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Abstract. In [13] for a given vectorial Boolean function F from Fn
2 to itself it was defined an

associated Boolean function γF (a, b) in 2n variables that takes value 1 iff a 6= 0 and equation
F (x) + F (x + a) = b has solutions. In this paper we introduce the notion of differentially
equivalent functions as vectorial functions that have equal associated Boolean functions. It is
an interesting open problem to describe differential equivalence class of a given APN function.

We consider the APN Gold function F (x) = x2
k+1, where gcd(k, n) = 1, and prove that

there exist exactly 22n+n/2 distinct affine functions A such that F and F +A are differentially
equivalent if n = 4t for some t and k = n/2± 1; otherwise the number of such affine functions
is equal to 22n. This theoretical result and computer calculations obtained show that APN
Gold functions for k = n/2 ± 1 and n = 4t are the only functions (except one function in 6
variables) among all known quadratic APN functions in 2, . . . , 8 variables that have more than
22n trivial affine functions AF

c,d(x) = F (x) + F (x + c) + d, where c, d ∈ Fn
2 , preserving the

associated Boolean function when adding to F .

Keywords. Boolean function, Almost perfect nonlinear function, Almost bent function,

Crooked function, Differential equivalence

1 Introduction

Almost perfect nonlinear (APN) and almost bent (AB) functions are of a great interest for
using in cryptographic applications as S-boxes due to their optimal differential and nonlinear
properties (see paper [30] of K. Nyberg). An actual problem in cryptographic vectorial Boolean
functions is to find new constructions of APN and AB functions. In the well known paper [13]
of C. Carlet, P. Charpin and V. Zinoviev for a given vectorial Boolean function F from Fn

2 to
itself it was defined an associated Boolean function γF (a, b) in 2n variables that takes value 1 if
a 6= 0 and equation F (x) + F (x + a) = b has solutions and value 0 otherwise. It was observed
that F is APN (AB) if and only if γF has weight 22n−1 − 2n−1 (is a bent function).

In paper [22] we obtained that there do not exist two APN functions F and F ′ such that
γF (a, b) = γF ′(a, b) + 1 for all a, b ∈ Fn

2 , a 6= 0, when n ≥ 2. But for a given APN function
F in n variables there always exist at least 22n distinct functions Fc,d(x) = F (x + c) + d such
that γF = γFc,d

for all c, d ∈ Fn
2 , n ≥ 2 (see proposition 1). The question arises: do there

exist more than 22n (n, n)-functions with the same associated Boolean function for a given APN
function? Surprisingly, working on paper [22] we computationally found an example of such an
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APN function in 4 variables. In this paper we introduce the following definition: two (n, n)-
functions F and F ′ are called differentially equivalent if their associated functions γF and γF ′ are
equal. Note that using this notion one of the open problems mentioned by C. Carlet in [12] can
be formulated as follows: is it possible to describe differentially equivalent functions to a given
APN function? The answer to this question can potentially lead to new APN (AB) functions.
In this paper we study the mentioned question for APN Gold functions.

We start in section 2 by discussing basic definitions with paying attention to APN and AB
functions. In section 3 we introduce definition of differential equivalence of vectorial Boolean
functions and describe its general properties. Several conjectures about differential equivalence
of quadratic APN functions are formulated. Section 4 contains the main result of the paper,
where we start to analyze differential equivalence classes of APN Gold functions F (x) = x2

k+1

over the finite field F2n with gcd(k, n)=1, which are also AB if n is odd. We prove that there exist
exactly 22n+n/2 distinct affine functions A such that F and F + A are differentially equivalent
if n = 4t for some t and k = n/2± 1; otherwise the number of such affine functions is equal to
22n. In section 5 the computational results are presented. Section 6 concludes the paper where
the problem remains open is formulated.

2 Definitions

2.1 Vectorial Boolean functions

Let F2n be the finite field of order 2n and Fn
2 be the n-dimensional vector space over F2. Let 0

denote the zero vector of Fn
2 . A mapping F : Fn

2 → Fm
2 is called a vectorial Boolean function or

a (n,m)-function. When m = 1 a function F is called a Boolean function. The Hamming weight
wt(f) of a Boolean function f is defined as wt(f) = |{x ∈ Fn

2 : f(x) = 1}| and the Hamming
distance between f and g is dist(f, g) = |{x ∈ Fn

2 : f(x) 6= g(x)}|. Any (n,m)-function F can
be considered as the set of m Boolean functions that are called coordinate functions of F in the
form F (x) = (f1(x), . . . , fm(x)), where x ∈ Fn

2 . Any such a function F has its unique algebraic
normal form (ANF)

F (x) =
∑

I∈P(N)

aI
(∏
i∈I

xi
)
,

where P(N) is the power set of N = {1, . . . , n} and aI belongs to Fm
2 . Here + denotes the

coordinate-wise sum of vectors modulo 2. The algebraic degree of F is degree of its ANF:
deg(F ) = max{|I| : aI 6= 0, I ∈ P(N)}. A function is called affine if its algebraic degree is not
more than 1 or, equivalently, if F (x + y) = F (x) + F (y) + F (0) for any x, y ∈ Fn

2 . An affine
function F is linear if F (0) = 0. Functions of algebraic degree 2 are called quadratic.

In this paper we will consider only (n, n)-functions and Boolean functions. Further, by
vectorial Boolean functions we mean only (n, n)-functions. It is convenient to identify the vector
space Fn

2 with the finite field F2n and to consider vectorial Boolean functions as mappings from
F2n to itself. Any such a function F has the unique representation as a univariate polynomial
over F2n of degree not more than 2n − 1

F (x) =
2n−1∑
i=0

λix
i, where λi ∈ F2n .

2



It is widely known that algebraic degree of F can be calculated as deg(F ) = maxi=0,...,2n−1{wt(i) :
λi 6= 0}, where wt(i) denotes binary weight of integer i. In this representation any affine function
F has a form F (x) = λ+

∑n
i=0 λix

2i , where λ, λi ∈ F2n . And F is linear if λ = 0.
Since a Boolean function f on F2n is a particular case of vectorial Boolean functions then

it also can be uniquely represented as a univariate polynomial that takes values only from F2.
But there is a more convenient representation of f that is called trace form (it is not unique):

f(x) = tr
( ∑
i∈CS

λix
i + λx2

n−1),
where λi, λ ∈ F2n , tr denotes the trace function tr(x) = x+ x2 + x2

2
+ . . .+ x2

n−1
and CS is the

set of representatives of cyclotomic classes modulo 2n − 1. Recall that the trace function takes
values only from F2 and it is a linear function. A cyclotomic class modulo 2n − 1 of an integer
i is the set C(i) = {i · 2j mod (2n − 1), j = 0, . . . , n − 1}. Cardinality of any cyclotomic class
modulo 2n − 1 is at most n and divides n.

There are two notions of equivalence of vectorial Boolean functions that are usually consid-
ered studying cryptographic functions. Let F and F ′ be (n, n)-functions. F and F ′ are called
extended affine equivalent (EA-equivalent) if F ′ = A′ ◦ F ◦ A′′ + A, where A′, A′′ are affine
permutations of Fn

2 and A is an affine function on Fn
2 . Two functions F and F ′ are said to be

Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if their graphs GF = {(x, F (x)) : x ∈ Fn
2}

and GF ′ = {(x, F ′(x)) : x ∈ Fn
2} are affine equivalent, that is, there exists an affine permutation

A = (A1, A2) of Fn
2 × Fn

2 (where A1, A2 are affine functions from Fn
2 × Fn

2 to Fn
2 ), such that

y = F (x) if and only if A2(x, y) = F ′(A1(x, y)) for all x, y ∈ Fn
2 .

Both these equivalences preserve the properties of a vectorial Boolean function to be APN
and AB. But, in general, CCZ-equivalence in contrast to EA-equivalence modifies the algebraic
degree of a function. EA-equivalence is a particular case of CCZ-equivalence, although in several
cases they coincide, for example, for Boolean functions and vectorial bent Boolean functions as
shown by L. Budaghyan and C. Carlet in [8]. Also, it was proved in [34] by S. Yoshiara that
two quadratic APN functions are CCZ-equivalent if and only if they are EA-equivalent.

2.2 APN and AB functions

A function F from Fn
2 to itself is called almost perfect nonlinear (APN) if for any a, b ∈ Fn

2 ,
a 6= 0, equation F (x) + F (x + a) = b has at most 2 solutions. Equivalently, F is APN if
|Ba(F )| = |{F (x) + F (x+ a) | x ∈ Fn

2}| = 2n−1 for any nonzero vector a.
The nonlinearity NF of a (n,m)-function F is the minimum Hamming distance between all

nonzero linear combinations of coordinate functions of F and all affine Boolean functions on Fn
2 .

There is the universal bound on nonlinearity of an arbitrary (n,m)-function: NF ≤ 2n−1−2n/2−1.
A (n,m)-function is called a bent function if its nonlinearity is equal to 2n−1 − 2n/2−1. In [29]
K. Nyberg proved that bent functions exist only if m ≤ n/2 and n is even. When n = m, there
is a better upper bound on nonlinearity (the Sidelnikov-Chabaud-Vaudenay bound) equal to
2n−1 − 2(n−1)/2. Vectorial functions on Fn

2 that achieve this bound are called almost bent (AB).
It is easy to see that AB functions exist only for odd n. Every AB function is APN but the
converse is not true. However, it was proved [13] that every quadratic APN function in odd
number of variables is AB.

Although APN and AB functions are intensively studied, it is very hard to give completed
descriptions of these classes. Power or monomial functions, that are functions over F2n of the
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form F (x) = xd, are the simplest candidates to study whether they are APN (AB) or not. Table
1 illustrates the list of all known APN and AB power functions. There is a conjecture [14] of
H. Dobbertin that this list is complete. Note that in paper [20] M. M. Glukhov mentions that
the APN property of the inverse function (see Table 1) was already proved in 1968 by V. A.
Bashev and B. A. Egorov. Infinitive families of APN and AB polynomials are also found (see,
for example, surveys [31] of A. Pott, [32] of M. E. Tuzhilin).

Table 1: Known APN and AB power functions xd on F2n .

Functions Exponents d Conditions deg(xd) AB Ref.

Gold d = 2t + 1 gcd(t, n) = 1 2 for odd n [21], [30]

Kasami d = 22t − 2t + 1 gcd(t, n) = 1 t+ 1 for odd n [26], [27]

Welch 2t + 3 n = 2t+ 1 3 yes [11], [15]

Niho
2t + 2

t
2 − 1, if t is even

2t + 2
3t+1

2 − 1, if t is odd
n = 2t+ 1

(t+ 1)/2
t+ 1

yes [14], [24]

Inverse 22t − 1 n = 2t+ 1 n− 1 no [3], [30]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t t+ 3 no [16]

Another longstanding problem in APN functions is the existence of APN permutations in
even number of variables n. There are several partial nonexistence results on APN permutations
(for example, [2], [19], [25]) and the only APN permutation in even n is discovered in [7] for
n = 6 by J. F. Dillon et al. In [33] V. Vitkup considers sets of different values of an arbitrary
APN function and study their properties and bounds on their cardinalities.

Complete classification over EA and CCZ-equivalence of APN functions up to dimension
5 was obtained in [5] by M. Brinkman and G. Leander. For n = 6 there are also known all
13 CCZ-inequivalent quadratic APN functions (found in [6], verified in [17] by Y. Edel). In
paper [36] Y. Yu, M. Wang, Y. Li developed a new approach to find CCZ-inequivalent quadratic
APN functions and in updated version of [35] presented 487 CCZ-inequivalent quadratic APN
functions for n = 7 and 8179 for n = 8.

3 Differential equivalence of vectorial Boolean functions

In this section we introduce the notion of differential equivalence of vectorial Boolean functions
and consider its basic properties in general case and more precisely in case of quadratic functions.

3.1 Definition and basic properties of differential equivalence

Let F : Fn
2 → Fn

2 be a vectorial Boolean function. In [13] a Boolean function γF : F2n
2 → F2

associated to F was introduced in the following way: γF (a, b) takes value 1 if and only if a 6= 0
and F (x) +F (x+ a) = b has solutions. It was shown that F is APN (AB) if and only if γF has
the Hamming weight 22n−1 − 2n−1 (is a bent function, respectively).

Let us introduce the following definition.

Definition 1. Two functions F, F ′ from Fn
2 to itself are called differentially equivalent if γF =

γF ′. Denote the differential equivalence class of F by DEF .
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Problem 1. [12] Is it possible to find a systematic way, given an APN function F , to build
another function F ′ such that γF = γF ′?

This open problem can be also formulated in terms of differential equivalence: is it possible
to describe the differential equivalence class of a given APN function? It is a rather natural
question, but it seems to be difficult to find an answer for an arbitrary APN function. Indeed,
we could not even say that differential equivalence between two APN functions implies EA- or
CCZ-equivalence between them. It makes this problem more interesting since we potentially
could find new APN functions studying differential equivalence classes of known ones.

Let us denote the set {F (x) + F (x+ a) | x ∈ Fn
2} by Ba(F ), where a ∈ Fn

2 .

Proposition 1. Let F : Fn
2 → Fn

2 be an APN function and n > 1. Then Fc,d(x) = F (x+ c) + d
is differentially equivalent to F for all c, d ∈ Fn

2 and all the functions Fc,d are pairwise distinct.

Proof. Consider Ba(Fc,d) for an arbitrary nonzero a from Fn
2 :

Ba(Fc,d) = {F (x+ c) + d+ F (x+ c+ a) + d | x ∈ Fn
2}

= {F (y) + F (y + a) | y ∈ Fn
2} = Ba(F ).

Thus, by definition F and Fc,d are differentially equivalent for any c, d ∈ Fn
2 .

Suppose that there exist c, d, c′, d′ ∈ Fn
2 such that Fc,d = Fc′,d′ . Then F (x + c) + d =

F (x+ c′) + d′ for all x ∈ Fn
2 . Since n > 1, it follows that equation F (x) + F (x+ a) = b has at

least 4 solutions if a = c + c′ and b = d + d′. So, it is impossible for F to be APN if c 6= c′ or
d 6= d′.

The next proposition means that we only need to study differential equivalence classes of
the representatives of EA-equivalence classes of vectorial Boolean functions.

Proposition 2. Let F,G be EA-equivalent functions from Fn
2 to itself. Then |DEF | = |DEG|.

Moreover, if G = A′◦F ◦A′′+A and DEF = {F1, . . . , Fk}, then DEG = {A′◦F1◦A′′+A, . . . , A′◦
Fk ◦A′′ +A}.
Proof. Let us show that functions G′i = A′ ◦ Fi ◦A′′ +A, i = 1, . . . , k, belong to DEG. Indeed,

Ba(G′i) = {G′i(x) +G′i(x+ a) | x ∈ Fn
2}

= {A′
(
Fi(A

′′(x))
)

+A(x) +A′
(
Fi(A

′′(x+ a))
)

+A(x+ a) | x ∈ Fn
2}

= {A′
(
Fi(y) + Fi(y +A′′(a) +A′′(0))

)
+A′(0) +A(a) +A(0) | y ∈ Fn

2}
= A′

(
BA′′(a)+A′′(0)(Fi)

)
+A′(0) +A(a) +A(0).

Similarly, Ba(G) = A′
(
BA′′(a)+A′′(0)(F )

)
+ A′(0) + A(a) + A(0). Since BA′′(a)+A′′(0)(F ) =

BA′′(a)+A′′(0)(Fi) for all a ∈ Fn
2 and A′ is a one-to-one function, then Ba(G′i) = Ba(G) for all

a ∈ Fn
2 . So, G′i ∈ DEG, i = 1, . . . , k. Thus, |DEG| ≥ k, since Fi 6= Fj implies G′i 6= G′j , where

i, j = 1, . . . , k, i 6= j.
On the other hand, F = (A′)−1◦G◦(A′′)−1+(A′)−1◦A◦(A′′)−1+(A′)−1(0) = Ã′ ◦ G ◦Ã′′+Ã.

Similarly, we get k ≥ |DEG| that completes the proof.

There is the next natural question: “Is it true that an analogue of proposition 2 for CCZ-
equivalent functions takes place?”. Let us consider the case n = 4: there exist 2 EA-equivalence
classes of APN functions and their representatives are CCZ-equivalent (see [5]). We computa-
tionally found that cardinalities of differential equivalence classes of these two representatives
are equal to each other (see section 5). So, such an analogue holds for all numbers of variables
up to 4.
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3.2 Differential equivalence of quadratic APN functions

Quadratic APN functions are the simplest APN functions due to their algebraic degree, since
affine APN functions on Fn

2 do not exist if n > 1. But even in this case APN and AB functions are
still not classified for arbitrary number of variables. Studying quadratic functions we make use
of the following their useful property. If F is a quadratic function from Fn

2 to itself then Ba(F )
is an affine subspace for all nonzero a ∈ Fn

2 (recall that Ba(F ) = {F (x) + F (x + a) | x ∈ Fn
2}).

If F is APN, then Ba(F ) is an affine hyperplane (i. e. has cardinality 2n−1) for all a 6= 0.
In [1] definition of the crooked functions was introduced in connection with distance regular

graphs by T. D. Bending and D. Fon-Der-Flaass. In [28] G. Kyureghyan generalized this defini-
tion to the following: a function F is called crooked if Ba(F ) is an affine hyperplane for all a 6= 0.
Obviously, quadratic APN functions are always crooked. There is also a conjecture (proved for
monomial [28] and special binomial [4] functions):

Conjecture 1. [28] All crooked functions are quadratic.

If conjecture 1 is true, then for solving problem 1 for a quadratic APN function F we only
need to study if there exist quadratic functions differentially equivalent to F . The first natural
step in this direction is to study whether EA-equivalent to F function G is also differentially
equivalent to F .

Let G = A′◦F ◦A′′+A, where F is a quadratic APN function, A′, A′′ are affine permutations
and A is an affine function. Denote by L′, L′′, L linear parts of A′, A′′, A respectively, i. e.
L′(x) = A′(x) +A′(0), L′′(x) = A′′(x) +A′′(0), L(x) = A(x) +A(0). Then

Ba(G) = L′
(
BL′′(a)(F )

)
+ L(a). (1)

Proposition 3. Let F,A′, A′′, A be functions from Fn
2 to itself, where F is a quadratic APN

permutation, A′, A′′ are affine permutations and A is an affine function. Then F and A′ ◦ F ◦
A′′ +A are differentially equivalent if and only if F and A′ ◦F ◦A′′ are differentially equivalent
and F and F +A are differentially equivalent.

Proof. Denote by L′, L′′, L linear parts of A′, A′′, A respectively. The sufficient condition fol-
lows immediately from (1) and differential equivalence definition. Let us prove the necessary
condition. Let F and G = A′ ◦ F ◦ A′′ + A be differentially equivalent. Since F is a quadratic
permutation, then Ba(F ) is a complement of a hyperplane for all nonzero a ∈ Fn

2 . From (1)
and Ba(G) = Ba(F ) we get that linear parts of Ba(F ) and L′

(
BL′′(a)(F )

)
are equal. Hence,

Ba(F ) = L′
(
BL′′(a)(F )

)
, since L′, L′′ are linear permutations and 0 /∈ Ba(F ) for all a 6= 0. This

implies that F and A′ ◦ F ◦ A′′ are differentially equivalent. Therefore, F and F + A are also
differentially equivalent.

Thus, according to proposition 3 for quadratic APN permutations we could separately con-
sider when F and A′ ◦F ◦A′′ are differentially equivalent, where A′, A′′ are affine permutations,
and whether there exist an affine function A for a quadratic APN function F such that F and
F + A are differentially equivalent. There is also the following conjecture that holds for 2, 3, 4
number of variables.

Conjecture 2. Proposition 3 is also true when F is an arbitrary quadratic APN function.
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Note that at least 22n distinct affine functions A such that F and F + A are differentially
equivalent exist for any quadratic APN function F on Fn

2 . Indeed, AF
c,d(x) = F (x)+F (x+c)+d

is affine for all c, d ∈ Fn
2 and F (x) +AF

c,d(x) = F (x+ c) + d, which is differentially equivalent to

F according to proposition 1. So, all these functions AF
c,d are distinct and lead only to functions

belonging to the set of trivial differentially equivalent to F functions {F (x+ c) + d | c, d ∈ Fn
2}.

The question arises: do there exist other affine functions? It is easy to see that the number
of affine functions A for a given quadratic APN function F such that F + A ∈ DEF is an EA
invariant.

We have the following conjecture for odd number variables that is verified (see section 5) for
all quadratic APN functions in 3, 5 variables and for all 487 known EA-equivalence classes of
quadratic APN functions from [35], [36] in 7 variables. Recall that in these cases APN functions
are also AB.

Conjecture 3. Let n be odd and F be a quadratic APN function in n variables. Then there
exist exactly 22n affine functions such that F and F +A are differentially equivalent.

If n is even then an analogue of conjecture 3 is not true when n ≥ 4. The illustration of this
fact we will see in the next section, where APN Gold functions are studied.

Studying when quadratic APN functions F and L′ ◦ F ◦ L′′ are differentially equivalent
for small number of variables, where L′, L′′ are linear permutations, we came to the following
conjecture (proved for n = 2, 3, 4).

Conjecture 4. Let F be a quadratic APN function in n variable. Then F and L′ ◦ F ◦ L′′ are
differentially equivalent, where L′, L′′ are linear permutations on Fn

2 , if and only if F = L′◦F ◦L′′.

4 APN Gold functions

An APN Gold function is a quadratic monomial function of the form F (x) = x2
k+1 over F2n ,

where gcd(k, n) = 1. Thus, it follows [13] that it is also AB for odd n. It is easy to see that
Gold functions are permutations if n is odd and 3-to-1 functions otherwise.

APN Gold functions take a special place among APN functions. At first, these functions were
proved to be the only exceptional monomial functions [23] along with APN Kasami functions
by F. Hernando, G. McGuire. Also, despite the fact these functions seem to be rather simple
due to their algebraic degree and the univariate representation, other interesting constructions
of APN functions have been found based on them (for example, [9], [10], [18]).

Working on paper [22], where we tried to find an affine function A for a given quadratic APN
function such that Ba(F+A) = Fn

2\Ba(F ) for as many vectors a as possible, we found that for the
APN Gold function in 4 variables there exist 210 affine functions such that Ba(F +A) = Ba(F )
for all a ∈ F4

2. This result shows us that the differential equivalence class of this function F
includes functions that do not belong to the trivial set {F (x+ c) + d | c, d ∈ F4

2}.
In this section we prove that for an APN Gold function F (x) = x2

k+1 there exist exactly
22n+n/2 distinct affine functions A such that F and F +A are differentially equivalent if n = 4t
for some t and k = n/2± 1; otherwise the number of such affine functions is equal to 22n.

4.1 Preliminary lemmas

Here we consider two lemmas that will be used for proving the main result of the paper.
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Lemma 1. Let n be an integer. Let P i
k = 2i − 2k − 1, where i = 0, . . . , n− 1 and k runs from 1

to n− 1 except the case k = n/2 if n is even. Then the following statements hold:
(1) P 0

k and P k
k are in one cyclotomic class modulo 2n − 1 (say, C) for all k;

(2) P i
k and P j

k are in distinct cyclotomic classes modulo 2n − 1 not equal to C for all i 6= j
and i, j 6= 0, k;

(3) if n is odd, then |C(P i
k)| = n for all i and k;

(4) if n is even, then |C(P i
k)| = n for all i and k except the following cases: |C(Pn−1

n/2−1)| =
|C(P k−1

n/2+1)| = n/2.

Proof. (1) Let us further by P i
k mean the representative of P i

k congruence class modulo 2n − 1
belonging to the interval from 0 to 2n − 2. By definition, binary weights of P 0

k = −2k and
P k
k = −1 are equal to n− 1. It is easy to see that all integers from 0 to 2n − 2 of binary weight
n− 1 are in one cyclotomic class modulo 2n − 1 (say, C) of cardinality n.

(2) Let us consider all integers P i
k and their binary representations, see Table 2. The integers

P 1
k , . . . , P

k−1
k have binary weights n − k, . . . , n − 2 correspondingly. Thus, they are in pairwise

distinct cyclotomic classes modulo 2n−1 not equal to C. Similarly, the integers P k+1
k , . . . , Pn−1

k

belong to pairwise distinct cyclotomic classes modulo 2n − 1 not equal to C since their binary
weights runs from k to n− 2.

Table 2: Binary representations of integers P i
k.

i P i
k = 2i − 2k − 1 mod(2n − 1) = (bn−1, . . . , bk, . . . , b0) ∈ Fn

2 wt(P i
k)

0 1 1 . . . 1 1 0 1 1 . . . 1 1 1 1 1 n− 1

1 1 1 . . . 1 1 1 0 0 . . . 0 0 0 0 0 n− k
2 1 1 . . . 1 1 1 0 0 . . . 0 0 0 1 0 n− k + 1

3 1 1 . . . 1 1 1 0 0 . . . 0 0 1 1 0 n− k + 2

. . . . . . . . .

k − 1 1 1 . . . 1 1 1 0 1 . . . 1 1 1 1 0 n− 2

k 1 1 . . . 1 1 1 1 1 . . . 1 1 1 1 0 n− 1

k + 1 0 0 . . . 0 0 0 1 1 . . . 1 1 1 1 1 k

k + 2 0 0 . . . 0 1 0 1 1 . . . 1 1 1 1 1 k + 1

. . . . . . . . .

n− 1 0 1 . . . 1 1 0 1 1 . . . 1 1 1 1 1 n− 2

The binary representation of P i
k consist of two groups of consecutive 1s that have lengths

n− k and i− 1 if i = 1, . . . k− 1, and k and i− k− 1 if i = k+ 1, . . . , n− 1. Since the necessary
condition for two such integers be in the same cyclotomic classes is the equality of lengths of
consecutive 1s groups, then any two integers from different considered groups belong to different
classes. Indeed, n−k 6= k by proposition condition and n−k 6= i−k−1 for all i = k+1, . . . , n−1.

(3), (4) According to the previous studying of P i
k binary representations the only possible

case when |C(P i
k)| 6= n is the following: if lengths of consecutive 1s groups in P i

k are both equal
to n/2 − 1. If n is odd, this case is not realized. If n is even, then these possibilities are the
following: i = n− 1 if k = n/2− 1 and i = k− 1 if k = n/2 + 1. In both these cases P i

k = 2n/2P i
k

modulo 2n − 1 that completes the proof.

8



Lemma 2. Let ` be an integer, ` > 1. If ` is even, then gcd(2`, ` ± 1) = 1; if ` is odd, then
gcd(2`, `± 1) = 2.

Proof. Let gcd(2`, `± 1) = d. Then 2` = xd and `± 1 = yd, where gcd(x, y) = 1. Extracting `
from the second equality and putting it to the first equality we get 2 = (∓x± 2y)d. Hence the
only possible cases are:

1) d = 2, ∓x± 2y = 1. Then ` = 2y ∓ 1 is an odd integer.
2) d = 1, ∓x± 2y = 2. Then 2` = x and ` = y ∓ 1. Since x is even and gcd(x, y) = 1, then

y is odd and as a result ` is even.

4.2 The main result

For an APN Gold function F the explicit form of the associated Boolean function γF is known
[13]. For completeness we present it with a proof.

Proposition 4. Let F : F2n → F2n be a Gold function F (x) = x2
k+1, where gcd(k, n) = 1.

Then γF (a, b) = tr
(
(a2

k+1)−1b
)

+ tr(1) + 1 if a 6= 0 and γF (0, b) = 0 for all b ∈ F2n.

Proof. By definition, γF (a, b) = 1 if and only if a 6= 0 and equation F (x) + F (x + a) = b has
solutions. Let us consider this equation for a Gold function:

x2
k+1 + (x+ a)2

k+1 = b,

x2
k
a+ xa2

k
= b+ a2

k+1 / · a−1(a2k)−1,

x2
k
(a−1)2

k
+ xa−1 = b(a2

k+1)−1 + 1.

If a solution exists, then by applying the function trace to both sides of the equation we get:

tr
(
x2

k
(a−1)2

k
+ xa−1

)
= 0 = tr

(
b(a2

k+1)−1 + 1
)
.

Then γF (a, b) = tr
(
b(a2

k+1)−1 + 1
)

+ 1 = tr
(
(a2

k+1)−1b
)

+ tr(1) + 1.

The following theorem contains the main result of the paper.

Theorem 1. Let F : F2n → F2n be a Gold function F (x) = x2
k+1, where gcd(k, n) = 1. Then

the following statements hold:
(1) if n = 4t for some t and k = n/2 ± 1, then there exist exactly 22n+n/2 distinct affine

functions A of the form A(x) = α+λ2
k
x+λx2

k
+ δx2

j
such that F and F +A are differentially

equivalent, where α, λ, δ ∈ F2n, δ = δ2
n/2

, and j = k − 1 for k = n/2 + 1 and j = n − 1 for
k = n/2− 1;

(2) otherwise there exist exactly 22n distinct affine functions A of the form A(x) = α+λ2
k
x+

λx2
k

such that F and F +A are differentially equivalent, where α, λ ∈ F2n.

Proof. From proposition 4 we get that γF (a, b) = tr
(
(a2

k+1)−1b
)

+ tr(1) + 1 if a 6= 0 and
γF (0, b) = 0 for all b ∈ F2n . Let A be an affine function from F2n to itself and L be its linear
part, i. e. L(x) = A(x) +A(0). Then

γF+A(a, b) = γF
(
a, b+ L(a)

)
= tr

(
(a2

k+1)−1(b+ L(a)
)

+ tr(1) + 1
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= tr
(
(a2

k+1)−1b
)

+ tr
(
((a2

k+1)−1L(a)
)

+ tr(1) + 1.

Thus, γF+A(a, b) = γF (a, b) + tr
(
(a2

k+1)−1L(a)
)
. So, F and F +A are differentially equivalent

if and only if the linear part L of A satisfies the equality tr
(
(a2

k+1)−1L(a)
)

= 0 for all a ∈ F2n .
Denote by N the number of such affine functions A.

Let A(x) = α + L(x) = α +
∑n−1

i=0 λix
2i be an affine function, where α, λi ∈ F2n , i =

0, . . . , n− 1. Then the following equalities hold for all a ∈ F2n :

tr
(
(a2

k+1)−1L(a)
)

= tr
(n−1∑
i=0

λia
2i(a2

k+1)−1
)

=
n−1∑
i=0

tr(λia
2i−2k−1) = 0.

The last equality represents a polynomial equation in variable a of degree not more than
2n−1 that has 2n solutions. So, all its coefficients must be equal to 0. Let us find the coefficients
of all monomials xd, d = 0, . . . , 2n − 1. To do this we need to study cyclotomic classes of all
exponents P i

k = 2i − 2k − 1, i = 0, . . . , n − 1, for a given k. From lemma 1 (1,2) it follows
that there are only two exponents P 0

k and P k
k belonging to one cyclotomic class modulo 2n − 1.

So, we get that there is a relation between λ0 and λk in the form λ0 = (λk)2
k

for all n since
P 0
k = 2kP k

k

(
mod (2n − 1)

)
. To study the other coefficients consider the following cases.

Case 1. If n is odd, then from lemma 1 (2,3) we get that λi = 0 if i 6= 0, k. Thus, N = 22n

since we can choose α, λk be arbitrary elements from F2n .
Let n = 2` be even. There are two different possibilities.
Case 2. If ` is odd, then gcd(n, n/2± 1) = 2 according to lemma 2. So, we do not consider

k = n/2 ± 1 by theorem condition and as a result λi = 0 if i 6= 0, k according to lemma 1 (4).
Similarly to case 1, N = 22n.

Case 3. If ` is even, then according to lemma 2 gcd(n, n/2± 1) = 1.
— If k 6= n/2± 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k. Thus, N = 22n.
— If k = n/2 + 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k − 1, k and

λk−1 = (λk−1)
2n/2

. Since the number of elements x ∈ F2n satisfying the equality x = x2
n/2

is
equal to 2n/2, we have N = 22n+n/2.

— If k = n/2 − 1, then according to lemma 1 (4) we have λi = 0 if i 6= 0, k, n − 1 and

λn−1 = (λn−1)
2n/2

. Similarly to the previous, N = 22n+n/2.

Theorem 1 shows that the class of APN Gold functions contains quadratic APN functions F
whose differential equivalence classes are wider than trivial classes {Fc,d(x) = F (x+c)+d | c, d ∈
Fn
2} of cardinality 22n (recall that for a quadratic function F functions Fc,d = F + Ac,d, where

Ac,d is affine for all c, d ∈ Fn
2 ). Indeed, the cardinality of DEF , where F (x) = x2

n/2±1+1, n = 4t,
is greater or equal to 22n+n/2 according to theorem 1 (1). Also, as we will see in section 5
these APN Gold functions are the only functions (except one function in 6 variables) among all
quadratic APN functions in 2, . . . , 6 variables and all known quadratic APN functions in 7, 8
variables that have more than 22n affine functions preserving the associated Boolean functions
when adding to the original functions and as a result have differential equivalence classes wider
than trivial. That is why we call this property of APN Gold functions remarkable.

5 Computational results

Here we present results that were obtained using computer calculations.
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Table 3 illustrates a classification under differential equivalence of APN functions in small
number of variables n. For these dimensions we see that differential equivalence between two
functions implies also their EA-equivalence.

Table 3: Cardinalities of differential equivalence classes of APN functions on Fn
2 .

n # APN functions EA deg # differential equivalence classes with cardinalities

2 192 x3 2 12 classes of 24 functions

3 688128 x3 2 10752 classes of 26 functions

4 18 940 805 775 360
x3 2 1 156 055 040 classes of 210 functions
f [10] 3 17 340 825 600 classes of 210 functions

Here f(x) = x3 + (x2 + x+ 1)tr(x3).

Further we study how many affine functions A in n variables exist for a given quadratic APN
function such that F and F +A belong to one differential equivalence class. At first we present
mathematical background for our search.

Let F be a quadratic APN function. Then γF is of the form γF (a, b) = Φ(a) · b+ ϕ(a) + 1,
where Φ : Fn

2 → Fn
2 , ϕ : Fn

2 → F2 are uniquely defined from

Ba(F ) = {y ∈ Fn
2 | ΦF (a) · y = ϕF (a)}

for all a 6= 0 and ΦF (0) = 0, ϕF (0) = 1. Here x · y = x1y1 + . . . + xnyn denotes the inner
product of vectors x, y ∈ Fn

2 .
Let A be an affine function from Fn

2 to itself and L(x) = A(x) +A(0). Then

γF+A(a, b) = γF (a, b+ L(a)) = ΦF (a) ·
(
b+ L(a)

)
+ ϕF (a) + 1

= γF (a, b) + ΦF (a) · L(a).

Thus, F and F +A are differentially equivalent if and only if

ΦF (a) · L(a) = 0 for all a ∈ Fn
2 . (2)

The equalities (2) form the system of equations over n2 binary variables `i,j , i, j = 1, . . . , n, if we
represent L as L(x) = (

∑n
i=1 `1,ixi, . . . ,

∑n
i=1 `n,ixi). Let r be rank of this system. Then there

exist exactly 2n
2−r+n affine functions A such that F and F +A are differentially equivalent.

We computationally study ranks of system (2) for all known EA-equivalence classes of
quadratic APN functions in 2, . . . , 8 variables. Recall that the exact numbers of EA-equivalence
classes of quadratic APN functions are known for all n from 2 to 6 ([5], [6], [17]). For n equal to
7, 8 there are known partial results from [36] and updated version of [35]. Our computational
results are listed in Table 4. As we can see for almost all considered EA-equivalence classes in n
variables with representative F there exist exactly 22n trivial affine functions A such that F and
F + A are differentially equivalent. The exceptional cases are the following functions in even
number of variables:

n = 4: APN Gold function x3;
n = 6: 4th APN function from [6] u7x3 + x5 + u3x9 + u4x10 + x17 + u6x18;
n = 8: APN Gold function x9.
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Table 4: Numbers of affine functions A on Fn
2 such that F and F+A are differentially equivalent,

where F is a EA-equivalence representative of quadratic APN functions.

n # EA classes rank of system (2) # affine functions A: F +A ∈ DEF

2 1 2 24

3 1 6 26

4 1 10 210

5 2 for all 2 classes: 20 for all 2 classes: 210

6 13 for 12 classes: 30; for 1 class: 29 for 12 classes: 212; for 1 class: 213

7 ≥ 487 for all known 487 classes: 42 for all known 487 classes: 214

8 ≥ 8179
for 1 class from known 8179: 52 for 1 class from known 8179: 220

for other 8178 classes: 56 for other 8178 classes: 216

6 Conclusion

In this paper we introduced the notion of differential equivalence of vectorial Boolean functions
and considered its basic properties in general and quadratic cases. We started to analyze dif-
ferential equivalence classes of APN Gold functions by studying functions that are obtained by
adding affine functions to a given Gold function. This theoretical result and computer calcula-
tions for small number of variables shown us a remarkable property of APN Gold functions that
is not usual for almost all known quadratic APN functions. Also, we formulated several con-
jectures about differential equivalence of quadratic APN functions that would be interesting to
study further. But the most exciting problem that remains open about differential equivalence
is the existence of two differentially equivalent APN functions that are not CCZ-equivalent.
The positive answer to this question can give a new method for constructing APN functions
inequivalent to the known ones.

Acknowledgements. We thank Natalia Tokareva, Nikolay Kolomeec and Valeriya Vitkup for
fruitful discussions relating to this work and their valuable comments on the paper.
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