simultaneous message model, there
does not exist a three-round protocol for the two-party coin-flipping functionality for !(log ) coins which
can be proven secure via black-box simulation.

In fact, as a corollary all of the rounds must be “strictly simultaneous message transmissions”, that is, both
parties must simultaneously send messages in each of the 4 rounds. This is because in the simultaneous
message exchange setting, the security is proven against the so called “rushing adversaries” who, in each
round, can decide their message after seeing the messages of all honest parties in that round. Consequently,
if only one party sends a message for example in the fourth round, this message can be “absorbed” within
the third message of this party2, resulting in a three round protocol.

Results in the two-party setting with a simultaneous message exchange channel. Next, we con-
sider the task of constructing a protocol for coin-flipping (or any general functionality) in four simultaneous
message exchange rounds and obtain a positive result. In fact, we obtain our results by directly exploring the
exact relationship between the round complexities of non-malleable commitments and secure computation.
Specifically, we first prove the following result:

Theorem (Informal): If there exists a k-round protocol for (parallel) non-malleable commitment,3

then there exists a k0-round protocol for securely computing every two-party functionality with black-
box simulation in the presence of a malicious adversary in the simultaneous message model, where
k0 = max(4, k + 1).

Instantiating this protocol with non-malleable commitments from [PPV08], we get a four round protocol
for every two-party functionality in the presence of a simultaneous message exchange channel, albeit under
a non-standard assumption (adaptive one-way function). However, a recent result by Goyal et al. [GPR15]
constructs a non-malleable commitment protocol in three rounds from one-way function, although their
protocol does not immediately extend to a parallel setting. Instantiating our protocol with a parallel version
of [GPR15] would yield a four round protocol under standard assumption.

Results in the multi-party setting. Next, we focus on the case of the multi-party coin flipping function-
ality. We show that a simpler version of our two-party protocol gives a result for multi-party coin-flipping:

Theorem (Informal): If there exists a k-round protocol for (parallel) non-malleable commitments, then
there exists a k0-round protocol for securely computing the multi-party coin-flipping functionality with
black-box simulation in the presence of a malicious adversary for polynomially many coins where k0 =
max(4, k + 1).

Combining this result with the two-round multi-party protocol of Mukherjee and Wichs [MW15] (based
on the LWE [Reg05]), we obtain a k0 + 2 round protocol for computing every multi-party functionality.
Instantiating these protocols with non-malleable commitments from [PPV08], we obtain a four round
protocol for coin-flipping and a six round protocol for every functionality.

Finally, we show that the coin-flipping protocol for the multi-party setting can be extended to compute
what we call the “coin-flipping with committed inputs” functionality. Using this protocol with the two-round
protocol of [GGHR14a] based on indistinguishability obfuscation [GGH+13], we obtain a five round MPC
protocol.

2 Note that, such absorption is only possible when it maintains the mutual dependency among the messages, in
particular does not a↵ect the next-message functions.

3 Parallel simply means that the man-in-the-middle receives  non-malleable commitments in parallel from the left
interaction and makes  commitments on the right. Almost all known non-malleable commitment protocols satisfy
this property.
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1.2 Related Work

The round complexity of secure computation has a rich and long history. We only mention the results that
are most relevant to this work in the computational setting. Note that, unconditionally secure protocols
such as [BGW88,CCD88] are inherently non-constant round. More specifically, the impossibility result of
[DNP15] implies that a fundamental new approach must be found in order to construct protocols, that are
e�cient in the circuit size of the evaluated function, with reduced communication complexity that beat the
complexities of BGW, CCD, GMW etc.

For the computational setting and the special case of two party computation, the semi-honest secure
protocol of Yao [Yao82,Yao86,LP11b] consists of only three rounds (see Section 2). For malicious security4,
a constant round protocol based on GMW was presented by Lindell [Lin01]. Ishai, Prabhakaran, and Sahai
[IPS08] presented a di↵erent approach which also results in a constant round protocol.

The problem of exact round complexity of two party computation was studied in the beautiful work
of Katz and Ostrovsky [KO04] who provided a 5 round protocol for computing any two-party functional-
ity. They also ruled out the possibility of a four round protocol for coin-flipping, thus completely resolving
the case of two party (albeit without simultaneous message exchange, as discussed earlier). Recently Os-
trovsky, Richelson and Scafuro [ORS15] constructed a di↵erent 5-round protocol for the general two-party
computation by only relying on black-box usage of the underlying trapdoor one-way permutation.

As discussed earlier, the standard setting for two-party computation does not consider simultaneous
message exchange channels, and hence the negative results for the two-party setting do not apply to the multi-
party setting where simultaneous message exchange channels are standard. To the best of our knowledge,
prior to our work, the case of the two-party setting in the presence of a simultaneous message exchange
channel was not explored in the context of the exact round complexity of secure computation.

For the multi-party setting, the exact round complexity has remained open for a long time. The
work of [BMR90] gave the first constant-round non black-box protocol for honest majority (improved by
the black-box protocols of [DI05,DI06]). Katz, Ostrovsky, and Smith [KOS03], adapted techniques from
[DDN91,Bar02,BMR90,CLOS02] to construct the first asymptotically round-optimal protocols for any multi-
party functionality for the dishonest majority case based on subexponential hardness assumptions ( [KOS03]
achieve logarithmic round-complexity based on polynomial-time assumptions). In particular, apart from en-
hanced trapdoor permutations their protocol relies on the assumption of sub-exponentially secure dense cryp-
tosystems as well as sub-exponentially secure collision resistant hash functions. Pass [Pas04] constructed a
constant-round bounded-concurrent protocol based on standard polynomial-time assumptions, i.e. enhanced
trapdoor permutations and collision resistant hash functions. The constant-round protocols of [KOS03,Pas04]
relied on non-black-box use of the adversary’s algorithm [Bar01]. However, constant-round protocols mak-
ing black-box use of the adversary were constructed by [PPV08,LP11a,Goy11], and making black-box use
of one-way functions by Wee in !(1) rounds [Wee10] and by Goyal in constant rounds [Goy11]. Furthere-
more, based on the non-malleable commitment scheme of [Goy11], [GLOV12] construct a constant-round
multi-party coin-tossing protocol. Lin, Pass, and Venkitasubramanian[LPV09] presented a unified approach
to construct UC-secure protocols from non-malleable commitments. However, as mentioned earlier, none of
the aforementioned works focused on the exact round complexity of secure computation based on the round-
complexity of non-malleable commitments. For a detailed survey of round complexity of secure computation
in the preprocessing model or in the CRS model we refer to [AJL+12].

1.3 An Overview of Our Approach

We now provide an overview of our approach. As discussed earlier, we first focus on the two-party setting
with a simultaneous message exchange channel.

The starting point of our construction is the Katz-Ostrovsky (KO) protocol [KO04] which is a four round
protocol for one-sided functionalities, i.e., in that only one party gets the output. Recall that, this protocol
does not assume the presence of a simultaneous message exchange channel. At the cost of an extra round,

4 From here on, unless specified otherwise, we are always in the malicious setting by default.
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the KO two-party protocol can be converted to a complete (i.e. both-sided) protocol where both parties get
their corresponding outputs via a standard trick [Gol03] as follows: parties compute a modified functionality
in which the first party P1 learns its output as well as the output of the second party P2 in an “encrypted
and authenticated”5 form. It then sends the encrypted value to P2 who can decrypt and verify its output.

A natural first attempt is to adapt this simple and elegant approach to the setting of simultaneous
message exchange channel, so that the “encrypted/authenticated output” can somehow be communicated to
P2 simultaneously at the same time when P2 sends its last message, thereby removing the additional round.

It is not hard to see that any such approach would not work. Indeed, in the presence of malicious ad-
versaries while dealing with a simultaneous message exchange channel, the protocol must be proven secure
against “rushing adversaries” who can send their messages after looking at the messages sent by the other
party. This implies that, if P1 could indeed send the “encrypted/authenticated output” message simultane-
ously with last message from P2, it could have sent it earlier as well. Now, applying this argument repeatedly,
one can conclude that any protocol which does not use the simultaneous message exchange channel neces-
sarily in all of the four rounds, is bound to fail (see Section 3). In particular, any such protocol can be
transformed, by simple rescheduling, into a 3-round protocol contradicting our lower bound6.

This means that we must think of an approach which must use the simultaneous message exchange
channel in each round. In light of this, a natural second attempt is to run two executions of a 4-round
protocol (in which only one party learns the output) in “opposite” directions. This would allow both parties
to learn the output. Unfortunately, such approaches do not work in general since there is no guarantee that
an adversarial party would use the same input in both protocol executions. Furthermore, another problem
with this approach is that of “non-malleability” where a cheating party can make its input dependent on the
honest party’s input: for example, it can simply “replay” back the messages it receives. A natural approach
to prevent such attacks is to deploy non-malleable commitments, as we discuss below.

Simultaneous executions + non-malleable commitments. Following the approach discussed above
we observe that:

1. A natural direction is to use two simultaneous executions of the KO protocol (or any other similar 4-
round protocol) over the simultaneous message exchange channel in opposite directions. Since we have
only 4 rounds, a di↵erent protocol (such as some form of 2-round semi-honest protocol based on Yao) is
not a choice.

2. We must use non-malleable commitments to prevent replay/mauling attacks.

We remark that, the fact that non-malleable commitments come up as a natural tool is not a coin-
cidence. As noted earlier, the multi-party case is well known to be inherently connected to non-malleable
commitments. Even though our current focus is solely on the two-party case, this setting is essentially
(a special case of) the multi-party setting due to the use of the simultaneous message exchange channel.
Prior to our work, non-malleable commitments have been used extensively to design multi-party proto-
cols [Goy11,LP11b,LPTV10,GLOV12]. However, all of these works result in rather poor round complexity
because of their focus on asymptotic, as opposed to exact, number of rounds.

To obtain our protocol, we put the above two ideas together, modifying several components of KO7 to use
non-malleable commitments. These components are then put together in a way such that, even though there
are essentially two simultaneous executions of the protocol in opposite directions, messages of one protocol
cannot be maliciously used to a↵ect the other messages. In the following, we highlight the main ideas of our
construction:
5 In particular, the encryption prevents P1 to know P2’s output ensuring output privacy whereas the authentication
does not allow P1 to send P2 a wrong output.

6 Recall that we show that (see Thoerem 2 for a formal statement) 4 rounds are necessary even with simultaneous
message exchange channels.

7 The KO protocol uses a clever combination of garble circuits, semi-honest oblivious transfer, coin-tossing, and
WIPOK to ensure that the protocol is executed with a fixed input (allowing at the same time simulation ex-
tractability of the input), and relies on the zero-knowledge property of a modified Fiege-Shamir proof to achieve
output simulation.
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1. The first change we make is to the proof systems used by KO. Recall that KO uses the Fiege-Shamir
(FS) protocol as a mechanism to “force the output” in the simulation. Our first crucial modification
is to consider a variant of the FS protocol in which the verifier gives two non-malleable commitments
(nmcom) to two strings �1,�2 and gives a witness indistinguishable proof-of-knowledge (WIPOK) that
it knows one of them. These are essentially the simulation trapdoors, but implemented through nmcom
instead of a one-way function. This change is actually crucial, and as such, brings in an e↵ect similar to
“simulation sound” zero-knowledge.

2. The oblivious transfer protocol based on trapdoor permutations and coin-tossing now performs coin-
tossing with the help of nmcom instead of simple commitments. This is a crucial change since this allows
us to slowly get rid of the honest party’s input in the simulation and still argue that the distribution of
the adversary’s input does not change as a result of this.
We note that there are many parallel executions on nmcom that take place at this stage, and therefore,
we require that nmcom should be non-malleable under many parallel executions. This is indeed true for
most nmcom.

3. Finally, we introduce a mechanism to ensure that the two parties use the exact same input in both
executions. Roughly speaking, this is done by requiring the parties to prove consistency of messages
“across” protocols.

4. To keep the number of rounds to k + 1 (or 4 if k < 3), many of the messages discussed above are
“absorbed” with other rounds by running in parallel.

Multi-party setting. The above protocol does not directly extend to the multi-party settings. Neverthe-
less, for the special case of coin flipping, we show that a (simplified) version of the above protocol works for
the multi-party case. This is because the coin-tossing functionality does not really require any computation,
and therefore, we can get rid of components such as oblivious transfer. In fact, this can be extended “slightly
more” to also realize the “coin-flipping with committed inputs” since committing the input does not depend
on inputs of other parties.

Next, to obtain our result for general functionalities, we simply invoke known results: using [MW15] with
coin-flipping gives us a six round protocol, and using [GGHR14b] gives a five round result.

2 Preliminaries

Notation. We denote the security parameter by . We say that a function µ : N ! N is negligible if for
every positive polynomial p(·) and all su�ciently large ’s it holds that µ() < 1

p() . We use the abbreviation

PPT to denote probabilistic polynomial-time. We often use [n] to denote the set {1, ..., n}. Moreover, we
use d  D to denote the process of sampling d from the distribution D or, if D is a set, a uniform choice
from it. If D1 and D2 are two distributions, then we denote that they are statistically close by D1 ⇡s D2; we
denote that they are computationally indistinguishable by D1 ⇡c D2; and we denote that they are identical
by D1 ⌘ D2. Let V be a random variable corresponding to the distribution D. Sometimes we abuse notation
by using V to denote the corresponding distribution D.

We assume familiarity with several standard cryptographic primitives. For notational purposes, we recall
here the basic working definitions for some of them. We skip the well-known formal definitions for secure two-
party and multi-party computations (see Appendix A for a formal description). It will be su�cient to have no-
tation for the two-party setting. We denote a two party functionality by F : {0, 1}⇤⇥{0, 1}⇤ ! {0, 1}⇤⇥{0, 1}⇤
where F = (F1, F2). For every pair of inputs (x, y), the output-pair is a random variable (F1(x, y), F2(x, y))
ranging over pairs of strings. The first party (with input x) should obtain F1(x, y) and the second party (with
input y) should obtain F2(x, y). Without loss of generality, we assume that F is deterministic. The security
is defined through the ideal/real world paradigm where for adversary A participating in the real world pro-
tocol, there exists an ideal world simulator S such that for every (x, y), the output of S is indistinguishable
from that of A. See Appendix A for an extended discussion.

We now recall the definitions for non-malleable commitments as well as some components from the work
of Katz-Ostrovsky [KO04].
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2.1 Tag Based Mon-Malleable Commitments

Let nmcom = hC,Ri be a k round commitment protocol where C and R represent (randomized) committer
and receiver algorithms, respectively. Denote the messages exchanged by (nm1, . . . , nmk

) where nm
i

denotes
the message in the i-th round.

For some string u 2 {0, 1}, tag id 2 {0, 1}t, non-uniform PPT algorithm M with “advice” string
z 2 {0, 1}⇤, and security parameter , define (v, view) to be the output of the following experiment: M on

input (1, z), interacts with C who commits to u with tag id; simultaneously, M interacts with R(1, eid)
where eid is arbitrarily chosen by M (M ’s interaction with C is called the left interaction, and its interaction
with R is called the right interaction); M controls the scheduling of messages; the output of the experiment

is (v, view) where v denotes the value M commits to R in the right execution unless eid = id in which case
v = ?, and view denotes the view of M in both interactions.

Definition 1 (Tag based non-malleable commitments) A commitment scheme nmcom = hC,Ri is
said to be non-malleable with respect to commitments if for every non-uniform PPT algorithm M (man-in-
the-middle), for every pair of strings (u0, u1) 2 {0, 1}⇥ {0, 1}, every tag-string id 2 {0, 1}t, every (advice)
string z 2 {0, 1}⇤, the following two distributions are computationally indistinguishable,

(v0, view
0)

c⇡ (v1, view
1).

Parallel non-malleable commitments. We consider a strengthening of nmcom in which M can receive
commitments to m strings on the “left”, say (u1, . . . , um

), with tags (id1, . . . , idm) and makes m commitments

on the “right” with tags (eid1, . . . , eidm). We assume that m is a fixed, possibly a-priori bounded, polynomial
in the security parameter . In the following let i 2 [m], b 2 {0, 1}: We say that a nmcom is m-bounded
parallel non-malleable commitment if for every pair of sequences {ub

i

} the random variables ({v0
i

}, view0)
and ({v1

i

}, view1) are computationally indistinguishable where {vb
i

} denote the values committed by M in m

sessions on right with tags {eid
i

} while receiving parallel commitments to {ub

i

} on left with tags {id
i

}, and
viewb denotes M ’s view.

First message binding property. It will be convenient in the notation to assume that the first message
nm1 of the non-malleable commitment scheme nmcom statistically determines the message being committed.
This can be relaxed to only require that the message is fixed before the last round if k � 3.

2.2 Components of our Protocol

In this section, we recall some components from the KO protocol [KO04]. These are mostly standard and
recalled here for a better exposition. The only (minor but crucial) change needed in our protocol is to the
FLS proof system [FLS99,FS90,Fei90] where a non-malleable commitment protocol is used by the verifier.
For concreteness, let us discuss how to fix these proof systems first.

Modified Feige-Shamir proof systems. We use two proof systems: ⇧WIPOK and ⇧FS. Protocol ⇧WIPOK

is the 3-round, public-coin, witness-indistinguishable proof-of-knowledge based on the work of Feige, Lapidot,
Shamir [FLS99] for proving graph Hamiltonicity. This proof system proves statements of the form st1 ^ st2
where st1 is fixed at the first round of the protocol, but st2 is determined only in the last round of the
protocol.8 For concreteness, this proof system is given in Appendix B.

Protocol ⇧FS is the 4-round zero-knowledge argument-of-knowledge protocol of Feige and Shamir [FS90],
which allows the prover to prove statement thm, with the modification that the protocol from verifier’s side
is implemented using nmcom. More specifically,

8 Typically, st1 is a empty statement and not usually mentioned; but KO [KO04] uses a specific, non-empty, statement
and so does this work.
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– Recall that the Feige-Shamir protocol consists of two executions of ⇧WIPOK in reverse directions. In the
first execution, the verifier selects a one-way function f and sets x1 = f(w1), x2 = f(w2) and proves the
knowledge of a witness for x1 _ x2. In the second execution, prover proves the knowledge of a witness to
the statement thm_ (x1 _x2) where thm is the statement to be proven. The rounds of these systems can
be somewhat parallelized to obtain a 4-round protocol.

– Our modified system, simply replaces the function f and x1, x2 with two executions of nmcom. For
convenience, suppose that nmcom has only 3 rounds. Then, our protocol creates the first message of
two independent executions of nmcom to strings �1,�2, denoted by nm�1

1 , nm�2
1 respectively, and sets

x1 = nm�1
1 , x2 = nm�2

1 . The second and third messages of nmcom are sent with the second and third
messages of the original FS protocol.
If nmcom has more than 3 rounds, simply complete the first k � 3 rounds of the two executions before
the 4 messages of the proof system above are exchanged.

– As before, although ⇧FS proves statement thm, as noted in [KO04], it actually proves statements of the
form thm^ thm0 where thm can be fixed in the second round, and thm0 in the fourth round. Usually thm
is empty and not mentioned. Indeed, this is compatible with the second ⇧WIPOK which proves statement
of the form st1 ^ st2, just set st1 = thm, st2 = thm0.

For completeness, we describe the full ⇧FS protocol in Appendix B.

Components of Katz-Ostrovsky Protocol

The remainder of this section is largely taken from [KO04] where we provide basic notations and ideas for
semi-honest secure two-party computation based on Yao’s garbled circuits and semi-honest oblivious transfer
(based on trapdoor one-way permutations). Readers familiar with [KO04] can skip this part without loss in
readability.

Semi-Honest Secure Two-party Computation. We view Yao’s garbled circuit scheme [Yao82,LP09]
as a tuple of PPT algorithms (GenGC,EvalGC), where GenGC is the “generation procedure” which generates a
garbled circuit for a circuit C along with “labels,” and EvalGC is the “evaluation procedure” which evaluates
the circuit on the “correct” labels. Each individual wire i of the circuit is assigned two labels, namely
Z
i,0, Zi,1. More specifically, the two algorithms have the following format (here i 2 [], b 2 {0, 1}):

– ({Z
i,b

},GC
y

) GenGC(1, F, y): GenGC takes as input a security parameter , a circuit F and a string
y 2 {0, 1}. It outputs a garbled circuit GC

y

along with the set of all input-wire labels {Z
i,b

}. The garbled
circuit may be viewed as representing the function F (·, y).

– v = EvalGC(GC
y

, {Z
i,x

i

}): Given a garbled circuit GC
y

and a set of input-wire labels {Z
i,x

i

} where
x 2 {0, 1}, EvalGC outputs either an invalid symbol ?, or a value v = F (x, y).

The following properties are required:

Correctness. Pr [F (x, y) = EvalGC(GC
y

, {Z
i,x

i

})] = 1 for all F, x, y, taken over the correct generation of
GC

y

, {Z
i,b

} by GenGC.

Security. There exists a PPT simulator SimGC such that for any (F, x) and uniformly random labels {Z
i,b

},
we have that:

(GC
y

, {Z
i,x

i

}) c⇡ SimGC (1, F, v)

where ({Z
i,b

},GC
y

) GenGC (1, F, y) and v = F (x, y).

In the semi-honest setting, two parties can compute a function F of their inputs, in which only one party,
say P1, learns the output, as follows. Let x, y be the inputs of P1, P2, respectively. First, P2 computes
({Z

i,b

},GC
y

)  GenGC(1, F, y) and sends GC
y

to P1. Then, the two parties engage in  parallel instances
of OT. In particular, in the i-th instance, P1 inputs x

i

, P2 inputs (Z
i,0, Zi,1) to the OT protocol, and P1

learns the “output” Z
i,x

i

. Then, P1 computes v = EvalGC(GC
y

, {Z
i,x

i

}) and outputs v = F (x, y).
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A 3-round, semi-honest, OT protocol can be constructed from enhanced trapdoor permutations (TDP).
For notational purposes, define TDP as follows:

Definition 2 (Trapdoor permutations) Let F be a triple of PPT algorithms (Gen,Eval, Invert) such
that if Gen(1) outputs a pair (f, td), then Eval(f, ·) is a permutation over {0, 1} and Invert(f, td, ·) is its
inverse. F is a trapdoor permutation such that for all PPT adversaries A:

Pr[(f, td) Gen(1); y  {0, 1};x A(f, y) : Eval(f, x) = y]  µ().

For convenience, we drop (f, td) from the notation, and write f(·), f�1(·) to denote algorithms
Eval(f, ·), Invert(f, td, ·) respectively, when f, td are clear from the context. We assume that F satisfies
(a weak variant of ) “certifiability”: namely, given some f it is possible to decide in polynomial time whether
Eval(f, ·) is a permutation over {0, 1}.

Let H be the hardcore bit function for  bits for the family F ;  hardcore bits are obtained from a
single-bit hardcore function h and f 2 F as follows: H(z) = h(z)kh(f(z))k . . . kh(f�1(z)). Informally, H(z)
looks pseudorandom given f(z).

The semi-honest OT protocol based on TDP is constructed as follows. Let P2 hold two strings Z0, Z1 2
{0, 1} and P1 hold a bit b. In the first round, P2 chooses trapdoor permutation (f, f�1)  Gen(1) and
sends f to P1. Then P1 chooses two random string z00, z

0
1  {0, 1}, computes z

b

= f(z0
b

) and z1�b

= z01�b

and sends (z0, z1) to P2. In the last round P2 computes W
a

= Z
a

� H(f�(z
a

)) where a 2 {0, 1}, H is the
hardcore bit function and sends (W0,W1) to P1. Finally, P2 can recover Z

b

by computing Z
b

= W
b

�H(z
b

).
Putting it altogether, we obtain the following 3-round, semi-honest secure two-party protocol for the

single-output functionality F (here only P1 receives the output):

Protocol ⇧SH. P1 holds input x 2 {0, 1} and P2 holds inputs y 2 {0, 1}. Let F be a family of trapdoor
permutations and let H be a hardcore bit function. For all i 2 [] and b 2 {0, 1} the following steps are
executed:

Round-1 : P2 computes ({Z
i,b

},GC
y

)  GenGC(1, F, y) and chooses trapdoor permutation (f
i,b

, f�1
i,b

)  
Gen(1) and sends (GC

y

, {f
i,b

}) to P2.
Round-2 : P1 chooses random strings {z0

i,b

}, computes z
i,b

= f(z0
i,b

) and z
i,1�b

= z0
i,1�b

and sends {z
i,b

}
to P2.

Round-3 : P2 computes W
i,b

= Z
i,b

� H(f�

i,b

(z
i,b

)) and sends {W
i,b

} to P2.
Output : P1 recovers the labels Z

i,x

i

= W
i,x

i

� H(z
i,x

i

) and computes v = EvalGC(GC
y

, {Z
i,x

i

}) where
v = F (x, y)

Equivocal Commitment scheme Eqcom. We assume familiarity with equivocal commitments, and
use the following equivocal commitment scheme Eqcom based on any (standard) non-interactive, per-
fectly binding, commitment scheme com: to commit to a bit x, the sender chooses coins ⇣1, ⇣2 and com-

putes Eqcom(x; ⇣1, ⇣2)
def
= com(x; ⇣1)||com(x; ⇣2). It sends C

x

= Eqcom(x; ⇣1, ⇣2) to the receiver along
with a zero-knowledge proof that C

x

was constructed correctly (i.e., that there exist x, ⇣1, ⇣2 such that
C
x

= Eqcom(x; ⇣1, ⇣2).
To decommit, the sender chooses a bit b at random and reveals x, ⇣

b

, denoted by openC
x

. Note that
a simulator can “equivocate” the commitment by setting C = com(x; ⇣1)||com(x; ⇣2) for a random bit x,
simulating the zero-knowledge proof and then revealing ⇣1 or ⇣2 depending on x and the bit to be revealed.
This extends to strings by committing bitwise.

Sketch of the Two-Party KO Protocol. The main component of the two-party KO protocol is Yao’s
3-round protocol ⇧SH, described above, secure against semi-honest adversaries. In order to achieve security
against a malicious adversary their protocol proceeds as follows. Both parties commit to their inputs; run
(modified) coin-tossing protocols to guarantee that each party obtains random coins which are committed to
the other party (note that coin flipping for the side of the garbler P2 is not needed since a malicious garbler
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P2 gains nothing by using non-uniform coins. To force P1 to use random coins the authors use a 3-round
sub-protocol which is based on the work of [BL02]); and run the ⇧SH protocol together with ZK arguments
to avoid adversarial inconsistencies in each round. Then, simulation extractability is guaranteed by the use
of WI proof of knowledge and output simulation by the Feige-Shamir ZK argument of knowledge.

However, since even a ZK argument for the first round of the protocol alone will already require 4 rounds,
the authors use specific proof systems to achieve in total a 4-round protocol. In particular, the KO protocol
uses a specific WI proof of knowledge system with the property that the statement to be proven need not
be known until the last round of the protocol, yet soundness, completeness, and witness-indistinguishability
still hold. Also, this proof system has the property that the first message from the prover is computed
independently of the statement being proved. Note that their 4-round ZK argument of knowledge enjoys the
same properties. Furthermore, their protocol uses an equivocal commitment scheme to commit to the garble
circuit for the following reason. Party P1 may send his round-two message before the proof of correctness for
round one given by P2 is complete. Therefore, the protocol has to be constructed in a way that the proof of
correctness for round one completes in round three and that party P2 reveals the garbled circuit in the third
round. But since the proof of security requires P2 to commit to a garble circuit at the end of the first round,
P2 does so using an equivocal commitment scheme.

3 The Exact Round Complexity of Coin Tossing

In this section we first show that it is impossible to construct two-party (simulatable) coin-flipping for a
super-logarithmic number of coins in 3 simultaneous message exchange rounds. We first recall the definition
of a simulatable coin flipping protocol using the real/ideal paradigm from [KOS03].

Definition 1 ([KOS03]). An n-party protocol ⇧ is a simulatable coin-flipping protocol if it is an (n� 1)-
secure protocol realizing the coin-flipping functionality. That is, for every PPT adversary A corrupting
at most n � 1 parties there exists an expected PPT simulator S such that the (output of the) following
experiments are indistinguishable. Here we parse the result of running protocol ⇧ with adversary A (denoted

REAL(1, 1�) IDEAL(1, 1�)
c, viewA  REAL⇧,A(1, 1�) c0  {0, 1}�

ec, viewS  SA(c0, 1, 1�)
Output (c, viewA) If ec = {c0,?} then Output (ec, viewS)

Else output fail

by REAL⇧,A(1, 1�)) as a pair (c, viewA) where c 2 {0, 1}� [ {?} is the outcome and viewA is the view of
the adversary A.

We restrict ourselves to the case of two parties (n = 2), which can be extended to any n > 2. Below we

denote messages in protocol ⇧ which are sent by party P
i

to party P
j

in the ⇢-th round by m
⇧[⇢]
i,j

.
As mentioned earlier, Katz and Ostrovsky [KO04] showed that simulatable coin-flipping protocol is im-

possible in 4 rounds without simultaneous message exchange. Since we will use the result for our proofs in
this section, we state their result below without giving their proof.

Lemma 1. [KO04, Theorem 1] Let p() = !(log ), where  is the security parameter. Then there does
not exist a 4-round protocol without simultaneous message transmission for tossing p() coins which can be
proven secure via black-box simulation.

In the following, we state our impossibility result for coin-fliping in 3 rounds of simultaneous message
exchange.
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Lemma 2. Let p() = !(log), where  is the security parameter. Then there does not exist a 3-round
protocol with simultaneous message transmission for tossing p() coins which can be proven secure via black-
box simulation.

Proof: We prove the above statement by showing that a 3-round simultaneous message exchange protocol
can be “rescheduled” to a 4-round non-simultaneous protocol which contradicts the impossibility of [KO04].
Here by rescheduling we mean rearrangement of the messages without violating mutual dependencies among
them, in particular without altering the next-message functions.

For the sake of contradiction, assume that there exists a protocol ⇧,
flip which realizes simulatable coin-

flipping in 3 simultaneous message exchange rounds, then we can reschedule it in order to construct a protocol

⇧
 !
flip which realizes simulatable coin-flipping in 4 rounds9 without simultaneous message exchange as follows:

Protocol ⇧
 !
flip

Round-1: P1 sends the first message m
⇧
 !
flip[1]

1,2 := m
⇧,flip[1]
1,2 to P2.

Round-2: Party P2 sends to P1 the second message m
⇧
 !
flip[2]

2,1 := (m
⇧,flip[1]
2,1 ,m

⇧,flip[2]
2,1 ).

Round-3: Party P1 sends to P2 the third message m
⇧
 !
flip[3]

1,2 := (m
⇧,flip[2]
1,2 ,m

⇧,flip[3]
1,2 ).

Round-4: Finally P2 sends to P1 the last message m
⇧
 !
flip[4]

2,1 := m
⇧,flip[3]
2,1 .

We provide a pictorial presentation of the above rescheduling in Fig. 1 for better illustration.

P1 P2

Rescheduled

=)

P1 P2P1 P2

Fig. 1. A 3-round simultaneous protocol rescheduled to a 4-round non-simultaneous protocol.

Now, without loss of generality assume that P1 is corrupted. Then we need to build an expected PPT
simulator S

P1 (or simply S) meeting the adequate requirements (according to Def. 1). First note that, since
by assumption the protocol ⇧,

flip is secure (i.e. achieves Def. 1) the following holds: for any corrupt P,
1

executing the simultaneous message exchange protocol ⇧,
flip there exists an expected PPT simulator S, (let

us call it the “inner” simulator and S the “outer” simulator) in the ideal world. So, S can be constructed
using S, for a corrupted party P,

1 which can be emulated by S based on P1. Finally, S just outputs
whatever S, returns. S emulates the interaction between S, and P,

1 as follows:

1. On receiving a value c0 2 {0, 1}� from the ideal functionality, S runs the inner simulator S,(c0, 1, 1�)

to get the first message m
⇧,flip[1]
2,1 . Notice that in protocol ⇧,

flip the first message from (honest) party P,
2

9 The superscript , stands for the simultaneous message exchange setting and
 ! for the setting without simulta-

neous message exchange
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does not depend on the first message of the corrupted party P,
1 . So, the inner simulator must be able to

produce the first message even before seeing the first message of party P1 (or the emulated party P,
1 )10.

Then it runs P1 to receive the first message m
⇧,flip[1]
1,2 .

2. Then S forwards m
⇧,flip[1]
1,2 to the inner simulator which then returns the second simulated message m

⇧,flip[2]
2,1 .

Now S can construct the simulated message m
⇧
 !
flip[2]

2,1 by combining m
⇧,flip[2]
2,1 and m

⇧,flip[1]
2,1 received earlier

(see above) which S then forwards to P1.

3. In the next step, S gets back messages m
⇧
 !
flip[3]

1,2 = (m
⇧,flip[2]
1,2 ,m

⇧,flip[3]
1,2 ) from P1. It then forwards the second

message m
⇧,flip[2]
1,2 to S,, which then returns the third simulated message m

⇧,flip[3]
2,1 . Finally it forwards the

third message m
⇧,flip[3]
1,2 to S,.

4. S outputs whatever transcript S, outputs in the end.
5. Note that, whenever the inner simulator S, asks to rewind the emulated P,

1 , S rewinds P1.

It is not hard to see that the simulator S emulates correctly the party P,
1 and hence by the security of

⇧,
flip, the inner simulator S, returns an indistinguishable (with the real world) view. The key-point is that

the re-scheduling of the messages from protocol ⇧,
flip does not a↵ect the dependency (hence the corresponding

next message functions) and hence the correctness and security remains intact in ⇧
 !
flip.

We stress that the proof for the case where P2 is corrupted is straightforward given the above. However,
in that case, since P2’s first message depends on the first message of honest P1, it is mandatory for the inner
simulator S, to output the first message before seeing anything even in order to run the corrupted P2 which
is not necessary in the above case. As we stated earlier this is possible as the inner simulator S, should be
able to handle rushing adversaries.

Hence we prove that if the underlying protocol ⇧,
flip securely realizes simulatable coin-flipping in 3 simul-

taneous rounds then ⇧
 !
flip securely realizes coin-flipping in 4 non-simultaneous rounds which contradicts the

KO lower bound (Lemma 1). This concludes the proof.
ut

Going a step further we show that any four-round simultaneous message exchange protocol realizing
simulatable coin-flipping must satisfy a necessary property, that is each round must be a strictly simultaneous
message exchange round, in other words, both parties must send some “non-redundant” message in each
round. By “non-redundant” we mean that the next message from the other party must depend on the
current message. Below we show the above, otherwise the messages can be again subject to a “rescheduling”
mechanism similar to the one in Lemma 2, to yield a four-round non-simultaneous protocol; thus contradicting
Lemma 1. More specifically,

Lemma 3. Let p() = !(log), where  is the security parameter. Then there does not exist a 4-round
protocol with at least one unidirectional round (i.e. a round without simultaneous message exchange) for
tossing p() coins which can be proven secure via black-box simulation.

Proof: [Proof (Sketch)] We provide a sketch for any protocol with exactly one unidirectional round where
only one party, say P1 sends a message to P2. Clearly, there can be four such cases where P2’s message is
omitted in one of the four rounds. In Fig. 2 we show the case where P2 does not send the message in the first
round, and any such protocol can be re-scheduled (similar to the proof of Lemma 2) to a non-simultaneous
4-round protocol without altering any possible message dependency. This observation can be formalized
in a straightforward manner following the proof of Lemma 2 and hence we omit the details. Therefore,
again combining with the impossibility from Lemma 1 by [KO04] such simultaneous protocol can not realize
simulatable coin-flipping. The other cases can be easily observed by similar rescheduling trick and therefore
we omit the details for those cases. ut
10 In particular, for so-called “rushing” adversaries, who can wait until receiving the first message and then send its

own, the inner simulator must simulate the first message to get the first message from the adversary.
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P1 P2

Rescheduled

=)

P1 P2P1 P2

Fig. 2. Rescheduling when P2 does not send the first message.

4 Two-Party Computation in the Simultaneous Message Ex-
change Model

In this section, we present our two party protocol for computing any functionality in the presence of a
static, malicious and rushing adversary. As discussed earlier, we are in the simultaneous message exchange
channel setting where both parties can simultaneously exchange messages in each round. The structure of
this protocol will provide a basis for our later protocols as well.

An overview of the protocol appears in the introduction (Sec. 1). In a high level, the protocol consists
of two simultaneous executions of a one-sided (single-output) protocol to guarantee that both parties learn
the output. The overall skeleton of the one-sided protocol resembles the KO protocol [KO04] which uses a
clever combination of OT, coin-tossing, and ⇧WIPOK to ensure that the protocol is executed with a fixed
input (allowing at the same time simulation extractability of the input), and relies on the zero-knowledge
property of ⇧FS to “force the output”. A sketch of the KO protocol is given in Section 2.2. In order to
ensure “independence of inputs” our protocol relies heavily on non-malleable commitments. To this end, we
change the one-sided protocol to further incorporate non-malleable commitments so that similar guarantees
can be obtained even in the presence of the “opposite side” protocol, and we further rely on zero-knowledge
proofs to ensure that parties use the same input in both executions.

4.1 Our Protocol

To formally define our protocol, let:

– (GenGC,EvalGC) be the garbled-circuit mechanism with simulator SimGC; F = (Gen,Eval, Invert) be
a family of TDPs with domain {0, 1}; H be the hardcore bit function for  bits; com be a perfectly
binding non-interactive commitment scheme; Eqcom be the equivocal scheme based on com, as described
in Section 2;

– nmcom be a tag based, parallel11 non-malleable commitment scheme for strings, supporting
tags/identities of length ;

– ⇧WIPOK be the witness-indistinguishable proof-of-knowledge for NP as described in Section 2;

– ⇧FS be the proof system for NP, based on nmcom and ⇧WIPOK, as described in Section 2;

– Simplifying assumption: for notational convenience only, we assume for now that nmcom consists of
exactly three rounds, denoted by (nm1, nm2, nm3). This assumption is removed later (see Remark 1).

11 We actually need security against an a-priori bounded number of polynomial executions. Almost all known protocols
for nmcom have this additional property.
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We also assume that the first round, nm1, is from the committer and statistically determines the message
to be committed. We use the notation nm1 = nmcom1(id, r;!) to denote the committer’s first message
when executing nmcom with identity id to commit to string r with randomness !.

P1(x) P2(y)

Choose {r
i,b

,!

i,b

} {0, 1};
Compute {nmi,b

1 }
of nmcom(id1, ri,b;!i,b

);
Compute p1 of ⇧WIPOK;
Compute fs1 of ⇧FS;

m1 =
⇣
{nmi,b

1 }, p1, fs1
⌘

-

Compute {nmi,b

2 }, p2, fs2;
Choose {r0

i,b

} {0, 1} and�
f

i,b

, f

�1
i,b

�
 Gen(1);

Generate ({Z
i,b

}, GC
y

) from
GenGC(1, F1, y ; ⌦);
Compute Ci,b

lab  com(Z
i,b

;!0
i,b

);
Compute Cgc  Eqcom(GC

y

; ⇣);

�

m2 =
⇣
{nmi,b

2 , r

0
i,b

, f

i,b

,Ci,b

lab},

Cgc, p2, fs2
⌘

Compute {nmi,b

3 }, fs3;
Compute p3 for st1 ^ st3

12;
If x

i

= 0 :
z

0
i,0  {0, 1}, z

i,0 = f



i,0(z
0
i,0),

z

i,1 = r

i,1 � r

0
i,1;

If x
i

= 1 :
z

0
i,1  {0, 1}, z

i,1 = f



i,1(z
0
i,1)

z

i,0 = r

i,0 � r

0
i,0;

m3 =
⇣
{nmi,b

3 , z

i,b

}, p3, fs3
⌘

-
Compute W

i,b

= Z

i,b

� H(f�(z
i,b

)), openCgc
;

Compute fs4 for st2 ^ st4
13;

�
m4 =

⇣
{W

i,b

}, fs4, openCgc

⌘

Compute Z

i,x

i

= W

i,x

i

� H(z
i,x

i

);
Output v = EvalGC(GC

y

, {Z
i,x

i

});

Fig. 3. High-level description of the left execution of ⇧2PC.

We are now ready to describe our protocol. A high level sketch of the left execution of our protocol where
P1 receives the output is given in Figure 3.

12 Informally, st1 represents that P1 “knows” one of the decommitment values of the first round for every i and st3
says that P1 correctly constructed {z

i,b

}.
13 Informally, st2 is the statement that P2 performed his first step correctly and st4 is the statement that P2 performed

both oblivious transfers correctly.
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Protocol ⇧2PC. We denote the two parties by P1 and P2; P1 holds input x 2 {0, 1} and P2 holds input
y 2 {0, 1}. Furthermore, the identities of P1, P2 are id1, id2 respectively where id1 6= id2. Let F := (F1, F2) :
{0, 1} ⇥ {0, 1} ! {0, 1} ⇥ {0, 1} be the functions to be computed.

The protocol consists of four (strictly) simultaneous message exchange rounds, i.e., both parties send
messages in each round. The protocol essentially consists of two simultaneous executions of a protocol in
which only one party learns the output. In the first protocol, P1 learns the output and the messages of
this protocol are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by P1 and (m2,m4) are sent by P2.
Likewise, in the second protocol P2 learns the output and the messages of this protocol are denoted by
(em1, em2, em3, em4) where (em1, em3) are sent by P2 and (em2, em4) are sent by P1. Therefore, messages (m

j

, em
j

)
are exchanged simultaneously in the j-th round, j 2 {1, . . . , 4} (see figure 4).

We now describe how these messages are constructed in each round below. In the following i always
ranges from 1 to  and b from 0 to 1.

P1 P2

m1

em2

m3

em4

em1

m2

em3

m4

Fig. 4. 2-PC in the simultaneous message exchange model.

Round 1. In this round P1 sends a message m1 and P2 sends a symmetrically constructed message em1. We
first describe how P1 constructs m1.
Actions of P1:
1. P1 starts by committing to 2 random strings {(r1,0, r1,1), . . . , (r,0, r,1)} using 2 parallel and inde-

pendent executions of nmcom with identity id1. I.e., it uniformly chooses strings r
i,b

, randomness !
i,b

,

and generates nmi,b

1 which is the first message corresponding to the execution of nmcom(id1, ri,b;!i,b

).

2. P1 prepares the first message p1 of ⇧WIPOK, as well as the first message fs1 of ⇧FS.
For later reference, define st1 to be the following: 9{(r

i

,!
i

)}
i2[] s.t.:

8i :
�
nmi,0

1 = nmcom1(id1, ri;!i

) _ nmi,1
1 = nmcom1(id1, ri;!i

)
�

Informally, st1 represents that P1 “knows” one of the decommitment values for every i.

3. Message m1 is defined to be the tuple
⇣
{nmi,b

1 }, p1, fs1
⌘
.

Actions of P2:
Performs the same actions as P1 to sample the values

��
er
i,b

, e!
i,b

� 
and constructs em1 :=⇣

{fnmi,b

1 },ep1, efs1
⌘

where all fnmi,b

1 are generated with id2. Define the statement est1 analogously for

these values.
Round 2. In this round P2 sends a message m2 and P1 sends a symmetrically constructed message em2. We

first describe how P2 constructs m2.
Actions of P2:
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1. P2 generates the second messages {nmi,b

2 } corresponding to all executions of nmcom initiated by P1

(with id1).

2. P2 prepares the second message p2 of the ⇧WIPOK protocol initiated by P1.

3. P2 samples random strings {r0
i,b

} and
�
f
i,b

, f�1
i,b

�
 Gen(1) for the oblivious transfer executions.

4. P2 obtains the garbled labels and the circuit for F1:
�
{Z

i,b

}, GC
y

�
= GenGC

�
1, F1, y ; ⌦

�
.

5. P2 generates standard commitments to the labels, and an equivocal commitment to the garbled
circuit: i.e., Ci,b

lab  com(Z
i,b

;!0
i,b

) and Cgc  Eqcom(GC
y

; ⇣).

6. P2 prepares the second message fs2 of the ⇧FS protocol initiated by P1.
For later reference, define st2 to be the following: 9

�
y,⌦,GC

y

, {Z
i,b

,!0
i,b

}, ⇣
�
s.t.:

(a)
�
{Z

i,b

}, GC
y

�
= GenGC

�
1, F1, y ; ⌦

�

(b) 8(i, b) : Ci,b

lab = com(Z
i,b

;!0
i,b

)

(c) Cgc = Eqcom(GC
y

; ⇣)
(Informally, st2 is the statement that P2 performed this step correctly.)

7. Define message m2 :=
⇣
{nmi,b

2 , r0
i,b

, f
i,b

,Ci,b

lab},Cgc, p2, fs2
⌘
.

Actions of P1:
Performs the same actions as P2 in the previous step to construct the message em2 :=⇣
{fnmi,b

2 , er0
i,b

, ef
i,b

, eCi,b

lab}, eCgc,ep2, efs2
⌘
w.r.t. identity id2, function F2, and input x. Define the (remain-

ing) values ef 0�1
i,b

, eZ
i,b

, e!0
i,b

,GC
x

, e⌦, e⇣ and statement est2 analogously.

Round 3. In this round P1 sends a message m3 and P2 sends a symmetrically constructed message em3. We
first describe how P1 constructs m3.
Actions of P1:

1. P1 prepares the third message {nmi,b

3 } of nmcom (with id1).

2. If any of {f
i,b

} are invalid, P1 aborts. Otherwise, it invokes  parallel executions of oblivious transfer
to obtain the input-wire labels corresponding to its input x. More specifically, P1 proceeds as follows:

– If x
i

= 0, sample z0
i,0  {0, 1}, set z

i,0 = f

i,0(z
0
i,0), and z

i,1 = r
i,1 � r0

i,1.

– If x
i

= 1, sample z0
i,1  {0, 1}, set z

i,1 = f

i,1(z
0
i,1), and z

i,0 = r
i,0 � r0

i,0.

3. Define st3 to be the following: 9{(r
i

,!
i

)}
i2[] s.t. 8i:

(a) (nmi,0
1 = nmcom1(id1, ri;!i

) ^ z
i,0 = r

i

� r0
i,0), or

(b) (nmi,1
1 = nmcom1(id1, ri;!i

) ^ z
i,1 = r

i

� r0
i,1)

Informally, st3 says that P1 correctly constructed {z
i,b

}.
4. P1 prepares the final message p3 of ⇧WIPOK proving the statement: st1 ^ st3.14 P1 also prepares the

third message fs3 of ⇧FS.

5. Define m3 :=
⇣
{nmi,b

3 , z
i,b

}, p3, fs3
⌘
to P2.

Actions of P2:
Performs the same actions as P1 in the previous step to construct the message em3 :=⇣
{fnmi,b

3 , ez
i,b

},ep3, efs3
⌘
w.r.t. identity id2 and input y. The (remaining) values {ez

i,b

, ez0
i,b

} and statement

est3 are defined analogously.

Round 4. In this round P2 sends a message m4 and P1 sends a symmetrically constructed message em4. We
first describe how P2 constructs m4.
Actions of P2:
1. If p3, fs3 are not accepting, P2 aborts. Otherwise, P2 completes the execution of the oblivious transfers

for every (i, b). I.e., it computes W
i,b

= Z
i,b

� H(f�(z
i,b

)). Moreover, P2 decommits Cgc as GC
y

,
denoted by openCgc

to A1.
2. Define st4 to be the following: 9 (y,⌦,GC

y

, {Z
i,b

},!0
i,b

, z0
i,b

, ez0
i

}
i2[],b2{0,1}) s.t.

14 Honest P1 knows multiple witnesses for st1. For concreteness, we have to use one of them randomly in the proof.
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(a) 8(i, b):
⇣
Ci,b

lab = com(Z
i,b

;!0
i,b

)
⌘ V ⇣

f

i,b

(z0
i,b

) = z
i,b

⌘ V ⇣
W

i,b

= Z
i,b

� H((z0
i,b

))
⌘

(b)
��
{Z

i,b

}, GC
y

�
= GenGC

�
1, F1, y ; ⌦

�� V
(Cgc = Eqcom(GC

y

; ⇣))

(c) 8i: ez
i,y

i

= ef

i,y

i

(ez0
i

)

Informally, this means that P2 performed both oblivious transfers correctly.

3. P2 prepares the final message fs4 of ⇧FS proving the statement st2 ^ st4.15

4. Define m4 :=
⇣
{W

i,b

}, fs4, openCgc

⌘
.

Actions of P1:
Performs the same actions as P2 in the previous step to construct the message em4 :=⇣
{fW

i,b

}, efs4,]openCgc

⌘
and analogously defined statement est4.

Output compuation.

P1’s output: If any of (fs4,GCy

, openCgc
) or the openings of {W

i,b

} are invalid, P1 aborts. Otherwise,
P1 recovers the garbled labels {Z

i

:= Z
i,x

i

} from the completion of the oblivious transfer, and
computes F1(x, y) = EvalGC(GC

y

, {Z
i

}).
P2’s output: If any of (efs4,GCx

,]openCgc
) or the openings of {fW

i,b

} are invalid, P2 aborts. Otherwise,

P2 recovers the garbled labels { eZ
i

:= eZ
i,y

i

} from the completion of the oblivious transfer, and

computes F2(x, y) = EvalGC(GC
x

, { eZ
i

}).

Remark 1. If nmcom has k > 3 rounds, the first k� 3 rounds can be performed before the 4 rounds of ⇧2PC

start; this results in a protocol with k + 1 rounds. If k < 3, then the protocol has only 4 rounds. Also, for
large k, it su�ces if the first k�2 rounds of nmcom statistically determine the message to be committed; the
notation is adjusted to simply use the transcript up to k � 2 rounds to define the statements for the proof
systems.

Finally, the construction is described for a deterministic F . Known transformations (see [Gol04, Section
7.3]) yield a protocol for randomized functionalities, without increasing the rounds.

4.2 Proof of Security

We prove the security of our protocol according to the ideal/real paradigm. We design a sequence of hybrids
where we start with the real world execution and gradually modify it until the input of the honest party is
not needed. The resulting final hybrid represents the simulator for the ideal world.

Theorem 1 Assuming the existence of a trapdoor permutation family and a k-round parallel non-malleable
commitment schemes, protocol ⇧2PC securely computes every two-party functionality F = (F1, F2) with black-
box simulation in the presence of a malicious adversary. The round complexity of ⇧2PC is k0 = max(4, k+1).

Proof: Due to the symmetric nature of our protocol, it is su�cient to prove security against the malicious
behavior of any party, say P1. We show that for every adversary A who participates as P1 in the “real”
world execution of ⇧2PC, there exists an “ideal” world adversary (simulator) S such that for all inputs x, y
of equal length and security parameter  2 N:

{IDEAL
F,S(, x, y)}

,x,y

c⇡ {REAL
⇧,A(, x, y)}

,x,y

We prove this claim by considering hybrid experiments H0, H1, . . . as described below. We start with H0

which has access to both inputs x and y, and gradually get rid of the honest party’s input y to reach the
final hybrid.

15 Recall that ⇧FS is a modified version of FS protocol: it uses two executions of nmcom to construct its first message,
namely, the first message consists of (nm1

1, nm
2
1)) corresponding to two executions of nmcom committing to strings

�1,�2 (see Section 2).
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H0: Identical to the real execution. More specifically, H0 starts the execution of A providing it fresh
randomness and input x, and interacts with it honestly by performing all actions of P2 with uniform
randomness and input y. The output consists of A’s view.

By construction, H0 and the output of A in the real execution are identically distributed.
H1: Identical to H0 except that this hybrid also performs extraction of A’s implicit input x⇤ from ⇧WIPOK;

in addition, it also extracts the “simulation trapdoor” � from the first three rounds (fs1, fs2, fs3) of ⇧FS.16

More specifically, H1 proceeds as follows:
1. It completes the first three broadcast rounds exactly as in H0, and waits until A either aborts or

successfully completes the third round.
2. At this point,H1 proceeds to extract the witness corresponding to each proof-of-knowledge completed

in the first three rounds.
Specifically, H1 defines a cheating prover P ⇤ which acts identically to H0, simulating all messages
for A, except those corresponding to (each execution of) ⇧WIPOK which are forwarded outside. It
then applies the extractor of ⇧WIPOK to obtain the “witnesses” which consists of the following: values
{(r

i

,!
i

)}
i2[] which is the witness for st1 ^ st3, and a value (�,!

�

) which is the simulation trapdoor
for ⇧FS.
If extraction fails, H1 outputs fail. Otherwise, let b

i

2 {0, 1} be such that nmi,b

i

1 = nmcom1(id1, ri;!i

).
H1 defines a string x⇤ = (x⇤

1, . . . , x
⇤


) as follows:

If z
i,b

i

= r
i

� r0
i,b

i

then x⇤
i

= 1� b
i

; otherwise x⇤
i

= b
i

3. H1 completes the final round and prepares the output exactly as H0.

Claim 1 H1 is expected polynomial time, and H0, H1 are statistically close.

Proof sketch: This is a (completely) standard proof which we sketch here. Let p be the probability with
which A completes ⇧WIPOK in the third round, and let trans be the transcript. The extractor for ⇧WIPOK

takes expected time poly()/p and succeeds with probability 1�µ(). It follows that the expected running

time of H1 is poly() + p · poly()
p

= poly(), and its output is statistically close to that of H0.17 ⇧
H2: Identical to H1 except that this hybrid uses the simulation trapdoor (�,!

�

) as the witness to compute
fs4 in the last round. (Recall that fs4 is the last round of an execution of ⇧WIPOK.)

It is easy to see that H2 and H3 are computationally indistinguishable due the WI property of ⇧WIPOK.
H3: In this hybrid, we get rid of P2’s input y that is implicitly present in values {ez

i,b

} and {r
i,b

} in nmcom
(but keep it everywhere else for the time being).
Formally, H3 is identical to H2 except that in round 3 it sets ez

i,b

= er
i,b

� er0
i,b

for all (i, b).

Claim 2 The outputs of H2 and H3 are computationally indistinguishable.

Proof. We rely on the non-malleability of nmcom to prove this claim. Let D be a distinguisher for H2

and H3.
The high level idea is as follows: first we define two string sequences {u1

i,b

} and {u2
i,b

} and a man-in-the-
middle M (which incorporates A) and receives non-malleable commitments to one of these sequences in
parallel. Then we define a distinguisher Dnm which incorporates both M and D, takes as input the value
committed by M and its view, and can distinguish which sequence was committed to M . This violates
non-malleability of nmcom.
Formally, define a man-in-middle M who receives 2 nmcom commitments on left and makes 2 com-
mitments on right as follows:

16 Recall that (fs1, fs2, fs3) contains two non-malleable commitments (to values �1,�2) along with proof-of-knowledge
of one of the committed values (see appendix B.2) using ⇧WIPOK; this execution of ⇧WIPOK runs in parallel and
therefore, it is possible to extract from it at the same time as x⇤.

17 See “witness extended emulation” in [Lin01] for full exposition.
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1. M incorporates A internally, and proceeds exactly as H1 by sampling all messages internally ex-
cept for the messages of nmcom corresponding to P2. These messages are received from an outside
committer as follows.
M samples uniformly random values {ez

i,b

} and {er0
i,b

} and defines {u0
i,b

} and {u1
i,b

} as:

u0
i,y

i

= ez
i,y

i

� er0
i,y

i

, u0
i,y

i

 {0, 1}, u1
i,b

= ez
i,b

� er0
i,b

8(i, b)

It forwards {u0
i,b

} and {u1
i,b

} to the outside committer who commits to one of these sequences in
parallel. M forwards these messages to A, and forwards the message given by A corresponding to
nmcom to the outside receiver.

2. After the first three rounds are finished, M halts by outputting its view. In particular, M does not
continue further like H1, it does not extract any values, and does not complete the fourth round. (In
fact, M cannot complete the fourth round, since it does not have the witness.)

Let {v0
i,b

} (resp., {v1
i,b

}) be the sequence of values committed by M with id2 when it receives a commit-

ment to {u0
i,b

} (resp., {u1
i,b

}) with id1.
Define the distinguisher Dnm as follows: Dnm incorporates both M and D. It receives as input a pair
({v

i,b

}, view) and proceeds as follows:
1. Dnm parses v

i,b

to obtain a string � corresponding to the “trapdoor witness.” 18

2. Dnm starts M and feeds him the view view and continues the execution just like H1. It, however,
does not rewind A (internal to M), instead it uses � (which is part of its input) and values in view
to complete the last round of the protocol.

3. When A halts, Dnm feeds the view of A to D and outputs whatever D outputs.
It is straightforward to verify that if M receives commitments corresponding to {u0

i,b

} (resp., {u1
i,b

} )
then the output of Dnm is identical to that of H2 (resp., H3). The claim follows. ⇧

H4: Identical to H3 except that H4 changes the “inputs of the oblivious transfer” from (Z
i,0, Zi,1) to

(Z
i,x

⇤
i

, Z
i,x

⇤
i

). Formally, in the last round, H4 sets W
i,b

= Z
i,x

⇤
i

� H((z0
i,b

)) for every (i, b), but does
everything else as H3.

H3 and H4 are computationally indistinguishable due to the (indistinguishable) security of oblivious
transfer w.r.t. a malicious receiver. This part is identical to the proof in [KO04], and relies on the fact
that one of the two strings for oblivious transfer are obtained by “coin tossing;” and therefore its inverse
is hidden, which implies that the hardcore bits look pseudorandom.

H5: Identical toH4 except that now we simulate the garbled circuit and its labels for values x⇤ and F1(x⇤, y).
Formally, H5 starts by proceeding exactly as H4 up to round 3 except that instead of committing to
correct garbled circuit and labels in round 2, it simply commits to random values. After completing
round 3, H5 extracts x⇤ exactly as in H4. If extraction succeeds, it sends x⇤ to the trusted party, receives
back v1 = F1(x⇤, y), and computes ({Z

i,b

},GC⇤) SimGC(1, F1, x
⇤, v1). It uses labels {Zi,x

⇤
i

} to define
the values {W

i,b

} as in H3, and equivocates Cgc to obtain openings corresponding to the simulated
circuit GC⇤. It then computes fs4 as before (by using the trapdoor witness (�,!

�

)), and constructs
m4 := ({W

i,b

}, fs4,GC⇤, ⇣). It feeds m4 to A and finally outputs A’s view and halts.

We claim that H4 and H5 are computationally indistinguishable. First observe that the joint distribution
of values ({Ci,b

lab},Cgc) and GC
y

(along with real openings) in H4 is indistinguishable from the joint

distribution of the values ({Ci,b

lab},Cgc) and GC⇤ (along with equivocal openings) in H5. The two hybrids
are identical except for sampling of these values, and can be simulated perfectly given these values from
outside. The claim follows.19

Observe that H5 is now independent of the input y. Our simulator S is H5. This completes the proof. ut
18 Note that, by construction, such a value is guaranteed in both sequences and w.l.o.g. can be the value in the first

nmcom.
19 Let us note that changing the commitment in second round (from correct garbled labels/circuit to random

strings) is performed from the beginning—i.e., in the “main thread” of simulation—therefore the running time
stays expected polynomial time as in claim 1.
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5 Multi-Party Coin Flipping Protocol

In this section, we show a protocol for the multi-party coin-flipping functionality. Since we need neither OT
nor garbled circuits for coin-flipping, this protocol is simpler than the the two-party protocol.

At a high level, the protocol simply consists of each party “committing” to a random string r, which is
opened in the last round along with a simulatable proof of correct opening given to all parties independently.
The output consists of the � of all strings. This actually does not work directly as stated, but with a few
more components, such as equivocal commitment as well as extractable commitment to r for the proof to
go through. A high level description of the protocol between two parties (A1, A2) is given in Figure 5.

A1(r1) A2(r2)

Choose !1  {0, 1};
Compute Cex

1 = Extcom(r1;!1);
Compute fs1 of ⇧FS;

m1 = (Cex
1 , fs1) -

Choose !

0
2  {0, 1};

Compute nm1 of
nmcom(id2,0;!

0
2);

Compute Ceq
r2  Eqcom(r2; ⇣2);

Compute Cex
2 , fs2;

�
m2 =

⇣
nm1,C

eq
r2 ,C

ex
2 , fs2

⌘

Compute nm2,C
ex
3 , fs3;

m3 =
⇣
nm2,C

ex
3 , fs3

⌘

-
Compute nm3;
Provide openCeq

r2
;

Compute fs4 for st20;

�
m4 =

⇣
nm3, fs4, openCeq

r2

⌘

Output r = r1 � r2;

Fig. 5. High-level description of the left execution of ⇧CF.

Protocol ⇧MCF. Let P = {P1, . . . , Pn

} be the set of parties. Furthermore, denote by (id1, . . . , idn) the
unique identities of parties {P1, . . . , Pn

}, respectively. Let Extcom = (Cex
1 ,Cex

2 ,Cex
3 ) be a three-round ex-

tractable commitment scheme [DDN91,PRS02,Ros04]. In a nutshell, in order to commit to a random string
r the Committer picks {r0

i

}ı2

, {r1
i

}ı2

such that 8i, r0
i

� r1
i

= r. Next, the Receiver send a random -bit
string e = (e1, . . . , e) and then the Committer decommits to re11 , . . . , re



.
Let us denote by FMCF : {0, 1}·n ! {0, 1} the function FMCF(r1, . . . , rn) =

L
i2[n] ri. The protocol starts

with each party P
i

choosing a random string r
i

. It consists of four rounds, i.e., all parties send messages in
each round and the messages of all executions are seen by every party.

The protocol essentially consists of n simultaneous executions of a two-party coin-flipping protocol
⇧CF = hA1, A2i between parties (P

i

, P
j

) where P
i

acts as A1 with input r
i

and P
j

acts as A2 with input r
j

20 Informally, st says that either the commitments Ceq
r2 and fCex

1 commit to the same value r2 or that nm1 is a commit-
ment to a trapdoor �1 or �2 for the proof provided by A2.
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(both are symmetric). This protocol is described below.

Protocol ⇧CF = hA1, A2i: Let the input of A1 be r1, and the input of A2 be r2. Furthermore, let F2CF =
r1 � r2 be the evaluated function. The protocol has a structure similar to our previous protocol. The set of
messages enabling A1 to learn the output are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by A1

and (m2,m4) are sent by A2. Likewise, the set of messages enabling A2 to learn the output are denoted by
(em1, em2, em3, em4) where (em1, em3) are sent by A2 and (em2, em4) are sent by A1. Therefore, messages (m

`

, em
`

)
are simultaneously exchanged in the `-th round, ` 2 {1, . . . , 4}. We now describe how these messages are
constructed in each round.

Round 1. We first describe how A1 constructs m1.

1. A1 commits to r1 using Extcom. I.e., it uniformly chooses !1 and generates Cex
1 which is the first

message corresponding to the execution of Extcom(r1;!1).
2. A1 prepares the first message fs1 of ⇧FS.
3. Message m1 is defined to be (Cex

1 , fs1).

Likewise, A2 performs the same actions as A1 to sample the values (r2,!2) and constructs em1 :=⇣
fCex
1 , efs1

⌘
.

Round 2. In this round A2 sends message m2 and A1 sends em2. We first describe how A2 constructs em2.

1. A2 commits to a -bit zero-string 0 using nmcom with identity id2. I.e., it uniformly chooses !0
2 and

generates nm1 which is the first message corresponding to the execution of nmcom(id2,0;!0
2).

2. A2 prepares the second message Cex
2 of the Extcom protocol initiated by A1.

3. A2 generates an equivocal commitment to his input: i.e., Ceq
r2  Eqcom(r2; ⇣2).

4. A2 prepares the second message fs2 of the ⇧FS protocol initiated by A1.
5. Define message m2 := (nm1,C

eq
r2 ,C

ex
2 , fs2).

Likewise, A1 performs the same actions as A2 in the previous step to construct the message em2 :=⇣
fnm1,C

eq
r1 ,

fCex
2 , efs2

⌘
w.r.t. identity id1.

Round 3. In this round A1 sends message m3 and A2 sends em3. A1 prepares m3 as follows:

1. A1 generates the second messages nm2 corresponding to the nmcom execution initiated by A2 (with
id2).

2. A1 prepares the final message Cex
3 of Extcom. A1 also prepares the third message fs3 of ⇧FS.

3. Define m3 := (nm2,C
ex
3 , fs3) to A2.

Likewise, A2 performs the same actions as A1 in the previous step to construct the message em3 :=
(fnm2, fCex

3 , efs3) w.r.t. identity id1.
Round 4. In this round A2 sends message m4 and A1 sends em4. A2 constructs m4 as follows:

1. If fs3 is not accepting, A2 aborts. Otherwise, A2 decommits Ceq
r2 as r2, denoted by openCeq

r2
to A1.

2. A2 prepares the final message nm3 of nmcom with respect to his identity id2.
3. A2 prepares the final message fs4 of ⇧FS proving the statement st defined as follows:
9r2, e!2,!

0
2, ⇣2, nm

�1
1 , nm�2

1
21, ⇢1, ⇢2 s.t.:

⇣
fCex
1 = Extcom(r2; e!2) ^ Ceq

r2 = Eqcom(r2; ⇣2)
⌘_

⇣
nm�1

1 = nmcom1(id1,�1; ⇢1) ^ nm�2
1 = nmcom1(id1,�2; ⇢2) ^

�
nm1 = nmcom(id2,�1;!

0
2) _ nm1 = nmcom(id2,�2;!

0
2)
�⌘

Informally, st says that either the commitments Ceq
r2 and fCex

1 commit to the same value r2 or that
nm1 is a commitment to �1 or �2.

21 The message fs1 contains the commitments nm�1
1 , nm�2

1 to the trapdoor � for the proof provided by A2 (see Section
2.2).
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4. Define m4 := (nm3, fs4, openCeq
r2
)).

Likewise, A1 performs the same actions as A2 in the previous step to send the message em4 :=
(fnm3, efs4,]openCeq

r1
).

Output compuation of ⇧MCF. After the completion of the 4th round each party checks that all pairs of
parties used the same inputs (r1, r2, . . . , rn) in all executions and that they were all successful. If so, each
party outputs r = FMCF(r1, r2, . . . , rn) = r1 � . . .� r

n

.

5.1 Proof of Security

The proof of security is very similar to the proof for the two-party case. We directly present the hybrids,
and discuss the intuition when necessary.

Theorem 2 Assuming the existence of a trapdoor permutation family and a k-round protocol for (parallel)
non-malleable commitments, then the multi-party protocol ⇧MCF securely computing the multi-party coin-
flipping functionality with black-box simulation in the presence of a malicious adversary for polynomially
many coins. The round complexity of ⇧MCF is k0 = max(4, k + 1).

Proof: Let P = {P1, . . . , Pn

} be the set of parties participating in the execution of ⇧MCF. Also let P⇤ ✓ P
be the set of parties corrupted by the adversary A. The simulator S only generates messages on behalf of
parties P\P⇤. In particular, we show that for every adversary A there exists an “ideal” world adversary S
such that:

{IDEAL
FMCF,S(, ·)}



c⇡ {REAL
⇧,A(, ·)}



We prove this claim by considering hybrid experiments H0, H1, . . . as described below. In the sequel, without
loss of generality we will assume that party P1 is the only honest party since our protocol is secure against
n� 1 corruptions.

H0: Identical to the real execution. More specifically, H0 starts the execution of A providing it fresh
randomness, and interacts with it honestly by performing all actions of P1 with uniform randomness r1.
The output consists of A’s view.
By construction, H0 and the output of A in the real execution are identically distributed. Note that the
nmi

1 messages generated by A on behalf of the parties in P⇤ cannot correspond to commitments to the
simulation trapdoors of the ⇧FS scheme.

H1: Identical to H0 except that this hybrid also performs extraction of A’s implicit inputs {r⇤
i

}
i2[P⇤] from

the parallel executions of Extcom; in addition, it also extracts the “simulation trapdoors” {�
i

}
i2[P⇤] from

the first three rounds (fs1, fs2, fs3) of each ⇧FS. More specifically, H1 proceeds as follows:

1. It completes the first three simultaneous message exchange rounds exactly as in H0, and waits until
A either aborts or successfully completes the third round.

2. At this point,H1 proceeds to extract the witness corresponding to each proof-of-knowledge completed
in the first three rounds while the inputs {r

i

}P⇤ are as in H0.
Specifically, H1 defines a cheating prover P ⇤ for each corrupted party P

i

which acts identically to
H0, simulating all messages for A, except those corresponding to (each execution of) Extcom. It
then proceeds to a rewinding phase. In this phase, it repeatedly rewinds the adversary up to the
third round and samples new messages for the ⇧FS and nmcom protocols using fresh randomness.
Specifically, S1 continues rewinding A until it successfully extracts the committed values (r

i

,!
i

) and
a value (�

i

,!
�

i

) which is the simulation trapdoor for ⇧FS.
If extraction fails, H1 outputs fail.

3. H1 now completes the final round and prepares the output exactly as H0.

Hybrid H0 and H1 are statistically close and extraction happens in expected polynomial time (see Claim
1). Again, the nmi

1 messages generated by A cannot correspond to commitments to the simulation
trapdoors of the ⇧FS scheme.
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H2: Identical toH1 except that S2 commits to the simulation trapdoor (�1,!�1) in nm1 created in the second
round on behalf of the honest party P1. Note that due to the scheduling of ⇧FS and Extcom rewinding
does not cause an issue since all their values are already fixed. Hybrids H2 and H1 are indistinguishable
due to the non-malleability property of the nmcom scheme. That said, the adversary can never succeeds
in committing to the simulation trapdoor of the ⇧FS scheme.

H3: This hybrid is identical to H2 except that for all P
i

2 P⇤ this hybrid uses each simulation trapdoor
(�

i

,!
�

i

) as the witness to compute fs4 in the last round. (Recall that fs4 is the last round of an execution
of ⇧WIPOK.)
H2 andH3 are computationally indistinguishable due the WI property of⇧WIPOK composed under parallel
composition.

H4: H4 starts by proceeding exactly as H3 up to round 3 except that instead of committing to the cor-
rect randomness in round 2, it simply commits to it in an equivocal way and simulates the output of
FMCF. More specifically, after completing round 3, H4 extracts {r⇤

i

}
i2[P⇤] exactly as in H3. If extraction

succeeds, it receivers the output r⇤ from the trusted party. Then, it computes r1 = r⇤
L

i2[P⇤] r
⇤
i

. Next,
it equivocates Ceq

r1 to obtain openings corresponding to the simulated output. It then computes each fs4
message as before (by using the trapdoor witness (�

i

,!
�

i

)) and constructs m4 := (nm3, fs4, openCeq
r1
). It

feeds m4 to A and finally outputs A’s view and halts. Note that the decommitments of Extcom still open
to the correct values but verification of st still succeeds due to the fact that S4 has committed of behalf
of P1 in the nm1 message to the simulation trapdoor. Moreover, indistinguishability of Ceq

r1 follows from
the equivocation property of Eqcom.

Our simulator S is H4. This completes the proof. ut

5.2 Coin Flipping with Committed Inputs

We now discuss an extension of the coin-flipping functionality which will be useful in the next section.
The extension considers a functionality which, in addition to providing a random string to the parties, also
“attests” to a commitment to their input.

More specifically, we consider the following setting. Each party P
i

has an input string x
i

and randomness
⇢
i

. Let com be a non-interactive perfectly-binding commitment scheme. The Coin Flipping with Committed
Inputs functionality FCF-CI acts as follows:

1. Each party sends (x
i

, ⇢
i

, c
i

) to the functionality where c
i

= com(x
i

; ⇢
i

).
2. Functionality samples a random string r.
3. Functionality tests that for every i, c

i

= com(x
i

; ⇢
i

). If the test succeeds, it sets y
i

= (r, c
i

, true);
otherwise, y

i

= (r, c
i

, false).
4. Functionality sends (y1, . . . , yn) to all parties.

We claim that a minor modification of our coin-flipping protocol can actually implement FCF-CI. The
modification is as follows:

1. In the protocol ⇧MCF, view the input r
i

of every P
i

as two parts: r
i

= r1
i

kr2
i

.
2. In the second round of the protocol, in addition to sending the equivocal commitment, party P

i

also
sends c

i

= com(x
i

� r2
i

; ⇢
i

) where ⇢
i

is a random string.
3. The proof system ⇧FS now actually proves a modified statement, which in addition to all conditions as

before, also includes the condition that: “there exist (x
i

, ⇢
i

) such that c
i

= com(x
i

� r2
i

; ⇢
i

)” where note
that r2

i

is already part of the opened value r
i

.

We call the new protocol ⇧CF-CI. The proof that ⇧CF-CI implements FCF-CI is identical to the proof for ⇧MCF

with minor modifications.

23



5.3 Results for General Multi-Party Functionalities

We now discuss how to obtain protocols for general, as opposed to coin-flipping, functionalities in the
multiparty case.

Mukherjee and Wichs [MW15] construct a 2-round protocol for general multiparty functionalities under
the Learning With Errors (LWE) assumption in the CRS model. Combining their protocol with ⇧MCF

(to obtain the CRS), we obtain a protocol for general functionalities with k0 + 2 rounds under the LWE
assumption.

Likewise, Garg et al. [GGHR14a] also construct a 2-round protocol for the same task in the CRS model,
under the assumption that general purpose indistinguishability obfuscation exists. Their protocol actually
has a special structure: it can be computed in just one round given access to the FCF-CI functionality that
we have defined above. Consequently, using their protocol with protocol ⇧CF-CI actually gives a k0 +1 round
protocol.

We thus get the following theorem.

Theorem 3 Assuming the existence of a trapdoor permutation family and k-round non-malleable commit-
ment schemes, there exists a protocol for securely computing every multiparty functionality such that: (a) the
protocol has k0 + 1 rounds assuming general purpose indistinguishability obfuscation, and (b) k0 + 2 rounds
assuming the LWE assumption where k0 = max(4, k + 1).

As a corollary of the above theorem, an instantiation of the above protocols with the nmcom scheme in
[PPV08] gives a five round protocol (assuming indistinguishability obfuscation), and a six round protocol
(assuming LWE) for general multiparty functionalities.

We note that we can also use the four round protocol of [GRRV14] for nmcom; this will result in one
extra round and give 7 rounds under LWE, and 6 under indistinguishability obfuscation.
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A Secure Computation Definitions

For completeness, we recall the definition of secure computation based on [Gol04, Chapter 7] here. We only
recall the two party case as it is most relevant to our proofs. The description naturally extends to multi-party
case as well (details can be found in [Gol04]).

Two-party computation. A two-party protocol problem is cast by specifying a random process that
maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality
and denote it F : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1}⇤ ⇥ {0, 1}⇤ where F = (F1, F2). That is, for every pair of inputs
(x, y), the output-pair is a random variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The first party
(with input x) wishes to obtain F1(x, y) and the second party (with input y) wishes to obtain F2(x, y).

26



Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect an honest
party against dishonest behavior by the other party. In this paper, we consider malicious adversaries who
may arbitrarily deviate from the specified protocol. When considering malicious adversaries, there are certain
undesirable actions that cannot be prevented. Specifically, a party may refuse to participate in the protocol,
may substitute its local input (and use instead a di↵erent input) and may abort the protocol prematurely.
One ramification of the adversary’s ability to abort, is that it is impossible to achieve fairness. That is, the
adversary may obtain its output while the honest party does not. In this work we consider a static corruption
model, where one of the parties is adversarial and the other is honest, and this is fixed before the execution
begins.

Communication channel. In our results we consider a secure simultaneous message exchange channel
in which all parties can simultaneously send messages over the channel at the same communication round.
Moreover, we assume an asynchronous network22 where the communication is open (i.e. all the communica-
tion between the parties is seen by the adversary) and delivery of messages is not guaranteed. For simplicity,
we assume that the delivered messages are authenticated. This can be achieved using standard methods.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an adversary
can do in the protocol to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted third party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs and returns to each party its
respective output. Loosely speaking, a protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the above-described
ideal computation.

Execution in the ideal model. As we have mentioned, some malicious behavior cannot be prevented
(for example, early aborting). This behavior is therefore incorporated into the ideal model. An ideal execution
proceeds as follows:

Inputs: Each party obtains an input, denoted w (w = x for P1, and w = y for P2).
Send inputs to trusted party: An honest party always sends w to the trusted party. A malicious party

may, depending on w, either abort or send some w0 2 {0, 1}|w| to the trusted party.
Trusted party answers first party: In case it has obtained an input pair (x, y), the trusted party first

replies to the first party with F1(x, y). Otherwise (i.e., in case it receives only one valid input), the trusted
party replies to both parties with a special symbol ?.

Trusted party answers second party: In case the first party is malicious it may, depending on its
input and the trusted party’s answer, decide to stop the trusted party by sending it ? after receiving its
output. In this case the trusted party sends ? to the second party. Otherwise (i.e., if not stopped), the
trusted party sends F2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary (probabilistic polynomial-time computable) function of its initial input
and the message obtained from the trusted party.

Let F : {0, 1}⇤ ⇥ {0, 1}⇤ ! {0, 1}⇤ ⇥ {0, 1}⇤ be a functionality where F = (F1, F2) and let S = (S1,S2)
be a pair of non-uniform probabilistic expected polynomial-time machines (representing parties in the ideal
model). Such a pair is admissible if for at least one i 2 {1, 2} we have that S

i

is honest (i.e., follows the
honest party instructions in the above-described ideal execution). Then, the joint execution of F under S in
the ideal model (on input pair (x, y) and security parameter ), denoted IDEAL

F,S(, x, y) is defined as the
output pair of S1 and S2 from the above ideal execution.

22 The fact that the network is asynchronous means that the messages are not necessarily delivered in the order which
they are sent.
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Execution in the real model. We next consider the real model in which a real (two-party) protocol is
executed (and there exists no trusted third party). In this case, a malicious party may follow an arbitrary
feasible strategy; that is, any strategy implementable by non-uniform probabilistic polynomial-time machines.
In particular, the malicious party may abort the execution at any point in time (and when this happens
prematurely, the other party is left with no output). Let F be as above and let ⇧ be a two-party protocol
for computing F . Furthermore, let A = (A1,A2) be a pair of non-uniform probabilistic polynomial-time
machines (representing parties in the real model). Such a pair is admissible if for at least one i 2 {1, 2} we
have that A

i

is honest (i.e., follows the strategy specified by ⇧). Then, the joint execution of ⇧ under A
in the real model, denoted REAL

⇧,A(, x, y), is defined as the output pair of A1 and A2 resulting from the
protocol interaction.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real
models, we can now define security of protocols. Loosely speaking, the definition asserts that a secure
two-party protocol (in the real model) emulates the ideal model (in which a trusted party exists). This is
formulated by saying that admissible pairs in the ideal model are able to simulate admissible pairs in an
execution of a secure real-model protocol.

Definition 3 (secure two-party computation) Let F and ⇧ be as above. Protocol ⇧ is said to securely
compute F (in the malicious model) if for every pair of admissible non-uniform probabilistic polynomial-time
machines A = (A1,A2) for the real model, there exists a pair of admissible non-uniform probabilistic expected
polynomial-time machines S = (S1,S2) for the ideal model, such that:

{IDEAL
F,S(, x, y)}

2N,x,y s.t. |x|=|y|
c⇡ {REAL

⇧,A(, x, y)}
2N,x,y s.t. |x|=|y|

We note that the above definition assumes that the parties know the input lengths (this can be seen from
the requirement that |x| = |y|). Some restriction on the input lengths is unavoidable, see [Gol04, Section
7.1] for discussion. We also note that we allow the ideal adversary/simulator to run in expected (rather than
strict) polynomial-time. This is essential for constant-round protocols [BL04].

B Proof Systems

We provide a detailed description of the proof systems used in this work.

B.1 Protocol ⇧WIPOK

This is essentially the Feige-Lapidot-Shamir protocol, slightly reworded in [KO04], mostly for notational
convenience. We recall this protocol here. We denote the messages of this protocol by (p1, p2, p3).

We will be working with the NP-complete language HC of graph Hamiltonicity, and thus assume state-
ments to be proven take the form of graphs, while witnesses correspond to Hamilton cycles. If thm is a graph,
we abuse notation and also let thm denote the statement “thm 2 HC”. We show how the proof system can
be used to prove the following statement: thm^ thm0, where thm will be included as part of the first message,
while thm0 is only decided in the last round. The proof system ⇧WIPOK runs  parallel executions of the
following 3-round protocol:

1. The prover commits to two adjacency matrices for two randomly-chosen cycle graphs G,G0. The com-
mitment is done bit-by-bit using a perfectly-binding commitment scheme.

2. The verifier responds with a single bit b, chosen at random.
3. If b = 0, the prover opens all commitments. If b = 1, the prover sends two permutations mapping the

cycle in thm (resp., thm0) to G (resp., G0). For each non-edge in thm (resp., thm0), the prover opens the
commitment at the corresponding position in G (resp., G0).
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The verifier checks that all commitments were opened correctly. If b = 0, the verifier additionally checks
whether both decommitted graphs are indeed cycle graphs. If b = 1, the verifier checks whether each
non-edge in thm (resp., thm0) corresponds to a non-edge in G (resp., G0).

Note that the prover does not need to know either thm or thm0 (or the corresponding witnesses) until
the beginning of the third round. In the above proof system, we assume that thm is fixed as part of the
first-round message enabling us to claim stronger properties about the proof system. In particular, ⇧WIPOK

proof system is complete and sound. More specifically, the probability that an all-powerful prover can cause
a verifier to accept when either thm or thm0 are not true is at most 2�. We stress that this holds even if the
prover can adaptively choose thm0 after viewing the second-round message of the verifier. Moreover, ⇧WIPOK

is witness indistinguishable and it is a proof of knowledge for thm. (More formally, we can achieve a notion
similar to that of “witness-extended emulation” [Lin01] for thm.) Note also that the first round of the above
proof system (as well as the internal state of the prover immediately following this round) is independent of
thm or the associated witness.

B.2 Protocol ⇧FS

As noted in Section 2, this is essentially the four round zero-knowledge protocol of Feige-Shamir, except
that we use non-malleable commitments in the first three round of the protocol. Following the discussion
in Section 2, we let nmcom be a non-malleable commitment scheme, and make the simplifying assumption
that nmcom has just three rounds and the first round is committing. Again, these are purely for notational
convenience and can easily be removed (as discussed earlier).

We now simply list all the steps of this protocol following [KO04], but using nmcom. The messages of
this protocol are denoted by (fs1, fs2, fs3, fs4). It allows the prover to prove thm ^ thm0 where thm is sent as
part of the second round yet thm0 is only sent as part of the last round. (Intuitively, statements thm, thm0

will correspond to statements st1, st2 of ⇧WIPOK described above.)
The proof system ⇧FS proceeds as follows:

1. The first round is as in the original Feige-Shamir protocol but augmented with an nmcom scheme.
Explicitly, the verifier V selects randomly and independently two values �1 and �2 and computes the
first message of two independent executions of nmcom for �1 and �2, with randomness ⇢1, ⇢2 respectively.
Let nm�1

1 and nm�2
2 be these messages, which V sends to P .

Moreover, V sends the first message p1 of a WIPOK proof system.
2. The prover P chooses a random challenge R 2 {0, 1}2 and computes CR = Eqcom(R; ⇣). Let eqthm

denote the statement that Eqcom was formed correctly.
Let gthm denote the statement: (thm ^ eqthm) _ (nm�1

1 = nmcom1(�1; ⇢1)) _ (nm�2
1 = nmcom1(�2; ⇢2))

(this statement is reduced to a single graph gthm). Then, P sends CR and also the first message p̃1 of a
separate WIPOK proof system and message p2 of V ’s proof.

3. V sends the last message p3 of his WIPOK proof system and completes the proof for the knowledge of
the values in nmcom (which is also completed along with the first and second rounds 23). V additionally
sends a random R0 2 {0, 1}2 and message p̃2 of P ’s proof

4. P decommits to R. Let prg be the statement that r = R�R0 is pseudorandom (i.e., 9s s.t. PRG(s) = r,

where PRG is a pseudorandom function). Let gthm
0
be the statement thm0_prg (reduced to a single graph

gthm
0
). The prover send the last message p̃3 of the ⇧WIPOK proof system and completes the proof for the

statement gthm ^gthm
0
.

V checks the decommitment of R, and verifies the proof.

As claimed in [KO04] ⇧FS proof system satisfies the following properties. It is complete and sound (for

a poly-time prover) for thm and thm0. Rounds 2� 4 constitute a proof of knowledge for gthm. If a poly-time
prover can cause a verifier to accept with “high” probability, then a witness for thm^eqthm can be extracted

23 If k > 3 then V completes its WIPOK after the completion of nmcom.
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with essentially the same probability. If eqthm is true, then with all but negligible probability prg will not

be true. Soundness of the proof of knowledge sub-protocol then implies that gthm
0
is true. But this means

that thm0 is true. ⇧FS is also zero-knowledge (in addition, to simulating for gthm, the simulator also uses
the equivocal commitment property to decommit to an R such that prg is true.). Furthermore, ⇧FS is an
argument of knowledge for thm.

Note that although we are using nmcom we are not making any claim here that uses non-malleability.
All claims above simply rely on the hiding of nmcom. The non-malleability is used by the two-party protocol
which uses ⇧FS.

Also note that in order to handle a general nmcom of k rounds, simply execute the first k � 3 rounds
before the protocol above begins. The statements are then modified to work with the transcript, rather than
the first message of the protocol.
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