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Abstract

Bilinear groups are often used to create Attribute-Based Encryption (ABE) algo-
rithms. In our proposal, a Multiple-Authorities Key-Policy Attribute-Based Encryp-
tion scheme is constructed in which the authorities collaborate to achieve shorter
keys and parameters, enhancing the efficiency of encryption and decryption.
We prove our system secure under an original variation of the bilinear Diffie-
Hellman assumption, we also show its relation with other similar assumptions.

Keywords: ABE, KP-ABE, Multi Authority, Bilinear Groups, Diffie-Hellman
Assumptions.

1 Introduction

The Attribute-Based Encryption (ABE), that provides access control
functionality in encrypted data, developed from Identity Based Encryp-
tion, a scheme proposed by Shamir [Sha85] in 1985 with the first construc-
tions obtained in 2001 by Boneh and Franklin [BF01] and Cocks [Coc01].
In 2005 Sahai and Waters [SW05] proposed the first schemes of Attributed
Based Encryption and in a consecutive work, Goyal, Pandey, Sahai, and
Waters [GPSW06] formulated the two complimentary forms of ABE which
are nowadays standard: ciphertext-policy ABE, where the keys are associated
with sets of attributes and ciphertexts are associated with access policies,
and key-policy ABE, which is a scheme where the keys are associated with
access policies and ciphertexts are associated with sets of attributes. Sev-
eral developments and generalizations have been obtained for KP-ABE
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[OSW07,ALDP11,AHL+12,HW13]. These schemes are constructed on bilin-
ear groups (usually implemented through the Tate and Weil pairings on
elliptic curves), and have a proof of security based on the original Diffie-
Hellman assumption on bilinear groups or some slight variation. A first
implementation of ciphertext-policy ABE has been achieved by Bethencourt
et al. [BSW07] in 2007 but the proofs of security of the ciphertext-policy ABE
remained unsatisfactory since they were based on an assumption indepen-
dent of the algebraic structure of the group (the generic group model). It is
only with the work of Waters [Wat11] that the first non-restricted ciphertext-
policy ABE scheme was built with a security dependent on variations of the
DH assumption on bilinear groups. Noteworthy are also the latest develop-
ments that aim to control dynamic users via revocation, e.g. [LCL+13] which
exploits even more sophisticated assumptions on bilinear groups, includ-
ing a variant of the subgroup decision problem. Recently new methods to
construct ABE schemes have also been approached ([HRS14]).

The first multi authority KP-ABE scheme was presented in [LMS15]. In
this system the authorities may be set up in any moment and without any
coordination. Any party can act as an ABE authority by creating a public
parameters and issuing private keys to different users. Moreover the en-
cryptor can select a set of trusted authorities that will have to authenticate
the potential decryptors.

Related works on multiple authorities (but limited to ciphertext-policy
ABE) are [Cha07,CC09] and [LW11]. In [CC09], that is a improvement of
[Cha07], the authors construct a simple-threshold schemes in the case where
attributes are divided in disjoint sets, each controlled by a different authority.
Whereas, in [LW11] Lewko and Waters propose a scheme where is not
needed a central authority or coordination between the authorities, each
controlling disjoint sets of attributes.

Our construction The scheme that we propose in this paper evolves
from the scheme presented in [LMS15] exploiting the collaboration between
authorities to improve the efficiency. It is a multi authority KP-ABE scheme
and the authorities collaborate to achieve shorter keys and parameters,
enhancing the efficiency of encryption and decryption.
Basically our scheme proceeds as follows: the first step is the creation of
the parameters. Namely, each authority sets up independently its master key
and then it collaborates together with the other authorities to create:

• a common public key utilized by users to encrypt,

• the authority parameters that will be used to generate secret keys (used to
decrypt).
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Once the public key is published, a user, who we will call Alice, chooses a set
of attributes that describe her message and encrypts it using this key. Let
Bob be another user, so he has an access policy. Suppose that Bob wants to
decrypt Alice’s message (note that he can do so if and only if the message
has the attributes prescribed by his policy). Bob requests a secret key for his
policy to every authority. Independently, each authority checks the policy
pertinence and generates a secret key. Once he has obtained all keys, he can
merge them and obtain a single compact key. In this way Bob may store and
use them as a single key.

Note that, even if there are drawbacks in the overheads caused by the
collaboration in the setup phase, we achieve much greater performances
(with respect to [LMS15]) in encryption, decryption and key storage (the
essential parts of a protocol) thanks to the drastic reduction of both public
parameters and decryption keys. In fact, where in [LMS15] there are mul-
tiple sets of public parameters and multiple secret keys, here we compress
them into only one set of public parameters and one secret key, therefore
the size of the ciphertext is greatly reduced and the decryption becomes
considerably faster.

Concerning the security of our schemes, unless every authority col-
ludes, the existence of just one non-cheating authority guarantees that no
illegitimate party (including authorities) has access to the encrypted data.
More specifically, our schemes give a solution to address the following two
problems:

(1) The authority is honest but curious, namely, it will provide correct keys
to users but will also try to access to data beyond its competence.
Obviously, if there is a single authority, which is the unique responsible
to issue the keys, there is no way to prevent key escrow. Using a multi-
authority schemes we bypass this problem.

(2) The authority has been breached, this happens when a user’s keys em-
bed access structures that do not faithfully represent that user’s level
of clearance, and so someone has access to keys with a higher level of
clearance than the one they are due. This problem is more specific for
KP-ABE. In fact, the authority has to assign to each user an appropriate
access structure that represents what the user can and cannot decrypt.
Therefore, the authority has to be trusted also to perform correct checks
of the users’ clearances and to assign correct access structures accord-
ingly. Adding multiple authorities to the scheme gives to the encryptor
the opportunity to request more guarantees about the legitimacy of the
decryptor’s clearance since each authority checks the users indepen-
dently. The idea is to request that the decryption proceeds successfully
only when a key for each authority is used. Note that if these au-
thorities set up their parameters independently and during encryption
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these parameters are bound together irrevocably, then no authority
can single-handedly decrypt any ciphertext and thus key escrow is
removed.

So our KP-ABE schemes guarantee a protection against both breaches and
curiosity.

The scheme is proved secure under a slightly stronger variation of the
classical BDH assumption (Definition 2.3).

Comparing our scheme with those proposed by Chase ([Cha07,CC09]),
which are the first ABE schemes with “multiple-authorities”, we note that
it enjoys more general and expressive policies. Furthermore, it models a
different setting, since we aim at adding a layer of security rather than
distributing the control of the attributes. Indeed, we request redundant
checks, therefore preventing more effectively unauthorized accesses, and
prevent the ability of authorities to intrude into users’ privacy.

Organization This paper is organized as follows. In Section 2 we present
bilinear groups and the main security assumptions used for ABE schemes,
alongside our original assumptions and a comparison between these as-
sumptions. In Section 3 we present the main mathematical tools used in the
construction of ABE schemes. In Section 4 we explain our scheme and also
prove its security. In Section 5 a lower-bound on the complexity in generic
bilinear groups is shown. Finally, conclusions are drawn in Section 6.

2 Complexity Assumptions on Bilinear Groups

This section covers background information necessary to understand
KP-ABE schemes and their security. In particular, we give some mathemat-
ical notions about bilinear groups and our cryptographic assumption, that
is, the decisional bilinear Diffie-Hellman assumption, with particular em-
phasis on its variations used to prove ABE schemes and their relations.

Let G1,G2 be groups of the same prime order p.

Definition 2.1 (Pairing). A symmetric pairing is a bilinear map e such that
e : G1 ×G1 → G2 has the following properties:

• Bilinearity: ∀g, h ∈ G1,∀a, b ∈ Zp, e(ga, hb) = e(g, h)ab.

• Non-degeneracy: for g generator of G1, e(g, g) , 1.

Definition 2.2 (Bilinear Group). G1 is a Bilinear group if the conditions above
hold and both the group operations in G1 and G2 as well as the bilinear map e are
efficiently computable.
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In the remainder of this section G1 and G2 are understood.

2.1 Security assumption on prime order bilinear groups

Decisional Bilinear Diffie-Hellman Assumption The Decisional Bilin-
ear Diffie-Hellman (BDH) assumption is the basilar assumption used for
proofs of indistinguishability in pairing-based cryptography. It has been
first introduced in [BF01] by Boneh and Franklin and then widely used in
a variety of proofs, including the one of the first ABE in [GPSW06]. It is
defined as follows.

Let a, b, s, z ∈ Zp be chosen at random and g be a generator of the bilinear
group G1. The decisional bilinear Diffie-Hellman (BDH) problem consists
in constructing an algorithm B(A = ga,B = gb,S = gs,T) → {0, 1} to effi-
ciently distinguish between the tuples (A,B,S, e(g, g)abc) and (A,B,S, e(g, g)z)
outputting respectively 1 and 0. The advantage of B in this case is clearly
written as:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, b, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 2.3 (BDH Assumption). The decisional BDH assumption holds if
no probabilistic polynomial-time algorithm B has a non-negligible advantage in
solving the decisional BDH problem.

Decisional Bilinear Diffie-Hellman Exponent Assumption The deci-
sional q-Bilinear Diffie-Hellman Exponent (q-BDHE) problem has been used
in various security proofs, starting from Boneh et. al. in [BBG05] to prove
their hierarchical identity-based encryption scheme with constant-size ci-
phertext. Subsequently it has been used in various ABE proofs, e.g. [Wat11]
and [HW13]. It is defined as follows.

Let a, s ∈ Zp be chosen at random and g be a generator of G1. If an
adversary is given

~y =
(
gs, gai

, i ∈ {1, . . . , 2q} \ {q + 1}
)

it must be hard to distinguish e(g, g)aq+1s
∈ G2 from a random element R ∈ G2.

B clearly has advantage ε in solving the decisional q-BDHE in G1 if∣∣∣∣Pr
[
B

(
y,T = e(g, g)aq+1s

)
= 0

]
− Pr

[
B

(
y,T = R

)
= 0

]∣∣∣∣ ≥ ε
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Definition 2.4 (q-BDHE Assumption). The decisional q-BDHE assumption
holds if no polynomial-time algorithm B has a non-negligible advantage in solving
the decisional q-BDHE problem.

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption The
decisional q-parallel Bilinear Diffie-Hellman Exponent (q-PBDHE) problem
has been first introduced by Waters in [Wat11] to prove the security of his
more general construction of a ciphertext-policy ABE scheme. It is defined
as follows.

Let a, s, b j ∈ Zp, j = 1, . . . , q, be chosen at random and g be a generator
of G1. If an adversary is given

~y =

 gai
, g

ai
bj i ∈ {1, . . . , 2q} \ {q + 1},∀ j ∈ {1, . . . , q}

g, gs, gsb j , g
sai bk

bj ∀i, j, k ∈ {1, . . . , q}, k , j

it must be hard to distinguish e(g, g)aq+1s
∈ G2 from a random element R ∈ G2.

B as usual has advantage ε in solving the decisional q-PBDHE in G1 if∣∣∣∣Pr
[
B

(
~y,T = e(g, g)aq+1s

)
= 0

]
− Pr

[
B

(
~y,T = R

)
= 0

]∣∣∣∣ ≥ ε
Definition 2.5 (q-PBDHE Assumption). The decisional q-PBDHE assumption
holds if no polynomial-time algorithm B has a non-negligible advantage in solving
the decisional q-PBDHE problem.

Decisional Bilinear x-Power Diffie-Hellman Assumption This is our
first original assumption introduced. It is a variant of the basic BDH in
which the attacker has an advantage not due to more elements at its dis-
posal (as in the previous cases), but rather from more knowledge of the
algebraic properties of its input elements. We formally define it as follows.

Let a, c, s, z ∈ Zp be chosen at random, g be a generator of the bilinear
group G1, b = cx. The x-power decisional bilinear Diffie-Hellman (x-PBDH)
problem consists in constructing an algorithm

B(A = ga,B = gb,S = gs,Z)→ {0, 1}

to efficiently distinguish between the tuples (A,B,S, e(g, g)abs) and (A,B,S,
e(g, g)z). For example, when x = 2 we are telling the attacker that b is a
Quadratic Residue modulo p and so the attacker knows something on the
private exponents. The advantage of B is defined, following the standard
convention as:

AdvB =
∣∣∣∣Pr

[
B(A,B,S, e(g, g)abs) = 1

]
− Pr

[
B(A,B,S, e(g, g)z) = 1

] ∣∣∣∣
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where the probability is taken over the random choice of the generator g, of
a, c, s, z in Zp, and the random bits possibly consumed by B to compute the
response.

Definition 2.6 (x-PBDH Assumption). The decisional x-PBDH assumption
holds if no probabilistic polynomial-time algorithm B has a non-negligible ad-
vantage in solving the decisional x-PBDH problem.

Decisional Bilinear x-Roots Diffie-Hellman Assumption This is our
other original assumption. It develops from the x-PBDH taking the direc-
tion taken by q-BDHE and q-PBDHE of giving to the attacker more group
elements in input. In this case, we add to the algebraic insight on b the actual
x-root (and also its powers). This stronger assumption is defined as follows.

Let a, c, s, z ∈ Zp be chosen at random and g be a generator of the
bilinear group G1, moreover set b = cx. The x-roots decisional bilinear
Diffie-Hellman (x-RBDH) problem consists in constructing an algorithm
B(~y,Z)→ {0, 1} that given the values

~y =
(
gs, gc±i

, gaci−1
, i ∈ {1, . . . , x}

)
efficiently distinguishes between the tuples (~y, e(g, g)abs) and (~y, e(g, g)z). The
advantage of B is then:

AdvB =
∣∣∣∣Pr[B(~y, e(g, g)abs) = 1] − Pr[B(~y, e(g, g)z) = 1]

∣∣∣∣
where the probability is taken over the random choice of the generator g, of
a, c, s, z in Zp, and the random bits possibly consumed by B.

Definition 2.7 (x-RBDH Assumption). The decisional x-RBDH assumption
holds if no probabilistic polynomial-time algorithm B has a non-negligible advan-
tage in solving the decisional x-RBDH problem.

2.2 Comparison between security assumptions

In this section, we prove the relations between the security assumptions
that we have defined in the previous section. In Section 5 we show an adap-
tion of these assumptions to the generic group model and we are able to
prove a related security bound.

Lemma 2.8. Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption
implies BDH Exponent Assumption that implies, in turn, Decisional Bilinear
Diffie-Hellman Assumption:
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q-PBDHE =⇒ q-BDHE =⇒ BDH .

Proof. In these three problems we assign three different sets as input to the
attacker: for the BDH problem SBDH = {ga, gb, gs, e(g, g)abs

}, for the q-BDHE
problem

Sq−BDHE := {ga, gaq
, gs, e(g, g)aq+1s

} ∪ {gai
: 2 ≤ i ≤ 2q, i , q, q + 1}.

For the q-PBDHE problem:

Sq−BDHE :=
{
ga, gaq

, gs, e(g, g)aq+1s
}
∪

{
g, gsb j , gaι , g

aι
bj , g

sai bk
bj

}
i, j,k∈{1,...,q}, k, j
2≤ι≤2q, ι,q,q+1

.

If one can beat the BDH assumption with b random, then it can also beat
it with the extra information that b = aq, in this case we have e(g, g)aq+1s =
e(g, g)aaqs = e(g, g)abs and so:

SBDH ⊆ Sq−BDHE ⊆ SqPBDHE.

So q-PBDHE Assumption implies q-BDHE Assumption that implies BDH
Assumption.

Lemma 2.9. BDH x-Power Assumption and BDH x-Roots Assumption imply
BDH Assumption. Moreover x-RBDH implies x-PBDH, and so we have:

x-RBDH =⇒ x-PBDH =⇒ BDH.

If GCD(x, p − 1) = 1, then x-PBDH is equivalent to BDH.

Proof. We recall that SBDH := {ga, gb, gs, e(g, g)abs
}, whereas in Decisional

Bilinear x-Power Diffie-Hellman problem we have the same set of BDH but
with b = cx. In Decisional Bilinear x-Roots Diffie-Hellman problem we have
Sx−RBDH := {gs, gci

, gaci−1
, e(g, g)abs

}, where b = cx and i ∈ {1, . . . , x}. If one can
beat the BDH assumption with b random, then it can also beat it with the
extra information that b = cx, so x-PBDH Assumption implies BDH As-
sumption. Moreover Sx−PBDH ⊆ Sx−RBDH. So x-RBDH Assumption implies
x-PBDH Assumption that implies BDH Assumption.

Now we prove that if GCD(x, p− 1) = 1, then x-PBDH is equivalent to BDH.
In fact, let d be a generator of Z∗p, then dx is also a generator of Z∗p iff x and
p − 1 are coprime. Then for every b ∈ Z∗p there is some i such that b = (dx)i,
thus b = cx for c = di. Therefore we have:

x-PBDH �
GCD(x,p−1)=1

BDH.
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Finally, we have the following lemma.

Lemma 2.10. q-BDHE implies x-PBDH.

Proof. As in the proof of Lemma 2.8, if we set b = aq we obtain that
Sx−PBDH ⊆ Sq−BDHE.

We summarize what we have just proved in the following Theorem.

Theorem 2.11. The security assumptions above satisfy the following relations:

BDH ⇐= q-BDHE ⇐= q PBDHE.

GCD(x, p − 1) = 1 ⇓ ⇑ w

x-PBDH ⇐= x-RBDH.

3 Access Structures and Linear Secret Sharing Schemes

We do not prove original results here, we only provide what we need
for our construction. See the cited references for more details on these argu-
ments.

Access structures define who may and who may not access to the data,
giving the sets of attributes that have clearance.

Definition 3.1 (Access Structure). An access structure A on a universe of at-
tributes U is the set of the subsets S ⊆ U that are authorized. That is, a set of
attributes S satisfies the policy described by the access structure A if and only if
S ∈ A.

They are used to describe a policy of access, that is the rules that prescribe
who may access to the information. If these rules are constructed using only
and, or and threshold operators on the attributes, then the access structure
is monotonic.

Definition 3.2 (Monotonic Access Structure). An access structure A is said
monotonic if given S0 ⊆ S1 ⊆ U it holds

S0 ∈ A =⇒ S1 ∈ A

An interesting property is that monotonic access structures (i.e. access
structuresA such that if S is an authorized set and S ⊆ S′ then also S′ is an
authorized set) may be associated to linear secret sharing schemes (LSSS). In
this setting the parties of the LSSS are the attributes of the access structure.

A LSSS may be defined as follows (adapted from [Bei96]).
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Definition 3.3 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if

(1) The shares for each party form a vector over Zp.

(2) There exists a matrix M with l rows and n columns called the share-generating
matrix for Π. For all i ∈ {1, . . . , l} the i-th row of M is labeled via a function ρ,
that associates Mi to the party ρ(i). Considering the vector ~v = (s, r2, . . . , rn) ∈
Zn

p , where s ∈ Zp is the secret to be shared, and ri ∈ Zp, with i ∈ {2, . . . ,n} are
randomly chosen, then M~v is the vector of l shares of the secret s according to
Π. The share (M~v)i = Mi~v belongs to party ρ(i).

It is shown in [Bei96] that every linear secret sharing-scheme according
to the above definition also enjoys the linear reconstruction property, defined
as follows: suppose that Π is an LSSS for the access structure A. Let S ∈ A
be any authorized set, and let I ⊆ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}.
Then, there exist constants wi ∈ Zp, with i ∈ I such that, if λi are valid shares
of any secret s according to Π, then∑

i∈I

wiλi = s (1)

Furthermore, it is shown in [Bei96] that these constants wi can be found
in time polynomial in the size of the share-generating matrix M.

Note that the vector (1, 0, . . . , 0) is the ”target” vector for the linear secret
sharing scheme. Then, for any set of rows I in M, the target vector is in the
span of I if and only if I is an authorized set. This means that if I is not
authorized, then for any choice of c ∈ Zp there will exist a vector ~u such that
u1 = c and

Mi · ~w = 0 ∀i ∈ I

In the first ABE schemes the access formulas are typically described in
terms of access trees. The appendix of [LW11] is suggested for a discussion
of how to perform a conversion from access trees to LSSS.

See [GPSW06], [Bei96] and [LC10] for more details about LSSS and access
structures.

4 Our Construction

This section is divided in three parts. We start with definitions of Col-
laborative Multi-Authority Key-Policy ABE and of CPA selective security.
In the second part we present in detail our scheme and, finally, we use a
variant of the BDH assumption (Definition 2.3) to prove the security of this
scheme under in the selective set model.
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4.1 Collaborative Multi Authority KP-ABE Structure and Security

In this scheme, the authorities set up independently their master key
and they collaborate to create a common public key and some authority
parameters that will be used to generate secret keys. There is a minimum
collaboration during key generation, in the sense that authorities have to
agree on the policy to assign to the user, or equivalently the user should ask
for the same policy to every authority. To encrypt, the user chooses a set
of attributes that describes the message (and thus determines which access
structures may read it). The ciphertext is computed using the public key
generated by the authorities in concert. When someone wants to decrypt,
he needs a key for every authority and once he obtains all the pieces he can
merge them and use them as a single key.
The formal definition of the scheme follows.

Let G1 be a bilinear group (chosen accordingly to an implicit security
parameter λ), g ∈ G1 a generator of the group, andA an access structure on
a universe of attributes U.

Definition 4.1 (Collaborative Multi-authority KP-ABE). A collaborative multi-
authority Key-Policy ABE system for a message spaceM, a universe of authorities
X with x = |X|, and an access structure space G is composed of the following four
algorithms:

Setup(U, g,G1)→ (PKk,MKk,APk). The setup algorithm for the authority k ∈ X
takes as input the universe of attributes U and the bilinear group G1 alongside
its generator g. It outputs the public parameters PKk, the master key MKk, and
the authority parameters APk for that authority.

CollSetup(MKk,PKk,APk,PK(h),AP(h))→ (PK(h+1),AP(h+1)). The collaborative part
of setup asks the authority k ∈ X to add their part to the final public key and
authority parameters. It takes as input the master key MKk for that authority
and the i-th step of construction of the public key PK(h), and of the authority pa-
rameters AP(h). It outputs the next step of construction of the public key PK(h+1)

and authority parameters AP(h+1). When h = x = |X| then PK(x) = PK and
AP(x) = AP i.e. the public and authority parameters key is completed since every
authority has contributed. At this point PK is distributed among all users, while
AP is shared only between authorities.

KeyGenk(MKk,AP, (M, ρ))→ SKk. The key generation algorithm for the author-
ity k ∈ X takes as input the master key MKk of the authority and an access
structure A in the form of an LSSS (M, ρ). It outputs a decryption key SKk for
that access structure.

Encrypt(m,S,PK)→ CT. The encryption algorithm takes as input the public pa-
rameters PK, a message m ∈ M and a set of attributes S ⊆ U. It outputs the
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ciphertext CT associated with the attribute set S.

Decrypt(CT, {SKk}k∈X)→ m′. The decryption algorithm takes as input a cipher-
text CT that was encrypted under a set S of attributes and a decryption key
SKk for every authority k ∈ A. Let A be the access structure of the keys SKk. It
outputs the message m′ if and only if S ∈ A.

The security game is defined as follows.

Let E = (Setup,Encrypt,KeyGen,Decrypt) be a CMA-KP-ABE scheme for
a message space M, a universe of authorities X and an access structure
space G and consider the following CMA-KP-ABE experiment
CMA-KP-ABE-Exp

A,E(λ,U) for an adversary A, parameter λ and attribute
universe U:

Init. The adversary declares the set of attributes S that it wishes to be
challenged upon. Moreover it selects the honest authority k0 ∈ X.

Setup. The challenger runs the Setup and Collaborative Setup algorithms
initializing the authorities, and gives to the adversary the the public key.

Phase I. The adversary issues queries for private keys of any authority, but
k0 answers only to queries for keys for access structuresA such that S < A.
On the contrary the other authorities respond to every query.

Challenge. The adversary submits two equal length messages m0 and m1.
The challenger flips a random coin b, and encrypts mb with S. The cipher-
text is passed to the adversary.

Phase II. Phase I is repeated.

Guess. The adversary outputs a guess b′ of b.

The output of the experiment is 1 if b′ = b, 0 otherwise.

Definition 4.2 (MA-KP-ABE Selective Security). The MA-KP-ABE scheme E
is CPA selective secure (or secure against chosen-plaintext attacks) for attribute
universe U if for all probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[MA-KP-ABE-Exp
A,E(λ,U) = 1] ≤

1
2

+ negl(λ).

4.2 The Scheme

This scheme plans a set X of authorities, each with their own parameters,
that collaborate to create a common public key and it sets up an encryption
algorithm that uses this public key so that an authorized key for each au-
thority in X is required to successfully decrypt.
Our scheme consists of three randomized algorithms (Setup,KeyGen,Encrypt)
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plus the collaborative steps CollSetup,CollKeygen and decryption Decrypt.
The scheme works in a bilinear groupG1 of prime order p, and uses LSSS ma-
trices to share secrets according to the various access structures. Attributes
are seen as elements of Zp.

The description of the algorithms follows.

Setup(U, g,G1)→ (PKk,MKk,APk). Given the universe of attributes U and
a generator g ofG1 each authority sets up independently its parameters. For
k ∈ X the Authority k chooses uniformly at random αk ∈ Zp, and zk,i ∈ Zp
for each i ∈ U. Then the public parameters PKk and the master key MKk are:

PKk =
(
Yk = e(g, g)αk ,

{
Tk,i = gzk,i

}
i∈U

)
, MKk =

(
αk, {zk,i}i∈U}

)
, APk =

({
Vk,i = g

1
zk,i

}
i∈U

)
CollSetup(MKk,PKk,APk,PK(h),AP(h))→ (PK(h+1),AP(h+1)). The collabora-
tive construction of the public key proceeds as follows:

• if h = 0 then the authority k is the first to participate, then it simply sets
PK(1) = PKk, AP(1) = APk

• if h > 0 then PK(h) =
(
Y(h),

{
T(h)

i

}
i∈U

)
, AP(h) =

({
V(h)

i

}
i∈U

)
, so it sets

Y(h+1) = Y(h)
· Yk, T(h+1)

i =
(
T(h)

i

)zk,i
, V(h+1)

i =
(
V(h)

i

) 1
zk,i ∀i ∈ U

Then it is easy to see that when the construction is complete the public
key is:

PK(x) = PK =
(
Y = e(g, g)

∑
k∈X αk ,

{
Ti = g

∏
k∈X zk,i

}
i∈U

)
, AP(x) = AP =

({
Vi = g

1∏
k∈X zk,i

}
i∈U

)

KeyGenk(MKk,AP, (M, ρ)) → SKk. The key generation algorithm for the
authority k takes as input the master secret key MKk, the public parameters
PK and an LSSS access structure (M, ρ), where M is an l×n matrix onZp and
ρ is a function which associates rows of M to attributes. It chooses uniformly
at random a vector ~vk ∈ Zn

p such that vk,1 = αk. Then computes the shares
λk,i = Mk,i~vk for 1 ≤ i ≤ l where Mk,i is the i-th row of Mk. Then the private
key SKk is:

SKk =

{
K(1)

k,i = Vλk,i

ρ(i) = g
λk̄,i∏

k∈X zk,ρ(i)

}
1≤i≤l

Encrypt(m,S,PK) → CT. The encryption algorithm takes as input the
public parameters, a set S of attributes and a message m to encrypt. It
chooses s ∈ Zp uniformly at random and then computes the ciphertext as:

CT =
(
S,C′ = m · (Y)s , {Ci = (Ti)s

}i∈S
)
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Decrypt(CT, {SKk}k∈X)→ m′. The input is a ciphertext for a set of attributes
S and an authorized key for every authority. Let (M, ρ) be the LSSS associated
to the keys, and suppose that S is authorized. The algorithm finds wi ∈ Zp, i ∈
I such that∑

i∈I

λk,iwi = αk ∀k ∈ X (2)

for an appropriate subset I ⊆ S. To simplify the notation let zi :=
∏

k∈X zk,i,
the algorithm then proceeds to reconstruct the original message computing:

m′ =
C′∏

i∈I e(
∏

k∈X Kk,i,Cρ(i))wi

=
m ·

(
e(g, g)(

∑
k∈X αk)

)s

∏
i∈I e

(∏
k∈X g

λk,i
zρ(i) , (gzρ(i))s

)wi

=
m · e(g, g)s(

∑
k∈X αk)

e(g, g)s
∑

k∈X
∑

i∈I wiλk,i

∗

=
m · e(g, g)s(

∑
k∈X αk)

e(g, g)s(
∑

k∈X αk)
= m

Where ∗

= follows from the property (2).
Note that once the user has obtained the keys from every authority it can

multiply these all together and store only SK =
{
Ki =

∏
k∈X Kk,i

}
1≤i≤l since this

is all he needs to perform the decryption, so actually only a key is needed
with size l, hence the scheme is very efficient in terms of key-size.

4.3 Security

The scheme is proved secure under the x-PBDH assumption (where
x = |X| is the number of authorities) in the selective set security game
described in Section 4.1. Recall that every authority but one is supposed
curious (or corrupted or breached) and then it will issue even keys that
have enough clearance for the target set of attributes, while the honest
one issues only unauthorized keys. Thus if at least one authority remains
trustworthy the scheme is secure.
The security is provided by the following theorem.

Theorem 4.3. If an adversary can break the scheme with x authorities, then a
simulator can be constructed to play the Decisional x-PBDH game with a non-
negligible advantage.

Proof. Suppose there exists a polynomial-time adversaryA, that can attack
the scheme in the Selective-Set model with advantage ε. Then we claim that
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a simulator B can be built that can play the Decisional x-PBDH game with
advantage ε/2. The simulation proceeds as follows.

Init The simulator takes in a x-PBDH challenge g, ga, gb, gs,T. The adver-
sary gives the algorithm the challenged set of attributes S.

Setup In the scheme the only public things outputted during this phase
are the public parameters PK, the simulator emulates them as follows. The
simulator chooses random rk ∈ Zp for k ∈ X\{k0} and implicitly setsαk = −rkb
for k ∈ X \ {k0} and αk0 = ab + b

∑
k∈X\{k0}

rk by computing:

e(g, g)αk0 = e(ga, gb)
∏

k∈X\{k0}

(gb, grk)

e(g, g)αk = e(gb, g−rk) ∀k ∈ X \ {k0}

Then it chooses z′k,i ∈ Zp uniformly at random for each i ∈ U, k ∈ X and
implicitly sets

zk,i =

z′k,i if i ∈ S
cz′k,i if i < S

Then it can compute the public key as:

Y = e(ga, gb), Ti =

gz′i if i ∈ S
(gb)z′i if i < S

(3)

Using the previously introduced notation z′i :=
∏

k∈X z′k,i and noting that for
i < S

zi =
∏
k∈X

zk,i =
∏
k∈X

cz′k,i = cx
∏
k∈X

z′k,i = bz′i

Phase I In this phase the simulator answers private key queries. For
the queries made to the authority k0 the simulator has to compute the Kk0,i

values of a key for an access structure (M, ρ) with dimension l×n that is not
satisfied by S. Therefore for the properties of an LSSS it can find a vector
~y ∈ Zn

p with y1 = 1 fixed such that

Mi~y = 0 ∀i such that ρ(i) ∈ S (4)

Then it chooses uniformly at random a vector ~v ∈ Zn
p and implicitly sets the

shares of αk0 = b(a +
∑

k∈X\{k0}
rk) as

λk0,i = b
n∑

j=1

Mi, j(v j + (a +
∑

k∈X\{k0}

rk − v1)y j)
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Note that λk0,i =
∑n

j=1 Mi, ju j where u j = b(v j + (a +
∑

k∈X\{k0}
rk − v1)y j) thus

u1 = b(v1 + (a +
∑

k∈X\{k0}
rk − v1)1) = ab + b

∑
k∈X\{k0}

rk = αk0 so the shares are
valid. Note also that from (4) it follows that

λk0,i = b
n∑

j=1

Mi, jv j ∀i such that ρ(i) ∈ S

Thus if i is such that ρ(i) ∈ S the simulator can compute

Kk0,i = (gb)

∑n
j=1 Mi, jvj

z′
ρ(i) = g

λk0 ,i
zρ(i)

Otherwise, if i is such that ρ(i) < S the simulator computes

Kk0,i = g

∑n
j=1 Mi, j(vj+(r−v1)yj)

z′
ρ(i) (ga)

∑n
j=1 Mi, j y j

z′
ρ(i) = g

λ1,i
zρ(i)

Where the last equality follows from zρ(i) = bz′ρ(i). Finally for the queries
to the other authorities k ∈ X \ {k0}, the simulator chooses uniformly at
random a vector ~tk ∈ Zn

p such that tk,1 = −rk and implicitly sets the shares
λk,i = b

∑n
j=1 Mi, jtk, j by computing

Kk,i =


(gb)

∑n
j=1 Mi, jtk, j

z′
ρ(i) = g

b
∑n

j=1 Mi, jtk, j
z′
ρ(i) = g

λk,i
zρ(i) if ρ(i) ∈ S

g

∑n
j=1 Mi, jtk, j

z′
ρ(i) = g

b
∑n

j=1 Mi, jtk, j
bz′
ρ(i) = g

λk,i
zρ(i) if ρ(i) < S

Challenge The adversary gives two messages m0,m1 to the simulator. He
flips a coin µ. He creates:

C′ = mµ · T
∗

= mµ · e(g, g)sab

= mµ ·

e(g, g)ab+b(∑k∈X\{k0}
rk)

∏
k∈X\{k0}

e(g, g)−brk


s

Ck,i = (gs)z′
ρ(i) = gszρ(i) i ∈ S

Where the equality ∗

= holds if and only if the BDH challenge was a valid
tuple (i.e. T is non-random).

Phase II During this phase the simulator acts exactly as in Phase I.

Guess The adversary will eventually output a guessµ′ ofµ. The simulator
then outputs 0 to guess that T = e(g, g)abs if µ′ = µ; otherwise, it outputs 1 to
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indicate that it believes T is a random group element in G2. In fact when T
is not random the simulator B gives a perfect simulation so it holds:

Pr
[
B

(
~y,T = e(g, g)abs

)
= 0

]
=

1
2

+ ε

On the contrary when T is a random element R ∈ G2 the message mµ is
completely hidden from the adversary point of view, so:

Pr
[
B

(
~y,T = R

)
= 0

]
=

1
2

Therefore,B can play the decisional BDH game with non-negligible advan-
tage ε

2 .

5 Generic Security of Diffie-Hellman Assumptions

In [BBG05] Boneh et. al. stated and proved a theorem that gives a lower
bound on the advantage of a generic algorithm in solving a class of deci-
sional Diffie-Hellman problem. Despite a lower bound in generic groups
does not imply a lower bound in any specific group, it still provides ev-
idence of soundness of the assumptions. In this section: first the general
Diffie-Hellman Exponent Problem is defined, then the lower bound will be
stated and finally we will show our claim, i.e., how the problems introduced
in Section 2 may be seen as particular cases of the general problem.

5.1 General Diffie-Hellman Exponent Problem

Let p be a prime and let s,n be positive integers. Let P,Q ∈ Fp[X1, . . . ,Xn]s

be two s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn].
Let P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs), we require that p1 = q1 = 1.
Moreover define:

P(x1, . . . , xn) =
(
p1(x1, . . . , xn), . . . , ps(x1, . . . , xn)

)
∈ (Fp)s.

And similarly for the s-tuple Q. Let G1,G2 be groups of order p and let
e : G1 × G1 → G2 be a non-degenerate bilinear map. Let g ∈ G1 be a
generator of G1 and set g2 = e(g, g) ∈ G2 . Let

H(x1, . . . , xn) =
(
gP(x1,...,xn), gQ(x1,...,xn)

2

)
∈ Gs

1 ×G
s
2,

we say that an algorithmB that outputs b ∈ {0, 1} has advantage ε in solving
the Decision (P,Q, f )-Diffie-Hellman problem in G1 if∣∣∣∣Pr

[
B

(
H(x1, . . . , xn), g f (x1,...,xn)

2

)
= 0

]
− Pr [B(H(x1, . . . , xn),T) = 0]

∣∣∣∣ > ε
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where the probability is over the random choice of generator g ∈ G1 , the
random choice of x1, . . . , xn in Fp, the random choice of T ∈ G2, and the
random bits consumed by B.

Definition 5.1 (Dependence on (P,Q)). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two s-
tuples of n-variate polynomials overFp. We say that a polynomial f ∈ Fp[X1, . . . ,Xn]
is dependent on the sets (P,Q) if there exist s2 + s constants {ai, j}

s
i, j=1, {bk}

s
k=1 such

that

f =

s∑
i, j=1

ai, jpip j +

s∑
k=1

bkqk

We say that f is independent of (P,Q) if f is not dependent on (P,Q).

For a polynomial f ∈ Fp[X1, . . . ,Xn]s , we let d f denote the total degree
of f . For a set P ⊆ Fp[X1, . . . ,Xn]s we let dP = max{d f : f ∈ P}.

5.2 Complexity Lower Bound in Generic Bilinear Groups

We state the following lower bound in the framework of the generic
group model. We consider two random encodings ξ0, ξ1 of the additive
group Zp, i.e. injective maps ξ0, ξ1 : Zp → {0, 1}m. For i = 0, 1 we write
Gi = {ξi(x) : x ∈ Zp}. We are given oracles to compute the induced group
action on G1,G2 , and an oracle to compute a non-degenerate bilinear map
e : G1 ×G1 → G2. We refer to G1 as a generic bilinear group. The following
theorem gives a lower bound on the advantage of a generic algorithm in
solving the decision (P,Q, f )-Diffie-Hellman problem. We emphasize, how-
ever, that a lower bound in generic groups does not imply a lower bound
in any specific group.

Theorem 5.2 (Theorem A.2 of [BBG05]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d =
max(2dP, dQ, d f ). Let ξ0, ξ1 and G1,G2 be defined as above. If f is independent of
(P,Q) then for anyA that makes a total of at most q queries to the oracles computing
the group operation in G1,G2 and the bilinear pairing e : G1 ×G1 → G2 we have:

∣∣∣∣∣Pr
[
A

(
p, ξ0(P(x1, . . . , xn)), ξ1(Q(x1, . . . , xn)), ξ1(t0), ξ1(t1)

)
= b

]
−

1
2

∣∣∣∣∣ ≤ (q + 2s + 2)2d
2p

Where x1, . . . , xn, y are chosen uniformly at random from Fp, b is chosen uniformly
at random from {0, 1} and tb = f (x1, . . . , xn), t1−b = y.

Corollary 5.3 (Corollary A.3 of [BBG05]). Let P,Q ∈ Fp[X1, . . . ,Xn]s be two
s-tuples of n-variate polynomials over Fp and let f ∈ Fp[X1, . . . ,Xn]. Let d =
max(2dP, dQ, d f ). If f is independent of (P,Q) then anyA that has advantage 1

2 in
solving the decision (P,Q, f )-Diffie-Hellman Problem in a generic bilinear group G
must take time at least Ω( p

d − s).
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5.3 Using Corollary 5.3

We claim that the assumptions presented in Section 2 follow from Corol-
lary 5.3 giving the sets P,Q that reduces them to the general bilinear Diffie-
Hellman problem:

• BDH in G1 : set P = {1, y,w, z},Q = {1}, f = ywz.

• q-BDHE inG1 : set P = {1, y,wi
}with i ∈ {1, . . . , 2q}\{q+1},Q = {1}, f = xqy.

• x-PBDH in G1 : set P = {1, y,wx, z},Q = {1}, f = y wx z.

• x-RBDH in G1 : set P = {1, y,wi, 1
w

i
, z} with i ∈ {1 . . . , x},Q = {1},

f = ywxz.

It is easy to see that each f is independent to the respective sets P and Q,
in fact multiplying any two polynomials in the sets P and then combining
them linearly does not give the polynomial f . To see this explicitly in the
case of x-RBDH, the complete list of terms that may be obtained combining
any two polynomials of P follows:

1,wi,w2i,w−i,w−2i, y, ywi, yw−i,wiz,w−iz, z, yz i ∈ {1, . . . , x}

Since there is no monomial in which y, w, and z appear together, it is apparent
that no linear combination of these terms may give ywxz as result, thus f is
independent of P,Q.

Thus applying the Corollary 5.3 a lower bound on the computational
complexity of these problems in the generic bilinear group is obtained.

For the q-PBDHE the argument is slightly less direct, see [Wat11].

6 Final Comments

Our construction evolves from the scheme presented in [LMS15] ex-
ploiting the collaboration between authorities to improve the efficiency.
This scheme needs fewer parameters, since the collaboration permits to
collapse the various public parameters in a single public key, significantly
reducing the length of ciphertexts. Moreover, once all the single-keys have
been obtained they may be collapsed into one too:

SK =

Ki =
∏
k∈X

Kk,i = g

∑
k∈X λk̄,i∏

k∈X zk,ρ(i)


1≤i≤l

.

This scheme requires that each authority uses the same LSSS matrix to
generate the single-key, but the assumption is not unreasonable since the
matrix is directly related to the user’s clearance. So for the price of collab-
oration steps that weigh down the setup (a phase that has to be executed
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only once when the scheme is used), and an additional parameter shared by
authorities, encryption, decryption and key-storage are greatly improved.
Remark 6.1 (Security Assumptions). In the proof of security (Theorem 4.3)
it is supposed that only the final public key is actually public, that is, the
authority parameters and the collaboration steps remain secret and the
simulator has not to simulate them to the adversary. This allows us to use
only the x-PBDH assumption (Definition 2.6) that is a weak version of the
BDH assumption as seen in Section 2. If however we want to weaken the
scheme and keep all the collaboration steps public, then the simulator needs
to emulate these passages and in order to do this she needs more values.
Specifically she needs the values gc±i for i ∈ {1, . . . , x} to correctly simulate the
collaboration steps during setup and the authority parameters. In particular
in Equation (3) instead of (gb)z′i use (gci)

∏
zi to simulate the construction steps

of Ti and (gc−i)
1∏
zi to simulate Vi and its construction steps. So instead of the

x-PBDH, the stronger x-RBDH is needed.
Remark 6.2 (Security Definitions). This scheme has been proven IND-CPA
selective secure, that is after selecting the target parameters (in this case at-
tribute set and authorities) the attacker may not distinguish between chosen
ciphertext after encryption. We observe that although the scheme of [LW11]
is proven fully secure (against selective security), the construction is made in
composite bilinear groups. It is in fact compulsory when using Dual System
encryption (introduced by Waters [Wat09] with techniques developed with
Lewko [LW10]), but this has drawbacks in terms of group size (integer fac-
torization has to be avoided) and the computations of pairings and group
operations are less efficient. This fact leads to an alternative construction in
prime order groups in the same paper, that however is proven secure only
in the generic group and random oracle model. Therefor, we believe that
our constructions in prime groups retain validity and interest, considering
also that the proofs are in the standard model.

However, the definition of security may be extended modifying the the se-
curity games. To extend the definition of security to CCA (chosen ciphertext
attacks) it is enough to add decryption queries to Phase I and Phase II (with
the obvious restriction that the challenge ciphertext may not be the subject
of a decryption query).
Moreover, to define full security (as opposed to selective security) it is suffi-
cient to remove the Init stage and move the choice of targets by the adversary
in the Challenge phase. In our scheme the target is the set of attributes S and
the honest authority k0. Note that in this case the restrictions in the queries
of Phase I are eliminated to become restrictions in the choice of the targets:
in fact the honest authority k0 has to be chosen among the authorities that
have not issued authorized keys for the target attribute set S about to be
selected. Phase II is left unaltered, in the sense that the restrictions to the
queries are the same as the ones in the Phase II of selective security.
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C. Ràfols, et al., Attribute-based encryption schemes with constant-size
ciphertexts, Theoretical Computer Science 422 (2012), 15–38.

[ALDP11] N. Attrapadung, B. Libert, and E. De Panafieu, Expressive key-
policy attribute-based encryption with constant-size ciphertexts, Public Key
Cryptography–PKC 2011, Springer, 2011, pp. 90–108.

[BBG05] D. Boneh, X. Boyen, and E.-J. Goh, Hierarchical identity based encryption
with constant size ciphertext, Proc. of EUROCRYPT 05, LNCS, vol. 3494,
2005, pp. 440–456.

[Bei96] A. Beimel, Secure schemes for secret sharing and key distribution, Ph.D.
thesis, Technion-Israel Institute of technology, Faculty of computer
science, 1996.

[BF01] D. Boneh and M. Franklin, Identity-based encryption from the weil pairing,
Advances in CryptologyCRYPTO 2001, Springer, 2001, pp. 213–229.

[BSW07] J. Bethencourt, A. Sahai, and B. Waters, Ciphertext-policy attribute-based
encryption, Proc. of SP 07, 2007, pp. 321–334.

[CC09] M. Chase and S. SM Chow, Improving privacy and security in multi-
authority attribute-based encryption, Proceedings of the 16th ACM
conference on Computer and communications security, ACM, 2009,
pp. 121–130.

[Cha07] M. Chase, Multi-authority attribute based encryption, Theory of
Cryptography, Springer, 2007, pp. 515–534.

[Coc01] C. Cocks, An identity based encryption scheme based on quadratic residues,
Cryptography and Coding, Springer, 2001, pp. 360–363.

[GPSW06] V. Goyal, O. Pandey, A. Sahai, and B. Waters, Attribute-based encryption
for fine-grained access control of encrypted data, Proc. of CCS 06, 2006,
pp. 89–98.

[HRS14] Javier Herranz, Alexandre Ruiz, and Germán Sáez, New results
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