
Arithmetic Coding and Blinding for Lattice Cryptography

Markku-Juhani O. Saarinen ⋆

Centre for Secure Information Technologies (CSIT)
ECIT, Queen’s University Belfast, UK

m.saarinen@qub.ac.uk

Abstract. In this work we apply information theoretically optimal arithmetic coding and a number
of novel side-channel blinding countermeasure techniques to create BLZZRD, a practical, compact,
and more quantum-resistant variant of the BLISS Ring-LWE Signature Scheme. We show how the
hash-based random oracle can be modified to be more secure against quantum preimage attacks while
decreasing signature size at any given security level. Most lattice-based cryptographic algorithms re-
quire non-uniformly distributed ciphertext, signature, and public/private key data to be stored and
transmitted; hence there is a requirement for compression. Arithmetic Coding offers an informa-
tion theoretically optimal compression for stationary and memoryless sources, such as the discrete
Gaussian distributions often used in Lattice-based cryptography. We show that this technique gives
better signature sizes than the previously proposed advanced Huffman-based compressors. We further
demonstrate that arithmetic decoding from an uniform source to target distribution is also an optimal
Gaussian sampling method in the sense that a minimal amount of true random bits is required. Per-
formance of the new Binary Arithmetic Coding (BAC) sampler is comparable to other mainstream
samplers. The same code, tables, or circuitry can be utilised for both tasks, eliminating the need
for separate sampling and compression components. We also describe a simple blinding technique
that can be applied to anti-cyclic polynomial multiplication to mask timing- and power consumption
side-channels in ring arithmetic. We further show that Gaussian sampling can also be blinded by a
split-and-permute technique while reducing the size of required CDF tables.

Keywords: Ring-LWE, BLISS, BLZZRD, Arithmetic coding, Lattice Side Channels.

1 Introduction

Recent years have seen an increased focus on Lattice-based and other “quantum-resistant” public key
cryptography, which has been also fuelled by official governmental warnings and endorsements [1,4,5,23].

However, standardisation efforts for these new algorithms are only starting [6] and post-quantum al-
gorithms clearly have not yet reached the level of maturity that is expected from traditional cryptosystems
such as RSA or Elliptic Curve systems. Lattice-based public key algorithms have been especially criti-
cised for their key and signature/ciphertext sizes, and for their lack of resistance against side-channel
attacks. This paper describes a number of novel implementation techniques that address these issues.

The BLISS (Bimodal Lattice Signature Scheme) was proposed in CRYPTO 2013 by Ducas, Durmus,
Lepoint, and Lyubashevsky [8] and offers some of the most compact and efficient lattice-based signatures
currently available. A recent survey of practical lattice-based signature schemes [14] found BLISS to offer
state-of-the-art performance and recommended it for practical use. The scheme has been implemented in
FPGA hardware [26], on 8-bit embedded AVR target [20], and has been distributed as a part of the
strongSwan production-quality IPsec VPN suite. Relevant hardware implementation techniques are also
considered in [28]. We use BLISS as basis for our evolutionary new Ring-LWE signature implementation,
dubbed BLZZRD.
⋆ This work was funded by the European Union H2020 SAFEcrypto project (grant no. 644729).

Structure of this paper and our main contributions. After describing the notation (Section 2.1) and
the original BLISS scheme (Section 2.2 and Appendix A), we move to our discoveries:

1. Grover’s Attack on Random Oracle can be mounted with a Quantum Computer against many
signature algorithms. The attack can be applied against the random oracle component of BLISS
(Section 2.3). We show how to modify the algorithm and its security parameters to counter this attack
with small overhead (Section 2.4).

2. Arithmetic Coding is ideally suited for compression of stationary distributions (Section 3.1) aris-
ing in Lattice cryptography, achieving near-optimal efficiency. We show how a Binary Arithmetic
Coder (BAC) can be implemented with limited precision (Section 3.2 and Appendix B), and used to
compress Ring-LWE signatures (Section 3.3).

3. Gaussian sampling can be implemented with a BAC. The same arithmetic coding tables, code,
and circuitry can also be used to efficiently implement Gaussian sampling, another major operation
required in Lattice cryptosystems (Section 3.4). The resulting sampler is optimal in the sense that it
requires a minimum number of true random bits.

4. Polynomial Blinding is an efficient ring-arithmetic side-channel countermeasure. It can be used to
hide details of time or energy consumption in individual field element operations via randomisation.
This countermeasure can can be implemented with a minimal impact on performance or footprint of
the scheme (Section 4.1).

5. Split Shuffled Sampling is a general side-channel countermeasure for Gaussian samplers. Here two
or more Gaussian sample vectors are randomised and added to each other, masking the properties of
individual samples that may leak during the random sampling process (Section 4.2).

Some efficient implementation tricks for tasks such as computation of the discrete Gaussian distribution
are also described. We further take advantage of recent advances in security proof techniques, indicating
a smaller precision requirement which results leads to smaller, faster implementations.

2 BLISS and BLZZRD

BLISS is a Ring-LWE public key signature algorithm proposed by Ducas, Durmus, Lepoint, and Lyuba-
shevsky [8]. We use the more recent BLISS-B variant [7] as basis of our work. We refer the reader to
these works for security analysis and other design rationale of the original proposals. Since BLZZRD
is an evolutionary improvement with compressed signatures and side-channel resistant countermeasures,
we concentrate on these specific implementation techniques in present work.

2.1 Conventions and Notation

Arithmetic is performed in a cyclotomic ring R = Zq[x]/(x
n + 1) where q is a small prime. Such a

ring is anti-circulant as xn ≡ −1 (mod xn + 1). Arithmetic in this ring can be performed efficiently via
Number Theoretic Transforms (NTT, finite field FFT) when n divides q − 1 and n is a power of 2.

Non-boldface fi denotes individual coefficients of polynomial f =
∑n−1

i=0 fix
i. Hence f ∈ R is a ring

element, while fi ∈ Zq . We use a ∗ b =
∑n−1

i=0

∑n−1
j=0 aibjx

i+j to denote the product of polynomials
a and b. For anti-circulant rings of degree n we always have fi+n = −fi. We may therefore reduce
fi = (−1)⌊i/n⌋fi mod n for all i ∈ Z.

2

We interchangeably use polynomials as zero-indexed vectors; dot product is defined as a · b =∑n−1
i=0 aibj , the Euclidean norms are ∥a∥2 = a · a, ∥a∥2 =

√
a · a, and sup norm ∥a∥∞ is the largest

absolute value max{|a0|, |a1|, . . . , |an−1|}. ⌊x⌉ = ⌊x+ 1
2⌋ denotes the closest integer to x.

A discrete Gaussian distribution with mean µ, deviation σ and variance σ2 is denotedNZ(µ, σ
2). We

use exclusively zero-centered (µ = 0) distributions. See Section 3.1 for definitions and further discussion.
In pseudocode we use ∧,∨,¬ symbols to denote bitwise Boolean manipulation of two’s complement

integers. A binary modular reduction operator mod n returns an integer in range [0, n− 1].

2.2 Description of BLISS

Appendix A contains an algorithmic description of the BLISS signature scheme. Our description differs
somewhat from the original description which is even more dense. We used the original reference im-
plementation1 and the strongSwan “production grade” implementation2 to verify the correctness of our
interpretation. Various parameters, symbols, and security claims used in descriptions are given in Table
5. These are the parameters used by both the publications and can also be found in the implementations.

Key Generation. The BLISS-B key generation is perhaps the simplest part of the scheme. Algorithm 3
describes the process. The BLISS-B key generation procedure differs from original BLISS in that keys
are not rejected based on an additional norm.

Signature Algorithm. Algorithm 4 describes the signature generation method. Here we note that the
purpose of the random oracle H is to take the input (w,M) and hash it into a vector of length n that has
exactly κ ones, with other entries being zero (the vector can also be interpreted as a polynomial in the
ring). The reference implementation is an ad hoc construction based on SHA-512 [34]; the strongSwan
implementation now uses the MGF1 construction [15]. We use a two-stage random oracle described in
Section 2.4. The BLISS-B signature method differs from BLISS in steps 8-15 of Algorithm 4; this is the
Greedy Sign Choices algorithm for minimising the norm ∥c · t∥+ ∥c · u∥. Otherwise the algorithms are
equivalent and BLISS can even be used to verify BLISS-B signatures without modification.

Signature Verification. The BLISS signature verification process is given as Algorithm 5. We note
that verification is very fast; only two quick checks for norm bounds and a single ring multiplication is
required in addition to a call to the random oracle.

2.3 Security of the Random Oracle

Is there a trivial way to forge a signature (t, z, c) that will pass signature verification (Algorithm 5) for
some public key a and message M? We can easily choose arbitrary t and z that pass pass steps 1 and 2
(norm bounds). What is left is the matching of the oracle outputs c ?

= c⋆. There are
(
n
κ

)
possible ways for

H(w,M) to construct a vector with κ entries as 1, and remaining n− κ entries being zero.
Examining the older BLISS reference implementations we find that c may not transmitted or used as

vector (or a sorted list) but as an unsorted output of the oracle; in this case there are n!
(n−κ)! possibilities.

To get from list (ordered set) matching to vector (unordered set) matching complexity, one can simply
rearrange the input c values in the signature to match the output from the oracle for the forged message
M (note that this is not as easy with our revised Oracle described in Section 2.4.) These entropies (given
in Table 1) appear to be consistent with security claims.

1 Original BLISS reference implementations are available from: http://bliss.di.ens.fr/
2 strongSwan BLISS page: https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

3

http://bliss.di.ens.fr/
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

Table 1. Complexity of exhaustive forgery attack on the hash-based random oracle H , based on entropy. The param-
eters used by new variant given below. The new variant does not communicate the c vector itself, but an intermediate
hash that can be used to deterministically generate it. BLZZRD does not contain an equivalent of “toy” BLISS-0.

Variant / Attack I II III IV

Original BLISS n, κ 512, 23 512, 23 512, 30 512, 39
Orig. c entropy, bits 131.82 131.82 161.04 195.02

Orig. bits on wire (κ log2 n) 207 207 270 351
Orig. Grover’s search security 66 66 80 96

BLZZRD n, κ 512, 58 512, 58 512, 82 512, 113
New c entropy, bits 256.81 256.81 320.58 385.30

New intermediate hash θ, bits 256 256 384 384
New Grover’s search security 128 128 160 192

This is reasonable in classical computing where O(2H) preimage search is required where H is the
entropy of target range; however the signer herself can create a signature that matches two different
messages with relative ease. BLISS signatures are therefore not collision resistant. We note that preimage
search is one of the things that quantum computers do well. This leads us the following simple theorem:

Theorem 1 (Exhaustive Quantum Forgery). A quantum adversary can forge an arbitrary BLISS sig-

nature with O
(√(

n
κ

))
complexity.

Proof. With fixed t and c in Algorithm 5 one can mount an exhaustive preimage search to find some
message M or small-norm vector ∆z = z − z′ that satisfies c = H(w + ∆z,M). This search with

Grover’s Algorithm [12,13] will require π
4

√(
n
κ

)
lookups. This is optimal for a quantum search [36]. ⊓⊔

We observe that with the suggested parameters and security levels in Tables 5 and 1, the security level
against a quantum adversary falls short of the target; for example BLISS-I and BLISS-II with claimed
128-bit security would fall with complexity of roughly 266.

2.4 New Random Oracle

With n = 512, a trivial encoding of c requires 9κ bits for transmitting the indexes. In BLZZRD the c
vector itself (or the nonzero index set) is not transmitted. An intermediate function Hi(w,M) is first used
to compute a θ-bit random hash cθ. The intermediate then can be converted to the c vector with ones at
exactly κ positions via Ho oracle function:

c = H(w,M) = Ho (Hi(w,M)) . (1)

BLZZRD uses the SHA3 hash function and SHAKE XOF [33,34]. Hi is implemented with SHA3-
256 or SHA3-384, depending on corresponding θ value:

cθ = Hi(w,M) = SHA3− θ(w |M). (2)

Contents of w = (w0 | w1 | · · · | wn−1) are encoded as network byte order 16-bit integers. To produce
the c indexes, SHA3’s SHAKE256 extendable-output function (XOF) is used. The cθ intermediate hash
is used to seed the XOF, from which an arbitrary number of 16-bit big-endian values can be extracted.
These are masked to index range [0, n−1] and rejected if already contained in c. This process is repeated
until κ ones are found for the c vector.

4

Note that SHAKE256 accepts an arbitrary-sized input “key” and has an internal chaining capacity of
512 bits. Its collision resistance as a hash function is at 256-bit security level, and this is also its security
level against a quantum preimage attack; more than adequate for 128-, 160-, and 192- bit security goals.

When transmitting or comparing signatures (Algorithms 4 and 5) we may use cθ instead of the full c
vector or index set. This leads to more compact signatures. See Table 1 for numerical values for θ; it has
been chosen to be the double of the of the security parameter to counter the Quantum Forgery Attack of
Theorem 1. The new κ parameter is chosen so that

(
n
κ

)
> 2θ.

The increased κ has an impact on both signature creation and verification speed, and also the rejec-
tion ratio (Step 18 in Algorithm 4.) Experimentally the slowdown is less than 30% in all cases. This is
somewhat arbitrary due to the flippant fashion that the constant M is determined in [8]. The repetition
rates given in that paper do not appear to exactly correspond to reality.

3 Discrete Gaussians and Arithmetic Coding

Obtaining random numbers from a Gaussian (Normal) or other non-uniform distributions is called sam-
pling. Cryptographically secure sampling is required by many Lattice-based cryptographic algorithms;
see [9] for an overview.

3.1 Gaussian Sampling

A random sampler from a zero-centered discrete Gaussian distribution NZ(0, σ
2) returns integer x ∈ Z

with probability given by density function ρσ(x). This probability mass of discrete Gaussian distribution
at x is exactly proportional to ρσ(x) ∝ exp(− x2

2σ2), where σ is a deviation parameter (See Figure 1). For
σ ⪆ 2 we can approximate it to high precision with

ρσ(x) ≈
1

σ
√
2π

e−
x2

2σ2 . (3)

Tailcut. As |x| grows, ρσ(x) eventually diminishes into statistical insignificance. We may choose a cryp-
tographic threshold parameter such as ϵ = 2−128 and simply ignore all |x| > τ when 2

∑
x>τ ρσ(x) ≤ ϵ.

Therefore the probability that a random x from the distribution satisfies−τ < x < τ is greater than 1−ϵ.
We call τ the “tailcut parameter”. It’s typical numerical value for ϵ = 2−128 bound is related to deviation
by roughly τ = 13.2σ.

Efficient computation of density tables. Evaluation of transcendental functions (such as exp) is slow
if generic algorithms are used. We can derive two parameters b = exp(− 1

2σ2) and c = 1/σ
√
2π for

any given deviation σ. Equation 3 can now be written as ρσ(x) = cb(x
2). Since x2 ∈ Z, square-and-

multiply exponentiation algorithms (analogous to those used for modular exponentiation) may be used
to efficiently compute the power b(x

2) at arbitrary x ∈ Z. All arithmetic can be kept at fixed point range
[0, 1] for convenience.

When tabulating the density, due to symmetry ρσ(x) = ρσ(−x) we consider the sequence t0, t1, t2, ..
with ti = ρσ(i). The observe that the ratio of consecutive values satisfies ti+1

ti
= ui = b2i+1 and

furthermore ui+1

ui
= b2. We arrive at the following recurrence:

t0 = c u0 = b Initialise.
ti = ti−1ui−1 ui = b2ui−1 For i ≥ 1. b2 computed only once. (4)

The algorithm of Equation 4 computes consecutive discrete Gaussian density function values with only
two multiplications per point (b2 stays constant).

5

..
0.0250

.

0.0500

.

0.0750

.

0.1000

.

0.1250

.

0.1500

.

0.1750

.
-8

.
-7

.
-6

.
-5

.
-4

.
-3

.
-2

.
-1

.
0
.

1
.

2
.

3
.

4
.

5
.

6
.

7
.

8
. x.

p(x)

Fig. 1. The green bars illustrate the probability mass for integers x ∈ Z with a σ = 2.5 discrete Gaussian distribution
(Equation 3). Blue line is the corresponding continuous probability density function.

Gaussian sampling algorithms. We first analyse the “inversion sampler” which is one way of using
uniform random bits to select an element from the target distribution by inverting its cumulative distribu-
tion. Since NZ(0, σ

2) is symmetric we can define a cumulative sequence si =
∑i

x=−i ρσ(x). It can be
computed as an extension of sequences of Equation 4 via s0 = t0 and si = si−1 + 2ti. Clearly the sum
of all probabilities converges to s∞ = 1.

For cryptographic applications we can assume a source of unbiased random bits zi ∈ {0, 1}. A
sequence of n random bits can be viewed as real-valued z ∈ [0, 1] via binary fraction z = 0.z1z2z3 . . . zn.
When n is finite, z1, z2, ..zn only defines a range of size 2−n. For uniformly (n =∞) random z ∈ [0, 1]
the corresponding sampled integer x can be derived with additional random sign bit via

x =

{
0 if z < s0,
±i if si−1 ≤ z < si for i ≥ 1.

(5)

This corresponds to “inversion sampling”, and can be implemented via a binary search into monotonically
increasing table si by first randomising a large number of bits to create a high-precision real number z.

Methods such as Inversion Sampling [24], Knuth-Yao Sampling [17], The Ziggurat Method [3,10,21,22],
Kahn-Karney Sampling [16], and “Bernoulli” sampling [8] have been proposed for lattice cryptography.

3.2 Arithmetic Coding

Information theory [31,32] tells us that the average entropy of a stationary and memoryless discrete source
such as Ω = NZ(0, σ

2) is

H(Ω) = H
(
NZ(0, σ

2)
)
= −

∞∑
x=−∞

ρσ(x) log2 ρσ(x) bits/symbol. (6)

Equation 6 gives us a lower bound for bits required to represent any discrete Gaussian sequence; this is
also the expected number of random entropy bits required in sampling.

Theorem 2. Arithmetic coding is optimal for a static and memoryless discrete source Ω in the sense that
it is able to encode n symbols from such a source into nH(Ω) +O(1) data bits.

Proof. See Section 1.5 of [30]. ⊓⊔

6

..

3

.

2

.

1

.

0

.

0

.
1

.

0.07935..

.
0.15702..

.

0.13583..

.
0.14483..

.

0.14237..

.
0.14341..

.

5

.

10

.

10

.

0.14285..

.

0.14285..

.

0.0

.

0.1

.

0.2

.

0.3

.

0.4

.

0.5

.

0.6

.

0.7

.

0.8

.
0.9

.1.0 .

0

.
1

.

0

.
.4202

.

.0350

.
.4202

.

.0350

.
.1570

.

0

.

8

.

0

.

4

.

0

.

2

.

0

.

1

Fig. 2. In this toy example we are encoding discrete Gaussian with σ = 2.5 with tail cutting applied at ≈ 0.001
level; the range is −7 . . . 7 and the integers fit 4 bits. For convenience the distribution is centred at 8 average (high
bit flip). Left side shows the operation of binary sample decoding; this corresponds to binary search within the
cumulative distribution. On each step either min or max bound is set to divisor value. Only one scaling multiplication
and comparison is required. Four bits yields the output 0+4+0+1 = 5. Right side illustrates decoding of multiple
samples. Output (5, 10, 10) corresponds to (−3, 2, 2) when adjusted to zero centre. After decoding 3 samples the
bounds min = 0.14237..10 = 0.0010010001110..2 and max = 0.14285..10 = 0.0010010010010..2 already match
in 8 binary fraction bits. Both bounds and the input fraction can be shifted left, discarding the integer bits.

We implemented a Binary Arithmetic Code (BAC) [11] encoder and decoder for a static (non-dynamic)
distribution. Implementation details of the codec were inspired by [30]. Our implementation is in C lan-
guage and uses 64-bit fixed point precision, and is highly portable. Importantly, we pose no specific limits
on buffer carry bit backpropagation, such as “bit stuffing” used in Q-Coder hardware architecture [25].

Pseudocode for our arithmetic coding algorithms is included in Appendix B. The coding and decod-
ing procedure is illustrated by Figure 2. Exhaustive testing with various distributions was performed to
verify the correct operation of the codec. The C implementation is about 250 lines, including the table to
construct relevant discrete Gaussian distributions.

3.3 Compressing signatures

We have implemented arithmetic coding compression and decompression for the t component of sig-
natures generated with new BLZZRD parameters. The z vector was also modelled as discrete Gaussian
with a small σ. See Table 2 for our parameters and experimental results. Rather than transmitting the c
vector indexes, an intermediate hash of θ bits is transmitted. The last line gives the experimental average
signature sizes, including overhead required to encode parameter and array sizes.

Comparison with a Huffman Code. The extended version of [26] describes an advanced “block” Huff-
man encoding technique for the BLISS-1 parameter set. The codec achieves good performance (for a
Huffman code) by assigning codes to quadruplets

(
⌊ abs(t2i)28 ⌋, ⌊ abs(t2i+1)

28 ⌋, z2i, z2i+1

)
rather than indi-

vidual ti and zi values. The lower 8 bits of ti values is stored as they are, and up to four sign bits are
stored for nonzero entries.

We note that the 64-entry Huffman tree given in Appendix B of [26] for BLISS-I can only encode
values in range −1023 ≤ ti ≤ 1023. Since ti comes from Gaussian distribution with σ = 215, there

7

Table 2. BLZZRD signature compression using Binary Arithmetic Coding.

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV

Security target, bits 128 128 160 192
Revised κ 58 58 82 113

Arith. code σ for t 215 107 250 271
Arith. code σ for z 0.4792 0.4352 0.646 1.136

Intermediate hash θ 256 256 384 384
Avg. compressed t 5079.2 4563.8 5190.6 5250.2
Avg. compressed z 486.0 326.9 779.3 1206.1
Encoding overhead 32 32 32 32

Signature average, bits 5843.2 5178.7 6385.9 6872.3

is a probability of P = 1 −
∑1023

x=−1023 ρσ(x) ≈ 2−18.98 that individual ti values will overflow and a
probability of 1 − (1 − P)n ≈ 2−9.98 (or roughly one in thousand) that an individual t signature vector
cannot be compressed using the proposed code.

Ignoring these frequent overflow conditions, our exhaustive testing has showed that the block Huff-
man codec compresses (t, z) to an average of 5650.1 bits/signature while the arithmetic coder achieves
only a slightly better result, 5565.2 bits/signature. Furthermore, [26] states that “c does not contain any
easily removable redundancy”, and therefore κ log2(n) = 207 bits are used. This is not strictly accurate
as our new oracle (Section 2.4) requires a smaller number of bits. In case of the original BLISS-I security
parameters only θ = 128 bits would would be required, a 38% drop. For BLZZRD-I, we have κ = 58
and θ = 256, indicating a reduction to less than half of the corresponding plain BLISS encoding size.

3.4 Sampling with an Arithmetic Decoder

An interesting consequence of the information theoretic optimality of an arithmetic coder is that when
the decoder is fed uniform random bits, it will output random samples in the desired target distribution.
Therefore the same code, circuitry, and tables that are used to compress signatures can double as a random
sampler as well. We have utilised the algorithm 10 in Appendix B as a Gaussian sampler in this fashion.
With precision P = 64 we may reasonably expect to reach a security level close to 128-bit level, based
on the “Valiant-Valiant” sampling Theorem and conjectures [29].

Table 3 gives performance characteristics of our initial implementation. The binary search CDF sam-
pler used tables of size 212 and an additional sign bit, whereas the BAC sampler used tables of size 213

without special coding for sign bits. The random usage was calculated from average number of random
bytes used to sample vectors of length n = 512. The table also includes numbers for a blinded sampler
(Section 4.2). Precision of P = 64 was used in all cases.

We note that Knuth-Yao can be also be expected to utilise a small number of bits, shown to average
H + 2 bits per sample [17]. Furthermore Knuth-Yao always uses a whole number of bits per sample,
whereas the BAC sampler can be utilised to create vectors of samples where bits of entropy are “shared”
between individual samples. For BLZZRD parameters the actual randomness usage of Knuth-Yao is about
16% higher than the BAC sampler for vectors of length n = 512. We note that Knuth-Yao, as interpreted
in works such as [27], is suitable primarily for small deviations used in Ring-LWE encryption (σ ≈ 3),
not for larger σ required by BLISS / BLZZRD.

We conclude that even though the BAC sampler requires a scaling multiplication for binary step, it
is still comparable in speed to the inverse CDF sampler. The main advantage of the BAC sampler is that
it uses a very small number of true random bits; the actual random usage is typically within 1.3% of the
theoretical minimum for vector sizes used on Lattice cryptography.

8

Table 3. Sampling with an Arithmetic Coder vs a simple inverse CDF sampler on a Core i7-5600U @ 2.6 GHz. Note
that P = 64 precision was also used for BLZZRD-III and BLZZRD-IV, even though it is really not sufficient
above 128-bit security level. The same precision was used for all samplers.

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Deviation σ 215 107 250 271

Entropy H
(
NZ(0, σ

2)
)

9.7953 8.7886 10.013 10.129
BAC Sampler

Random bits / Sample 9.9261 8.9194 10.144 10.260
Samples / Second 8,900,000 9,600,000 8,800,000 8,800,000

CDF Sampler
Random bits / Sample 64 64 64 64

Samples / Second 8,672,000 8,408,000 8,704,000 8,440,000
Blinded CDF (m = 2).
Random bits / Sample 128 128 128 128

Samples / Second 3,400,000 3,400,000 3.400,000 3,400,000

4 Randomised Side-Channel Countermeasures for Ring-LWE

Blinding is a standard countermeasure against both the timing attack [18] and emissions-based attacks
such as Differential Power Analysis [19] for traditional public key cryptosystems. Blinding countermea-
sures add randomness to private key operations, making determination of secrets from observations more
difficult for the attacker. In case of RSA, there are two kinds of blinding, base blinding and exponent
blinding. In case of ECC, scalar blinding can be used.

Examining private key operations Ring-LWE cryptosystems, we note that there are two main compo-
nents that can introduce side-channel vulnerabilities to the implementation; ring polynomial arithmetic
and Gaussian sampling. We have implemented analogous blinding countermeasures against both. For
BLISS/BLZZRD (Algorithm 4), special note should be made to implement the GreedySC component
using side-channel resistant techniques as well.

4.1 Blinded Polynomial Multiplication

Basic arithmetic in Zq and especially the modular reduction by small prime q may easily introduce emis-
sions to a Ring-LWE implementation. For example the arithmetic operations described for a low-resource
Ring-LWE implementation in [20] contain a number of conditional execution cases.

The simplest form of polynomial blinding is to multiply polynomials with random constants a, b ∈
Zq . This can be done in regular or NTT domain; the results are equivalent. One can set a = b−1 or
multiply the result by c = (ab)−1:

h = af ∗ bg
f ∗ g = (ab)−1h.

Note that anti-cyclic NTT multiplication requires each polynomial to be “pre-processed” by multiplying
entries with tabulated roots of unity ωi anyway. Therefore by choosing a = ωi, a = ωj , this type of
blinding can be done with virtually no extra cost. The normalisation constant becomes c = ω−i−j .

An another type of blinding of anti-cyclic polynomial multiplication can be achieved via circularly
“shifting” the polynomials. As noted in Section 2.1, we may write a polynomial as f =

∑n−1
i=0 fix

i.

9

Shifting by j positions is equivalent to computing

xjf =
n−1∑
i=0

fix
i+j =

n−1∑
i=0

fi−jx
i. (7)

Here the coefficients are therefore simply rotated in anti-cyclic fashion. Both constant multiplication and
shifting by c are captured by function PolyBlind:

Algorithm 1 PolyBlind(v, s, c) returns vector v of length n shifted by s, 0 ≤ s < n positions and
multiplied with a constant c.
1: for i = 0, 1, . . . n− s− 1 do
2: v′i ← (cv(i+s)) mod q Lower half, original sign.
3: end for
4: for i = n− s, . . . n− 1 do
5: v′i ← (q − cv(i+s−n)) mod q Upper half, changed sign.
6: end for

Output: Blinded vector v′.

Algorithm PolyBlind is very fast. The inverse operation PolyBlind′(v,−s, c−1), distinguished by a
negative shift value s, is equally easy to construct. With that function, we have

PolyBlind′(PolyBlind(v, s, c),−s, c−1) = v for all v, 0 ≤ s < n, 0 < c < q. (8)

Due to isometries of the anti-circulant ring, we can use a total of four blinding parameters: a, b (constants)
and r, s (shift values) in the blinded scheme to compute the polynomial product f ∗ g:

f ′ = PolyBlind(f , r, a) for random 0 ≤ r < n, 0 < a < q

g′ = PolyBlind(g, s, b) for random 0 ≤ s < n, 0 < b < q

h′ = f ′ ∗ g′

f ∗ g = PolyBlind′
(
h′,−(r + s), (ab)−1

)
.

One may choose a and b from tabulated roots of unity; a = ωi, a = ωj and avoid computing the inverse
since (ab)−1 = ω−(i+j). This type of blinding has a relatively small performance penalty.

If roots of unity are used as constants, the total amount of “noise;; entropy introduced constants and
shifting is 4 log2(n) = 36 bits, increasing the number of required observations by a significant factor.

4.2 Blinded Gaussian Sampling

We note that the BLISS/BLZZRD algorithm always samples vectors of n variables at once. We define a
function VectorSample(n, σ) = Nn

Z (0, σ
2) that produces a vector of n samples from discrete Gaussian

with deviation parameter σ. Step 1 of signature Algorithm 4 can be written as

(t,u)← (VectorSample(n, σ),VectorSample(n, σ)). (9)

If VectorSample is implemented naively as a loop, emissions from the implementation may reveal
information about the random numbers being sampled and attacker may determine which elements of
the random vector have specific features, as is done in the cache attack of [2]. This may be alleviated to

10

Table 4. Parameters for Z ≈ X+kY split samplers, where Z is the target distributionNZ(0, σ), k is a small integer
constant, and X and Y come fromNZ(0, σ

′) with σ′ = 1
σ

√
1 + k2. This is an approximation; ϵ = 1

2
||Z−X+kY ||1

gives the statistical distance (total variation distance) between the two. Here we want ϵ2 < 1
n

where n is a security
parameter indicating the number of samples required to distinguish the distribution by “Valiant-Valiant” [29,35].

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Deviation σ 215 107 250 271
Constant k 11 8 12 12

Split deviation σ′ 17.8548 13.2717 20.7614 22.5053
Distance ϵ 2−89.1 2−76.8 2−85.3 2−100.1

some degree by using VectorShuffle(VectorSample(n, σ)), which is just a random shuffle of the Gaussian
sample vector.

From probability theory we know that the sum of any two discrete Gaussian distributions is a discrete
Gaussian distribution. More precisely, variances (which is the square of deviation) are additive. Let X and
Y have distributionsNZ(µX , σ2

X) andNZ(µY , σ
2
Y), respectively. Then their sum X +Y has distribution

NZ(µX + µY , σ
2
X + σ2

Y). With zero-centered distributions the average does not change, but the resulting
deviation will be σX+Y =

√
σ2
X + σ2

Y . By induction, this generalises to more variables. We use this
property to create a more secure Gaussian vector sampler.

Algorithm 2 VectorBlindSample(n,m, σ) returnsNn
Z (0, σ

2) using m iterations of random blinding.
1: x← 0 Initialise with a vector of zeroes.
2: for i = 1, 2, . . . ,m do
3: x← x+Nn

Z

(
0, (1√

m
σ)2

)
Deviation of added elements is 1√

m
σ.

4: x← VectorShuffle(x) Shuffle elements of the vector.
5: end for

Output: Sampled vector x.

Algorithm 2 can be used in the signature algorithm as described by Equation 9. Note that the individ-
ual samples come from a different distribution with σ′ = 1√

m
σ; one cannot use the original distribution

and then “divide” the results by m, as this will not result in the correct distribution.
As was pointed out in [26], one can also choose σ′ = σ√

1+k2
and construct the final distribution as

Z = X+kY . The k parameter must be carefully chosen so that the statistical distance to the actual target
distribution is not too great. Table 4 gives some appropriate parameters to use. The resulting construction
can be written as

v = VectorShuffle(VectorSample(n, σ′)) + k ∗ VectorShuffle(VectorSample(n, σ′)). (10)

Here all elements of the second vector are simply multiplied by the integer constant k. The algorithm
has a performance impediment factor of m or less. However, fast “leakier” algorithms may be used. More
significantly, the required tables are much smaller. For example, a CDF table of only 256 entries gives a
secure tailcut at τ = 14.34σ for BLZZRD-I with parameters of Table 4.

The amount of noise entropy introduced by the permutations is technically technically in thousands
of bits. Even though this does not directly translate to attack complexity, we expect this countermeasure
to make emissions- and cache-based attacks on the sampler significantly harder.

11

5 Conclusions

We have offered a number of techniques that can be used to improve the security and performance of Ring-
LWE public key algorithms. Using these techniques, we constructed BLZZRD, a practical, evolutionary
variant of the BLISS-B signature scheme. An experimental implementation that contains many of the fea-
tures described in this document is available at https://github.com/mjosaarinen/blzzrd.

We have described a direct Grover’s attack on the random oracle component of the BLISS signature
scheme. In order to counter this attack, a new hash-based random oracle is proposed, with an increased
κ variable an “intermediate” hash, which reduces signature size. It is currently not easy to estimate the
security of many other components of BLISS/BLZZRD against quantum attacks, but the new random
oracle parameters are consistent with suggested quantum-resistant key sizes for symmetric ciphers [23].

Ring-LWE algorithms have discrete Gaussian variables in signatures and ciphertexts. We show that
arithmetic coding can be used to compress these quantities in essentially optimal fashion. We describe an
efficient Binary Arithmetic Coder (BAC) that produces smaller signatures than previous compressors. A
somewhat surprising finding is that arithmetic coders can easily be used to construct Gaussian Samplers
that have comparable performance (millions of samples per second) to other dedicated samplers, but
require only a (optimally) small amount of true random bits.

Standard “blinding” side-channel countermeasures for public key algorithms introduce randomness
(noise) into private key operations, thus making determination of secrets more difficult. In Ring-LWE
cryptography, the main components used by private key operations are ring arithmetic and Non-uniform
(Gaussian) random sampling.

For ring arithmetic, we introduce “blinded polynomial multiplication”, a simple randomisation tech-
nique based of constant multiplication and rotation of polynomials. This technique is cheap to implement
and utilises the specific isometries of the types of anti-circulant rings often used in Ring-LWE.

For Gaussian sampling, we note that Ring-LWE algorithms typically require vectors rather than indi-
vidual samples. We show that sampling processes can be blinded by shuffling these vectors and convo-
luting multiple Gaussian distributions with each other. This may also result in a smaller implementation
footprint since the size of required CDF tables becomes smaller.

References

1. National Security Agency. NSA suite B cryptography: Cryptography today, August 2015. URL: https:
//www.nsa.gov/ia/programs/suiteb_cryptography/.

2. Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, gauss, and reload – a cache
attack on the BLISS lattice-based signature scheme. IACR ePrint 2016/300, 2016. URL: https://eprint.
iacr.org/2016/300.

3. Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and Patrick Weiden. Discrete ziggurat:
A time-memory trade-off for sampling from a gaussian distribution over the integers. In Tanja Lange, Kristin
Lauter, and Petr Lisonĕk, editors, SAC 2013, volume 8282 of LNCS, pages 402–417. Springer, 2014. Extended
version available as IACR ePrint 2014/510. URL: https://eprint.iacr.org/2013/510, doi:10.
1007/978-3-662-43414-7_20.

4. Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. ETSI 2nd Quantum-
Safe Crypto Workshop in partnership with the IQC, October 2014. URL: https://docbox.etsi.org/
Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf.

5. CESG. Quantum key distribution: A cesg white paper, February 2016. URL: https://www.cesg.gov.
uk/white-papers/quantum-key-distribution.

6. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel Smith-Tone.
Report on post-quantum cryptography. NISTIR 8105, DRAFT, February 2016. URL: http://csrc.nist.
gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf.

7. Léo Ducas. Accelerating Bliss: the geometry of ternary polynomials. IACR ePrint 2014/874, 2014. URL:
https://eprint.iacr.org/2014/874.

12

https://github.com/mjosaarinen/blzzrd
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://eprint.iacr.org/2016/300
https://eprint.iacr.org/2016/300
https://eprint.iacr.org/2013/510
http://dx.doi.org/10.1007/978-3-662-43414-7_20
http://dx.doi.org/10.1007/978-3-662-43414-7_20
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
https://eprint.iacr.org/2014/874

8. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal
gaussians. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, pages 40–56. Springer, 2013. Ex-
tended version available as IACR ePrint 2013/383. URL: https://eprint.iacr.org/2013/383,
doi:10.1007/978-3-642-40041-4_3.

9. Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete gaussians for lattice-based cryptog-
raphy on a constrained device. Applicable Algebra in Engineering, Communication and Computing, 25(3):159–
180, June 2014. doi:10.1007/s00200-014-0218-3.

10. Hassan Edrees, Brian Cheung, McCullen Sandora, David B. Nummey, and Deian Stefan. Hardware-optimized
ziggurat algorithm for high-speed gaussian random number generators. In Toomas P. Plaks, editor, ERSA
2009, pages 254–260. CSREA Press, 2009. URL: http://sprocom.cooper.edu/sprocom2/pubs/
conference/ecsns2009ersa.pdf.

11. Jr. Glen G. Langdon. An introduction to arithmetic coding. IBM Journal of Research and Development,
28(2):135–149, 1984.

12. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’96, pages 212–219. ACM, 1996. URL: http:
//arxiv.org/abs/quant-ph/9605043, doi:10.1145/237814.237866.

13. Lov K. Grover. From schrödingers equation to the quantum search algorithm. American Journal of Physics,
69(7):769–777, 2001. URL: http://arxiv.org/abs/quant-ph/0109116, doi:10.1119/1.
1359518.

14. James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim Güneysu. Practical lattice-
based digital signature schemes. ACM Trans. Embed. Comput. Syst., 14(3):41:1–24, April 2015. doi:10.
1145/2724713.

15. Jakob Jonsson and Burt Kaliski. Public-key cryptography standards (PKCS) #1: RSA cryptography specifica-
tions version 2.1. IETF RFC 3447, February 2003. URL: https://tools.ietf.org/html/rfc3447,
doi:10.17487/RFC3447.

16. Charles F. F. Karney. Sampling exactly from the normal distribution, 2014. Preprint arXiv:1303.6257, Version
2. URL: http://arxiv.org/abs/1303.6257.

17. Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number generation. In Joseph F.
Traub, editor, Algorithms and Complexity: New Directions and Recent Results, pages 357–428, New York, 1976.
Academic Press.

18. Paul Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS, pages 104–113. Springer, 1996. doi:10.1007/
3-540-68697-5_9.

19. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael Wiener, editor, CRYPTO
’99, volume 1666 of LNCS, pages 388–397. Springer, 1999. doi:10.1007/3-540-48405-1_25.

20. Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and Ingrid Verbauwhede. Efficient
Ring-LWE encryption on 8-bit AVR processors. In Tim Güneysu and Helena Handschuh, editors, CHES 2015,
volume 9293 of LNCS, pages 663–682. Springer, 2015. doi:10.1007/978-3-662-48324-4_33.

21. George Marsaglia and Wai Wan Tsang. A fast, easily implemented method for sampling from decreasing or
symmetric unimodal density functions. SIAM Journal on Scientific and Statistical Computing, 5(2):349–359,
1984. doi:10.1137/0905026.

22. George Marsaglia and Wai Wan Tsang. The ziggurat method for generating random variables. Journal of
Statistical Software, 5(8):1–7, October 2000. URL: http://www.jstatsoft.org/v05/i08.

23. Committee on National Security Systems. Use of public standards for the secure sharing of information among
national security systems. CNSS Advisory Memorandum, Information Assurance 02-15, July 2015.

24. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 80–97. Springer, 2010. doi:10.1007/978-3-642-14623-7_5.

25. William B. Pennebaker, Joan L. Mitchell, Jr. Glen G. Langdon, and Ronald B. Arps. An overview of the ba-
sic principles of the Q-coder adaptive binary arithmetic coder. IBM Journal of Research and Development,
32(6):717–726, 1988.

26. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on reconfigurable hard-
ware. In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of LNCS, pages 353–370.
Springer, 2014. Extended version available as IACR ePrint 2014/254. URL: https://eprint.iacr.
org/2014/254, doi:10.1007/978-3-662-44709-3_20.

13

https://eprint.iacr.org/2013/383
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/s00200-014-0218-3
http://sprocom.cooper.edu/sprocom2/pubs/conference/ecsns2009ersa.pdf
http://sprocom.cooper.edu/sprocom2/pubs/conference/ecsns2009ersa.pdf
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/0109116
http://dx.doi.org/10.1119/1.1359518
http://dx.doi.org/10.1119/1.1359518
http://dx.doi.org/10.1145/2724713
http://dx.doi.org/10.1145/2724713
https://tools.ietf.org/html/rfc3447
http://dx.doi.org/10.17487/RFC3447
http://arxiv.org/abs/1303.6257
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1137/0905026
http://www.jstatsoft.org/v05/i08
http://dx.doi.org/10.1007/978-3-642-14623-7_5
https://eprint.iacr.org/2014/254
https://eprint.iacr.org/2014/254
http://dx.doi.org/10.1007/978-3-662-44709-3_20

27. Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. Compact and side channel
secure discrete gaussian sampling. IACR ePrint 2014/591, 2014. URL: https://eprint.iacr.org/
2014/591.

28. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Verbauwhede.
Compact ring-lwe cryptoprocessor. In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume
8731 of LNCS, pages 371–391. Springer, 2014. URL: https://eprint.iacr.org/2013/866, doi:
10.1007/978-3-662-44709-3_21.

29. Markku-Juhani O. Saarinen. Gaussian sampling precision in lattice cryptography. IACR ePrint 2015/953, Octo-
ber 2015. URL: https://eprint.iacr.org/2015/953.

30. Amir Said. Introduction to arithmetic coding - theory and practice. In Khalid Sayood, editor, Lossless Compres-
sion Handbook. Academic Press, 2002. Chapter also published as HP Technical report HPL-2004-76. URL:
http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf.

31. Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,
July 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

32. Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:623–656,
October 1948. doi:10.1002/j.1538-7305.1948.tb00917.x.

33. Federal Information Processing Standards. Secure Hash Standard (SHS). Federal Information Processing Stan-
dards Publication 180-4, August 2015. doi:10.6028/NIST.FIPS.180-4.

34. Federal Information Processing Standards. SHA-3 standard: Permutation-based hash and extendable-output
functions. Federal Information Processing Standards Publication 197, August 2015. doi:10.6028/NIST.
FIPS.202.

35. Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal identity testing. In FOCS
2014, pages 51–60. IEEE Computer Society, 2014. Full version available as http://theory.stanford.
edu/~valiant/papers/instanceOptFull.pdf. doi:10.1109/FOCS.2014.14.

36. Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A, 60:2746–2751, Oc-
tober 1999. URL: http://arxiv.org/abs/quant-ph/9711070, doi:10.1103/PhysRevA.60.
2746.

A The BLISS-B Signature Algorithm

This section contains pseudocode for original BLISS-B key generation (Algorithm 3, signature (Algo-
rithm 4) and signature verification (Algorithm 5) procedures. See Section 2.2 for further information. The
original security parameters are given in Table 5. These are unmodified for BLZZRD apart from κ.

Table 5. Original parameter sets and security targets for BLISS-B from [7,8,26].

Scheme BLISS-B0 BLISS-BI BLISS-BII BLISS-BIII BLISS-BIV
Optimised for Fun Speed Size Security Security
Security target ≤ 60 bits 128 bits 128 bits 160 bits 192 bits

Degree n 256 512 512 512 512
Modulus q 7681 12289 12289 12289 12289

Secret key density δ1, δ2 0.55, 0.15 0.3, 0.0 0.3, 0.0 0.42, 0.03 0.45, 0.06
Deviation σ 100 215 107 250 271

Ratio α 0.748 1.610 0.801 1.216 1.027
Repetition rate M 2.44 1.21 2.18 1.40 1.61

Challenge weight κ 12 23 23 30 39
Truncation params d, p 5, 480 10, 24 10, 24 9, 48 8, 96
Verification bound B2 2492 12878 11074 10206 9901
Verification bound B∞ 530 2100 1563 1760 1613

14

https://eprint.iacr.org/2014/591
https://eprint.iacr.org/2014/591
https://eprint.iacr.org/2013/866
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
https://eprint.iacr.org/2015/953
http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://theory.stanford.edu/~valiant/papers/instanceOptFull.pdf
http://theory.stanford.edu/~valiant/papers/instanceOptFull.pdf
http://dx.doi.org/10.1109/FOCS.2014.14
http://arxiv.org/abs/quant-ph/9711070
http://dx.doi.org/10.1103/PhysRevA.60.2746
http://dx.doi.org/10.1103/PhysRevA.60.2746

Algorithm 3 BLISS-B [7,8] Key Generation. f and g are polynomials in cyclotomic ring Zq[x]/(x
n+1).

Arithmetic for Number Theoretic Transforms is performed mod q

1: (f ,g)← Uniform polynomials with exactly ⌈δ1n⌉ entries in {±1} and ⌈δ2n⌉ entries in {±2}.
2: g← 2g + 1 All but g0 are even ({±2} or {±4})).
3: a← g/f . Restart if f is not invertible. Quick division via Number Theoretic Transform.

Output: Private key (f ,g) and public key a.

Algorithm 4 BLISS-B [7,8] Signature algorithm. H(w,M) is a deterministic random oracle that pro-
duces a vector with κ ones from input. Note the ring polynomial anti-circulant wraparound; fi+n = −fi.
Input: Private key (f ,g) and public key a = g/f .
Input: Message to be signed M.

1: (t,u)←
(
Nn

Z (0, σ2),Nn
Z (0, σ2)

)
All coefficients are discrete Gaussians.

2: v← t ∗ a Multiplication in the ring using NTT.
3: for i = 0, 1, . . . , n− 1 do
4: vi ←

(
(q + 1)vi + ui

)
mod 2q Equivalent to adding q to vi if odd, then ui.

5: wi = ⌊ vi2d ⌉ mod p Truncation to nearest integer, limit by p = ⌊2d−1q⌋.
6: end for
7: c← H(w,M) Using w and M, create a vector with κ ones.
8: (a,b)← (0,0) Init the “GreedySC” sign choices algorithm.
9: for all ci = 1 do

10: if
(∑n−1

j=0 fjai+j + gjbi+j

)
≥ 0 then

11: (a,b)← (a,b)− xi(f ,g) Shift both f and g by i positions for subtraction.
12: else
13: (a,b)← (a,b) + xi(f ,g) Add. Anti-circulant shift for norm minimisation.
14: end if
15: end for
16: s← Random bit. Randomise sign.
17: (t,u)← (t,u) + (−1)s(a,b)
18: Continue with probability 1/

(
M exp

(
− ∥a∥2+∥b∥2

2σ2

)
cosh

(
t·a+u·b

σ2

))
, otherwise restart.

19: for i = 0, 1, . . . , n− 1 do
20: zi ← wi − ⌊ vi−ui

2d
⌉ mod p Create “rounding correction” for the signature.

21: end for
Output: Message signature is (t, z, c).

Algorithm 5 BLISS-B [7,8] Signature verification.
Input: Public key a.
Input: Signature (t, z, c) and message M.

1: Reject if
√
∥t∥2 + 22d∥z∥2 > B2 Euclidean norm bound check.

2: Reject if max(∥t∥∞, 2d∥z∥∞) > B∞ Suprenum norm bound check.
3: v← t ∗ a Ring arithmetic using NTT mod q.
4: for i = 0, 1, . . . , n− 1 do
5: vi ← (q + 1)vi + ciq mod 2q Adding q to vi if vi is odd, and / or ci = 1.
6: wi ← ⌊ vi2d ⌉+ zi mod p Truncated value “corrected” with signature z.
7: end for
8: c⋆ ← H(w,M) Run the oracle on w and M, compare.

Output: Accept signature if c = c⋆.

15

B Pseudocode for Binary Arithmetic Coder (BAC) used by BLZZRD

Our implementation was heavily inspired by [30], but modified into a Binary Arithmetic Coder (BAC).
Constants used to define the BLZZRD BAC are as follows:

P Bit precision used by the implementation. For BLZZRD we used P = 64.
D Alphabet size in bits. For discrete Gaussians, we need 2D > 2τ (See Section 3.1).

With a BAC, an alphabet of size 2D can be viewed as a binary tree of depth D. For each one of the D
binary decisions in encoding or decoding, a single comparison is required.

The input frequencies can be arbitrarily scaled “counts”. The probability of occurrence of x is

Pr(x) =
freq[x]∑2D−1

i=0 freq[i]
. (11)

Given a table of frequencies freq[2D], function BuildDist (Algorithm 6) creates a corresponding
scaled BAC distribution table “tree” dist[2D] that is used by both encoding and decoding functions.

Algorithm 6 BuildDist. Create a scaled BAC distribution tree from alphabet frequency counts.
Input: freq[2D], a frequency count for alphabet.

1: for i = 2D−1, . . . 8, 4, 2, 1 do
2: j ← 0
3: while j < 2D do
4: c0 ←

∑j+i−1
k=j freq[k] “Left” tree branch count for 0.

5: c1 ←
∑j+2i−1

k=i+j freq[k] “Right” branch count for 1.

6: dist[i+ j]←
⌊

2P c0
c0+c1

⌋
Division point scaled to [0, 2P − 1].

7: j ← j + 2i Big step.
8: end while
9: end for

Output: dist[2D], a BAC distribution tree.

The internal variables used by main BAC routines as follows. Note that interpretation of “input” and
“output” differs for encoding and decoding, as does the size of a word.

n Size of the decoded vector of words.
b, l The interval is [b, b+ l − 1]. Can be implemented with P -bit arithmetic.
c Scaled binary division point, P bits.
x Current input byte or word.
ibit Input bit counter.
ibuf[] Input vector. Indexed by iptr as ibuf[iptr].
owrd Stores an output word and carry bits; must have a type large enough for additional carry bits.
obit Output bit counter.
obuf[] Output vector. Indexed by olen as obuf[olen].

The encoding routine AriEncode (Algorithm 8) requires a helper function StoreWithCarry (Algorithm
7) to propagate carries. Arithmetic coding routines generally require an output buffer as these carries
cannot be reliably predicted. The decoding routine AriDecode (Algorithm 10) utilises a helper function
ShiftGetBit (Algorithm 9) to get new bits into the working variable x.

Document version 20160318135200.

16

Algorithm 7 StoreWithCarry(b). Stores the highest bit of b to variable owrd. If the byte is full, it is
stored to obuf[olen], while also adjusting the carry if necessary.
1: owrd← 2 owrd+

⌊
b

2P−1

⌋
Add highest bit of b to output, shift left

2: obit← obit+ 1 Output bit counter.
3: if obit ≥ 8 then
4: obuf[olen]← owrd mod 28

5: i← olen Index for carry propagation.
6: while (owrd ≥ 28) and (i > 0) do
7: i← i− 1 Proceed left.
8: owrd←

⌊
owrd
28

⌋
+ obuf[i]

9: obuf[i]← owrd mod 28 Add carry to bytes until done.
10: end while
11: obit← 0, owrd← 0, olen← olen+ 1 Full byte output.
12: end if

Algorithm 8 AriEncode. Perform Arithmetic Coding on a sequence of input words.
Input: ibuf[n]: A sequence of n input words from the alphabet.
Input: dist[2D]: A BAC distribution tree table constructed with BuildDist.

1: b← 0, l← 2P − 1 Initial base b and range l.
2: owrd← 0, obit← 0, olen← 0 Initialise StoreWithCarry output variables.
3: for iptr = 0, 1, 2, . . . n− 1 do
4: x = ibuf[iptr]. Get a new input word x.
5: for ibit = D − 1 . . . , 2, 1, 0 do
6: c← dist[

(
x ∧ (2P − 2ibit)

)
∨ 2ibit] Get centre point from masked BAC frequency table.

7: c←
⌊

lc
2P

⌋
Scale c to [0, l[.

8: if (x ∧ 2ibit) = 0 then
9: l← c Input bit is 0: select lower part.

10: else
11: b← b+ c, l← l − c Input bit is 1: select higher part.
12: if b > 2P then
13: b← b− 2P , owrd← owrd+ 1 Carry. Note: owrd’s type should not overflow.
14: end if
15: end if
16: while l < 2P−1 do
17: StoreWithCarry(b) Store the highest bit of b.
18: b← 2b mod 2P , l← 2l mod 2P Shift bounds left.
19: end while
20: end for
21: end for
22: while b > 0 or owrd ̸= 0 do
23: StoreWithCarry(b) Purge remaining nonzero bits from b.
24: b← 2b mod 2P Shift b bound left.
25: end while
Output: obuf[olen], a byte vector with the encoded data.

17

Algorithm 9 ShiftGetBit(x). Shifts x left and fetches a new bit from ibuf byte array.
1: ibit← ibit− 1 Decrease number of available bits.
2: if ibit < 0 then
3: if iptr < ilen then
4: iwrd← ibuf[iptr] Get a new byte.
5: iptr← iptr + 1
6: else
7: iwrd← 0 Assume zeros.
8: end if
9: ibit← 7 Manage input pointers.

10: end if
11: x← (2x mod 2P) + (

⌊
iwrd
2ibit

⌋
mod 2) Shift x left, add a bit from iwrd at the bottom.

Algorithm 10 AriDecode. Perform Arithmetic Decoding on a sequence of input bytes.
Input: ibuf[ilen]: A sequence of input bytes.
Input: dist[2D]: A BAC distribution tree table constructed with BuildDist.

1: b← 0, l← 2P − 1, x← 0 Initial base b, range l, and input variable x.
2: iwrd← 0, iptr← 0, ibit← 0 Initialise input pointers.
3: for i = 1, 2, . . . P do
4: ShiftGetBit(x) Fill up x with P input bits.
5: end for
6: for optr = 0, 1, 2, . . . n− 1 do
7: owrd← 0 Zero this output word.
8: for obit = D − 1 . . . , 2, 1, 0 do
9: c← dist[

(
owrd ∧ (2P − 2obit)

)
∨ 2obit] Get centre point from masked BAC frequency table.

10: c←
⌊

lc
2P

⌋
Scale c to [0, l[.

11: if x− b < c then
12: l← c Output bit 0: Select lower part, reduce range.
13: else
14: b← b+ c Output bit 1: Select upper part.
15: l← l − c Reduce range.
16: owrd← owrd ∨ 2obit Store bit.
17: end if
18: while l < 2P−1 do
19: ShiftGetBit(x) Add an input bit to x.
20: b← 2b mod 2P , l← 2l Shift bounds left.
21: end while
22: end for
23: obuf[optr]← owrd Store the output word.
24: end for
Output: obuf[n], a word vector with the decoded data.

18

	Arithmetic Coding and Blinding for Lattice Cryptography

