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Abstract. We present the first side-channel attack on a lattice-based
signature scheme, using the Flush+Reload cache-attack. The attack
is targeted at the discrete Gaussian sampler, an important step in the
Bimodal Lattice Signature Schemes (BLISS). After observing only 450
signatures with a perfect side-channel, an attacker is able to extract the
secret BLISS-key in less than 2 minutes, with a success probability of
0.96. Similar results are achieved in a proof-of-concept implementation
using the Flush+Reload technique with less than 3500 signatures.

We show how to attack sampling from a discrete Gaussian using CDT
or rejection sampling by showing potential information leakage via cache
memory. For both sampling methods, a strategy is given to use this
additional information, finalize the attack and extract the secret key.
We provide experimental evidence for the idealized perfect side-channel
attacks and the Flush+Reload attack on two recent CPUs.
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1 Introduction

The possible advent of general purpose quantum computers will undermine the
security of all widely deployed public key cryptography. Ongoing progress to-
wards building such quantum computers recently motivated standardization
bodies to set up programs for standardizing post-quantum public key primi-
tives, focusing on schemes for digital signatures, public key encryption, and key
exchange [6,18,24].
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A particularly interesting area of post-quantum cryptography is lattice-based
cryptography; there exist efficient lattice-based proposals for signatures, encryp-
tion, and key exchange [8,22,14,27,3,37,1] and several of the proposed schemes
have implementations, including implementations in open source libraries [34].
While the theoretical and practical security of these schemes is under active
research, security of implementations is an open issue.

In this paper we make a first step towards understanding implementation
security, presenting the first side-channel attack on a lattice-based signature
scheme. More specifically, we present a cache-attack on the Bimodal Lattice
Signature Scheme (BLISS) by Ducas, Durmus, Lepoint, and Lyubashevsky from
CRYPTO 2013 [8], attacking a research-oriented implementation made available
by the BLISS authors at [7]. We present attacks on the two implemented methods
for sampling from a discrete Gaussian and for both successfully obtain the secret
signing key.

Note that most recent lattice-based signature schemes use noise sampled
according to a discrete Gaussian distribution to achieve provable security and
reduction to standard assumption. Hence, our attack might be applicable to
many other implementations. It is possible to avoid our attack by using schemes
which avoid discrete Gaussians at the cost of more aggressive assumptions [13].

1.1. The attack target. BLISS is the most recent piece in a line of work on
identification-scheme-based lattice signatures, also known as signatures without
trapdoors. An important step in the signature scheme is blinding a secret value
in a way to make the signature statistically independent of the secret key. For
this, a blinding (or noise) value y is sampled according to a discrete Gaussian
distribution. In the case of BLISS, y is an integer polynomial of degree less than
some system parameter n and each coefficient is sampled separately. Essentially,
y is used to hide the secret polynomial s in the signature equation z = y +
(−1)b(s ·c), where noise polynomial y and bit b are unknown to an attacker and
c is the challenge polynomial from the identification scheme which is given as
part of the signature (z, c).

If an attacker learns the noise polynomials y for a few signatures, he can
compute the secret key using linear algebra and guessing the bit b per signature.
Actually, the attacker will only learn the secret key up to the sign, but for BLISS
−s is also a valid secret key.

1.2. Our contribution. In this work we present a Flush+Reload attack on
BLISS. We implemented the attack for two different algorithms for Gaussian
sampling. First we attack the CDT sampler with guide table, as described in [30]
and used in the attacked implementation as default sampler [7]. CDT is the
fastest way of sampling discrete Gaussians, but requires a large table stored
in memory. Then we also attack a rejection-sampling-based sampler that was
proposed in [8], and also provided in [7].

On a high level, our attacks exploit cache access patterns of the implemen-
tations to learn a few coefficients of y per observed signature. We then develop
mathematical attacks to use this partial knowledge of different yjs together with
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the public signature values (zj , cj) to compute the secret key, given observations
from sufficiently many signatures.

In detail, there is an interplay between requirements for the offline attack
and restrictions on the sampling. First, restricting to cache access patterns that
provide relatively precise information means that the online phase only allows to
extract a few coefficients of yj per signature. This means that trying all guesses
for the bits b per signature becomes a bottleneck. We circumvent this issue by
only collecting coefficients of yj in situations where the respective coefficient of
s · cj is zero as in these cases the bit bj has no effect.

Second, each such collected coefficient of yj leads to an equation with some
coefficients of s as unknowns. However, it turns out that for CDT sampling
the cache patterns do not give exact equations. Instead, we learn equations
which hold with high probability, but might be off by ±1 with non-negligible
probability. We managed to turn the computation of s into a lattice problem
and show how to solve it using the LLL algorithm [21]. For rejection sampling
we can obtain exact equations but at the expense of requiring more signatures.

We first tweaked the BLISS implementation to provide us with the exact
cache lines used, modeling a perfect side-channel. For BLISS-I, designed for 128
bits of security, the attack on CDT needs to observe on average 441 signatures
during the online phase. Afterwards, the offline phase succeeds after 37.6 seconds
with probability 0.66. This corresponds to running LLL once. If the attack does
not succeed at first, a few more signatures (on average a total of 446) are sampled
and LLL is run with some randomized selection of inputs. The combined attack
succeeds with probability 0.96, taking a total of 85.8 seconds. Similar results
hold for other BLISS versions. In the case of rejection sampling, we are given
exact equations and can use simple linear algebra to finalize the attack, given a
success probability of 1.0, taking 14.7 seconds in total.

To remove the assumption of a perfect side-channel we performed a proof-of-
concept attack using the Flush+Reload technique on a modern laptop. This
attack achieves similar success rates, albeit requiring 3438 signatures on average
for BLISS-I with CDT sampling. For rejection sampling, we now had to deal
with measurement errors. We did this again by formulating a lattice problem
and using LLL in the final step. The attack succeeds with a probability of 0.88
after observing an average of 3294 signatures.

1.3. Structure. In Section 2, we give brief introductions to lattices, BLISS, and
the used methods for discrete Gaussian sampling as well as to cache-attacks. In
Section 3, we present two information leakages through cache-memory for CDT
sampling and provide a strategy to exploit this information for secret key ex-
traction. In Section 4, we present an attack strategy for the case of rejection
sampling. In Section 5, we present experimental results for both strategies as-
suming a perfect side-channel. In Section 6, we show that realistic experiments
also succeed, using Flush+Reload attacks.
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2 Preliminaries

This section describes the BLISS signature scheme and the used discrete Gaus-
sian samplers. It also provides some background on lattices and cache attacks.

2.1. Lattices. We define a lattice Λ as a discrete subgroup of Rn: given m ≤ n
linearly independent vectors b1, . . . ,bm ∈ Rn, then Λ is the set Λ(b1, . . . ,bm)
of all integral linear combinations of the bi’s:

Λ(b1, . . . ,bm) =

{
m∑
i=1

xibi | xi ∈ Z

}
.

We call {b1, . . . ,bm} a basis of Λ and define m as the rank. We represent
the basis as a matrix B = (b1, . . .bm), which contains the vectors bi as row
vectors. In this paper, we mostly consider full-rank lattices, i.e. m = n, unless
stated otherwise. Given a basis B ∈ Rn×n of a full-rank lattice Λ, we can apply
any uni-modular transformation matrix U ∈ Zn×n and UB will also be a basis
of Λ. The LLL algorithm [21] transforms a basis B to its LLL-reduced basis
B′ in polynomial time. An LLL-reduced basis has that the shortest vector v

of B′ satisfies ||v||2 ≤ 2
n−1
4 (|det(B)|)1/n and there are looser bounds for the

other basis vectors. Here ||.||2 denotes the Euclidean norm. Besides the LLL-
reduced basis, NTL’s [33] implementation of LLL also returns the uni-modular
transformation matrix U, satisfying UB = B′.

In cryptography, lattices are often defined via polynomials, e.g., to take ad-
vantage of efficient polynomial arithmetic. The elements in R = Z[x]/(xn+1) are
represented as polynomials of degree less than n. For each polynomial f(x) ∈ R
we define the corresponding vector of coefficients as f = (f0, f1, . . . , fn−1). Ad-
dition of polynomials f(x) + g(x) corresponds to addition of their coefficient
vectors f + g. Additionally, multiplication of f(x) · g(x) mod (xn + 1) defines a
multiplication operation on the vectors f · g = gF = fG, where F,G ∈ Zn×n
are matrices, whose columns are the rotations of (the coefficient vectors of) f,g,
with possibly opposite signs. Lattices using polynomials modulo xn+1 are often
called NTRU lattices after the NTRU encryption scheme [14].

An integer lattice is a lattice for which the basis vectors are in Zn, such as
the NTRU lattices just described. For integer lattices it makes sense to consider
elements modulo q, so basis vectors and coefficients are taken from Zq. We
represent the ring Zq as the integers in [−q/2, q/2). We denote the quotient ring
R/(qR) by Rq. When we work in Rq = Zq[x]/(xn + 1) (or R2q), we assume n is
a power of 2 and q is a prime such that q ≡ 1 mod 2n.

2.2. BLISS. We provide the basic algorithms of BLISS, as given in [8]. Details of
the motivation behind the construction and associated security proofs are given
in the original work. All arithmetic for BLISS is performed in R and possibly
with each coefficient reduced modulo q or 2q. We follow notation of BLISS and
also use boldface notation for polynomials.

By Dσ we denote the discrete Gaussian distribution with standard deviation
σ. In the next subsection, we will zoom in on this distribution and how to



Flush, Gauss, and Reload 5

sample from it in practice. The main parameters of BLISS are dimension n,
modulus q and standard deviation σ. BLISS uses a cryptographic hash function
H, which outputs binary vectors of length n and weight κ; parameters d1 and
d2 determining the density of the polynomials forming the secret key; and d,
determining the length of the second signature component.

Algorithm 2.1 BLISS Key Generation

Output: A BLISS Key pair (A,S) with public key A = (a1,a2) ∈ R2
2q and secret key

S = (s1, s2) ∈ R2
2q such that AS = a1 · s1 + a2 · s2 ≡ q mod 2q

1: Choose f,g ∈ R2q uniformly at random with exactly d1 entries in {±1} and d2
entries in {±2}.

2: S = (s1, s2) = (f, 2g + 1)
3: if S violates certain bounds (details in [8]), then restart
4: aq = (2g + 1)/f mod q (restart if f is not invertible)
5: return (A,S) where A = (2aq, q − 2) mod 2q

Algorithm 2.1 generates correct keys because

a1 ·s1+a2 ·s2 = 2aq ·f+(q−2) ·(2g+1) ≡ 2(2g+1)+(q−2)(2g+1) ≡ q mod 2q.

Note that when an attacker has a candidate for key s1 = f, he can validate
correctness by checking the distributions of f and aq · f ≡ 2g + 1 mod 2q, and
lastly verifying that a1 · f + a2 · (aq · f) ≡ q mod 2q, where aq is obtained by
halving a1.

Signature generation (Algorithm 2.2) uses p = b2q/2dc, which is the highest
order bits of the modulus 2q, and constant ζ = 1

q−2 mod 2q. In general, with

b.ed we denote the d highest order bits of a number. In Step 1 of Algorithm 2.2,
two integer vectors are sampled, where each coordinate is drawn independently
and according to the discrete Gaussian distribution Dσ. This is denoted by
y← DZn,σ.

Algorithm 2.2 BLISS Signature Algorithm

Input: Message µ, public key A = (a1, q − 2), secret key S = (s1, s2)
Output: A signature (z1, z

†
2, c) ∈ Zn2q ×Znp × {0, 1}n of the message µ

1: y1,y2 ← DZn,σ

2: u = ζ · a1 · y1 + y2 mod 2q
3: c = H(bued mod p, µ)
4: Choose a random bit b
5: z1 = y1 + (−1)bs1 · c mod 2q
6: z2 = y2 + (−1)bs2 · c mod 2q
7: continue with a probability based on σ, ||Sc||, 〈z,Sc〉 (details in [8]), else restart
8: z†2 = (bued − bu− z2ed) mod p
9: return (z1, z

†
2, c)
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In the attacks, we concentrate on the first signature vector z1, since z†2 only
contains the d highest order bits and therefore lost information about s2 · c;
furthermore, A and f determine s2 as shown above. So in the following, we only
consider z1,y1 and s1, and thus will leave out the indices.

In lines 5 and 6 of Algorithm 2.2, we compute s · c over R2q. However, since
secret s is sparse and challenge c is sparse and binary, the absolute value of
||s · c||∞ ≤ 5κ � 2q, with ||.||∞ the `∞-norm. This means these computations
are simply additions over Z, and we can therefore model this computation as a
vector-matrix multiplication over Z:

s · c = sC,

where C ∈ {−1, 0, 1}n×n is the matrix whose columns are the rotations of chal-
lenge c (with minus signs matching reduction modulo xn + 1). In the attacks we
access individual coefficients of s · c; note that the jth coefficient equals 〈s, cj〉,
where cj is the jth column of C.

For completeness, we also show the verification procedure (Algorithm 2.3),
although we do not use it further in this paper. Note that reductions modulo 2q
are done before truncating and reducing modulo p.

Algorithm 2.3 BLISS Verification Algorithm

Input: Message µ, public key A = (a1, q − 2) ∈ R2
2q, signature (z1, z

†
2, c)

Output: Accept or Reject the signature.
1: if z1, z

†
2 violate certain bounds (details in [8]), then Reject.

2: Accept iff c = H(bζ · a1 · z1 + ζ · q · ced + z†2 mod p, µ).

2.3. Discrete Gaussian distribution. The probability distribution of a (cen-
tered) discrete Gaussian distribution is a distribution over Z, with mean 0 and
standard deviation σ. A value x ∈ Z is sampled with probability:

ρσ(x)∑∞
y=−∞ ρσ(y)

,

where ρσ(x) = exp
(
−x2

2σ2

)
. Note that the sum in the denominator ensures that

this is actually a probability distribution. We denote the denominator by ρσ(Z).
To make sampling practical, most lattice-based schemes use three simplifica-

tions: First, a tail-cut τ is used, restricting the support of the Gaussian to a finite
interval [−τσ, τσ]. The tail-cut τ is chosen such that the probability of a real
discrete Gaussian sample landing outside this interval is negligible. Second, val-
ues are sampled from the positive half of the support and then a bit is flipped to
determine the sign. For this the probability of obtaining zero in [0, τσ] needs to
be halved. The resulting distribution on the positive numbers is denoted by D+

σ .
Finally, the precision of the sampler is chosen such that the statistical distance
between the output distribution and the exact distribution is negligible.
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There are two generic ways of sampling from a discrete Gaussian distribution:
using the cumulative distribution function [26] or via rejection sampling [10].
Both these methods are deployed with some improvements which we describe
next. These modified versions are implemented in [7]. We note that there are
also other ways [9,32,31,4] of efficiently sampling discrete Gaussians.

CDT sampling. The basic idea of using the cumulative distribution function
in the sampler, is to approximate the probabilities py = P[x ≤ y| x ← Dσ],
computed with λ bits of precision, and save them in a large table. At sampling
time, one samples a uniformly random r ∈ [0, 1), and performs a binary search
through the table to locate y ∈ [−τσ, τσ] such that r ∈ [py−1, py). Restricting to
the non-negative part [0, τσ] corresponds to using the probabilities p∗y = P[|x| ≤
y| x← Dσ], sampling r ∈ [0, 1) and locating y ∈ [0, τσ].

While this is the most efficient approach, it requires a large table. We denote
the method that uses the approximate cumulative distribution function with tail
cut and the modifications described next, as the CDT sampling method.

One can speedup the binary search for the correct sample y in the table,
by using an additional guide table I [30,20,5]. The BLISS implementation we
attack uses I with 256 entries. The guide table stores for each u ∈ {0, . . . , 255}
the smallest interval I[u] = (au, bu) such that p∗au ≤ u/256 and p∗bu ≥ (u+1)/256.
The first byte of r is used to select I[u] leading to a much smaller interval for the
binary search. Effectively, r is picked byte-by-byte, stopping once a unique value
for y is obtained. The CDT sampling algorithm with guide table is summarized
in Algorithm 2.4.

Rejection sampling. The basic idea behind rejection sampling is to sample a
uniformly random integer y ∈ [−τσ, τσ] and accept this sample with probabil-
ity ρσ(y)/ρσ(Z). For this, a uniformly random value r ∈ [0, 1) is sampled and
the uniformly random y is accepted iff r ≤ ρσ(y). This method has two huge
downsides: calculating the values of ρσ(y) to high precision is expensive and the
rejection rate can be quite high.

In the same paper introducing BLISS [8], the authors also propose a more
efficient rejection sampling algorithm. We recall the algorithms used (Algorithms
2.5, 2.6, 2.7), more details are given in the original work. We denote this method
as rejection sampling in the remainder of this paper.

The basic idea is to first sample a value x, according to the binary discrete
Gaussian distribution Dσ2 , where σ2 = 1

2 ln 2 (Step 1 of Algorithm 2.5). This can
be done efficiently using uniformly random bits [8]. The actual sample y = Kx+
z, where z ∈ {0, . . . ,K − 1} is sampled uniformly at random and K = b σσ2

+ 1c,
is then distributed according to the target discrete Gaussian distribution Dσ, by
rejecting with a certain probability (Step 4 of Algorithm 2.5). The number of
rejections in this case is much lower than in the original method. This step still
requires computing a bit, whose probability is an exponential value. However, it
can be done more efficiently using Algorithm 2.7, requiring only a small table
ET.
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Algorithm 2.4 CDT Sampling With Guide Table

Input: Big table T [y] containing values p∗y of the cumulative distribution function of
the discrete Gaussian distribution (using only non-negative values), omitting the
first byte. Small table I consisting of the 256 intervals.

Output: Value y ∈ [−τσ, τσ] sampled with probability according to Dσ
1: pick a random byte r
2: Let (Imin, Imax) = (ar, br) be the left and right bounds of interval I[r]
3: if (Imax − Imin = 1):
4: generate a random sign bit b ∈ {0, 1}
5: return y = (−1)bImin

6: Let i = 1 denote the index of the byte to look at
7: Pick a new random byte r
8: while (1):
9: Iz = b Imin+Imax

2
c

10: if (r > (ith byte of T [Iz])):
11: Imin = Iz
12: else if (r < (ith byte of T [Iz])):
13: Imax = Iz
14: else if (Imax − Imin = 1):
15: generate a random sign bit b ∈ {0, 1}
16: return y = (−1)bImin

17: else:
18: increase i by 1
19: pick new random byte r

Algorithm 2.5 Sampling from D+
Kσ for K ∈ Z

Input: Target standard deviation σ, integer K = b σ
σ2

+ 1c, where σ2 = 1
2 ln 2

Output: An integer y ∈ Z+ according to D+
Kσ2

1: sample x ∈ Z according to D+
σ2

2: sample z ∈ Z uniformly in {0, . . . ,K − 1}
3: y ← Kx+ z
4: sample b with probability exp

(
−z(z + 2Kx)/(2σ2)

)
5: if b = 0 then restart
6: return y

Algorithm 2.6 Sampling from DKσ

Output: An integer y ∈ Z according to DKσ2
1: Sample integer y ← D+

Kσ (using Algorithm 2.5)
2: if y = 0 then restart with probability 1/2
3: generate random bit b and return (−1)by
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Algorithm 2.7 Sampling a bit with probability exp(−x/(2σ2)) for x ∈ [0, 2`)

Input: x ∈ [0, 2`) an integer in binary form x = x`−1 . . . x0. Table ET with precom-
puted values ET[i] = exp(−2i/(2σ2)) for 0 ≤ i ≤ `− 1

Output: A bit b with probability exp(−x/(2σ2)) of being 1.
1: for i = `− 1 to 0:
2: if xi = 1 then
3: sample Ai with probability ET[i].
4: if Ai = 0 then return 0
5: return 1

2.4. Cache attacks. The cache is a small bank of memory which exploits the
temporal and the spacial locality of memory access to bridge the speed gap
between the faster processor and the slower memory. The cache consists of cache
lines, which, on modern Intel architecture, can store a 64-byte aligned block of
memory of size 64 bytes.

In a typical processor there are several cache levels. At the top level, closest
to the execution core, is the L1 cache, which is the smallest and the fastest of
the hierarchy. Each successive level (L2, L3, etc.) is bigger and slower than the
preceding level.

When the processor accesses a memory address it looks for the block con-
taining the address in the L1 cache. In a cache hit, the block is found in the
cache and the data is accessed. Otherwise, in a cache miss, the search continues
on lower levels, eventually retrieving the memory block from the lower levels or
from the memory. The cache then evicts a cache line and replaces its contents
with the retrieved block, allowing faster future access to the block.

Because cache misses require searches in lower cache levels, they are slower
than cache hits. Cache timing attacks exploit this timing difference to leak in-
formation [2,28,25,12,23]. In a nutshell, when an attacker uses the same cache
as a victim, victim memory accesses change the state of the cache. The attacker
can then use the timing variations to check which memory blocks are cached and
from that deduce which memory addresses the victim has accessed. Ultimately,
the attacker learns the cache line of the victim’s table access: a range of possible
values for the index of the access.

In this work we use the Flush+Reload attack [36,12]. A Flush+Reload
attack uses the clflush instruction of the x86-64 architecture to evict a memory
block from the cache. The attacker then lets the victim execute before measuring
the time to access the memory block. If during its execution the victim has
accessed an address within the block, the block will be cached and the attacker’s
access will be fast. If, however, the victim has not accessed the block, the attacker
will reload the block from memory, and the access will take much longer. Thus,
the attacker learns whether the victim accessed the memory block during its
execution. The Flush+Reload attack has been used to attack implementations
of RSA [36], AES [12,17], ECDSA [35,29] and other software [38,11].
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3 Attack 1: CDT Sampling

This section presents the mathematical foundations of our cache attack on the
CDT sampling. We first explain the phenomena we can observe from cache
misses and hits in Algorithm 2.4 and then show how to exploit them to derive
the secret signing key of BLISS using LLL. Sampling of the first noise polynomial
y ∈ DZn,σ is done coefficientwise. Similarly the cache attack targets coefficients
yi for i = 0, . . . , n− 1 independently.

3.1. Weaknesses in cache. Sampling from a discrete Gaussian distribution
using both an interval table I and a table with the actual values T , might leak
information via cache memory. The best we can hope for is to learn the cache-
lines of index u of the interval and of index Iz of the table look-up in T . Note
that we cannot learn the sign of the sampled coefficient yi. Also, the cache line of
T [Iz] always leaves a range of values for |yi|. However, in some cases we can get
more precise information combining cache-lines of table look-ups in both tables.
Here are two observations that narrow down the possibilities:

Intersection: We can intersect knowledge about the used index u in I with
the knowledge of the access T [Iz]. Getting the cache-line of I[u] gives a
range of intervals, which is simply another (bigger) interval of possible val-
ues for sample |yi|. If the values in the range of intervals are largely non-
overlapping with the range of values learned from the access to T [Iz], then
the combination gives a much more precise estimate. For example: if the
cache-line of I[u] reveals that sample |yi| is in set S1 = {0, 1, 2, 3, 4, 5, 7, 8}
and the cache-line of T [Iz] reveals that sample |yi| must be in set S2 =
{7, 8, 9, 10, 11, 12, 13, 14, 15}, then by intersecting both sets we know that
|yi| ∈ S1 ∩ S2 = {7, 8}, which is much more precise information.

Last-Jump: If the elements of an interval I[u] in I are divided over two cache-
lines of T , we can sometimes track the search for the element to sample. If
a small part of I[u] is in one cache-line, and the remaining part of I[u] is in
another, we are able to distinguish if this small part has been accessed. For
example, interval I[u] = {5, 6, 7, 8, 9} is divided over two cache-lines of T :
cache-line T1 = {0, 1, 2, 3, 4, 5, 6, 7} and line T2 = {8, 9, 10, 11, 12, 13, 14, 15}.
The binary search starts in the middle of I[u], at value 7, which means line
T1 is always accessed. However, only for values {8, 9} also line T2 is accessed.
So if both lines T1 and T2 are accessed, we know that sample |yi| ∈ {8, 9}.

We will restrict ourselves to only look for cache access patterns that give
even more precision, at the expense of requiring more signatures:

1. The first restriction is to only look at cache weaknesses (of type Intersection
or Last-Jump), in which the number of possible values for sample |yi| is two.
Since we do a binary search within an interval, this is the most precision
one can get (unless an interval is unique): after the last comparisons (table
look-up in T ), one of two values will be returned. This means that by picking
either of these two values we limit the error of |yi| to at most 1.
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2. The probabilities of sampling values using CDT sampling with guide table
I are known to match the following probability requirement :

255∑
u=0

P[X = x | X ∈ I[u]] =
ρσ(x)

ρσ(Z)
. (1)

Due to the above condition, it is possible that adjacent intervals are partially
overlapping. That is, for some u, v we have that I[u] ∩ I[v] 6= ∅. In practice,
this only happens for u = v + 1, meaning adjacent intervals might overlap.
For example, if the probability of sampling x is greater than 1/256, then
x has to be an element in at least two intervals I[u]. Because of this, it is
possible that for certain parts of an interval I[u], there is a biased outcome
of the sample.
The second restriction is to only consider cache weaknesses for which addi-
tionally one of the two values is significantly more likely to be sampled, i.e.,
if |yi| ∈ {γ1, γ2} ⊂ I[u] is the outcome of cache access patterns, then we
further insist on

P[|yi| = γ1 | yi ∈ {γ1, γ2} ⊂ I[u]]� P[|yi| = γ2 | yi ∈ {γ1, γ2} ⊂ I[u]]

So we search for values γ1 so that P[X = γ1 | X ∈ {γ1, γ2} ⊂ I[u]] = 1− α
for small α, which also matches access patterns for the first restriction. Then,
if we observe a matching access pattern, it is safe to assume the outcome of
the sample is γ1.

3. The last restriction is to only look at cache-access patterns, which reveal
that |yi| is larger than β · E[〈s, c〉], for some constant β ≥ 1, which is an
easy calculation using the distributions of s, c. If we use this restriction in
our attack targeted at coefficient yi of y, we learn the sign of |yi| by looking
at the sign of coefficient zi of z, since:

sign(yi) 6= sign(zi)↔ 〈s, c〉 > (yi + zi)

So by requiring that |yi| must be larger than the expected value, we expect
to learn the sign of yi. We therefore omit the absolute value sign in |yi| and
simply write that we learn yi ∈ {γ1, γ2}

There is some flexibility in these restrictions, in choosing parameters α, β.
Choosing these parameters too restrictively, might lead to no remaining cache-
access patterns, choosing them too large makes other parts fail.

In the last part of the attack described next, we use LLL to calculate short
vectors of a certain (random) lattice we create using BLISS signatures. We no-
ticed that LLL works very well on these lattices, probably because the basis
used is sparse. This implies that the vectors are already relatively short and
orthogonal. The parameter α determines the shortness of the vector we look
for, and therefore influences if an algorithm like LLL finds our vector. For the
experiments described in Section 5, we required α ≤ 0.1. This made it possible
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for every parameter set we used in the experiments to always have at least one
cache-access pattern to use.

Parameter β influences the probability that one makes a huge mistake when
comparing the values of yi and zi. However, for the parameters we used in the ex-
periments, we did not find recognizable cache-access patterns which correspond
to small yi. This means, we did not need to use this last restriction to reject
certain cache-access patterns.

3.2. Exploitation. For simplicity, we assume we have one specific cache access
pattern, which reveals if yi ∈ {γ1, γ2} for i = 0, . . . , n − 1 of polynomial y, and
if this is the case, yi has probability (1 − α) to be value γ1, with small α. In
practice however, there might be more than one cache weakness, satisfying the
above requirements. This would allow the attacker to search for more than one
cache access pattern done by the victim. For the attack, we assume the victim
is creating N signatures3 (zj , cj) for j = 1, . . . , N , and an attacker is gathering
these signatures with associated cache information for noise polynomial yj . We
assume the attacker can search for the specific cache access pattern, for which he
can determine if yji ∈ {γ1, γ2}. For the cases revealed by cache access patterns,
the attacker ends up with the following equation:

zji = yji + (−1)bj 〈s, cji〉, (2)

where the attacker knows coefficient zji of zj , rotated coefficient vectors cji
of challenge cj (both from the signatures) and yji ∈ {γ1, γ2} of noise polynomial
yj (from the side-channel attack). Unknowns to the attacker are bit bj and secret
vector s.

If zji = γ1, the attacker knows that 〈s, cji〉 ∈ {0, 1,−1}. Moreover, with high
probability (1− α) the value will be 0, as by the second restriction yji is biased
to be value γ1. So if zji = γ1, the attacker adds ξk = cji to a list of good vectors.
The restriction zji = γ1 means that the attacker will in some cases not use the
information in Equation (2), although he knows that yji ∈ {γ1, γ2}.

When the attacker collects enough of these vectors ξk = cji; 0 ≤ i ≤ n−1, 1 ≤
j ≤ N, 1 ≤ k ≤ n, he can build a matrix L ∈ {−1, 0, 1}n×n, whose columns are
the ξk’s. This matrix satisfies:

sL = v (3)

for some unknown but short vector v. The attacker does not know v, so he cannot
simply solve for s, but he does know that v has norm about

√
αn, and lies in the

lattice spanned by the rows of L. He can use a lattice reduction algorithm, like
LLL, on L to search for v. LLL also outputs the uni-modular matrix U satisfying
UL = L′. The attack tests for each row of U (and its rotations) whether it is
sparse and could be a candidate for s = f. As stated before, correctness of a
secret key guess can be verified using the public key.

This last step does not always succeed, just with high probability. To make
sure the attack succeeds, this process is randomized. Instead of collecting exactly

3 Here zj refers to the first signature polynomial zj1 of the jth signature (zj1, z
†
j2, cj).
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n vectors ξk = cji, we gather m > n vectors, and pick a random subset of n
vectors as input for LLL. While we do not have a formal analysis of the success
probability, experiments (see Section 5) confirm that this method works and suc-
ceeds in finding the secret key (or its negative) in few rounds of randomization.

A summary of the attack is given in Algorithm 3.1.

Algorithm 3.1 Cache-attack on BLISS with CDT Sampling

Input: Access to cache memory of a victim with a key-pair (A,S). Input parameters
n, σ, q, κ of BLISS. Access to signature polynomials (z1, z

†
2, c) produced using S.

Victim uses CDT sampling with tables T, I for noise polynomials y. Cache weakness
that allows to determine if coefficient yi ∈ {γ1, γ2} of y, and when this is the case,
the value of yi is biased towards γ1.

Output: Secret key S.
1: Let k = 0 be the number of vectors collected so far and let M = [] be an empty

list of vectors.
2: while (k < m): // Collect m vectors ξk before randomizing LLL.
3: Collect signature (z1, z

†
2, c), together with cache information for each coef-

ficient yi of noise polynomial y.
4: for each i = 0, . . . , n− 1:
5: if yi ∈ {γ1, γ2} (determined via cache information) and z1i = γ1:
6: Add vector ξk = ci to M and set k = k + 1.
7: while (1):
8: Choose random subset of n vectors from M and construct matrix L whose

columns are those vectors from M .
9: Perform LLL basis reduction on L to get: UL = L′, where U is a uni-modular

transformation matrix and L′ is LLL reduced.
10: for each j = 1, . . . , n:
11: check if row uj of U has the same distribution as f and if (a1/2) ·uj mod

2q has the same distribution as 2g+1. Lastly verify if a1 ·uj+a2 ·(a1/2)·
uj ≡ q mod 2q.

12: return S = (uj , (a1/2) · uj mod 2q) if this is the case.

4 Attack 2: Rejection Sampling

In this section, we discuss the foundations and strategy of our second cache
attack on the rejection-based sampler (Algorithms 2.5, 2.6, and 2.7). We show
how to exploit the fact that this method uses a small table ET, leaking very
precise information about the sampled value.

4.1. Weaknesses in cache. The rejection-sampling algorithm described in Sec-
tion 2.3 uses a table with exponential values ET[i] = exp(−2i/(2σ2)) and inputs
of bit-size ` = O(logK), which means this table is quite small. Depending on bit i
of input x, line 3 of Algorithm 2.7 is performed, requiring a table look-up for value
ET[i]. In particular when input x = 0, no table look-up is required. An attacker
can detect this event by examining cache activity of the sampling process. If this
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is the case, it means that the sampled value z = 0 in Step 2 of Algorithm 2.5. The
possible values for the result of sampling are y ∈ {0,±K,±2K, . . .}. So for some
cache access patterns, the attacker is able to determine if y ∈ {0,±K,±2K, . . .}.

4.2. Exploitation. We will use the same methods as described in Section 3.2,
but now we know that for a certain cache access pattern the coefficient yi ∈
{0,±K,±2K, . . .}, i = 0, . . . , n − 1, of the noise polynomial y. If max |〈s, c〉| ≤
κ < K, (which is something anyone can check using the public parameters
and which holds for typical implementations), we can determine yi completely
using the knowledge of signature vector z. When more signatures4 (zj , cj); j =
1, . . . , N are created, the attacker can search for the specific access pattern and
verify whether yji ∈ {0,±K,±2K, . . .}, where yji is the i’th coefficient of noise
polynomial yj .

If the attacker knows that yji ∈ {0,±K,±2K, . . .} and it additionally holds
that zji = yji, where zji is the i’th coefficient of signature polynomial zj , he
knows that 〈s, cji〉 = 0. If this is the case, the attacker includes coefficient vector
ζk = cji in the list of good vectors. Also for this attack the attacker will discard
some known yji if it does not satisfy zji = yji.

Once the attacker has collected n of these vectors ξk = cji; 0 ≤ i ≤ n−1, 1 ≤
j ≤ N, 1 ≤ k ≤ n, he can form a matrix L ∈ {−1, 0, 1}n×n, whose columns
are the ξk’s, satisfying sL = 0, where 0 is the all-zero vector. With very high
probability, the ξk’s have no dependency other than introduced by s. This means
s is the only kernel vector.

Note the subtle difference with Equation (3): we do not need to randomize
the process, because we know the right-hand side is the all-zero vector. The
attack procedure is summarized in Algorithm 4.1.

4.3. Possible extensions. One might ask why we not always use the knowledge
of yji, since we can completely determine its value, and work with a non-zero
right-hand side. Unfortunately, bits bj of the signatures are unknown, which
means an attacker has to use a linear solver 2N times, where N is the number
of required signatures (grouping columns appropriately if they come from the
same signature). For large N this becomes infeasible and N is typically on the
scale of n. By requiring that zji = yji, we remove the unknown bit bj from the
Equation (2).

Similar to the first attack, an attacker might also use vectors ξk = cji, where
〈s, cji〉 ∈ {−1, 0, 1}, in combination with LLL and possibly randomization. This
approach might help if fewer signatures are available, but the easiest way is to
require exact knowledge, which comes at the expense of needing more signatures,
but has a very fast and efficient offline part.

5 Results With a Perfect Side-Channel

In this section we provide experimental results, where we assume the attacker
has access to a perfect side-channel: no errors are made in measuring the table

4 Again, zj refers to the first signature polynomial zj1 of the jth signature (zj1, z
†
j2, cj).
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Algorithm 4.1 Cache-attack on BLISS with Rejection sampling

Input: Access to cache memory of victim with a key-pair (A,S). Input parameters
n, σ, q, κ of BLISS, with κ < K. Access to signatures (z1, z

†
2, c) produced using S.

Victim uses rejection sampling with the small exponential table to sample noise
polynomial y.

Output: Secret key S.
1: let k = 0 be the number of vectors gained so far and let M = [] be an empty list

of vectors.
2: while(k < n):
3: Collect signature (z1, z

†
2, c) together with cache information for each coeffi-

cient yi of noise polynomial y.

4: for each i = 1, . . . , n do:
5: if yi ∈ {0,±K,±2K, ..} (according to cache information), and z1i = yi

then add coefficient vector ξk = ci as a column to M and set k = k+ 1.

6: Form a matrix M from the columns in M . Calculate kernel space of M. This gives
a matrix U ∈ Z`×n such that UM = 0, where 0 is the all-zero matrix.

7: for each j = 1, . . . , ` do: // We expect ` = 1.
8: check if row uj of U has the same distribution as f and if (a1/2) ·uj mod

2q has the same distribution as 2g+1. Lastly verify if a1 ·uj+a2 ·(a1/2)·
uj ≡ q mod 2q.

9: return S = (uj , (a1/2) · uj mod 2q) if this is the case
10: Remove a random entry from M , put k = k − 1, goto step 2.

accesses of the victim. We apply the attack strategies discussed in the previous
two sections and show how many signatures are required for each strategy.

5.1. Attack setting. Sections 3 and 4 outline the basic ideas behind cache
attacks against the two sampling methods for noise polynomials y used in the
target implementation of BLISS. We now consider the following idealized sit-
uation: the victim is signing random messages and an attacker collects these
signatures. The attacker knows the exact cache-lines of the table look-ups done
by the victim while computing the noise vector y. We assume cache-lines have
size 64 bytes and each element is 8 bytes large (type LONG). To simplify expo-
sition, we assume the cache-lines are divided such that element i of any table is
in cache-line bi/8c.

Our test machine is an AMD FX-8350 Eight-Core CPU running at 4.1 GHz.
We use the research oriented C++ implementation of BLISS, made available by
the authors on their webpage [7]. Both of the analyzed sampling methods are
provided by the implementation, where the tables T, I and ET are constructed
dependent on σ. We use the NTL library [33] for LLL reductions and kernel
calculations.

The authors of BLISS [8] proposed several parameter sets (see Table A.1) for
the signature scheme. We present attacks against all combinations of parameter
sets and sampling methods; the full results of the perfect side-channel attacks
are given in Appendix A.
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5.2. CDT sampling. When the signing algorithm uses CDT sampling as de-
scribed in Algorithm 2.4, the perfect side-channel provides the values of bu/8c
and bIz/8c of the table accesses for u and Iz in tables I and T . We apply the
attack strategy of Section 3.

We first need to find cache-line patterns, of type intersection or last-jump,
which reveal that yi ∈ {γ1, γ2} and P[yi = γ1| yi ∈ {γ1, γ2}] = 1−α with α ≤ 0.1
One way to do that is to construct two tables: one table that lists elements I[u],
that belong to certain cache-lines of table I, and one table that list the accessed
elements Iz inside these intervals I[u], that belong to certain cache-lines of table
T . We can then brute-force search for all cache weaknesses of type intersection
or last-jump. For example, in BLISS-I we have the first seven elements of I[u]
belong to the first cache-line of I, but elements in I[7] = {7, 8}, access element
Iz = 8, which is part of the second cache-line for T . This is an intersection
weakness: if the first cache-line of I is accessed and the second cache-line of T is
accessed, we know yi ∈ {7, 8}. Similarly, one can find last-jump weaknesses, by
searching for intervals I[u] that access multiple cache-lines of T . Once we have
these weaknesses, we need to use the biased restriction with α ≤ 0.1. This can
be done by looking at all bytes except the first of the entry T [Iz] (this is already
used to determine interval I[u]). If we denote the integer value of these 7 bytes
by T [Iz]byte6=1, then we need to check if T [Iz] has property

(T [Iz])byte6=1/(2
56 − 1) ≤ α

(or (T [Iz])byte6=1/(2
56 − 1) ≥ (1− α)). If one of these properties holds, then we

have yi ∈ {Iz − 1, Iz} and P[yi = Iz| yi ∈ {Iz − 1, Iz}] = 1− α (or with Iz and
Iz − 1 swapped).

For each set of parameters we found at least one of these weaknesses using
the above method (see Table B.1 for the values).

We collect m (possibly rotated) coefficient vectors cj and then run LLL at
most t = 2(m − n) + 1 times, each time searching for s in the uni-modular
transformation matrix using the public key. We consider the experiment failed if
the secret key is not found after this number of trials; the randomly constructed
lattices have a lot of overlap in their basis vectors which means that increasing t
further is not likely to help. We performed 1000 repetitions of each experiment
(different parameters and sizes form) and measured the success probability psucc,
the average number of required signatures N to retrieve m usable challenges,
and the average length of v if it was found. The expected number of required
signatures E[N ] is also given, as well as the running time for the LLL trials. This
expected number of required signatures can be computed as:

E[N ] =
m

n · P[CP] · P[〈s1, c〉 = 0]
,

where CP is the event of a usable cache-access pattern for a coordinate of y.
From the results in Table B.2 we see that, although BLISS-0 is a toy ex-

ample (with security level λ ≤ 60), it requires the largest average number N
of signatures to collect m columns, i.e., before the LLL trials can begin. This
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illustrates that the cache-attack depends less on the dimension n, but mainly on
σ. For BLISS-0 with σ = 100, there is only one usable cache weaknesses with
the restrictions we made.

For all cases, we see that a small increase of m greatly increases the success
probability psucc. The experimental results suggest that picking m ≈ 2n suffices
to get a success probability close to 1.0. This means that one only needs more
signatures to always succeed in the offline part.

5.3. Rejection sampling. When the signature algorithm uses rejection sam-
pling from Algorithm 2.6, a perfect side-channel determines if there has been
a table access in table ET. Thus, we can apply the attack strategy given in
Section 4. We require m = n (possibly rotated) challenges ci to start the ker-
nel calculation. We learn whether any element has been accessed in table ET,
e.g., by checking the cache-lines belonging to the small part of the table. We
performed only 100 experiments this time, since we noticed that psucc = 1.0 for
all parameter sets with a perfect side-channel. This means that the probability
that n random challenges c are linearly independent is close to 1.0. We state the
average number N of required signatures in Table B.3. This time, the expected
number is simply:

E[N ] =

((
1

ρσ(Z)

τσ∑
x=−τσ

ρσ(xK)

)
· P[〈s1, c〉 = 0]

)−1

for K = b σσ2
+ 1c and tail-cut τ ≥ 1.

Note that the number of required signatures is smaller for BLISS-II than for
BLISS-I. This might seem surprising as one might expect it to increase or be
about the same as BLISS-I because the dimensions and security level are the
same for these two parameter sets. However, σ is chosen a lot smaller in BLISS-
II, which means that also value K is smaller. This influences N significantly as
the probability to sample values xK is larger for small σ.

6 Proof-of-Concept Implementation

So far, the experimental results were based on the assumption of a perfect side-
channel: we assumed that we would get the cache-line of every table look-up
in the CDT sampling and rejection sampling. In this section, we reduce the
assumption and discuss the results of more realistic experiments using the Flu-
sh+Reload technique.

When moving to real hardware some of the assumptions made in Section 5
no longer hold. In particular, allocation does not always ensure that tables are
aligned at the start of cache lines and processor optimizations may pre-load
memory into the cache, resulting in false positives. One such optimization is
the spatial prefetcher, which pairs adjacent cache lines into 128-byte chunks and
prefetches a cache line if an access to its pair results in a cache miss [16].
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6.1. Flush+Reload on CDT sampling. Due to the spatial prefetcher, Flu-
sh+Reload cannot be used consistently to probe two paired cache lines. Con-
sequently, to determine access to two consecutive CDT table elements, we must
use a pair that spans two unpaired cache lines. In Table C.1, we show that when
the CDT table is aligned at 16 bytes, we can always find such a pair for BLISS-I.
Although this is not a proof that our attack works in all scenarios, i.e. for all σ
and all offsets, it would also not be a solid defence to pick exactly those scenarios
for which our attack would not work, e.g., because α could be increased.

The attack was carried out on an HP Elite 8300 with an i5-3470 processor.
running CentOS 6.6. Before sampling each coordinate yi, for i = 0, . . . , n−1, we
flush the monitored cache lines using the clflush instruction. After sampling the
coordinate, we reload the monitored cache lines and measure the response time.
We compare the response times to a pre-defined threshold value to determine
whether the cache lines were accessed by the sampling algorithm.

A visualization of the Flush+Reload measurements for CDT sampling
is given in Figure 6.1. Using the intersection and last-jump weakness of the
sampling method in cache-memory, we can determine which value is sampled by
the victim by probing two locations in memory. To reduce the number of false
positives, we focus on one of the weaknesses from Table B.1 as a target for the
Flush+Reload. This means that the other weaknesses are not detected and
we need to observe more signatures than with a perfect side-channel, before we
collect enough columns to start with the offline part of the attack.

We executed 50 repeated attacks against BLISS-I, probing the last-jump
weakness for {γ1, γ2} = {55, 56}. We completely recovered the private key in 46
out of the 50 cases. On average we require 3438 signatures for the attack, to
collect m = 2n = 1024 equations. We tried LLL five times after the collection
and considered the experiment a failure if we did not find the secret key in these
five times. We stress that this is not the optimal strategy to minimize the number
of required signatures or to maximize the success probability. However, it is an
indication that this proof-of-concept attack is feasible.

6.2. Other processors. We also experimented with a newer processor (Intel
core i7-5650U) and found that this processor has a more aggressive prefetcher.
In particular, memory locations near the start and the end of the page are more
likely to be prefetched. Consequently, the alignment of the tables within the
page can affect the attack success rate. We find that in a third of the locations
within a page the attack fails, whereas in the other two thirds it succeeds with
probabilities similar to those on the older processor. We note that, as demon-
strated in Table B.1, there are often multiple weaknesses in the CDT. While
some weaknesses may fall in unexploitable memory locations, others may still
be exploitable.

6.3. Flush+Reload on rejection sampling. For attacking BLISS using re-
jection sampling, we need to measure if table ET has been accessed at all. Due
to the spatial prefetcher we are unable to probe all of the cache lines of the
table. Instead, we flush all cache lines containing ET before sampling and reload
only even cache lines after the sampling. Flushing even cache lines is required for
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yi ∈ {γ1, γ2}

Fig. 6.1: Visualization of Flush+Reload measurements of table look-ups for
BLISS-I using CDT sampling with guide table I. Two locations in memory
are probed, denoted in the vertical axis by 0, 1, and they represent two adja-
cent cache-lines. For interval I[51] = [54, 57], there is a last-jump weakness for
{γ1, γ2} = {55, 56}, where the outcome of |yi| is biased towards γ1 = 55 with
α = 0.03. For each coordinate (the horizontal axis), we get a response time for
each location we probe: dark regions denote a long response time, while lighter
regions denote a short response time. When both of the probed locations give a
fast response, it means the victim accessed both cache-lines for sampling yi. In
this case the attacker knows that |yi| ∈ {55, 56}; here for i = 8 and i = 41.

the Flush+Reload attack. We flush the odd cache lines to trigger the spatial
prefetcher, which will prefetch the paired even cache lines when the sampling ac-
cesses an odd cache line. Thus, flushing all of the cache lines gives us a complete
coverage of the table even though we only reload half of the cache lines.

Since we do not get error-free side-channel information, we are likely to collect
some c with 〈s, ci〉 6= 0 as columns in L. Instead of computing the kernel (as
in the offline part) we used LLL (as in CDT) to handle small errors and we
gathered more than n columns and randomized the selection of L.

We tested the attack on a MacBook air with the newer processor (Intel
core i7-5650U) running Mac OS X El Capitan. We executed 50 repeated attacks
against BLISS-I, probing three out of the six cache lines that cover the ET table.
We completely recovered the private key in 44 of these samples. On average we
required 3294 signatures for the attack to collect m = n+ 100 = 612 equations.
The experiment is considered a failure if we did not find the secret key after
trying LLL five times.

6.4. Conclusion. Our proof-of-concept implementation demonstrates that in
many cases we can overcome the limitations of processor optimizations and
perform the attack on BLISS. The attack, however, requires a high degree of
synchronization between the attacker and the victim, which we achieve by mod-
ifying the victim code. For a similar level of synchronization in a real attack
scenario, the attacker will have to be able to find out when each coordinate is
sampled. One possible approach for achieving this is to use the attack of Gul-
lasch et al. [12] against the Linux Completely Fair Scheduler. The combination
of a cache attack with the attack on the scheduler allows the attacker to monitor
each and every table access made by the victim, which is more than required for
our attacks.
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1. Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. IACR Cryptology ePrint Archive, http:

//eprint.iacr.org/2015/1092, 2015.
2. Daniel J. Bernstein. Cache-timing attacks on AES, 2005. Preprint available at

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.
3. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-

quantum key exchange for the TLS protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015 [15], pages 553–570.

4. Johannes A. Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing, and
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We provide the parameter suggestions for different levels of security for BLISS,
used to test the side-channel attacks. The parameters we focus on are: security
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Parameter Set λ n q σ δ1, δ2 κ

BLISS-0 (Toy) ≤ 60 256 7681 100 0.55, 0.15 12
BLISS-I 128 512 12289 215 0.3, 0 23
BLISS-II 128 512 12289 107 0.3, 0 23
BLISS-III 160 512 12289 250 0.42, 0.03 30
BLISS-IV 192 512 12289 271 0.45, 0.06 39

Table A.1: Parameter suggestions for different security levels of BLISS (from [8])
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B Results of Perfect Side-Channel Attacks

B.1. Cache weaknesses in CDT sampling.

Parameter Set Type Cache
line u

Cache
line(s)
Iz

{γ1, γ2} γ1 α

BLISS-0 (Toy) Last-Jump 25 6,7 {127,128} 127 0.0447

BLISS-I Intersection 0 1 {7, 8} 8 0.0998
Last-Jump 6 6,7 {55,56} 55 0.0246
Last-Jump 21 25,26 {207, 208} 207 0.0465
Last-Jump 24 31,32 {254,255 } 255 0.0431
Last-Jump 27 40,41 {327,328 } 327 0.0200
Last-Jump 28 41,42 {334,335} 335 0.0226
Last-Jump 29 48,49 {390,391} 391 0.0104
Last-Jump 30 51,52 {414,415} 415 0.0018

BLISS-II Last-Jump 26 17,18 {143,144} 143 0.0643

BLISS-III Last-Jump 8 10,11 {87,88} 87 0.0903
Last-Jump 10 13,14 {111,112} 111 0.0139
Last-Jump 18 24,25 {199,200} 199 0.0272
Last-Jump 20 28,29 {231,232} 231 0.0087

BLISS-IV Last-Jump 9 12,13 {103,104} 103 0.0545
Last-Jump 10 14,15 {119,120} 119 0.0015

Table B.1: We found these weaknesses in cache, for the five suggested parameter
sets, satisfying the size and biased requirement, as described in Section 3. For
each weakness, we give the type (intersection or last-jump), the corresponding
values of bu/8c and bIz/8c, the possible outcomes {γ1, γ2}, where the outcome
has probability (1− α) to be γ1
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B.2. Experimental results for CDT sampling.

Parameter Set m psucc ||v||22 N E[N ] Offline
Time

BLISS-0 (Toy) 256 0.690 10 2537 2518 1.9
(n, σ, κ) = 257 0.841 10 2547 2528 2.9
(256, 100, 12) 258 0.886 10 2565 2538 3.5

259 0.903 10 2571 2548 4.0
260 0.943 10 2580 2558 4.5
261 0.943 10 2596 2568 4.6

BLISS-I 512 0.655 29 441 450 37.6
(n, σ, κ) = 513 0.809 29 442 451 60.0
(512, 215, 23) 514 0.881 29 442 452 71.3

515 0.925 30 443 453 73.9
516 0.95 30 446 454 81.3
517 0.961 30 446 455 85.8

BLISS-II 512 0.478 33 2021 2020 37.5
(n, σ, κ) = 513 0.675 34 2023 2024 72.1
(512, 107, 23) 514 0.772 34 2030 2028 95.6

515 0.818 35 2033 2032 110.4
516 0.870 35 2033 2036 117.5
517 0.897 35 2041 2040 122.0

BLISS-III 512 0.855 23 945 930 42.2
(n, σ, κ) = 513 0.950 23 946 932 51.6
(512, 250, 30) 514 0.975 23 951 934 55.9

515 0.987 24 954 935 55.3
516 0.987 24 952 937 55.8
517 0.996 24 957 939 54.4

BLISS-IV 512 0.617 35 1206 1189 46.2
(n, σ, κ) = 513 0.817 36 1209 1191 75.3
(512, 271, 39) 514 0.885 36 1211 1194 88.4

515 0.932 36 1215 1196 93.7
516 0.947 36 1216 1198 102.4
517 0.955 36 1217 1201 104.4

Table B.2: Experimental results with a perfect side-channel, when BLISS is used
with CDT sampling (Algorithm 2.4). For each parameter set, we managed to
gather m equations from N signatures. The running time of the offline part is
given in seconds.
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B.3. Experimental results for rejection sampling.

Parameter Set m psucc N E[N ] Offline
Time

BLISS-0 (Toy) 256 1.0 1105 1102 0.8
BLISS-I 512 1.0 1671 1694 14.7
BLISS-II 512 1.0 824 839 14.4
BLISS-III 512 1.0 3018 2970 16.0
BLISS-IV 512 1.0 4223 4154 18.1

Table B.3: Experimental results with a perfect side-channel, when BLISS is used
with rejection sampling (Algorithms 2.5, 2.6, 2.7).

C BLISS-I Cache Weakness for Different Offsets

Offset within
cache-pair

Cache
lines Iz

{γ1, γ2} γ1

0 15,16 {207,208} 207
16 8,9 {141,142} 141
32 1,2 {27,28} 27
48 0,1 {9,10} 9
64 3,4 {55,56} 55
80 7,8 {117,118} 117
96 6,7 {99,100} 99
112 9,10 {145,146} 145

Table C.1: Last-jump weaknesses for BLISS-I, in the case of different offsets
(in Bytes) within the same cache-pairs. For every offset, we found a last-jump
weakness satisfying the size and biased requirement (α < 0.1), allowing the
attacks described in Section 6.
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