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Abstract

Proxy re-encryption (PRE) was introduced by Blaze, Bleumer and Strauss [Eurocrypt ’98]. Basically,
PRE allows a semi-trusted proxy to transform a ciphertext encrypted under one key into an encryption of
the same plaintext under another key, without revealing the underlying plaintext. Since then, many inter-
esting applications have been explored, and many constructions in various settings have been proposed.
In 2007, Cannetti and Honhenberger [CCS ’07] defined a stronger notion – CCA-security and construct
a bi-directional PRE scheme. Later on, several work considered CCA-secure PRE based on bilinear
group assumptions. Very recently, Kirshanova [PKC ’14] proposed the first single-hop CCA-secure
PRE scheme based on learning with errors (LWE) assumption.

In this work, we first point out a subtle but serious mistake in the security proof of the work by
Kirshanova. This reopens the direction of lattice-based CCA-secure constructions, even in the single-hop
setting. Then we propose a new LWE-based single-hop CCA-secure PRE scheme. Finally, we extend the
construction to support multi-hop re-encryptions for different levels of security under different settings.

1 Introduction

Proxy re-encryption (PRE) allows a (semi-trusted) proxy to transform an encryption of m under Alice’s
public key into another encryption of the same message under Bob’s public key. The proxy, however,
cannot learn the underlying message m, and thus both parties’ privacy can be maintained. This primitive
(and its variants) have various applications ranging from encrypted email forwarding [BBS98], securing
distributed file systems [AFGH05], to digital rights management (DRM) systems [Smi05]. In addition
application-driven purposes, various works have shown connections between re-encryption (and its variants)
with other cryptographic primitives, such as program obfuscation [HRsV07, CCV12, CCL+14] and fully-
homomorphic encryption [CLTV, ABF+13]. Thus studies along this line are both important and interesting
for theory and practice.

The concept of proxy re-encryption (PRE) was introduced by Blaze, Bleumer, and Strauss [BBS98],
who also gave the first construction of a CPA (i.e. chosen-plaintext attacks) secure bi-directional multi-hop1

PRE scheme under the Decisional Diffie-Hellman assumption. It was explicitly left as an interesting open
problem [BBS98] to construct a uni-directional PRE, which apparently provides more find-grained security.
Later Ateniese, Fu, Green and Hohenberger [AFGH05] constructed the first CPA secure uni-directional
scheme based on bilinear maps, yet their construction can only support a single-hop re-encryption. Hohen-
berger et al. [HRsV07] and Chase et al. [CCV12] used an obfuscation-based approach and constructed CPA
secure uni-directional single-hop PRE scheme (and its variants). Recently, Chase et al. [CCL+14], using the
∗Cornell University, xfan@cs.cornell.edu.
†Florida Atlantic University, fenghao.liu@fau.edu.
1Basically a bi-directional scheme allows the proxy, given a re-encryption key rkA,B , to transform Enc(pkA,m) to

Enc(pkB ,m) and vice versa, while a unidirectional scheme has a more fine-grained access control: by giving a unidirectional
re-encryption key rkA→B , the proxy can only transform ciphertexts in that direction.

On the other hand, a single-hop scheme only supports re-encryption once, i.e. a re-encrypted ciphertext cannot be further re-
encrypted; a multi-hop scheme supports re-encryption over re-encryption multiple times.
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obfuscation-based approach, constructed the first CPA secure uni-directional multi-hop PRE scheme based
on lattices assumptions.

As argued that CPA security can be insufficient for some useful scenarios, Canetti and Hohenberger [CH07]
considered a natural stronger security notion — chosen-ciphertext attacks (CCA) security where the adver-
sary has access to a decryption oracle. Intuitively, this security notion guarantees that the underlying mes-
sage of the challenge ciphertext remains hidden even if the adversary can somehow obtain decryptions of
other ciphertexts. They give a meaningful security formulation of CCA secure PRE, and then constructed
the first CCA-secure bidirectional multi-hop PRE scheme. Later, Shao et al. [SCL10] constructed a CCA-
secure uni-directional single-hop PRE, and Chow et al. [CWYD10] proposed another CCA-secure uni-
directional scheme in random oracle model. Libert and Vergnaud [LV08] improved the result by construct-
ing a CCA uni-directional single-hop PRE without random oracles, and this remains the state of the art of the
current construction (for the setting of uni-directional CCA PRE under the definition of [CH07]). We note
that it is unclear how to extend security of the previous obfuscation-approach [HRsV07, CCV12, CCL+14]
(that are only CPA-secure) to the CCA setting. One particular technical challenge is that the re-encryption
key output by the simulator might be distinguishable given the CCA decryption oracle, and thus the previous
security analyses cannot go through.

For CPA security, our understanding is quite well — we know how to construct PRE schemes that are
uni-directional and multi-hop in the standard model. However, for CCA security, our understanding is much
limited in the following sense. Obviously, there is no known scheme that achieves both uni-directional and
multi-hop at the same time. Moreover, all currently known constructions [BBS98, AFGH05, CH07, LV08,
SCL10, CWYD10] are based on Diffie-Hellman-typed assumptions, either in bilinear groups or not. We do
not know constructions based on other types of assumptions. Very recently, Kirshanova [Kir14] proposed
a single-hop construction based on lattices, and argued that it is CCA1 secure2. However, after a careful
examination of her security proof, we found a subtle mistake in the security proof, and thus how to construct
a lattice-based PRE that achieves CCA security, (even for the single-hop case) remains open.

In this paper, we revisit the study of lattice-based PRE constructions. In particular, we make contribu-
tions in the following three folds:

• First as discussed above, we point out a subtle mistake in the security proof of the work [Kir14]. We
also argue that it cannot be easily fixed.

• Second, we propose a basic construction of PRE scheme that is single-hop CCA*-secure3 under the
learning with errors (LWE) assumption.

• Third, we prove that the basic construction, with a slight modification, can be extended to the multi-
hop setting and achieve CCA∗ security for tree-based networks. On the other hand, the basic construc-
tion, with another slight modification, can achieve multi-hop for any acyclic-graph-based network, yet
fallbacks to the CPA security.

To summarize, we give a unified framework to construct PRE with three modes that achieves different levels
of security and functionalities: (1) single-hop and CCA∗ security; (2) multi-hop for tree-based networks and
CCA∗ security; (3) multi-hop for arbitrary acyclic networks and CPA security.

1.1 Technique Highlights

In the following, we highlight our technical ideas for the three contributions as described above.
2CCA1 security is weaker in the sense that the attacker does not have the decryption oracle after receiving the challenge

ciphertext.
3We define a meaningful notion CCA∗ that lies between CCA1 and CCA2. See Remark 2.3 for further discussions about the

notion
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Part I: the subtle mistake in the work [Kir14]. For clarification of exposition, we first present the main
idea of the construction [Kir14]. Then we will point out where the subtlety is and explain why the problem
cannot be easily fixed.

Basically, the encryption mechanism can be regarded as an extension of CCA-secure public key en-
cryption scheme of the work [MP12]. For concreteness, we consider two users: User one has public
key pk1 = (A0,A1,A2,H), and User two has public key pk2 = (A′0,A

′
1,A

′
2,H

′), where each pub-
lic key consists of four matrices. The secret key of User one consists of matrices R1,R2 satisfying
A1 = −A0R1,A2 = −A0R2, and it is similar for the case of User two. We note that the readers here
do not need to worry about the dimensions, but just keep in mind the structure: each user has four matrices
in the public key, and the secret key consists of two “short” matrices R1,R2. To encrypt under pk1, we
consider an encryption matrix Au = [A0|A1 + HG|A2 + HuG], where Hu is a random invertible ma-
trix (as a tag to the ciphertext), then encrypt messages using the dual-Regev style encryption [GPV08], i.e.
ct = sTAu + e+ encode(m). Similarly, we can encrypt under pk2 with the same structure.

To generate a re-encryption key from User 1 to User 2, the work [Kir14] considers a short matrix X
(defined as below) that satisfies the following relation:

[A0|A1 + HG|A2 + HuG]

X00 X01 X02

X10 X11 X12

0 0 I

 = [A′0|A′1 + H′G|A′2 + HuG].

In particular, for the last column of the re-encryption key matrix, it holds that

[A0|A1 + HG]

[
X02

X12

]
= A′2 −A2. (1)

It is not hard to see that ct ·X = sT ·A′u + ẽ+ encode(m), a ciphertext of m under pk2, so the correctness
property is guaranteed.

To prove security, the work [Kir14] uses a standard reduction argument based on the LWE assumption:
suppose there exists an adversary that can break the PRE scheme, then there exists a reduction, with oracle
access to the adversary, who can break the underlying LWE assumption. For this type of proofs, typically the
reduction needs to embed the hard instance (LWE instance for this case), then simulates a scheme (PRE) to
the adversary, and finally the reduction can use the adversary to break the underlying hardness assumption.
It is crucially important that the simulated scheme cannot be distinguished by the adversary; otherwise,
the adversary can always output ⊥ if he detects the scheme is different from the real scheme, and such
adversary is useless to the reduction. The security proof in the work [Kir14] missed this point. At a high
level, her reduction simulated a PRE scheme that can be distinguishable by the adversary easily, so the
whole argument breaks down. Below we further elaborate on the details.

For simplicity we consider a simple case where there are only two honest users, Users one and two and
the adversary only gets one re-encryption key from User one to User two. The challenge ciphertext comes
from an encryption of User one, i.e. pk1. For such case, the reduction of the work [Kir14] pre-selects a
tag matrix Hu∗ (for the challenge ciphertext), matrices R∗1,R

∗
2, and then embeds an LWE instance A∗ in

the encryption matrix: A∗u = [A∗| −A∗R∗1| −A∗R∗2 + (Hu −Hu∗)G]. In this case, the reduction sets
pk1 = (A0,A1,A2,H) to be (A∗,−A∗R∗1 −H∗G,−A∗R∗2 −Hu∗G,H

∗) for some random invertible
H∗.

To generate re-encryption key from the challenge user to other users, (in this case from User one to User
two), the reduction first pre-samples small matrices X00,X01,R

′
1,R

′
2, and a random invertible matrix H′.

Then it computes:

A′0 = [A∗| −A∗R∗1]

[
X00

X10

]
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A′1 = [A∗| −A∗R∗1]

[
X00

X10

]
·R′1, A′2 = [A∗| −A∗R∗1]

[
X00

X10

]
·R′2

Then the reduction sets

pk2 = (A′0,A
′
1,A

′
2,H

′), rk1→2 =

[(
X00
X10

) (
X00
X10

)
R′1

(
X00
X10

)
R′2

0 0 I

]

generated as above. Then obviously the matrices A′1,A
′
2 can be expressed as A′1 = A′0R

′
1,A

′
2 = A′0R

′
2,

where R′1,R
′
2 are small matrices and still act as secret key for User two. Therefore, the reduction can still

use the same algorithm in the real scheme to answer decryption queries for User two.
However, if A′2 is generated in this way, then it is easy to check and compare with Equation (1):

[A0|A1 + HG]

[
X02

X12

]
= [A∗| −A∗R∗1]

[
X00

X10

]
·R′2 6= A′2 −A2. (2)

This means adversary, given the simulated pk1, pk2, rk1→2, adversary can easily tell whether they are
from the real scheme or the simulated scheme. Thus, the security proof in this way [Kir14] is not correct.

A straightforward fix would be to set A′2 = [A∗| − A∗R∗1]

[
X00

X10

]
· R′2 + A2 = A′0 · R′2 + A2 so

that Equations (1) and (2) match. But in this way it is not clear how to express A2 as A′0R for some small
matrix R, because it is not clear how to express A2 as A′0R̃ for some small R̃. Note that R serves as the
secret key of pk2 to simulate decryption queries. Consequently, it is not clear how the reduction can answer
decryption queries as the previous approach. It seems that this construction/proof is facing a dilemma:
either the reduction can answer the decryption queries but the re-encryption key can be distinguished, or the
reduction can generate an indistinguishable re-encryption key but cannot answer the decryption queries.

Part II: our new construction for single-hop PRE. To overcome the dilemma, we consider a new matrix
structure: the setup algorithm outputs a public matrix A, and each user extends the previous matrix structure
to be Au = [A|A1 + HG|A2 + HuG], where A1 = −AR1,A2 = −AR2 and the matrices R1,R2 are
the corresponding secret key. The shared matrix A offers a significant advantage for the simulation: the
reduction can embed the LWE instance A∗ as the public shared matrix, and then sets

A′2 = [A∗| −A∗R∗1]

[
X00

X10

]
·R′2 −A∗R∗2.

This allows the reduction to express A′2 as A∗R for some small and known matrix R. Then the reduction
can use this to simulate the decryption queries, while the Equation (1) will match for the real scheme and
the simulated scheme. We present the detailed scheme and analysis in Section 3.

Part III: extension to multi-hop PRE. We further observe that the matrix structure in our construction
can be extended to the multi-hop case with slight modification. Interestingly, our scheme itself can support
general network structures (for functionalities), yet our security proof (for CCA security), however, requires
the structure of tree-structured networks (i.e. the adversary can only query re-encryption keys that form a
tree among the users). If the adversary’s queries form a general graph, then security of our scheme becomes
unclear: we are not able to prove security under the current techniques, but there is no known attack, either.
We leave it as an interesting open problem to determine whether our construction is secure under general
network structures.

A technical reason for this phenomenon comes from the order of sampling for the simulation. We give a
simple example for illustration: let there be three parties in the network, Users one, two, and three. It is easy
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for the reduction to simulate in the following order pk1, rk1→2, pk2, rk2→3, and then pk3 without knowing a
trapdoor of the LWE instance A∗. The reduction, however, would get stuck if he needs to further generate
rk1→3, which should be consistent with the already sampled pk1 and pk3. We recall that the reduction is able
to check whether rk1→3 is consistent with pk1 and pk3 in both the real scheme and the simulated scheme
(as Equation (1)). Thus, the reduction must simulate such consistency as the real scheme. Even though
there are techniques from the Ring-LWE [LPR10, GGH13] that allows sampling in the reverse order of pk3,
rk2→3, pk2, rk1→2, pk1, it does not help to solve the problem because the reduction still does not know how
to generate rk1→3 after pk1 and pk3 are sampled, without a trapdoor of A∗.

On the other hand, if the adversary does not have access to the decryption oracle, then we can slightly
modify the construction to achieve multi-hop PRE for arbitrary acyclic graphs. We use an idea from the
work [CCL+14] to blur the relation between public keys and re-encryption keys. That is, the adversary
can no longer check whether whether rk1→3 is consistent with pk1 and pk3! This gives an extra power to
the reduction that it can simulate re-encryption keys without knowing the trapdoors at all. We note that
this technique does not extend to the CCA setting because the simulation strategy can be detected by the
CCA decryption oracle. Thus, we construct a PRE scheme that falls back to the CPA security but achieves
multi-hop for arbitrary acyclic graphs.

1.2 Related Works

In the following Table 1 we compare our contributions with previous work as described before.

Work Direction Hop Assumption Security ROM
Blaze et al. [BBS98] bi-directional multi DDH PRE-CPA no

Ateniese et al. [AFGH05] uni-directional single eDBDH PRE-CPA no
Canetti el al. [CH07] bi-directional multi DBDH PRE-CCA no
Libert et al. [LV08] uni-directional single 3-wDBDHI PRE-RCCA no
Shao et al. [SCL10] uni-directional single 3-QDBDH PRE-CCA no

Chow et al [CWYD10] uni-directional single CDH PRE-CCA yes
Hohenberger et al. [HRsV07] uni-directional single sDDH & DLIN PRE-CPA no

Chandran et al. [CCV12] uni-directional single SXDH PRE-CPA no
Chandran et al. [CCL+14] uni-directional multi LWE PRE-CPA no

This
paper

uni-directional single LWE PRE-CCA∗ no
uni-directional multi LWE PRE-CCA∗ no
uni-directional multi LWE PRE-CPA no

Table 1: Comparison of our work with previous work. Here ROM stands for random oracle, DH means
Diffie-Helleman. DDH means decisional DH, CDH means computational DH, eDBDH means exponential
decisional bilinear DH, 3-wDBDHI means 3-party weak decisional bilinear DH inversion, 3-QDBDH means
3-Quotient Decision bilinear DH, SXDH means strong external DH, sDDH means strong decisional DH,
DLIN mean decisional linear, and LWE stands for learning with errors assumption.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial time. We use bold uppercase letters to denote matri-
ces, and bold lowercase letters for vectors. We let λ be the security parameter, [n] denote the set {1, ..., n},
and |t| denote the number of bits in a string or vector t. We denote the i-th bit value of a string s by s[i].
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We use [·|·] to denote the concatenation of vectors or matrices, and use l∞ norm for the norms of all vectors
and matrices used in our paper.

2.1 Proxy Re-Encryption Scheme

In this section, we describe the definition of uni-directional PRE, which can be regarded as a natural exten-
sion of bi-directional PRE defined in [CH07]. We present the syntax and security definition introduced in
[CH07], with some modification to suit the unidirectional setting. The PRE scheme consists a tuple of PPT

algorithms (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc), which can be defined as follows:

Setup(1λ): On input the security parameter 1λ, the setup algorithm sets some parameters for the PRE
system and outputs a public parameter pp.

KeyGen(pp): On input the public parameter pp, the key generation algorithm outputs a public key pk and
a secret key sk for one user in the system. Without loss of generality, pp is known to all parties and
can be included in pk and sk.

Enc(pk, µ): On input a public key pk and a message µ, the encryption algorithm outputs a ciphertext ct for
message µ.

Dec(sk, ct): On input a secret key sk and a ciphertext ct, the decryption algorithm outputs a message µ or
an error symbol ⊥.

ReKeyGen(pk, sk, p̃k): On input a public/secret pair (pk, sk) from one user, and public key p̃k from another,
the re-encryption key generation algorithm outputs a re-encryption key as rk

pk→p̃k
.

ReEnc(rk
pk→p̃k

, ct): On input a re-encryption key rk
pk→p̃k

and a ciphetext ct under the key pk, the re-

encryption algorithm outputs a ciphertext ct′ under public key p̃k.

Definition 2.1 (Single/multi-hop PRE). We say a PRE scheme isH(λ)-level multi-hop if a proxy can further
re-encrypt already re-encryted ciphertexts up to H(λ) times. A PRE scheme is single-hop if H(λ) = 1.

Correctness. For correctness, we consider two cases for the PRE scheme: one for “fresh” ciphertexts gen-
erated by encryption algorithm, and the other for re-encryption ciphertexts generated by the re-encryption
algorithm. We say that an H(λ)-level multi-hop PRE scheme is correct if the following holds.

1. For all pp output by Setup(1λ), (pk, sk) output by KeyGen(pp), and all message µ, it holds that
Dec(sk,Enc(pk, µ)) = µ with overwhelming probability.

2. For any integers n ∈ [H(λ)], any sequence of secret/public key pairs {(pki, ski)}i∈[n] output KeyGen(pp),
any re-encryption keys rki→i+1 ← ReKeyGen(pki, ski, pki+1), any message µ, and ct← Enc(pk1, µ),
it holds that

Dec(skn,ReEnc(rkn−1→n, ...,ReEnc(rk1→2, ct)...)) = µ.

Security definition. Here we present the chosen-ciphertext security of uni-directional PRE appeared in
[Kir14], which can be regarded as a natural extension of CCA-PRE notion introduced in [CH07] who con-
sidered the bi-directional setting. Let A denote any PPT adversary, and Π be a PRE scheme. We define the
notion of CCA-secure PRE in the uni-directional setting using the following experiment ExptCCA-PRE

A (1λ),
which describes the interaction between several oracles and an adversary A. Recall that as we discussed
before, we include public parameters pp in each user’s public key pk and secret key sk, so we will omit them
in the description for simplicity.
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Definition 2.2 (Uni-directional CCA-PRE). The experiment consists of an execution ofA with the following
oracles with detail as follows:

• The challenger runs the key generation algorithm KeyGen(pp) and sends the challenge public key pk∗

to adversary A.

• Proceeding adaptively, the adversary A has access to the following oracles:

Uncorrupted key generation: Obtain a new key pair (pki, ski) ← KeyGen(pp). Send pki back to
adversary A and add index i to the honest user setH.

Corrupted key generation: Obtain a new key pair (pki, ski) ← KeyGen(pp). Send the key pair
(pki, ski) back to adversary A and add index i to the corrupted user set C.

Re-encryption key generation OReKeyGen: On input an index pair (i, j) sent by the adversary, we
consider the following cases:

– If (i ∈ H, j ∈ C) or (i ∈ C, j ∈ H) or {i, j} * C ∪ H, the oracle returns ⊥;
– else if the pair (i, j) is queried for the first time, the oracle returns a re-encryption key
rki→j ← ReKeyGen(pki, ski, pkj);

– else (the pair (i, j) has been queried before), the oracle returns the re-encryption key rki→j .

To avoid trivial attacks, we require that either both (i, j) are in H, or alternatively both are
corrupted, i.e. we do not allow re-encryption key generation queries between a corrupted and a
uncorrupted parties.

Re-encryption oracle OReEnc: On input (i, j, ct), if j ∈ C or {i, j} * C ∪ H, then return ⊥. Other-
wise, the oracle returns a re-encrypted ciphertext ct′ ← ReEnc(rki→j , ct).

Decryption oracle ODec: On input (i, ct), if i /∈ C ∪ H or ct is not a valid ciphertext, then return a
special symbol ⊥. Otherwise, return Dec(ski, ct).

Challenge oracle: This oracle can be queried only once. On input (i∗, µ0, µ1), the oracle chooses a
bit b ∈ {0, 1} and returns ct∗ ← Enc(pki∗ , µb) as the challenge ciphertext.

Decision oracle: This oracle can be queried only once. On input b′ from adversary A, the oracle
outputs 1 if b′ = b, and 0 otherwise.

The advantage of an adversary in the above experiment ExptCCA-PRE
A (1λ) is defined as |Pr[b′ = b]− 1

2 |.
A uni-directional PRE scheme is CCA-PRE secure if all PPT adversaries have at most a negligible advantage
in the above experiment.

Remark 2.3. We described a meaningful relaxation of the CCA-PRE security, which we name CCA∗-PRE
security. The relaxation lies in the decryption oracle queried after challenge oracle: for tag-based schemes
(i.e. whose ciphertexts consist of tags), we restrict the that the adversary cannot query the decryption oracle
with ciphertexts using the same tag as the challenge ciphertext. That is, the decryption oracle (queried after
the challenge ciphertext) always outputs a special symbol ⊥ upon queries with the challenge ciphertext’s
tag.

It is obvious to see that CCA∗ security is stronger than CCA1 security (where the adversary cannot
access the decryption oracle after the challenge ciphertext), and is slightly weaker than CCA(2) security.
This relaxation is meaningful and can be nearly the best we can achieve if we further require the property
of unlinkability for re-encrypted ciphertexts. That is, if we want the re-encrypted algorithm to produce
statistically indistinguishable ciphertexts, i.e. the re-encrypted ciphertexts are almost identically distributed
as fresh ones, then arguably it is not possible to achieve CCA2 security, because the decryption oracle
cannot distinguish a re-encryption of challenge ciphertext from a fresh ciphertext, so an adversary can
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easily break the security game by querying the decryption oracle with a re-encrypted ciphertext of the
challenge ciphertext. For tag-based schemes, if we design a scheme such that the tag remains the same
for re-encrypted ciphertexts, then we can make sure that the challenge ciphertext will not be decrypted
directly to the adversary. The CCA* security guarantees the challenge ciphertext remains hidden, even if
the adversary can obtain decryptions of ciphertexts with other tags.

The above definition is general that the adversary can query re-encryption keys with no restrictions.
In some cases such as [CCL+14], they can prove security only if the structure of the re-encryption keys
queried by the adversary forms an acyclic graph. Therefore, we consider several meaningful relaxations of
the security model to capture this concept. We consider a relaxation – CCA-PRE security with respect to a
specified family of graphs (e.g. acyclic graphs). In this model, the security game is essentially the same as
Definition 2.2, but the adversary’s queries are restricted so that the structure of the re-encryption keys must
form a graph in the family of graphs. Another relaxation is CPA-PRE security with respect to a family of
graphs. This model has the same spirit, except the adversary does not have access to the decryption oracle.
The construction by Chandran et al. [CCL+14] satisfies this model.

Definition 2.4 (Graph-based uni-directional CCA-PRE). Let G be a family of graphs, and A be an adver-
sary. The experiment Expt

graph-CCA-PRE
A,G (1λ) is the same as that in Definition 2.2, except the re-encryption

keys obtained by the adversary must form a graph G ∈ G. A uni-directional PRE scheme is CCA-PRE
secure with respect to the family G if all PPT adversaries have at most a negligible advantage in the above
experiment.

We define graph-based unidirectional CPA-PRE in a similar way as below.

Definition 2.5 (Graph-based uni-directional CPA-PRE). Let G be a family of graphs, and the experiment
Expt

graph-CPA-PRE
A,G (1λ) be analogous to experiment Expt

graph-CCA-PRE
A,G (1λ) except that the adversary does

not have access to decryption oracle ODec. We say a PRE scheme is CPA secure with respect to the family
G if all PPT adversaries have at most a negligible advantage in the above experiment.

Remark 2.6. If G is the family of trees, then we call the scheme a tree-based unidirectional unidirectional
CCA*/CPA-PRE; if that is the family of acyclic graph, then we call the scheme an acyclic graph-based
unidirectional unidirectional CCA*/CPA-PRE. In particular, our construction in Section 4 is a tree-based
unidirectional CCA* scheme, and the construction in Section 5 is an acyclic graph-based CPA-PRE.

2.2 Lattice Background

A full-rank m-dimensional integer lattice Λ ⊂ Zm is a discrete additive subgroup whose linear span is
Rm. Let Λ be a discrete subset of Zm. For any vector c ∈ Rm, and any positive parameter σ ∈ R, let
ρσ,c(x) = exp(−π||x − c||2/σ2) be the Gaussian function on Rm with center c and parameter σ. Next,
we set ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x) be the discrete integral of ρσ,x over Λ and DΛ,σ,c(y) :=

ρσ,c(y)
ρσ,c(Λ) . Let Sm

denote the set of vectors in Rm+1 whose length is 1. Then the norm of a matrix R ∈ Rm×m is defined to be
supx∈Sm ||Rx||. We have the following lemma, which bounds the norm for some specified distributions.

Lemma 2.7 ([ABB10]). Regarding the norm defined above, we have the following bounds:

• Let R ∈ {−1, 1}m×m be chosen at random, then Pr[||R|| > 12
√

2m] < e−2m.

• Let R be sampled from DZm×m,σ, then we have Pr[||R|| > σ
√
m] < e−2m.
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Randomness extraction. We will use the following lemma to argue the indistinghishability of two differ-
ent distributions, which is a generalization of the leftover hash lemma proposed by Dodis et al. [DRS04].

Lemma 2.8 ([ABB10]). Suppose that m > (n + 1) log q + w(log n). Let R ∈ {−1, 1}m×k be chosen
uniformly at random for some polynomial k = k(n). Let A,B be matrix chosen randomly from Zn×mq ,Zn×kq

respectively. Then, for all vectors w ∈ Zm, the two following distributions are statistically close:

(A,AR,RTw) ≈ (A,B,RTw)

Learning With Errors. The LWE problem was introduced by Regev [Reg05], who showed that solving
it on the average is as hard as (quantumly) solving several standard lattice problems in the worst case.

Definition 2.9 (LWE). For an integer q = q(n) ≥ 2, and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is to distinguish between the following pairs of distributions:

{A,As+ x} and {A,u}

where A
$← Zn×mq , s $← Znq , u $← Zmq , and x $← χn.

G-trapdoors and sampling algorithms. We briefly describe the main results in [MP12]: the definition of
G-trapdoor and the algorithms InvertO and SampleO. Roughly speaking, a G-trapdoor is a transformation,
represented by a matrix R from a public matrix A to a special matrix G. The formal definition is as follows:

Definition 2.10 ([MP12]). Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A G-trapdoor for
A is a matrix R ∈ Zm−w × w such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . We refer to

H as the tag or label of the trapdoor. The quality of the trapdoor is measured by its largest singular value
s1(R).

In order to embed matrix G into a uniformly looking matrix A together with a transformation R, we
should start with a uniform matrix A0 and a matrix R, and construct A = [A0| − A0R + HG]. For an
appropriate chosen dimensions (A,AR) is negligible from uniformly random distribution by the Lattice-
based Leftover Hash Lemma.

Lemma 2.11 ([MP12]). There is an efficient algorithm SampleO(R,A′,H,u, s), where R is a G-trapdoor
for matrix A with invertible tag H, a vector u ∈ Zn and an oracle O for Gaussian sampling over a desired
coset Λv

q (G). It will output a vector drawn from a distribution within negligible statistical distance of
DΛu(A),s, where A = [A′| −A′R + HG].

In the following, we provide two extensions of the LWE inversion algorithms proposed by Micciancio
and Peikert [MP12], which would be used in the security proof and scheme respectively.

• InvertO(R1,R2,A, b): On input a vector b = stA + et, a matrix A = [A0| −A0R1 + H1G| −
A0R2 + H2G] and its corresponding G-trapdoor R1,R2 with invertible tag H1,H2, the algorithm

first computes b′ = bt
[R1+R2

I
I

]
, and then run the oracle O(b′) to get (s′, e′). The algorithm outputs

s = (H1 + H2)−ts′ and e = b−At.

• Invert′O(R1,R2,A, b): On input a vector b = stA + et, a matrix A = [A0| −A0R1| −A0R2 +
H2G] and its corresponding G-trapdoor R1,R2 with invertible tag H1,H2, the algorithm first

computes b′ = bt
[R1+R2

I
I

]
, and then run the oracle O(b′) to get (s′, e′). The algorithm outputs

s = H−t2 s
′ and e = b−At.

9



3 Single-hop CCA∗-Secure PRE Construction

In this section, we present our first construction of single-hop PRE. We achieve the CCA∗-PRE security as
defined in Definition 2.2.

As the work of Micciancio and Peikert [MP12], our scheme uses a special collection of elements defined
over ring R = Zq[x]/(f(x)), where f(x) = xn + fn−1x

n−1 + · · · + f0 is a irreducible modulo every p
dividing q. Since R is a free Zq-module of rank n, thus elements of R can be represented as vectors in Zq
relative to standard basis of monomials 1, x, ..., xn−1. Multiplication by any fixed element ofR then acts as
a linear transformation on Znq according to the rule

x · (a0, ..., an−1)t = (0, a0, ..., an−2)t − an−1(f0, f1, ..., fn−1)t

and so can be represented by an matrix in Zn×nq relative to the standard basis. In other words, there is an
injective ring homomorphism h : R → Zn×nq that maps any a ∈ R to matrix H = h(a) representing
multiplication by a. As introduced in [MP12], we need a very large set U = {u1, ..., ul} with the “unit
differences” property: for any i 6= j, the difference ui−uj ∈ R∗, and hence h(ui−uj) = h(ui)−h(uj) ∈
Zn×nq is invertible.

The PRE system has message space {0, 1}nk, which we map bijectively to the cosets of Λ/2Λ for
Λ = Λ(Gt) via some encoding function encode that is efficient to evaluate and invert. In particular, letting
S ∈ Znk×nk be any basis of Λ, we can map µ ∈ {0, 1}nk to encode(µ) = Sµ ∈ Znk. The PRE scheme
(Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) can be described as follows:

• Setup(1λ, 1N ): On input the security parameter λ and the number N of users in the PRE system,
the global setup algorithm set the lattice parameter n = n(λ,N),m = m(λ,N), q = q(λ,N) and
Gaussian parameter s = s(λ,N). Then it randomly selects a matrix A ∈ Zn×mq , and outputs the
public parameter pp = (A, n,m, q, s).

• KeyGen(pp): On input the public parameter pp, the key generation algorithm for i-th user chooses
random matrices Ri1,Ri2 ← D, letting Ai1 = ARi1 mod q and Ai2 = ARi2 mod q. The public
key is pki = Ai = [A| −Ai1| −Ai2], and the secret key is ski = [Ri1|Ri2].

• Enc(pki,µ, `): On input a public key pki, a messageµ and a level ` ∈ {1, 2}, the encryption algorithm
chooses non-zero u← U and let the message/level-dependent matrix

Ai,u,l = [A| −Ai1 + h(`)G| −Ai2 + h(u)G]

Choose s← Znq , e0, e1 ← DmZ,s and e2 ← DnkZ,s. Let

bt = (b0, b1, b2) = 2(stAi,u,` mod q) + et + (0, 0, encode(µ)t) mod 2q

where e = (e0, e1, e3). Output the ciphertext ct = (u, b, `).

• Dec(ski, ct): On input a secret key ski and ciphertext ct = (u, b, `), the decryption algorithm

1. If ct does not parse or u = 0, output ⊥. Otherwise, reconstruct the message/level-dependent
matrix Ai,u,`

Ai,u,l = [A| −Ai1 + h(`)G| −Ai2 + h(u)G]

Call InvertO([Ri1|Ri2],Au, b mod q) to get values z ∈ Znq and e = (e0, e1, e2) for which
bt = zt + et mod q. If the algorithm Invert fail for any reason, output ⊥.

2. Check the length of the obtained error vectors.

10



3. Let v = b− e, and parse v = (v0,v1,v2). If v0 /∈ 2Λ(At), output ⊥. Finally, output

encode−1(vt

Ri1 Ri2

I 0
0 I

 mod 2q) ∈ {0, 1}nk

if it exists, otherwise output ⊥.

• ReKeyGen(pki, ski, pkj): On input a public/secret key pair (pki, ski) from the i-th user and public
key pkj from j-th user, the re-encryption key generation algorithm do:

1. Parse i-th public/secret key pair and j-th public key as follows:

pki = [A| −Ai1| −Ai2], ski = [Ri1|Ri2], pkj = [A| −Aj1| −Aj2]

2. Use extended sampling algorithm SampleO to sample X01,X02,X11,X12 ∈ Znk×nk such that

[A| −Ai1 + h(1)G]

[
X01

X11

]
= −Aj1 + h(2)G, [A| −Ai1 + h(1)G]

[
X02

X12

]
= −Aj2 + Ai2

Therefore, it holds that

[A| −Ai1 + h(1)G| −Ai2 + B]

I X01 X02

0 X11 X12

0 0 I

 = [A| −Aj1 + h(2)G| −Aj2 + B]

for any matrix B ∈ Zn×nk.

3. Output the re-encryption key

rki→j = {X01,X02,X11,X12}

• ReEnc(rki→j , ct): On input the re-encryption key rki→j from i-th user to j-th user, and a ciphertext
ct = (u, b, `), the re-encryption algorithm output a special symbol⊥ if ` = 2. Otherwise, it computes

bt · rki→j = st[A| −Aj1 + h(1)G| −Aj2 + h(u)G] + e′t + (0, 0, encode(µ)t)

where e′ = (e′0, e
′
1, e
′
2), and

e′0 = e0, e′1 = e0X01 + e1X11, e′2 = e0X02 + e1X12 + e2

Then, it outputs ct′ = (u, b′, 2).

Correctness. We show that our construction, with appropriate parameter setting specified in Section 3.2,
satisfies the correctness condition defined above.

Lemma 3.1 (Correctness). Let (Ai, (Ri1,Ri2)) and (Aj , (Rj1,Rj2)) be the public/secret key pair for i, j-
th user respectively in the PRE system. Let ct = (u, b, 1) be the ciphertext of plaintext µ for i-th user, and
ct′ = ReEnc(rki→j , ct) be the re-encrypted ciphertext for j-th user. Then as we require above, it holds
µ← Dec(ct′, skj).
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Proof. Parse ciphertext ct as ct = (u, b, 1). Per correctness, we have

bt = 2(stAi,u,1 mod q) + et + (0, 0, encode(µ)t) mod 2q

where Ai,u,1 = [A| − Ai1 + h(1)G| − Ai2 + h(u)G]. The re-encryption process can be re-phrased as
follows:

st[A| −Ai1 + h(1)G| −Ai2 + h(u)G]

I X01 X02

0 X11 X12

0 0 I

+ noise + (0, 0, encode(µ)t)

= st[A| −Aj1 + h(2)G| −Aj2 + h(u)G] + noise + (0, 0, encode(µ)t)

= stAj,u,2 + noise + (0, 0, encode(µ)t)

where Aj,u,2 = [A| −Aj1 + h(2)G| −Aj2 + h(u)G] and the noise terms is defined in algorithm ReEnc.
It is obvious that the re-encrypted ciphertext can be decrypted using j-th secret key, thus we omit the detail
for decryption here.

3.1 Security Proof

We follow the intuition explained in the introduction part to prove security as the following theorem.

Theorem 3.2. Assuming the hardness of LWEq,α′ (α′ = α/3 ≥ 2
√
n/q), the proxy re-encryption scheme is

selectively CCA∗-secure as defined in Definition 2.2.

Proof. First, using the same technique in [MP12], we can transform the samples from LWE distribution to
what we will need below. Given access to an LWE distribution As,α′ over Zq × T (where T = R/Z), we
can transform its samples (a, b = 〈s,a〉/q+ e mod 1) to have the form (a, 2(〈s,α〉 mod q) + e′ mod 2q)
for e′ ← DZ,αq, by mapping b to 2qb + DZ−2qb,s mod 2q where s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2.
The transformation maps the uniform distribution over Znq × T to the uniform distribution over Znq × Z2q.
Once the LWE samples are of the desired form, we construct column-wise matrix A∗ from these samples a
and a vector b∗ from the corresponding b. Without loss of generality, we randomly choose one uncorrputed
user as the challenge user, which will result in a polynomial loss in the security proof. We proceed via a
sequence of hybrid games:

Hybrid H0 : The game H0 is exactly the CCA∗ attack with the real system described above.

Hybrid H1 : In game H1, we change the way to generate uncorrupted pk, challenge ciphertext ct∗ and
re-encryption keys rk, that are hard to distinguish from the counterparts in game H0. We set the public
parameter matrix A = A∗, where A∗ is from LWE instance (A∗, b∗), and select a random element
u∗ ∈ U .

• Uncorrupted key generation oracle: To obtain a public key for uncorrupted user of the challenge
user i∗ ∈ C, the oracle chooses random matrices Ri∗1,Ri∗2 from {−1, 1}m×m, then output the
public key to be

pki∗ = [A∗| −A∗Ri∗1 − h(1)G| −A∗Ri∗2 − h(u∗)G]

For uncorrupted query i ∈ C other than challenge user i∗, the oracle firstly chooses and stores
matrices Xi,01,Xi,11,Xi,02,Xi,12 from Dnk×nkZ,s , and set

Ai1 = [A| −Ai∗1]

[
Xi,01

Xi,11

]
Ai2 = [A| −Ai∗1]

[
Xi,02

Xi,12

]
12



where Ai∗1 = ARi∗1,Ai∗2 = ARi∗2. Then the oracle outputs the public key for i-th query as

pki = [A| −Ai1 − h(2)G| −Ai2 + Ai∗2]

Also since the oracle does not reveal any secret key of uncorrupted users, the output of {pki}i∈C
other than the challenge ciphertext does not reveal the choice of u∗ as well.

• Corrupted key generation oracle: To obtain the pair of secret and public keys for user i ∈ H,
the oracle chooses random matrices Ri1,Ri2 ← D, letting Ai1 = ARi1 mod q and Ai2 =
ARi2 mod q, and sends back ski = [Ri1|Ri2].

• Re-encryption key generation oracle: First check the constrains defined in Definition 2.2, i.e. if
(i ∈ H, j ∈ C) or (i ∈ C, j ∈ H) or {i, j} * C ∪ H, the oracle returns ⊥; Otherwise, since there
exist some differences in the key generation process between the first query and the rest queries,
we divide the process into two cases as follows:

1. The generation of re-encryption key from challenge user i∗ to other i-th user from level 1 to level
2: The oracle can use the pre-sampled matrices {X} in the generation of pki to re-construct the
re-encryption key rki∗→i as:

rki∗→i =

I Xi,01 Xi,02

0 Xi,11 Xi,12

0 0 I


where matrices Xi,01,Xi,11,Xi,02,Xi,12 are pre-sampled previously in the key generation or-
acle. Each entry of the resulting re-encryption key is an inner product of a discrete Gaussian
vector and a vector consisting of {0, 1}, so the simulated re-encryption keys from challenge
user to other uncorrupted users have the same distribution as a re-encryption key in the scheme.

2. The generation of re-encryption key from i-th user to j-th user (i 6= i∗) from level 1 to level 2:
We first reconstruct the level-dependent matrix Ai for i-th users as:

Ai = [A| −Ai1 + (h(1)− h(2))G] = [A∗| −A∗R∗i1 + (h(1)− h(2))G]

where R∗i1 = Xi,01 − Ri∗1Xi,11. We can still compute the re-encryption key matrix using
Sample algorithm in the same way as in H0, since matrix (h(1)−h(2)) is non-zero in encryption
matrix Ai. The generation of re-encryption keys in this case still uses algorithm SampleO, thus
the distribution of simulated re-encryption keys is statistically close to that in the real scheme.

• Decryption oracle: On decryption query (i, ct) from adversaryA, the oracle first parses ciphertext
ct = (u, b, `), and outputs ⊥ if u = 0. If the decryption queries are made after the challenge oracle
query, then oracle outputs ⊥ if u = u∗. Then oracle divides the decryption process into following
four cases:

1. If i = i∗ and ` = 1, oracle reconstructs the message/level-dependent matrix Ai∗,u,1 as

Ai∗,u,1 = [A∗| −A∗Ri∗1| −A∗Ri∗2 + (h(u)− h(u∗))G]

Call Invert′O([Ri∗1|Ri∗2],Ai∗,u, b mod q) to get some z ∈ Zn and e. Then oracle performs
step 3 exactly as in Dec, except using [Ri∗1|Ri∗2] to decode message.

2. If i = i∗ and ` = 2, oracle reconstructs the message/level-dependent matrix Ai∗,u,2 as

Ai∗,u,1 = [A∗| −A∗Ri∗1 + (h(2)− h(1))G| −A∗Ri∗2 + (h(u)− h(u∗))G]

Call InvertO([Ri∗1|Ri∗2],Ai∗,u, b mod q) to get some z ∈ Zn and e. Then oracle performs
step 3 exactly as in Dec, except using [Ri∗1|Ri∗2] to decode message.

13



3. If i 6= i∗ and ` = 1, oracle reconstructs the message/level-dependent matrix Ai,u,1 as

Ai,u,1 = [A∗| −A∗R∗i1 + (h(1)− h(2))G| −A∗R∗i2 −Ai∗3 + (h(u)− h(u∗))G]

= [A∗| −A∗R∗i1 + (h(1)− h(2))G| −A∗(R∗i2 + Ri∗2) + (h(u)− h(u∗))G]

where R∗i2 = (Xi,02−Ri∗1Xi,12). Call algorithm InvertO([R∗i1|R∗i2 +Ri∗2],Ai,u, b mod q) to
get some z ∈ Zn and e. Then oracle performs step 3 exactly as in Dec, except using [R∗i1|R∗i2 +
Ri∗2] to decode message.

4. If i 6= i∗ and ` = 2, oracle reconstructs the message/level-dependent matrix Ai,u,2 as

Ai,u,2 = [A∗| −A∗R∗i1| −A∗R∗i2 −Ai∗3 + (h(u)− h(u∗))G]

= [A∗| −A∗R∗i1| −A∗(R∗i2 + Ri∗2) + h(u− u∗)G]

where R∗i2 = (Xi,02−Ri∗1Xi,12). Call algorithm Invert′O([R∗i1|R∗i2+Ri∗2],Ai,u, b mod q) to
get some z ∈ Zn and e. Then oracle performs step 3 exactly as in Dec, except using [R∗i1|R∗i2 +
Ri∗2] to decode message.

In summarize, the decryption oracle can answer any decryption queries for uncorrupted users as
long as u 6= u∗, which is ensure with overwhelming probability because u∗ is statistically hidden,
and by the “unit difference” property on set U we have h(u)− h(u∗) = h(u− u∗) is invertible, as
require by calling InvertO algorithm.

• Challenge oracle: The oracle produces challenge ciphertext (u, b, 1) on a message µ∗ ∈ {0, 1}nk
as follows. Let u = u∗, then the message/level-dependent matrix is Ai∗,u∗,1 = [A∗| −A∗Ri∗1| −
A∗Ri∗2]. Then oracle sets the first nk coordinates of challenge ciphertext b to be b0 = b∗, where
(A∗, b∗) is the LWE instance. The last 2nk coordinates can be set as

b1 = bt0Ri∗1 + e1 mod 2q, b2 = bt0Ri∗2 + e2 + encode(µ∗) mod 2q

where e1, e2 ∈ DnkZ,s. Then oracle output the challenge ciphertext ct = (µ∗, b).

Hybrid H2 : In game H2, we are given a LWE instance (A∗, b̃∗), where b̃∗ ∈ Znk2q is uniformly random.

We only change how the first nk coordinate of challenge ciphertext is created, by letting it be b̃∗. We
construct the pubic key for each user, answer re-encryption key generation and decryption query, and
construct the last 3nk coordinates of challenge ciphertext in the exactly way as in H1.

Claim 3.3. Hybrids H0 and H1 are statistically close.

Proof. The adversary obtains all the public keys and re-encryption keys as he wants in hybrid H0 and H1,
where in H1, challenge public key is

pki∗ = [A∗| −A∗Ri∗1 − h(1)G| −A∗Ri∗2 − h(u∗)G]

Note the challenge public key pki∗ is still negl(λ)-uniform for any choice of u∗, thus is identically distributed
as in H0. Therefore also conditioned on any fixed choice of pki∗ , the value of u∗ is statistically hidden from
the adversary. For uncurrupted users other than the challenge user, we have

Ai1 = [A| −Ai∗1]

[
Xi,01

Xi,11

]
, Ai2 = [A| −Ai∗1]

[
Xi,02

Xi,12

]
Since matrices Xi,01,Xi,11,Xi,02,Xi,12 are sampled from discrete Gaussian distributionDnk×nkZ,s , the public
keys are identically distributed as in H0. For re-encryption keys, because they are all sampled from discrete
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Gaussian distribution in hybrid H0,H1, they are identically distributed as well. Therefore, hybrid H0 and H1

are identically distributed.
We now show that the distribution of (u∗, b) is within negl(λ) statistical distance of that in game H0 from

the adversary’s view. Clearly, u∗ and b0 have the same distribution as in H0, because u∗ is negl(λ)-uniform
given the public keys of uncorrupted users, and b0 = 2(stA∗ mod q) + ẽt0 is from the LWE instance. Since
the noise item in b1 is ẽt0Ri∗1 + e1, by Corollary 3.10 in [Reg05], vector b1 are within negl(λ)-statistical
distance from discrete Gaussian distribution DZnk,s. The same argument also applies to b2.

Claim 3.4. Assuming the hardness of LWE assumption, then hybrid H1 and H2 are computationally indis-
tinguishable.

Proof. By a straightforward reduction.

Claim 3.5. In hybrid H2, the probability of adversary wining the game is negligible in the security parame-
ter.

Proof. This claim can be proved by Leftover Hash Lemma 2.8,

(A∗, b̃∗,−A∗Ri∗1,−A∗Ri∗2, b̃
∗Ri∗1, b̃

∗Ri∗2)

is negl(λ)-uniform when matrices Ri∗1,Ri∗2,Ri∗3 are chosen as in H2. Therefore, the challenge ciphertext
has the same distribution (up to negl(λ) statistical distance) for any encrypted message, and so the adversarys
advantage is negligible.

Combining hybrids H0,H1,H2 and the above claims, we complete the proof.

3.2 Parameter Selection

In this section, we set the lattice parameters used in our construction. G ∈ Zn×nkq is a gadget matrix for
q = poly(n), n = poly(λ) and k = O(log q) = O(log n). For matrix A ∈ Zn×mq in the public parameters
and secret keys R← D, we set m = O(nk) and D = Dm×nk

Z,w(
√

logn)
respectively. We set the deviation s for

discrete Gaussian distribution used in security proof to be s = w(
√

log n). For the error rate α in the LWE
assumption, we set sufficiently large 1/α = O(nk) · w(

√
log n).

4 Multi-hop CCA∗-Secure PRE Construction

In this section, we present our construction for multi-hop CCA∗ secure PRE scheme as defined in Definition
2.4. The construction can be viewed as a natural variant of the single-hop scheme presented in Section 3.
The maximum times of re-encryption applied to the ciphertext depends on the types of LWE assumptions.
If we rely on sub-exponential LWE assumption, then we can apply poly-log times of re-encryption. If we
build our scheme based on standard LWE assumption, then we can apply re-encryption constant times. We
elaborate this tradeoff in the parameter setting in Section 4.2.

We construct the large set U and encode messages µ ∈ {0, 1}nk using the same technique as the single-
hop case as Section 3. Here instead of encoding the level ` in the encryption matrix (recall that in the
previous scheme ` ∈ {1, 2}), in the multi-hop scheme, each user chooses a random public element vi ∈ U .
The encryption algorithm will choose a random element u ∈ U (as a tag) for each encryption, and embeds
the matrices h(vi), h(u) into the encryption matrix as: Ai,u = [A| −Ai1 + h(vi)G| −Ai2 + h(u)G]. We
describe the scheme in detail as follows:
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• Setup(1λ, H): On input the security parameter λ and the maximum allowed re-encryption hop H ,
the setup algorithm set the lattice parameter n = n(λ,H),m = m(λ,H), q = q(λ,H) and Gaussian
parameter s = s(λ,H). Then it randomly selects a matrix A ∈ Zn×mq , and outputs the public
parameter pp = (A, n,m, q, s).

• KeyGen(pp): On input the public parameter pp, the key generation algorithm for i-th user chooses
a random element vi ∈ U , and random matrices Ri1,Ri2 ← D, letting Ai1 = ARi1 mod q and
Ai2 = ARi2 mod q. The public key is pki = ([A| − Ai1| − Ai2], h(vi)), and the secret key is
ski = [Ri1|Ri2].

• Enc(pki,µ): On input a public key pki, a message µ, the encryption algorithm chooses non-zero
u← U and let the message/user-dependent matrix

Ai,u = [A| −Ai1 + h(vi)G| −Ai2 + h(u)G]

The rest of encryption algorithm is the same as encryption algorithm in single-hop CCA-PRE scheme
described in Section 3.

• Dec(ski, ct): On input a secret key ski and ciphertext ct = (u, b), the decryption algorithm

1. If ct does not parse or u = 0, output⊥. Otherwise, reconstruct the message/user-dependent matrix
Ai,u

Ai,u = [A| −Ai1 + h(vi)G| −Ai2 + h(u)G]

The rest of decryption algorithm is the same as decryption algorithm in single-hop CCA-PRE
scheme described in Section 3.

• ReKeyGen(pki, ski, pkj): On input a public/secret key pair (pki, ski) from the i-th user and public
key pkj from j-th user, the re-encryption key generation algorithm do:

1. First, it parses i-th public/secret key pair and j-th public key as follows:

pki = ([A| −Ai1| −Ai2], h(vi)), ski = [Ri1|Ri2], pkj = ([A| −Aj1| −Aj2], h(vj))

2. Use extended sampling algorithm SampleO to sample X01,X02,X11,X12 ∈ Znk×nk such that

[A| −Ai1 + h(vi)G]

[
X01

X11

]
= −Aj1 + h(vj)G,

[A| −Ai1 + h(vi)G]

[
X02

X12

]
= −Aj2 + Ai2

Therefore, it holds that

[A| −Ai1 + h(vi)G| −Ai2 + B]

I X01 X02

0 X11 X12

0 0 I

 = [A| −Aj1 + h(vj)G| −Aj2 + B]

for any matrix B ∈ Zn×nk.
3. Output the re-encryption key

rki→j = {X01,X02,X11,X12}

• ReEnc(rki→j , ct): The re-encryption algorithm for tree-based PRE is the same as the counterpart in
single-hop CCA-PRE secure scheme in 3.

It is obviously to see that with appropriate parameter setting as specified in Section 4.2, the correctness
of the construction can be implied by the correctness of previous scheme as proof for Lemma 3.1.
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4.1 Security Proof

In this section, we prove a weaker version of Definition 2.4 – a selective CCA∗-PRE security, where the
adversary first commits to a tree structure before the experiment proceeds. Given the tree T beforehand, the
reduction can simulate the public keys and re-encryption keys in a specified order. On the other hand, if the
structure is unknown, then it is unclear how the reduction can simulate all the rk’s in an arbitrary order of
queries. This limitation comes from current techniques in security proof, yet there are no known attacks to
the construction, to our knowledge. It is an interesting open problem to determine whether the construction
achieves the full security notion as defined in Definition 2.4.

Next, we briefly describe the intuition behind our proof. For example, suppose User two is a child
of User one in tree T , then reduction first simulates pk1 and rk1←2, and then multiply them to get pk2.
The reduction can still provide decryption oracle because the tag of message in encryption matrix Ai,u =
[A|−Ai1 +h(vi)G|−Ai2 +h(u)G] would not vanish. The limitation in this approach is that the reduction
has to know the tree structure beforehand, and it cannot generalize to acyclic graph since it is not clear how
to coordinate the public key from two different paths of simulation.

Theorem 4.1. Assuming the hardness of LWEq,α′ where α′ = α/3 ≥ 2
√
n/q, the proxy re-encryption

scheme is a tree-based CCA∗-secure as defined in Definition 2.4 for any tree structure T .

Proof. First, we obtain the desired LWE form (A∗, b∗) by using the same technique described in proof of
Theorem 3.2. We proceed via a sequence of games.

Hybrid H0 : The game H0 is exactly the CCA∗ attack with the real system described above.

Hybrid H1 : In game H1, we change how the public keys and re-encryption key for users in the tree T and
challenge ciphertext ct∗ = (u∗, b∗) are constructed, and the way that decryption queries are answered, but
in a way that only introduces negl(λ) statistical distance with game H0. Suppose adversary A commits the
tree structure T = (E, V, r) at the beginning of the game. We let the matrix in public parameter pp to be
A = A∗, and choose a random element u∗ ∈ U . The changes can be described in detail as follows:

• Uncorrupted public and re-encryption key generation: To generate a public key for the root user
r ∈ V , the oracle chooses a random element vr ∈ U and random matrices Rr1,Rr2 from {−1, 1}m×m,
then output the public key to be

pkr = ([A| −ARr1 − h(vr)G| −ARr2 − h(u∗)G], h(vr))

For generation of other vertices in the tree T , the oracle computes the public key by induction. For
descendant i of the root vertex r, the oracle firstly chooses and stores random element vi ∈ U and
matrices Xi,01,Xi,11,Xi,02,Xi,12 from Dnk×nkZ,s , and set

Ai1 = [A| −Ar1]

[
Xi,01

Xi,11

]
, Ai2 = [A| −Ar1]

[
Xi,02

Xi,12

]
where Ar1 = −ARr1,Ar2 = −ARr2. Then the oracle outputs the public key for vertex i as

pki = ([A| −Ai1 − h(vi)G| −Ai2 + Ar2 − h(u∗)G], h(vi))

For descendant k of vertex j, where j is a descendant of vertex i, the oracle firstly chooses and stores
random element vk ∈ U , matrices Xk,01,Xk,11,Xk,02,Xk,12 from Dnk×nkZ,s , and set

Ak1 = [A|Aj1]

[
Xk,01

Xk,11

]
Ak2 = [A|Aj1]

[
Xk,02

Xk,12

]
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where Aj1 = −A(Xj,01 −Xi,01Xj,11 + · · ·+ Rr1 · · ·Xi,01Xj,11),Ar2 = −A(Xj,02 −Xi,02Xj,12 +
· · ·+ Rr2 · · ·Xi,02Xj,12). Then the oracle outputs the public key for vertex k as

pkk = ([A| −Ak1 − h(vk)G| −Ak2 + Aj2 − h(u∗)G], h(vk))

For re-encryption key from vertex i to vertex j, if (i, j) ∈ E, then output re-encryption key as the stored
matrices {Xj,01,Xj,11,Xj,02,Xj,12} sampled in the generation of public key for vertex j.
• Decryption oracle: On decryption query (i, ct) from adversary A, the oracle first parse ciphertext
ct = (u, b), and output ⊥ if u = 0. If the decryption queries are made after the challenge oracle query,
then oracle outputs ⊥ if u = u∗. Then oracle divides the decryption process into following two cases:
1. If i = r, the oracle first re-constructs the message/user-dependent matrix as

Ar,u = [A| −Ar1 − h(vr)G + h(vr)G|Ar2 − h(u∗)G + h(u)G]

= [A| −Ar1|Ar2 + h(u− u∗)G]

where Ar1 = ARr1,Ar2 = ARr2. Call Invert′O([Rr1|Rr2],Ar,u, b mod q) to get some z ∈ Zn
and e. Then oracle performs step 3 exactly as in Dec, except using [Rr1|Rr2] to decode message.

2. If i 6= r, and suppose vertex i is the descendant of vertex j, the oracle first re-constructs the
message/user-dependent matrix as

Ai,u = [A| −Ai1 − h(vi)G + h(vi)G| −Ai2 + Aj2 − h(u∗)G + h(u)G]

= [A| −Ai1| −Ai2 + Aj2 + h(u− u∗)G]

where Ai1 = ATi1 = A(Xi,01−Xj,01Xi,11+· · ·+Rr1 · · ·Xj,01Xi,11), and Ai2−Aj2 = ATi2 for
small matrix Ti computed from the expression of matrices Ai2,Aj2. Then Call Invert′O([Ti1|Ti2],
Ar,u, b mod q) to get some z ∈ Zn and e. Then oracle performs step 3 exactly as in Dec, except
using [Ti1|Ti2] to decode message.

• Challenge oracle: The oracle produces challenge ciphertext (u, b) on a challenge query (i∗,µ) as
follows. Let u = u∗, then the message/user-dependent matrix is Ai∗,u∗ = [A∗| −A∗Ti∗1| −A∗Ti∗2].
Then oracle sets the first nk coordinates of challenge ciphertext b to be b0 = b∗, where (A∗, b∗) is the
LWE instance. The last 2nk coordinates can be set as

b1 = bt0Ti∗1 + e1 mod 2q, b2 = bt0Ti∗2 + e2 + encode(µ∗) mod 2q

where e1, e2 ∈ DnkZ,s. Then oracle output the challenge ciphertext ct = (µ∗, b). We now show that the
distribution of (u∗, b) is within negl(λ) statistical distance of that in game H0 from the adversary’s view.
Clearly, u∗ and b0 have the same distribution as in H0, because u∗ is negl(λ)-uniform given the public
keys of uncorrupted users, and b0 = 2(stA∗ mod q) + ẽt0 is from the LWE instance. Since the noise
item in b1 is ẽt0Ri∗1 +e1, by Corollary 3.10 in [Reg05], vector b1 are within negl(λ)-statistical distance
from discrete Gaussian distribution DZnk,s. The same argument also applies to b2.

Hybrid H3 : The same as the hybrid H2 in the proof of Theorem 3.2.

Claim 4.2. Hybrids H0 and H1 are statistically close.

Claim 4.3. Assuming the hardness of LWE assumption, then hybrid H1 and H2 are computationally indis-
tinguishable.

Claim 4.4. In hybrid H2, the probability of adversary wining the game is negligible in the security parame-
ter.

The proof of the above claims is analogous to tht proofs in Theorem 3.2, thus we omit the detail here.
Combining hybrids H0,H1,H2 and the above claims, we complete the proof.
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4.2 Parameter Selection

G ∈ Zn×nkq is a gadget matrix for k = O(log q) = O(log n). For matrix A ∈ Zn×mq in the public
parameters and secret keys R ← D, we set m = O(nk) and D = Dm×nk

Z,w(
√

logn)
respectively. We set the

deviation s for discrete Gaussian distribution used in security proof to be s = w(
√

log n). After each re-
encryption the noise will grow a

√
ms factor. For the error rate α in the LWE assumption, we set sufficiently

large 1/α = O(nk) · w(
√

log n). We use H to denote the maximum depth of the tree structure used in our
construction, and we have H = O(n/ log n). In order to achieve fixed poly-log depth H , so q has to set
to be greater then mH/2. Thus we have to rely sub-exponential LWE to set q = 2n

ε
, 0 < ε < 1, then

n = 2λ
ε
, 0 < ε < 1. We notice that in [LL15], Laine and Lauter proposed an attack for LWE assumption

when q is exponentially large (i.e. 2cn), but in our setting, q = 2n
ε

is sub-exponentially in terms of the
security parameter, so our assumption still holds. If we want to rely on standard LWE assumption, then we
can achieve constant depth by setting q = poly(n), n = poly(λ).

5 Multi-Hop CPA-Secure PRE Construction

Our construction, with slight modifications, can be extended to support multi-hop with respect to general
acyclic graphs, but the scheme falls back to the CPA-security. This extension is inspired by the re-encryption
key generation idea introduced in [CCL+14].

The Setup algorithm is the same as that of the single-hop scheme in Section 3, while the KeyGen is
slightly different. Here we can use a simpler encryption matrix of the form Ai = [A|−Ai1+h(vi)G] (recall
that vi is a random element that User i owns), and the encryption algorithm does not need to sample a random
element u ∈ U (as a tag). Therefore, the key generation algorithm only needs to generate Ai1 = A·Ri1, and
sets Ai1 and Ri1 as the public/secret keys (for User i). These two algorithms can be viewed as a simplified
version of the previous scheme, so we omit the details. In the following, we present the encryption, and the
re-encryption procedure.

Enc(pki,µ): On input a public key pki, a message µ, the encryption algorithm sets the user-dependent
matrix

Ai = [A| −Ai1 + h(vi)G]

Choose s← Znq , e0 ← DmZ,s and e1 ← DnkZ,s. Let

bt = (b0, b1) = 2(stAi mod q) + et + (0, encode(µ)t) mod 2q

where e = (e0, e1). Output the ciphertext ct = b.

ReKeyGen(pki, ski, pkj): On input a public/secret key pair (pki, ski) and a public key pkj , the re-encryption
key generation algorithm dose:

1. First, parse i-th public/secret key pair and j-th public key as follows:

pki = ([A| −Ai1], h(vi)), ski = Ri1, pkj = ([A| −Aj1], h(vj))

Then sample random matrix U ∈ Zn×mq and short noise matrices V ∈ Dn×nZ,s ,E0,

E1,∈ Dn×mZ,s .

2. Use extended sampling algorithm SampleO to sample

X00,X10,X01,X11 ∈ Znk×nk
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such that

[A| −Ai1 + h(vi)G]

[
X00

X10

]
= VA + E0

[A| −Ai1 + h(vi)G]

[
X01

X11

]
= V(−Aj1 + h(vj)G) + E1

Therefore, it holds that

[A| −Ai1 + h(vi)G]

[
X00 X01

X10 X11

]
= [VA + E1|V(−Aj1 + h(vj)G) + E2]

3. Output the re-encryption key

rki→j = {X00,X01,X10,X11}

Correctness. We provide a sketch proof below to show that the correctness still holds regarding the mod-
ification described above. The parameter selection for our CPA-secure PRE construction is the same as that
of multi-hop CPA-secure scheme described in Section 4.2, thus we omit the details here.

Lemma 5.1 (Correctness). The correctness of the modified multi-hop PRE holds regarding polynomial proxy
re-encryptions with appropriate parameters.

Proof. For simplicity, we only prove the case that the ciphertext is re-encrypted from freshly generated
ciphertext. Assume a ciphertext ct = b is an encryption of message µ under user i’s public key and then
re-encrypted by the proxy to user j, thus first we have

bt = 2(stAi mod q) + et + (0, encode(µ)t) mod 2q

where Ai = [A| −Ai1 +h(vi)G| −Ai2 +G]. The re-encryption process from user i to j can be re-phased
as follows:

st[A| −Ai1 + h(vi)G]

[
X00 X01

X10 X11

]
+ noise + (0, encode(µ)t)

= st[VA + E0|V(−Aj1 + h(vj)G) + E1] + noise + (0, encode(µ)t)

= st[VAj + E0|E1] + noise + (0, encode(µ)t)

The noise terms is defined analogously as in previous algorithm ReEnc, thus it is obviously that the re-
encrypted ciphertext can be decrypted using j-th secret key.

We prove the security of the above construction in the CPA-PRE model, where adversary dose not have
access to decryption oracle in security experiment. The security proof can be obtained from the previous
proofs with some minor modifications, thus we only present a proof sketch below.

Theorem 5.2 (CPA-secure PRE). Assuming the hardness of LWEq,α′ where α′ = α/3 ≥ 2
√
n/q, the scheme

is a graph-based CPA-secure as defined in Definition 2.5 for any general acyclic graph.

Proof. First, we obtain the desired LWE form (A∗, b∗) by using the same technique described in proof of
Theorem 3.2. We proceed via a sequence of games.

Hybrid H0 : The game H0 is exactly the CPA-PRE attack with the real system described above.
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Hybrid H1 : In game H1, we change the way to generate uncorrupted pk, challenge ciphertext ct∗ and
re-encryption keys rk, that are hard to distinguish from the counterparts in game H0. We set the public
parameter matrix A = A∗, where A∗ is from LWE instance (A∗, b∗).

• Uncorrupted key generation oracle: To obtain a public key for uncorrupted user of the user i, the
oracle chooses random matrices Ri1 from {−1, 1}m×m and a random element vi ∈ U , then output
public key to be

pki∗ = ([A| −ARi1 − h(vi)G], h(vi))

• Re-encryption key generation oracle: Since there is no decryption oracle in CPA security model,
adversary cannot check the correctness of re-encrypted ciphertext. Moreover, because the re-
encrypted user-dependent matrix

[VA + E0|V(−Aj1 + h(vj)G) + E1]

where matrices V,E0,E1 are sampled from discrete Gaussian distribution, the distribution remains
computationally indistinguishable from random distribution by the LWE assumption. Therefore,
we can sample some matrices X00,X10,X01,
X11 ← Dnk×nkZ,s , which are distributed identically as in hybrid H0, and output them as re-encryption
key from user i to j.

• Challenge oracle: The challenge ciphertext is generated using the same technique described as in
Theorem 3.2, with some minor modifications to fit the encryption algorithm defined above, thus we
omit the details here.

Hybrid H3 : The same as the hybrid H2 in the proof of Theorem 3.2.

Claim 5.3. Hybrids H0 and H1 are statistically close.

Claim 5.4. Assuming the hardness of LWE assumption, then hybrid H1 and H2 are computationally indis-
tinguishable.

Claim 5.5. In hybrid H2, the probability of adversary wining the game is negligible in the security parame-
ter.

The proof of the above claims is analogous to the proofs in Theorem 3.2, thus we omit the detail here.
Combining hybrids H0,H1,H2 and the above claims, we complete the proof.
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