
Noname manuscript No.
(will be inserted by the editor)

Arithmetic Coding and
Blinding Countermeasures
for Lattice Signatures
Engineering a Side-Channel Resistant
Post-Quantum Signature Scheme with
Compact Signatures

Markku-Juhani
O. Saarinen

Manuscript version of Wednesday 12th October, 2016

Abstract We describe new arithmetic coding
techniques and side-channel blinding countermea-
sures for lattice-based cryptography. Using these
techniques, we develop a practical, compact, and
more quantum-resistant variant of the BLISS Ideal
Lattice Signature Scheme. We first show how the
BLISS parameters and hash-based random oracle
can be modified to be more secure against quan-
tum pre-image attacks while optimizing signature
size. Arithmetic Coding offers an information the-
oretically optimal compression for stationary and
memoryless sources, such as the discrete Gaussian
distributions often present in lattice-based cryp-
tography. We show that this technique gives bet-
ter signature sizes than the previously proposed
advanced Huffman-based signature compressors.
We further demonstrate that arithmetic decoding
from an uniform source to target distribution is
also an optimal non-uniform sampling method in
the sense that a minimal amount of true random
bits is required. Performance of this new Binary
Arithmetic Coding (BAC) sampler is comparable
to other practical samplers. The same code, tables,

Markku-Juhani O. Saarinen, Dark Matter LLC, Abu Dhabi.
E-mail: markku.saarinen@darkmatter.ae
Part of this work was funded by the European Union H2020
SAFEcrypto project (grant no. 644729) while the Author
was visiting CSIT, Queen’s University Belfast, UK.

or circuitry can be utilized for both tasks, eliminat-
ing the need for separate sampling and compres-
sion components. We then describe simple ran-
domized blinding techniques that can be applied
to anti-cyclic polynomial multiplication to mask
timing- and power consumption side-channels in
ring arithmetic. We further show that the Gaus-
sian sampling process can also be blinded by a
split-and-permute techniques as an effective coun-
termeasure against side-channel attacks.

Keywords Lattice Signatures · Arithmetic
coding · Side-Channel Countermeasures ·
Quantum Resistant Cryptography · BLISS

1 Introduction

Recent years have seen an increased focus on
Lattice-based and other “quantum-resistant” pub-
lic key cryptography for classical computers,
which has also been fueled by official governmen-
tal warnings and endorsements [4,5,7,27].

However, standardization efforts for these new
algorithms are only starting [6] and post-quantum
algorithms clearly have not yet reached the level
of maturity that is expected from traditional cryp-
tosystems (RSA or Elliptic Curve). Lattice-based
public key algorithms have been criticized for their
key and signature / ciphertext sizes, and for their
lack of resistance against side-channel attacks.
This paper offers a number of novel implementa-
tion techniques that address these issues.

The BLISS (Bimodal Lattice Signature
Scheme) was proposed in CRYPTO 2013 by
Ducas, Durmus, Lepoint, and Lyubashevsky [9]
and offers some of the most compact and efficient
lattice-based signatures currently available. A
recent survey of practical lattice-based signature
schemes [17] found BLISS to offer state-of-the-art
performance and recommended it for practical
use. The scheme has been implemented in FPGA
hardware [30], on an 8-bit AVR target [24], and
has been distributed as a part of the strongSwan
IPsec VPN suite. Relevant hardware implemen-
tation techniques are also considered in [33].
We use BLISS as basis for our new lattice-based
signature implementation, dubbed BLZZRD.

After describing the notation (Section 2.1) and
the original BLISS scheme (Section 2.2), we move
to our new discoveries:

1. Grover’s Attack on Random Oracle can be
mounted with a Quantum Computer against
many signature algorithms. The attack can be
applied against the random oracle component
of BLISS (Section 3). We show how to mod-
ify the algorithm and its security parameters to
counter this attack with small overhead (Sec-
tion 3.1).

2. Arithmetic Coding is ideally suited for com-
pression of stationary distributions (Section
4.1) arising in Lattice cryptography, achiev-
ing near-optimal efficiency. We show how a
Binary Arithmetic Coder (BAC) can be im-
plemented with limited precision (Section 5),
and used to compress lattice signatures (Sec-
tion 5.2).

3. Gaussian sampling can be implemented
with a BAC. The same arithmetic coding ta-
bles, code, and circuitry can also be used to
efficiently implement Gaussian sampling, an-
other major operation required in Lattice cryp-
tosystems (Section 5.4). The resulting sampler
is optimal in the sense that it requires a mini-
mum number of true random bits.

4. Polynomial Blinding is an efficient ring-
arithmetic side-channel countermeasure. It
hides the details of time or energy consump-
tion of individual arithmetic operations via
randomization. Polynomial blinding can be
implemented with a minimal impact on over-
all performance or footprint (Section 6.1).

5. Split Shuffled Sampling is a general side-
channel countermeasure for Gaussian sam-
plers. Here two or more sample vectors are
randomized and combined with each other,
masking the properties of individual samples
during the random sampling process (Sec-
tion 6.2). This is an effective countermeasure
against attacks such as the cache attack pre-
sented against BLISS in CHES 2016 [2].

Some efficient implementation tricks for tasks
such as computation of the discrete Gaussian dis-
tribution are also described. We further take ad-
vantage of recent advances in security proof tech-
niques, indicating a smaller precision requirement
which results leads to smaller, faster implementa-
tions.

2 BLISS and BLZZRD

BLISS is an lattice public key signature algorithm
proposed by Ducas, Durmus, Lepoint, and Lyuba-
shevsky [9]. We use the more recent BLISS-B
variant [8] as basis of our work. We refer the
reader to these works for security analysis and
other design rationale of the original proposals.
Since BLZZRD is an improvement with quan-
tum resistance, compressed signatures, and side-
channel resistant countermeasures, we concentrate
on these specific implementation techniques in
present work.

2.1 Conventions and Notation

Arithmetic is performed in a cyclotomic ring R =

Zq[x]/(xn + 1) where q is a small prime. Such a
ring is anti-circulant as xn ≡ −1 (mod xn + 1).
Arithmetic in this ring can be performed efficiently
via Number Theoretic Transforms (NTT, finite
field FFT) when n divides q − 1 and n is a power
of 2.

Non-boldface fi denotes individual coeffi-
cients of polynomial f =

∑n−1
i=0 fix

i. Hence
f ∈ R is a ring element, while fi ∈ Zq . We
use a ∗ b =

∑n−1
i=0

∑n−1
j=0 aibjx

i+j to denote the
product of polynomials a and b. For anti-circulant
rings of degree n we always have fi+n = −fi. We
may therefore reduce fi = (−1)bi/ncfi mod n for
all i ∈ Z.

We interchangeably use polynomials as zero-
indexed vectors; dot product is defined as a · b =∑n−1
i=0 aibj , the Euclidean norms are ‖a‖2 = a ·a,

‖a‖2 =
√
a · a, and sup norm ‖a‖∞ is the largest

absolute value max{|a0|, |a1|, . . . , |an−1|}. bxe =
bx+ 1

2c denotes the closest integer to x.

2

Table 1 Original parameter sets and security targets for BLISS-B from [8,9,30].

Scheme BLISS-B0 BLISS-BI BLISS-BII BLISS-BIII BLISS-BIV
Optimized for Fun Speed Size Security Security
Security target ≤ 60 bits 128 bits 128 bits 160 bits 192 bits

Degree n 256 512 512 512 512
Modulus q 7681 12289 12289 12289 12289

Secret key density δ1, δ2 0.55, 0.15 0.3, 0.0 0.3, 0.0 0.42, 0.03 0.45, 0.06
Deviation σ 100 215 107 250 271

Ratio α 0.748 1.610 0.801 1.216 1.027
Repetition rate M 2.44 1.21 2.18 1.40 1.61

Challenge weight κ 12 23 23 30 39
Truncation params d, p 5, 480 10, 24 10, 24 9, 48 8, 96
Verification bound B2 2492 12878 11074 10206 9901
Verification bound B∞ 530 2100 1563 1760 1613

A discrete Gaussian distribution with mean µ,
deviation σ and variance σ2 is denotedNZ(µ, σ

2).
We use exclusively zero-centered (µ = 0) distri-
butions. See Section 4.1 for definitions and further
discussion.

In pseudocode we use ∧,∨,¬ symbols to de-
note bitwise Boolean manipulation of two’s com-
plement integers. A binary modular reduction op-
erator mod n returns an integer in range [0, n−1].

2.2 Description of BLISS

Our description differs somewhat from the orig-
inal description (which is even more dense). We
used the original reference implementation1 and
the strongSwan “production grade” implementa-
tion2 to verify the correctness of our interpretation.

Various parameters, symbols, and security
claims used in descriptions are given in Table 1.
These are the parameters used by both the pub-
lications and can also be found in the implemen-
tations. These are unmodified for BLZZRD apart
from κ. See Section 2.2for further information.

2.3 Key Generation

The BLISS-B key generation is perhaps the sim-
plest part of the scheme. Algorithm 1 describes

1 Original BLISS reference implementations are avail-
able from: http://bliss.di.ens.fr/

2 strongSwan: https://wiki.strongswan.
org/projects/strongswan/wiki/BLISS

the process. The BLISS-B key generation proce-
dure differs from original BLISS in that keys are
not rejected based on an additional norm.

2.4 Creating Signatures

Algorithm 2 describes the signature generation
method. Here we note that the purpose of the ran-
dom oracle H is to take the input (w,M) and
hash it into a vector of length n that has exactly κ
ones, with other entries being zero (the vector can
also be interpreted as a polynomial in the ring).
The reference implementation is an ad hoc con-
struction based on SHA-512 [14]; the strongSwan
implementation now uses the MGF1 construction
[18]. We use a two-stage random oracle described
in Section 3.1. The BLISS-B signature method dif-
fers from BLISS in steps 8-15 of Algorithm 2; this
is the Greedy Sign Choices algorithm for minimiz-
ing the norm ‖c · t‖ + ‖c · u‖. Otherwise the al-
gorithms are equivalent and BLISS can even be
used to verify BLISS-B signatures without mod-
ification.

2.5 Verifying Signatures

The BLISS signature verification process is de-
scribed in Algorithm 3. We note that verification is
very fast; only two quick checks for norm bounds
and a single ring multiplication is required in ad-
dition to a call to the random oracle.

3

http://bliss.di.ens.fr/
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS
https://wiki.strongswan.org/projects/strongswan/wiki/BLISS

Algorithm 1 BLISS-B [8,9] Key Generation. f and g are polynomials in cyclotomic ring Zq[x]/(xn+1).
1: (f ,g)← Uniform polynomials with exactly dδ1ne entries in {±1} and dδ2ne entries in {±2}.
2: g← 2g + 1 All but g0 are even ({±2} or {±4})).
3: a← g/f . Restart if f is not invertible. Quick division via Number Theoretic Transform.

Output: Private key (f ,g) and public key a.

Algorithm 2 BLISS-B [8,9] Signature algorithm. H(w,M) is a deterministic random oracle that pro-
duces a vector with κ ones from input. Note the ring polynomial anti-circulant wraparound; fi+n = −fi.
Input: Private key (f ,g) and public key a = g/f .
Input: Message to be signed M.

1: (t,u)← (NnZ (0, σ2),NnZ (0, σ2)) All coefficients are discrete Gaussians.
2: v← t ∗ a Multiplication in the ring using NTT.
3: for i = 0, 1, . . . , n− 1 do
4: vi ←

(
(q + 1)vi + ui

)
mod 2q Equivalent to adding q to vi if odd, then ui.

5: wi = b vi2d e mod p Truncation to nearest integer, limit by p = b2d−1qc.
6: end for
7: c← H(w,M) Using w and M, create a vector with κ ones.
8: (a,b)← (0,0) Init the “GreedySC” sign choices algorithm.
9: for all ci = 1 do

10: if
(∑n−1

j=0 fjai+j + gjbi+j
)
≥ 0 then

11: (a,b)← (a,b)− xi(f ,g) Shift both f and g by i positions for subtraction.
12: else
13: (a,b)← (a,b) + xi(f ,g) Add. Anti-circulant shift for norm minimization.
14: end if
15: end for
16: s← Random bit. Randomize sign.
17: (t,u)← (t,u) + (−1)s(a,b)
18: Continue with probability 1/

(
M exp

(
−‖a‖

2+‖b‖2
2σ2

)
cosh

(
t·a+u·b
σ2

))
, otherwise restart.

19: for i = 0, 1, . . . , n− 1 do
20: zi ← wi − bvi−ui2d

e mod p Create “rounding correction” for the signature.
21: end for
Output: Message signature is (t, z, c).

Algorithm 3 BLISS-B [8,9] Signature verification.
Input: Public key a.
Input: Signature (t, z, c) and message M.

1: Reject if
√
‖t‖2 + 22d‖z‖2 > B2 Euclidean norm bound check.

2: Reject if max(‖t‖∞, 2d‖z‖∞) > B∞ Suprenum norm bound check.
3: v← t ∗ a Ring arithmetic using NTT mod q.
4: for i = 0, 1, . . . , n− 1 do
5: vi ← (q + 1)vi + ciq mod 2q Adding q to vi if vi is odd, and / or ci = 1.
6: wi ← b vi2d e+ zi mod p Truncated value “corrected” with signature z.
7: end for
8: c? ← H(w,M) Run the oracle on w and M, compare.

Output: Accept signature if c = c?.

3 Security of the Random Oracle

Is there a trivial way to forge a signature (t, z, c)

that will pass signature verification (Algorithm 3)
for some public key a and message M?

We can easily choose arbitrary t and z that
pass steps 1 and 2 (norm bounds). What is left is
the matching of the oracle outputs c

?
= c?. There

are
(
n
κ

)
possible ways for H(w,M) to construct

4

a vector with κ entries as 1, and remaining n − κ
entries being zero.

Examining the BLISS reference implementa-
tions, we find that c may not be transmitted or
used as a vector (or a sorted list) but as an unsorted
output of the oracle; in this case there are n!

(n−κ)!
possibilities. To get from list (ordered set) match-
ing to vector (unordered set) matching complex-
ity, one can simply rearrange the input c values in
the signature to match the output from the oracle
for the forged message M (note that this is not as
easy with our revised Oracle described in Section
3.1.) These entropies (given in Table 2) appear to
be consistent with security claims.

This is reasonable in classical computing
where O(2H) pre-image search is required where
H is the entropy of target range; however the
signer herself can create a signature that matches
two different messages with relative ease. BLISS
signatures are therefore not collision resistant.

We note that pre-image search is one of the
things that quantum computers do well. This leads
us the following simple theorem:

Theorem 1 (Exhaustive Quantum Forgery) A
quantum adversary can forge an arbitrary BLISS

signature with O
(√(

n
κ

))
complexity.

Proof With fixed t and c in Algorithm 3 one
can mount an exhaustive pre-image search to find
some message M or small-norm vector ∆z =

z − z′ that satisfies c = H(w + ∆z,M). This
search with Grover’s Algorithm [15,16] will re-

quire π
4

√(
n
κ

)
lookups. This is optimal for a quan-

tum search [39]. ut

We observe that with the suggested parameters
and security levels in Tables 1 and 2, the secu-
rity level against a quantum adversary falls short
of the target; for example, BLISS-I and BLISS-II
with claimed 128-bit security would fall with com-
plexity of roughly 266.

3.1 New Random Oracle

With n = 512, a trivial encoding of c requires 9κ
bits for transmitting the indexes. In BLZZRD the c

vector itself (or the nonzero index set) is not trans-
mitted. An intermediate functionHi(w,M) is first
used to compute a θ-bit random hash cθ. The inter-
mediate then can be converted to the c vector with
ones at exactly κ positions via Ho oracle function:

c = H(w,M) = Ho (Hi(w,M)) . (1)

Related random Oracle construction was also pro-
posed in [37], were hash function output was
extended using a PRNG. Fortunately we now
have a hash standard that directly supports XOFs
(eXtendable-Output Functions).

BLZZRD uses the SHA3 hash function and
SHAKE XOF [13,14]. Hi is implemented with
SHA3-256 or SHA3-384, depending on corre-
sponding θ value:

cθ = Hi(w,M) = SHA3− θ(w |M). (2)

Contents of w = (w0 | w1 | · · · | wn−1) are
encoded as network byte order 16-bit integers.
To produce the c indexes, SHA3’s SHAKE256
extendable-output function (XOF) is used. The cθ
intermediate hash is used to seed the XOF, from
which an arbitrary number of 16-bit big-endian
values can be extracted. These are masked to in-
dex range [0, n − 1] and rejected if already con-
tained in c. This process is repeated until κ ones
are found for the c vector.

Note that SHAKE256 accepts an arbitrary-
sized input “key” and has an internal chaining ca-
pacity of 512 bits. Its collision resistance as a hash
function is at 256-bit security level, and this is also
its security level against a quantum preimage at-
tack; more than adequate for 128-, 160-, and 192-
bit security goals.

When transmitting or comparing signatures
(Algorithms 2 and 3) we may use cθ instead of the
full c vector or index set. This leads to more com-
pact signatures. See Table 2 for numerical values
for θ; it has been chosen to be the double of the
of the security parameter to counter the Quantum
Forgery Attack of Theorem 1. The new κ parame-
ter is chosen so that

(
n
κ

)
> 2θ.

The increased κ has an impact on both signa-
ture creation and verification speed, and also the

5

Table 2 Complexity of exhaustive forgery attack on the hash-based random oracle H , based on entropy. The parameters
used by new variant given below. The new variant does not communicate the c vector itself, but an intermediate hash that
can be used to deterministically generate it. BLZZRD does not contain an equivalent of “toy” BLISS-0.

Variant / Attack I II III IV
Original BLISS n, κ 512, 23 512, 23 512, 30 512, 39
Orig. c entropy, bits 131.82 131.82 161.04 195.02

Orig. bits on wire (κ log2 n) 207 207 270 351
Orig. Grover’s search security 66 66 80 96

BLZZRD n, κ 512, 58 512, 58 512, 82 512, 113
New c entropy, bits 256.81 256.81 320.58 385.30

New intermediate hash θ, bits 256 256 384 384
New Grover’s search security 128 128 160 192

rejection ratio (Step 18 in Algorithm 2.) Exper-
imentally the slowdown is less than 30% in all
cases. This is somewhat arbitrary due to the fash-
ion that the constant M is determined in [9].

Resistance against general Quantum attacks.
Even though our modification of κ helps to secure
the scheme against this particular quantum attack,
it does not secure the scheme against others. We
suggest other authors to suggest revised parame-
ters for other parameters.

4 Discrete Gaussians

Obtaining random numbers from a Gaussian (Nor-
mal) or other non-uniform distributions is called
sampling. Cryptographically secure sampling is
required by many Lattice-based cryptographic al-
gorithms; see [10] for an overview.

4.1 Gaussian Sampling

A random sampler from a zero-centered discrete
Gaussian distribution NZ(0, σ

2) returns integer
x ∈ Z with probability given by density func-
tion ρσ(x). This probability mass of discrete Gaus-
sian distribution at x is exactly proportional to
ρσ(x) ∝ exp(− x2

2σ2), where σ is a deviation pa-
rameter (See Figure 1). For σ ' 2 we can approx-
imate it to high precision with

ρσ(x) ≈
1

σ
√
2π
e−

x2

2σ2 . (3)

0.0250
0.0500
0.0750
0.1000
0.1250
0.1500
0.1750

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
x

p(x)

Fig. 1 The green bars illustrate the probability mass for in-
tegers x ∈ Z with a σ = 2.5 discrete Gaussian distribu-
tion (Equation 3). Blue line is the corresponding continuous
probability density function.

4.2 Tailcut

As |x| grows, ρσ(x) eventually diminishes into
statistical insignificance. We may choose a cryp-
tographic threshold parameter such as ε =

2−128 and simply ignore all |x| > τ when
2
∑
x>τ ρσ(x) ≤ ε. Therefore the probability that

a random x from the distribution satisfies −τ <

x < τ is greater than 1 − ε. We call τ the “tail-
cut parameter”. It’s typical numerical value for
ε = 2−128 bound is related to deviation by roughly
τ = 13.2σ.

4.3 Efficient computation of density tables

Essentially all sampling algorithms require distri-
bution density tables. Evaluation of transcenden-
tal functions (such as exp) is slow if generic algo-
rithms are used.

6

We derive two parameters b = exp(− 1
2σ2)

and c = 1/σ
√
2π from deviation σ. Equation

3 can now be written as ρσ(x) = cb(x
2). Since

x2 ∈ Z, square-and-multiply exponentiation algo-
rithms (analogous to those used for modular expo-
nentiation) may be used to efficiently compute the
power b(x

2) at arbitrary x ∈ Z. Real values can
be kept at fixed point range [0, 1] if floating point
arithmetic is not available.

When tabulating the density, due to symme-
try ρσ(x) = ρσ(−x) we consider the sequence
t0, t1, t2, .. with ti = ρσ(i). By observing that the
ratio of consecutive values satisfies ti+1

ti
= ui =

b2i+1 we arrive at the following recurrence:

t0 = c u0 = b Initialize.
ti = ti−1ui−1 ui = b2ui−1 For i ≥ 1.

(4)

The algorithm of Equation 4 computes consecu-
tive discrete Gaussian density function values with
only two multiplications per point (b2 stays con-
stant). This new technique makes the table initial-
ization process much faster, a great advantage for
limited-resource implementations.

4.4 Gaussian sampling algorithms

We first analyze the “inversion sampler” which is
one way of using uniform random bits to select
an element from the target distribution by invert-
ing its cumulative distribution. Since NZ(0, σ

2) is
symmetric we can define a cumulative sequence
si =

∑i
x=−i ρσ(x). It can be computed as an ex-

tension of sequences of Equation 4 via s0 = t0 and
si = si−1+2ti. Clearly the sum of all probabilities
converges to s∞ = 1.

For cryptographic applications we can assume
a source of unbiased random bits zi ∈ {0, 1}.
A sequence of n random bits can be viewed as
real-valued z ∈ [0, 1] via binary fraction z =

0.z1z2z3 . . . zn. When n is finite, z1, z2, ..zn only
defines a range of size 2−n. For uniformly (n =

∞) random z ∈ [0, 1] the corresponding sampled
integer x can be derived with additional random
sign bit via

x =

{
0 if z < s0,

±i if si−1 ≤ z < si for i ≥ 1.
(5)

This corresponds to “inversion sampling”, and can
be implemented via a binary search into mono-
tonically increasing table si by first randomizing
a large number of bits to create a high-precision
real number z.

A wide variety of sampling methods such
as Inversion Sampling [28], Knuth-Yao Sampling
[20], The Ziggurat Method [3,11,25,26], Kahn-
Karney Sampling [19], and “Bernoulli” sampling
[9] have been proposed for lattice cryptography.

5 Arithmetic Coding

Arithmetic Coding is a classical data compres-
sion technique [31], notable for its optimality un-
der certain conditions. Information theory tells us
that the average entropy (in bits/symbol) of a sta-
tionary and memoryless discrete source such as
Ω = NZ(0, σ

2) is

H(Ω) = −
∞∑

x=−∞
ρσ(x) log2 ρσ(x). (6)

Equation 6 gives us a lower bound for bits required
to represent any discrete Gaussian sequence; this is
also the expected number of random entropy bits
required in sampling.

Theorem 2 Arithmetic coding is optimal for a
static and memoryless discrete source Ω in the
sense that it is able to encode n symbols from such
a source into nH(Ω) +O(1) data bits.

Proof See Section 1.5 of [35]. ut

5.1 Implementing a Binary Arithmetic Coder

Arithmetic Coding and Decoding can be imple-
mented in many ways. Binary Arithmetic Code
(BAC) [23] is one such approach. For BLZZRD
reference code, we implemented a BAC encoder
and decoder for a static (non-dynamic) distribu-
tion. Range scaling details of the new codec were
inspired by [35], even though that implementation
isn’t a BAC. See [38] for a classic implementation
of arithmetic coding.

7

Table 3 The internal variables used by main BAC routines.
Note that interpretation of “input” and “output” differs for
encoding and decoding, as does the size of a word.

n Size of the decoded vector of words.
b, l The interval is [b, b + l − 1]. Can be imple-

mented with P -bit arithmetic.
c Scaled binary division point, P bits.
x Current input byte or word.
ibit Input bit counter.
ibuf[] Input vector. Indexed by iptr as ibuf[iptr].
owrd Stores an output word and carry bits; must

have a type large enough for additional carry
bits.

obit Output bit counter.
obuf[] Output vector. Indexed by olen as obuf[olen].

Our implementation is in C language, uses 64-
bit fixed point precision, and is highly portable.
Importantly, we pose no specific limits on buffer
carry bit back-propagation, such as “bit stuffing”
used in Q-Coder hardware architecture [29]. Full
source is distributed together with the reference
implementation (see Section 7). The implementa-
tion is only about 250 lines.

Table 3 gives the variable conventions used in
the implementation. Constants used to define the
BLZZRD BAC are as follows:

P Bit precision used by the imple-
mentation. We used P = 64.

D Alphabet size in bits. For discrete
Gaussians, we need 2D > 2τ .

With a BAC, an alphabet of size 2D can be viewed
as a binary tree of depth D. For each one of the D
binary decisions in encoding or decoding, a single
comparison is required.

The input frequencies can be arbitrarily scaled
“counts”. The probability of occurrence of x is

Pr(x) =
freq[x]∑2D−1
i=0 freq[i]

. (7)

Given a table of frequencies freq[2D], function
BuildDist (Algorithm 4) creates a corresponding
scaled BAC distribution table “tree” dist[2D] that
is used by both encoding and decoding functions.

The encoding routine AriEncode (Algorithm
6) requires a helper function StoreWithCarry (Al-
gorithm 5) to propagate carries. Arithmetic coding

routines generally require an output buffer as these
carries cannot be reliably predicted. The decoding
routine AriDecode (Algorithm 8) utilizes a helper
function ShiftGetBit (Algorithm 7) to get new bits
into the working variable x.

The coding and decoding procedure is illus-
trated by Figure 2. Exhaustive testing with various
distributions was performed to verify the correct
operation of the codec.

5.2 Compressing Signatures

We have implemented arithmetic coding compres-
sion and decompression for the t component of
signatures generated with new BLZZRD parame-
ters. The z vector was also modelled as discrete
Gaussian with a small σ. See Table 4 for our
parameters and experimental results. Rather than
transmitting the c vector indexes, an intermediate
hash of θ bits is transmitted. The last line gives
the experimental average signature sizes, includ-
ing overhead required to encode parameter and ar-
ray sizes.

5.3 Comparison with a Huffman Code

The extended version of [30] describes an ad-
vanced “block” Huffman encoding technique for
the BLISS-1 parameter set. A similar technique is
also implemented in the strongSwan project.

The codec achieves good performance (for
a Huffman code) by assigning codes to quadru-
plets

(
b abs(t2i)28 c, b abs(t2i+1)

28 c, z2i, z2i+1

)
rather

than individual ti and zi values. The lower 8 bits
of ti values is stored as they are, and up to four
sign bits are stored for nonzero entries.

We note that the 64-entry Huffman tree given
in Appendix B of [30] for BLISS-I can only en-
code values in range −1023 ≤ ti ≤ 1023.
Since ti comes from Gaussian distribution with
σ = 215, there is a probability of P = 1 −∑1023
x=−1023 ρσ(x) ≈ 2−18.98 that individual ti val-

ues will overflow and a probability of 1 − (1 −
P)n ≈ 2−9.98 (or roughly one in thousand) that
an individual t signature vector cannot be com-
pressed using the proposed code.

8

Algorithm 4 BuildDist. Create a scaled BAC distribution tree from alphabet frequency counts.
Input: freq[2D], a frequency count for alphabet.

1: for i = 2D−1, . . . 8, 4, 2, 1 do
2: j ← 0
3: while j < 2D do
4: c0 ←

∑j+i−1
k=j freq[k] “Left” tree branch count for 0.

5: c1 ←
∑j+2i−1
k=i+j freq[k] “Right” branch count for 1.

6: dist[i+ j]←
⌊

2P c0
c0+c1

⌋
Division point scaled to [0, 2P − 1].

7: j ← j + 2i Big step.
8: end while
9: end for

Output: dist[2D], a BAC distribution tree.

Algorithm 5 StoreWithCarry(b). Stores the highest bit of b to variable owrd. If the byte is full, it is
stored to obuf[olen], while also adjusting the carry if necessary.
1: owrd← 2 owrd +

⌊
b

2P−1

⌋
Add highest bit of b to output, shift left

2: obit← obit + 1 Output bit counter.
3: if obit ≥ 8 then
4: obuf[olen]← owrd mod 28

5: i← olen Index for carry propagation.
6: while (owrd ≥ 28) and (i > 0) do
7: i← i− 1 Proceed left.
8: owrd←

⌊
owrd
28

⌋
+ obuf[i]

9: obuf[i]← owrd mod 28 Add carry to bytes until done.
10: end while
11: obit← 0, owrd← 0, olen← olen + 1 Full byte output.
12: end if

3 2 1 0 0

1

0.07935..

0.15702..

0.13583..

0.14483..

0.14237..

0.14341..

5

10 10

0.14285..

0.14285..

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

1

0

.4202

.0350

.4202

.0350

.1570

0

8

0

4

0

2

0

1

Fig. 2 In this toy example we are encoding discrete Gaussian with σ = 2.5 with tail cutting applied at ≈ 0.001 level; the
range is−7 . . . 7 and the integers fit 4 bits. For convenience the distribution is centered at 8 average (high bit flip). Left side
shows the operation of binary sample decoding; this corresponds to binary search within the cumulative distribution. On each
step either min or max bound is set to divisor value. Only one scaling multiplication and comparison is required. Four bits
yields the output 0+ 4+0+1 = 5. Right side illustrates decoding of multiple samples. Output (5, 10, 10) corresponds to
(−3, 2, 2) when adjusted to zero centre. After decoding 3 samples the bounds min = 0.14237..10 = 0.0010010001110..2
and max = 0.14285..10 = 0.0010010010010..2 already match in 8 binary fraction bits. Both bounds and the input
fraction can be shifted left, discarding the integer bits.

9

Algorithm 6 AriEncode. Perform Arithmetic Coding on a sequence of input words.
Input: ibuf[n]: A sequence of n input words from the alphabet.
Input: dist[2D]: A BAC distribution tree table constructed with BuildDist.

1: b← 0, l← 2P − 1 Initial base b and range l.
2: owrd← 0, obit← 0, olen← 0 Initialize StoreWithCarry output variables.
3: for iptr = 0, 1, 2, . . . n− 1 do
4: x = ibuf[iptr]. Get a new input word x.
5: for ibit = D − 1 . . . , 2, 1, 0 do
6: c← dist[

(
x ∧ (2P − 2ibit)

)
∨ 2ibit] Get centre point from masked BAC freq. table.

7: c←
⌊
lc
2P

⌋
Scale c to [0, l[.

8: if (x ∧ 2ibit) = 0 then
9: l← c Input bit is 0: select lower part.

10: else
11: b← b+ c, l← l − c Input bit is 1: select higher part.
12: if b > 2P then
13: b← b− 2P , owrd← owrd + 1 Carry. Note: owrd’s type should not overflow.
14: end if
15: end if
16: while l < 2P−1 do
17: StoreWithCarry(b) Store the highest bit of b.
18: b← 2b mod 2P , l← 2l mod 2P Shift bounds left.
19: end while
20: end for
21: end for
22: while b > 0 or owrd 6= 0 do
23: StoreWithCarry(b) Purge remaining nonzero bits from b.
24: b← 2b mod 2P Shift b bound left.
25: end while
Output: obuf[olen], a byte vector with the encoded data.

Algorithm 7 ShiftGetBit(x). Shifts x left and fetches a new bit from ibuf byte array.
1: ibit← ibit− 1 Decrease number of available bits.
2: if ibit < 0 then
3: if iptr < ilen then
4: iwrd← ibuf[iptr] Get a new byte.
5: iptr← iptr + 1
6: else
7: iwrd← 0 Assume zeros.
8: end if
9: ibit← 7 Manage input pointers.

10: end if
11: x← (2x mod 2P) + (

⌊
iwrd
2ibit

⌋
mod 2) Shift x left, add a bit from iwrd at the bottom.

Ignoring these frequent overflow conditions,
our exhaustive testing has showed that the block
Huffman codec compresses (t, z) to an av-
erage of 5650.1 bits/signature. Our arithmetic
coder achieves a slightly better result, 5565.2

bits/signature. A non-customized Huffman cod-
ing technique would yield significantly inferior re-
sults.

Furthermore, [30] states that “c does not con-
tain any easily removable redundancy”, and there-
fore κ log2(n) = 207 bits are used. This is not
strictly accurate as our new oracle (Section 3.1) re-
quires a smaller number of bits. In case of the orig-
inal BLISS-I security parameters only θ = 128

bits would be required, a 38% drop. For BLZZRD-
I, we have κ = 58 and θ = 256, indicating a re-

10

Algorithm 8 AriDecode. Perform Arithmetic Decoding on a sequence of input bytes.
Input: ibuf[ilen]: A sequence of input bytes.
Input: dist[2D]: A BAC distribution tree table constructed with BuildDist.

1: b← 0, l← 2P − 1, x← 0 Initial base b, range l, and input variable x.
2: iwrd← 0, iptr← 0, ibit← 0 Initialize input pointers.
3: for i = 1, 2, . . . P do
4: ShiftGetBit(x) Fill up x with P input bits.
5: end for
6: for optr = 0, 1, 2, . . . n− 1 do
7: owrd← 0 Zero this output word.
8: for obit = D − 1 . . . , 2, 1, 0 do
9: c← dist[

(
owrd ∧ (2P − 2obit)

)
∨ 2obit] Get centre point from masked BAC freq. table.

10: c←
⌊
lc
2P

⌋
Scale c to [0, l[.

11: if x− b < c then
12: l← c Output bit 0: Select lower part, reduce range.
13: else
14: b← b+ c Output bit 1: Select upper part.
15: l← l − c Reduce range.
16: owrd← owrd ∨ 2obit Store bit.
17: end if
18: while l < 2P−1 do
19: ShiftGetBit(x) Add an input bit to x.
20: b← 2b mod 2P , l← 2l Shift bounds left.
21: end while
22: end for
23: obuf[optr]← owrd Store the output word.
24: end for
Output: obuf[n], a word vector with the decoded data.

Table 4 BLZZRD signature compression using Binary Arithmetic Coding.

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Security target, bits 128 128 160 192

Revised κ 58 58 82 113
Arith. code σ for t 215 107 250 271
Arith. code σ for z 0.4792 0.4352 0.646 1.136
Intermediate hash θ 256 256 384 384
Avg. compressed t 5079.2 4563.8 5190.6 5250.2
Avg. compressed z 486.0 326.9 779.3 1206.1
Encoding overhead 32 32 32 32

Signature average, bits 5843.2 5178.7 6385.9 6872.3

duction to less than half of the corresponding plain
BLISS encoding size.

Arithmetic Coding is somewhat slower than
Huffman coding, but as can be observed in Table
7, compression is not a bottleneck in the signing
operation. Signature verification consists of a sin-
gle multiplication and is very fast anyway. As in-
dicated by Theorem 2, Arithmetic Coding is the
most efficient way to compress signatures with el-
ements from non-uniform but static distribution.

5.4 Sampling with an Arithmetic Decoder

An interesting consequence of the information the-
oretic optimality of an arithmetic coder is that
when the decoder is fed uniform random bits, it
will output random samples in the desired target
distribution. Therefore the same code, circuitry,
and tables that are used to compress signatures can
double as a random sampler as well. We have uti-
lized Algorithm 8 as a Gaussian sampler in this

11

fashion. With precision P = 64 we may reason-
ably expect to reach a security level close to 128-
bit level, based on the “Valiant-Valiant” sampling
Theorem and conjectures [34].

Table 5 gives performance characteristics of
our initial implementation. The binary search CDF
sampler used tables of size 212 and an additional
sign bit, whereas the BAC sampler used tables of
size 213 without special coding for sign bits. The
random usage was calculated from average num-
ber of random bytes used to sample vectors of
length n = 512. The table also includes numbers
for a blinded sampler (Section 6.2). Precision of
P = 64 was used in all cases and the speeds are
comparable. We observe that the main advantage
of the new BAC sampler is that it uses a very small
number of true random bits; the actual random us-
age is typically within 1.3% of the theoretical min-
imum for vector sizes used on Lattice cryptogra-
phy in experiments with our implementation.

By comparison, The Knuth-Yao sampler can
be also be expected to use a small number of bits,
shown to averageH+2 bits per sample [20]. How-
ever, Knuth-Yao always uses a whole number of
bits per sample whereas a BAC sampler can be
utilized to create vectors of samples where bits of
entropy are “shared” between individual samples.
This elementary property directly follows from
Theorem 2. In many ways the Knuth-Yao sampler
compares to an BAC sampler like Huffman Codes
compare to Arithmetic Compression.

For BLZZRD parameters the actual random-
ness usage of Knuth-Yao is about 16% higher than
the BAC sampler for vectors of length n = 512.
Knuth-Yao of [32] is suitable primarily for small
deviations used in Ring-LWE encryption (σ ≈ 3),
not for larger σ required by BLISS / BLZZRD.

6 Randomized Side-Channel Countermeasures
for Ideal Lattices

Blinding is a standard countermeasure against
both the timing attack [21] and emissions-based
attacks such as Differential Power Analysis [22]
for traditional public key cryptosystems. Blind-
ing countermeasures add randomness to private
key operations, making determination of secrets

from observations more difficult for the attacker.
In case of RSA, there are two kinds of blinding,
base blinding and exponent blinding. In case of
ECC, scalar blinding can be used.

Examining private key operations in lattice
cryptosystems, we note that there are two main
components that can introduce side-channel vul-
nerabilities to the implementation; ring polyno-
mial arithmetic and Gaussian sampling. We have
implemented analogous blinding countermeasures
against both. For BLISS/BLZZRD (Algorithm 2),
special note should be made to implement the
GreedySC component using side-channel resis-
tant techniques as well. An advanced cache attack
against a BLISS implementation was described in
CHES 2016 [2], which attacked the samplers of a
reference implementation.

6.1 Blinded Polynomial Multiplication

Basic arithmetic in Zq and especially the modu-
lar reduction by small prime q may easily intro-
duce emissions to an ideal lattice cryptography
implementation. For example, the arithmetic op-
erations described for a low-resource Ring-LWE
implementation in [24] contain a number of data-
conditional execution cases.

The simplest form of polynomial blinding is
to multiply polynomials with random constants
a, b ∈ Zq . This can be done in regular or NTT
domain; the results are equivalent. One can set
a = b−1 or multiply the result by c = (ab)−1:

h = af ∗ bg
f ∗ g = (ab)−1h.

Note that anti-cyclic NTT multiplication requires
each polynomial to be “pre-processed” by multi-
plying entries with tabulated roots of unity ωi any-
way. Therefore by choosing a = ωi, a = ωj ,
this type of blinding can be done with virtually
no extra cost. The normalization constant becomes
c = ω−i−j .

An another type of blinding of anti-cyclic
polynomial multiplication can be achieved via cir-
cularly “shifting” the polynomials. As noted in
Section 2.1, we may write a polynomial as f =

12

Table 5 Sampling with an Arithmetic Coder vs a simple inverse CDF sampler on a Core i7-5600U @ 2.6 GHz. Note that
P = 64 precision was also used for BLZZRD-III and BLZZRD-IV, even though it is really not sufficient above 128-bit
security level. The same precision was used for all samplers.

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Deviation σ 215 107 250 271

Entropy H (NZ(0, σ2)) 9.7953 8.7886 10.013 10.129
BAC Sampler

Random bits / Sample 9.9261 8.9194 10.144 10.260
Samples / Second 8,900,000 9,600,000 8,800,000 8,800,000

CDF Sampler
Random bits / Sample 64 64 64 64

Samples / Second 8,672,000 8,408,000 8,704,000 8,440,000
Blinded CDF (m = 2).
Random bits / Sample 128 128 128 128

Samples / Second 3,400,000 3,400,000 3.400,000 3,400,000

Algorithm 9 PolyBlind(v, s, c) returns vector v
of length n shifted by s, 0 ≤ s < n positions and
multiplied with a constant c.
1: for i = 0, 1, . . . n− s− 1 do
2: v′i ← (cv(i+s)) mod q
3: end for
4: for i = n− s, . . . n− 1 do
5: v′i ← (q − cv(i+s−n)) mod q
6: end for

Output: Blinded vector v′.

∑n−1
i=0 fix

i. Shifting by j positions is equivalent
to computing

xjf =

n−1∑
i=0

fix
i+j =

n−1∑
i=0

fi−jx
i. (8)

Here the coefficients are therefore simply rotated
in anti-cyclic fashion. Both constant multiplica-
tion and shifting by c are captured by function
PolyBlind (Algorithm 9).

Algorithm 9, PolyBlind is very fast. The
inverse operation PolyBlind′(v,−s, c−1), distin-
guished by a negative shift value s, is equally easy
to construct. With that function, we have

PolyBlind′(PolyBlind(v, s, c),−s, c−1) = v (9)

Due to isometries of the anti-circulant ring, we can
use a total of four blinding parameters: a, b (con-
stants) and r, s (shift values) in the blinded scheme
to compute the polynomial product f ∗ g:

f ′ = PolyBlind(f , r, a) 0 ≤ r < n, 0 < a < q

g′ = PolyBlind(g, s, b) 0 ≤ s < n, 0 < b < q

h′ = f ′ ∗ g′

f ∗ g = PolyBlind′
(
h′,−(r + s), (ab)−1

)
.

One may choose a and b from tabulated roots
of unity; a = ωi, a = ωj and avoid comput-
ing the inverse since (ab)−1 = ω−(i+j). This
type of blinding has a relatively small performance
penalty. If roots of unity are used as constants,
the total amount of “noise” entropy introduced is
4 log2(n) = 36 bits.

The basic blinding technique is generally ap-
plicable to schemes based on ideal lattices. For
example the optimized implementations of ring
arithmetic for the “New Hope” Ring-LWE key
exchange [1] can be blinded in straightforward
fashion and with only a negligible performance
penalty.

6.2 Blinded Gaussian Sampling

We note that the BLISS/BLZZRD algorithm al-
ways samples vectors of n variables at once.
We define a function VectorSample(n, σ) =

Nn
Z (0, σ

2) that produces a vector of n samples
from discrete Gaussian with deviation parameter
σ. Step 1 of signing process (Algorithm 2) can be
written as

(t,u)← (VectorSample(n, σ),

VectorSample(n, σ)).

13

Table 6 Parameters for Z ≈ X + kY split samplers, where the target distribution is NZ(0, σ), k is a small integer
constant, and X and Y have distribution NZ(0, σ′) with σ′ = 1

σ

√
1 + k2. This is a convolution approximation and ε

gives the statistical distance (total variation distance) to the target distribution. Here we want ε2 < 1
n

where n is a security
parameter [34,36].

Parameter / Variant BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Deviation σ 215 107 250 271
Constant k 11 8 12 12

Split deviation σ′ 17.8548 13.2717 20.7614 22.5053
Distance ε 2−89.1 2−76.8 2−85.3 2−100.1

If VectorSample is implemented naively as a
loop, emissions from the implementation may re-
veal information about the random numbers being
sampled and attacker may determine which ele-
ments of the random vector have specific features,
as is done in the cache attack presented in CHES
2016 [2]. This may be alleviated to some degree by
using VectorShuffle(VectorSample(n, σ)), which
is just a random shuffle of the Gaussian sample
vector.

From probability theory we know that the sum
of any two discrete Gaussian distributions is a dis-
crete Gaussian distribution. More precisely, vari-
ances (which is the square of deviation) are addi-
tive. Let X and Y have distributions NZ(µX , σ

2
X)

and NZ(µY , σ
2
Y), respectively. Then their sum

X + Y has distribution NZ(µX + µY , σ
2
X + σ2

Y).
With zero-centered distributions the average does
not change, but the resulting deviation will be
σX+Y =

√
σ2
X + σ2

Y . By induction, this can be
generalized to more variables. We use this prop-
erty to create a more secure Gaussian vector sam-
pler. Algorithm 10 constructs the target distribu-
tion from a sum of random samples from σ′ =
1√
m
σ.

Algorithm 10 VectorBlindSample(n,m, σ)

returns Nn
Z (0, σ

2) using m iterations of random
blinding.
1: x← 0
2: for i = 1, 2, . . . ,m do
3: x← x+NnZ

(
0, (1√

m
σ)2
)

4: x← VectorShuffle(x)
5: end for

Output: Sampled vector x.

As pointed out in [30], one can also choose
σ′ = σ√

1+k2
and construct the final distribution

as Z = X + kY . The convolution parameter k
must be carefully chosen so that the statistical dis-
tance to the actual target distribution is not too
great. Table 6 gives some appropriate parameters
to use. In the resulting construction all elements
of the second vector are simply multiplied by the
integer constant k:

v = VectorShuffle(VectorSample(n, σ′)) +

k ∗ VectorShuffle(VectorSample(n, σ′)).

The algorithm has a performance impediment
factor of m or less. However, fast “leakier” algo-
rithms may be used. More significantly, the re-
quired tables are much smaller. For example, a
CDF table of only 256 entries gives a secure tail-
cut at τ = 14.34σ for BLZZRD-I with parameters
of Table 6.

The amount of noise entropy introduced by
the permutations is technically in thousands of
bits. Even though this does not directly translate
to attack complexity, this countermeasure makes
emissions- and cache-based attacks on the sampler
significantly harder, defeating the BLISS attack of
CHES 2016 [2]. It may be possible to adopt the
attack to counter some blinding parameters, but
probably not all. The countermeasure parameterm
can be increased without significantly modifying
the implementation or breaking compatibility.

7 Implementation

An experimental reference implementation that
contains most of the features described in this

14

Table 7 Breakdown of time consumption by different BLZZRD elementary operations in the plain C reference implemen-
tation. We observe that blinding countermeasures for sampling and arithmetic approximately double the time required for
creating signatures. CDF sampler was used for these tests.

Primitive BLZZRD-I BLZZRD-II BLZZRD-III BLZZRD-IV
Generate a Key Pair 0.251 ms 0.250 ms 0.274 ms 0.285 ms

Sign a Message 0.254 ms 0.533 ms 0.326 ms 0.409 ms
.. with Countermeasures 0.498 ms 1.042 ms 0.613 ms 0.757 ms

Verify a Signature 0.064 ms 0.063 ms 0.068 ms 0.069 ms
Compress a Signature 0.044 ms 0.041 ms 0.046 ms 0.049 ms

Uncompress a Signature 0.048 ms 0.042 ms 0.050 ms 0.053 ms

work is available as an self-contained public
domain distribution https://github.com/
mjosaarinen/blzzrd. Table 7 summarizes
its performance on a 2015 laptop computer (Intel
Core i7-4870HQ @ 2.50GHz).

On the same system, OpenSSL’s (version
1.0.2g) optimized implementation of ECDSA with
the NIST P-256 curve [12] required 0.039ms for
creating a signature and 0.097ms for verification.
All variants of Reference BLZZRD have at least
40% faster signature verification when compared
to this implementation of NIST P-256 ECDSA.

NIST P-256 is the fastest curve implemented
by OpenSSL; BLZZRD outperforms all ECDSA
curves in signature verification with a high mar-
gin. For larger curves (409 bits or more), BLZZRD
signature generation was also faster than ECDSA.

We note that (unlike the OpenSSL ECDSA
benchmark implementation) our BLZZRD refer-
ence implementation has no assembly language
optimizations and was generally written for read-
ability and maintainability rather than for raw
speed. It is also the first implementation with side-
channel countermeasures, so direct performance
comparisons to other Lattice-based schemes with
countermeasures are difficult.

8 Conclusions

We have offered a number of techniques that
can be used to improve the security and per-
formance of lattice public key algorithms. Us-
ing these techniques, we constructed BLZZRD, a
practical, evolutionary variant of the BLISS-B sig-
nature scheme.

We have described a direct Grover’s attack on
the random oracle component of the BLISS sig-
nature scheme. In order to counter this attack, a
new hash-based random oracle is proposed, with
adjusted κ parameter and an “intermediate” hash
which reduces signature size. It is currently not
easy to estimate the security of all components of
BLISS/BLZZRD against quantum attacks, but the
new random oracle parameters are consistent with
suggested quantum-resistant key sizes for sym-
metric ciphers [7].

Many algorithms in Lattice cryptography uti-
lize discrete Gaussian variables in signatures and
ciphertexts. We show that arithmetic coding can
be used to compress these quantities in essentially
optimal fashion. We describe an efficient Binary
Arithmetic Coder (BAC) that produces smaller
signatures than previous compressors. A some-
what surprising finding is that arithmetic coders
can be adopted as non-uniform (Gaussian) Sam-
plers that have comparable performance charac-
teristics (millions of samples per second) to other
sampling algorithms, but require only a (opti-
mally) small amount of true random bits.

Standard “blinding” side-channel countermea-
sures for public key algorithms introduce random-
ness (noise) into private key operations, thus mak-
ing determination of secrets more difficult. In ideal
lattice cryptography, the main components used by
private key operations typically are ring arithmetic
and non-uniform (Gaussian) random sampling.

For ring arithmetic, we introduce “blinded
polynomial multiplication”, a simple randomiza-
tion technique based of constant multiplication
and rotation of polynomials. This technique is

15

https://github.com/mjosaarinen/blzzrd
https://github.com/mjosaarinen/blzzrd

cheap to implement and utilizes the specific isome-
tries of the types of anti-circulant rings often used
in lattice cryptography.

For Gaussian sampling, we note that lattice
cryptography algorithms typically require vectors
rather than individual samples. We show that sam-
pling processes can be blinded by shuffling these
vectors and combining multiple Gaussian distribu-
tions with each other. This also results in a smaller
implementation footprint since the size of required
CDF tables becomes smaller. The general counter-
measure is effective against side-channel attacks
such as the cache attack recently described against
BLISS.

References

1. Erdem Alkim, Léo Ducas, Thomas Pöppelmann,
and Peter Schwabe. Post-quantum key ex-
change – a new hope. In 25th USENIX Security
Symposium (USENIX Security 16), pages 237–
343. USENIX Association, August 2016. URL:
https://www.usenix.org/system/files/
conference/usenixsecurity16/sec16_
paper_alkim.pdf.

2. Leon Groot Bruinderink, Andreas Hülsing, Tanja
Lange, and Yuval Yarom. Flush, Gauss, and reload
– a cache attack on the BLISS lattice-based sig-
nature scheme. In Benedikt Gierlichs and Axel Y.
Poschmann, editors, CHES 2016, volume 9813
of LNCS, pages 323–345. Springer, 2016. URL:
https://eprint.iacr.org/2016/300,
doi:10.1007/978-3-662-53140-2_16.

3. Johannes Buchmann, Daniel Cabarcas, Florian
Göpfert, Andreas Hülsing, and Patrick Weiden.
Discrete ziggurat: A time-memory trade-off for
sampling from a Gaussian distribution over the
integers. In Tanja Lange, Kristin Lauter, and Petr
Lisonĕk, editors, SAC 2013, volume 8282 of LNCS,
pages 402–417. Springer, 2014. Extended ver-
sion available as IACR ePrint 2014/510. URL:
https://eprint.iacr.org/2013/510,
doi:10.1007/978-3-662-43414-7_20.

4. Peter Campbell, Michael Groves, and Dan Shep-
herd. Soliloquy: A cautionary tale. ETSI
2nd Quantum-Safe Crypto Workshop in part-
nership with the IQC, October 2014. URL:
https://docbox.etsi.org/Workshop/
2014/201410_CRYPTO/S07_Systems_and_
Attacks/S07_Groves_Annex.pdf.

5. CESG. Quantum key distribution: A CESG
white paper, February 2016. URL: https:
//www.cesg.gov.uk/white-papers/
quantum-key-distribution.

6. Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody,
Rene Peralta, Ray Perlner, and Daniel Smith-Tone.
Report on post-quantum cryptography. NISTIR 8105,
April 2016. URL: http://nvlpubs.nist.gov/
nistpubs/ir/2016/NIST.IR.8105.pdf,
doi:10.6028/NIST.IR.8105.

7. CNSS. Use of public standards for the secure shar-
ing of information among national security systems.
Committee on National Security Systems: CNSS Ad-
visory Memorandum, Information Assurance 02-15,
July 2015.

8. Léo Ducas. Accelerating Bliss: the geometry of ternary
polynomials. IACR ePrint 2014/874, 2014. URL:
https://eprint.iacr.org/2014/874.

9. Léo Ducas, Alain Durmus, Tancrède Lep-
oint, and Vadim Lyubashevsky. Lattice signa-
tures and bimodal Gaussians. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013,
pages 40–56. Springer, 2013. Extended ver-
sion available as IACR ePrint 2013/383. URL:
https://eprint.iacr.org/2013/383,
doi:10.1007/978-3-642-40041-4_3.

10. Nagarjun C. Dwarakanath and Steven D. Galbraith.
Sampling from discrete Gaussians for lattice-based
cryptography on a constrained device. Applicable Al-
gebra in Engineering, Communication and Comput-
ing, 25(3):159–180, June 2014. doi:10.1007/
s00200-014-0218-3.

11. Hassan Edrees, Brian Cheung, McCullen San-
dora, David B. Nummey, and Deian Stefan.
Hardware-optimized ziggurat algorithm for
high-speed Gaussian random number genera-
tors. In Toomas P. Plaks, editor, ERSA 2009,
pages 254–260. CSREA Press, 2009. URL:
http://sprocom.cooper.edu/sprocom2/
pubs/conference/ecsns2009ersa.pdf.

12. FIPS. (FIPS) 186-4, digital signature standard (DSS).
Federal Information Processing Standards Publication,
July 2013. doi:10.6028/NIST.FIPS.186-4.

13. FIPS. Secure Hash Standard (SHS). Federal Informa-
tion Processing Standards Publication 180-4, August
2015. doi:10.6028/NIST.FIPS.180-4.

14. FIPS. SHA-3 standard: Permutation-based hash and
extendable-output functions. Federal Information
Processing Standards Publication 202, August 2015.
doi:10.6028/NIST.FIPS.202.

15. Lov K. Grover. A fast quantum mechanical al-
gorithm for database search. In Proceedings of
the Twenty-eighth Annual ACM Symposium on The-
ory of Computing, STOC ’96, pages 212–219.
ACM, 1996. URL: http://arxiv.org/abs/
quant-ph/9605043, doi:10.1145/237814.
237866.

16. Lov K. Grover. From Schrödinger’s equation to
the quantum search algorithm. American Journal
of Physics, 69(7):769–777, 2001. URL: http:
//arxiv.org/abs/quant-ph/0109116,
doi:10.1119/1.1359518.

17. James Howe, Thomas Pöppelmann, Máire O’Neill,
Elizabeth O’Sullivan, and Tim Güneysu. Practical

16

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_alkim.pdf
https://eprint.iacr.org/2016/300
http://dx.doi.org/10.1007/978-3-662-53140-2_16
https://eprint.iacr.org/2013/510
http://dx.doi.org/10.1007/978-3-662-43414-7_20
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://docbox.etsi.org/Workshop/2014/201410_CRYPTO/S07_Systems_and_Attacks/S07_Groves_Annex.pdf
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
http://dx.doi.org/10.6028/NIST.IR.8105
https://eprint.iacr.org/2014/874
https://eprint.iacr.org/2013/383
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/s00200-014-0218-3
http://dx.doi.org/10.1007/s00200-014-0218-3
http://sprocom.cooper.edu/sprocom2/pubs/conference/ecsns2009ersa.pdf
http://sprocom.cooper.edu/sprocom2/pubs/conference/ecsns2009ersa.pdf
http://dx.doi.org/10.6028/NIST.FIPS.186-4.
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.202
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/0109116
http://arxiv.org/abs/quant-ph/0109116
http://dx.doi.org/10.1119/1.1359518

lattice-based digital signature schemes. ACM Trans.
Embed. Comput. Syst., 14(3):41:1–24, April 2015.
doi:10.1145/2724713.

18. Jakob Jonsson and Burt Kaliski. Public-key cryptog-
raphy standards (PKCS) #1: RSA cryptography spec-
ifications version 2.1. IETF RFC 3447, February
2003. URL: https://tools.ietf.org/html/
rfc3447, doi:10.17487/RFC3447.

19. Charles F. F. Karney. Sampling exactly from the nor-
mal distribution, 2014. Preprint arXiv:1303.6257, Ver-
sion 2. URL: http://arxiv.org/abs/1303.
6257.

20. Donald E. Knuth and Andrew C. Yao. The com-
plexity of nonuniform random number generation. In
Joseph F. Traub, editor, Algorithms and Complexity:
New Directions and Recent Results, pages 357–428,
New York, 1976. Academic Press.

21. Paul Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In Neal
Koblitz, editor, CRYPTO ’96, volume 1109 of LNCS,
pages 104–113. Springer, 1996. doi:10.1007/
3-540-68697-5_9.

22. Paul Kocher, Joshua Jaffe, and Benjamin
Jun. Differential power analysis. In Michael
Wiener, editor, CRYPTO ’99, volume 1666
of LNCS, pages 388–397. Springer, 1999.
doi:10.1007/3-540-48405-1_25.

23. Glen G. Langdon, Jr. An introduction to arithmetic
coding. IBM Journal of Research and Development,
28(2):135–149, 1984.

24. Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Jo-
hann Großschädl, Howon Kim, and Ingrid Ver-
bauwhede. Efficient Ring-LWE encryption on
8-bit AVR processors. In Tim Güneysu and He-
lena Handschuh, editors, CHES 2015, volume 9293
of LNCS, pages 663–682. Springer, 2015. URL:
https://eprint.iacr.org/2015/410,
doi:10.1007/978-3-662-48324-4_33.

25. George Marsaglia and Wai Wan Tsang. A fast, easily
implemented method for sampling from decreasing or
symmetric unimodal density functions. SIAM Journal
on Scientific and Statistical Computing, 5(2):349–359,
1984. doi:10.1137/0905026.

26. George Marsaglia and Wai Wan Tsang. The ziggu-
rat method for generating random variables. Journal
of Statistical Software, 5(8):1–7, October 2000. URL:
http://www.jstatsoft.org/v05/i08.

27. NSA/CSS. Information assurance directorate: Com-
mercial national security algorithm suite and quantum
computing FAQ, January 2016. URL: https://
www.iad.gov/iad/library/ia-guidance/
ia-solutions-for-classified/
algorithm-guidance/
cnsa-suite-and-quantum-computing-faq.
cfm.

28. Chris Peikert. An efficient and parallel Gaussian sam-
pler for lattices. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 80–97. Springer, 2010.
doi:10.1007/978-3-642-14623-7_5.

29. William B. Pennebaker, Joan L. Mitchell, Glen G.
Langdon, Jr, and Ronald B. Arps. An overview of the
basic principles of the Q-coder adaptive binary arith-
metic coder. IBM Journal of Research and Develop-
ment, 32(6):717–726, 1988.

30. Thomas Pöppelmann, Léo Ducas, and Tim Güneysu.
Enhanced lattice-based signatures on reconfig-
urable hardware. In Lejla Batina and Matthew
Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 353–370. Springer, 2014. Extended
version available as IACR ePrint 2014/254. URL:
https://eprint.iacr.org/2014/254,
doi:10.1007/978-3-662-44709-3_20.

31. Jorma J. Rissanen. Generalized kraft inequality and
arithmetic coding. IBM Journal of Research and De-
velopment, 20:198–203, May 1976. doi:10.1147/
rd.203.0198.

32. Sujoy Sinha Roy, Oscar Reparaz, Frederik Ver-
cauteren, and Ingrid Verbauwhede. Compact and side
channel secure discrete Gaussian sampling. IACR
ePrint 2014/591, 2014. URL: https://eprint.
iacr.org/2014/591.

33. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens,
Donald Donglong Chen, and Ingrid Verbauwhede.
Compact Ring-LWE cryptoprocessor. In Lejla Batina
and Matthew Robshaw, editors, CHES 2014, volume
8731 of LNCS, pages 371–391. Springer, 2014. URL:
https://eprint.iacr.org/2013/866,
doi:10.1007/978-3-662-44709-3_21.

34. Markku-Juhani O. Saarinen. Gaussian sampling preci-
sion in lattice cryptography. IACR ePrint 2015/953,
October 2015. URL: https://eprint.iacr.
org/2015/953.

35. Amir Said. Introduction to arithmetic coding -
theory and practice. In Khalid Sayood, editor,
Lossless Compression Handbook. Academic Press,
2002. Chapter also published as HP Technical report
HPL-2004-76. URL: http://www.hpl.hp.com/
techreports/2004/HPL-2004-76.pdf.

36. Gregory Valiant and Paul Valiant. An automatic
inequality prover and instance optimal identity
testing. In FOCS 2014, pages 51–60. IEEE
Computer Society, 2014. Full version avail-
able as http://theory.stanford.edu/
~valiant/papers/instanceOptFull.pdf.
doi:10.1109/FOCS.2014.14.

37. Patrick Weiden, Andreas Hülsing, Daniel Cabarcas,
and Johannes Buchmann. Instantiating treeless sig-
nature schemes. IACR ePrint 2013/065, Febru-
ary 2013. URL: https://eprint.iacr.org/
2013/065.

38. Ian H. Witten, Radford M. Neal, and John G. Cleary.
Arithmetic coding for data compression. Communica-
tions of the ACM, 30(6):520–240, June 1987. doi:
10.1145/214762.214771.

39. Christof Zalka. Grover’s quantum search-
ing algorithm is optimal. Physical Review A,
60:2746–2751, October 1999. URL: http:
//arxiv.org/abs/quant-ph/9711070,
doi:10.1103/PhysRevA.60.2746.

17

http://dx.doi.org/10.1145/2724713
https://tools.ietf.org/html/rfc3447
https://tools.ietf.org/html/rfc3447
http://dx.doi.org/10.17487/RFC3447
http://arxiv.org/abs/1303.6257
http://arxiv.org/abs/1303.6257
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2015/410
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1137/0905026
http://www.jstatsoft.org/v05/i08
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1007/978-3-642-14623-7_5
https://eprint.iacr.org/2014/254
http://dx.doi.org/10.1007/978-3-662-44709-3_20
http://dx.doi.org/10.1147/rd.203.0198
http://dx.doi.org/10.1147/rd.203.0198
https://eprint.iacr.org/2014/591
https://eprint.iacr.org/2014/591
https://eprint.iacr.org/2013/866
http://dx.doi.org/10.1007/978-3-662-44709-3_21
https://eprint.iacr.org/2015/953
https://eprint.iacr.org/2015/953
http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf
http://www.hpl.hp.com/techreports/2004/HPL-2004-76.pdf
http://theory.stanford.edu/~valiant/papers/instanceOptFull.pdf
http://theory.stanford.edu/~valiant/papers/instanceOptFull.pdf
http://dx.doi.org/10.1109/FOCS.2014.14
https://eprint.iacr.org/2013/065
https://eprint.iacr.org/2013/065
http://dx.doi.org/10.1145/214762.214771
http://dx.doi.org/10.1145/214762.214771
http://arxiv.org/abs/quant-ph/9711070
http://arxiv.org/abs/quant-ph/9711070
http://dx.doi.org/10.1103/PhysRevA.60.2746

	Introduction
	BLISS and BLZZRD
	Security of the Random Oracle
	Discrete Gaussians
	Arithmetic Coding
	Randomized Side-Channel Countermeasures for Ideal Lattices
	Implementation
	Conclusions

