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Abstract

A constrained pseudo random function (PRF) behaves like a standard PRF, but with the added
feature that the (master) secret key holder, having secret key K, can produce a constrained key, K{f},
that allows for the evaluation of the PRF on all inputs satisfied by the constraint f . Most existing
constrained PRF constructions can handle only bounded length inputs. In a recent work, Abusalah et al.
[AFP14] constructed a constrained PRF scheme where constraints can be represented as Turing machines
with unbounded inputs. Their proof of security, however, requires risky “knowledge type” assumptions
such as (public coins) differing inputs obfuscation for circuits and SNARKs.

In this work, we construct a constrained PRF scheme for Turing machines with unbounded inputs
under weaker assumptions, namely, the existence of indistinguishability obfuscation for circuits (and
injective pseudorandom generators).
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1 Introduction

Constrained pseudorandom functions (PRFs), as introduced by [BW13, BGI14, KPTZ13], are a useful exten-
sion of standard PRFs [GGM84]. A constrained PRF system is defined with respect to a family of constraint
functions, and has an additional algorithm Constrain. This algorithm allows a (master) PRF key holder, hav-
ing PRF key K, to produce a constrained PRF key K{f} corresponding to a constraint f . This constrained
key K{f} can be used to evaluate the PRF at all points x accepted by f (that is, f(x) = 1). The security
notion ensures that even when given multiple constrained keys K{f1}, . . ., K{fQ}, PRF evaluation at a
point not accepted by any of the functions fi ‘looks’ uniformly random to a computationally bounded adver-
sary. Since their inception, constrained PRFs have found several applications such as broadcast encryption,
identity-based key exchange, policy-based key distribution[BW13] and multi-party key exchange [BZ14]. In
particular, even the most basic class of constrained PRFs called puncturable PRFs has found immense ap-
plication in the area of program obfuscation through the ‘punctured programming’ technique introduced
by [SW14]. The initial works of [BW13, BGI14, KPTZ13] showed that the [GGM84] PRF construction
can be modified to construct a basic class of constrained PRFs called prefix-constrained PRFs (which also
includes puncturable PRFs). Boneh and Waters [BW13] also showed a construction for the richer class of
circuit-constrained PRFs 1 using multilinear maps [GGH13a]. Since then, we have seen great progress in this
area, leading to constructions from different cryptographic assumptions [BZ14, BV15b, BFP+15] and con-
structions with additional properties [CRV14, AFP14, BV15b, BFP+15]. However, all the above mentioned
works have a common limitation: the corresponding PRF can handle only bounded length inputs.

The problem of constructing constrained PRFs with unbounded length was studied in a recent work by
Abusalah, Fuchsbauer and Pietrzak [AFP14], who also showed motivating applications such as broadcast
encryption with unbounded recipients and multi-party identity based non-interactive key exchange with
no apriori bound on number of parties. Abusalah et al. construct a constrained PRF scheme where the
constraint functions are represented as Turing machines with unbounded inputs. Initially, their scheme was
proven secure under the assumption that differing input obfuscation (diO) for circuits exists. Informally,
this assumption states that there exists an ‘obfuscation’ program O that takes as input a circuit C, and
outputs another circuit O(C) with the following security guarantee: if an efficient adversary can distinguish
between O(C1) and O(C2), then there exists an efficient extraction algorithm that can find an input x such
that C1(x) 6= C2(x). However, the diO assumption is believed to be a risky one due to its ‘extractability
nature’. Furthermore, the work of [GGHW14] conjectures that there exist certain function classes for which
diO is impossible to achieve. Subsequently, they showed a construction [AFP16] under the assumption of
public coins differing input obfuscation (pcdiO) [IPS15]. While the implausibility results of [GGHW14] does
not apply to pcdiO, it is still believed to be a strong assumption due to its extractability nature.

A natural direction then is to try to base the security on the relatively weaker assumption of indistin-
guishability obfuscation (iO) for circuits. An obfuscator O is an indistinguishability obfuscator for circuits
if for any two circuits C1 and C2 that have identical functionality, their obfuscations O(C1) and O(C2)
are computationally indistinguishable. Unlike diO, there are no known impossibility results for iO, and
moreover, there has been recent progress [GLSW15, AJ15, BV15a] towards the goal of constructing iO from
standard assumptions. This brings us to the central question of our work:

Can we construct constrained PRFs for Turing machines under the assumptions that indistinguishability
obfuscation and one-way functions exist?

Our starting point is three recent works that build indistinguishability obfuscation for Turing Ma-
chines with bounded length inputs using iO for circuits [BGL+15, CHJV15, KLW15]. The works of
[BGL+15, CHJV15] show how to do this where the encoding time and size of the obfuscated program
grows with the maximum space used by the underlying program, whereas the work of [KLW15] achieves this
with no such restriction. An immediate question is whether we can use a Turing machine obfuscator for
constructing constrained PRFs for Turing machines, similar to the circuit-constrained PRF construction of
[BZ14]. However, as mentioned above the Turing machine obfuscator constructions are restricted to Turing

1Where the constraints can be any boolean circuit
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Machines with bounded size inputs2. Thus, we are unable to use the Turning Machine obfuscation scheme
in a black box manner and have to introduce new techniques to construct constrained PRFs for unbounded
sized inputs.

Our Results: The main result of our work is as follows.

Theorem 1 (informal). Assuming the existence of secure indistinguishability obfuscators and injective
pseudorandom generators, there exists a constrained PRF scheme that is selectively secure.

Selective Security vs Adaptive Security: Selective security is a security notion where the adversary
must specify the ‘challenge input’ before receiving constrained keys. A stronger notion, called adaptive
security, allows the adversary to query for constrained keys before choosing the challenge input. While
adaptive security should be the ideal target, achieving adaptive security with only polynomial factor security
loss (i.e. without ‘complexity leveraging’ ) has been challenging, even for circuit based constrained PRFs.
Currently, the best known results for adaptive security either require superpolynomial security loss [FKPR14],
or work for very restricted functionalities [HKW15], or achieve non-collusion based security [BV15b] or
achieve it in the random oracle mode [HKKW14].

Moreover, for many applications, it turns out that selective security is sufficient. For example, the widely
used punctured programming technique of [SW14] only requires selectively secure puncturable PRFs. Sim-
ilarly, as discussed in [AFP14], selectively secure constrained PRFs with unbounded inputs can be used to
construct broadcast encryption schemes with unbounded recipients and identity based non-interactive key
exchange (ID-NIKE) protocol with no apriori bound on number of parties. Therefore, as a corollary of Theo-
rem 1, we get both these applications using only indistinguishability obfuscation and injective pseudorandom
generators. Interestingly, two recent works have shown direct constructions for both these problems using
iO. Zhandry [Zha14] showed a broadcast encryption scheme with unbounded recipients, while Khurana et
al. [KRS15] showed an ID-NIKE scheme with unbounded number of parties.

We also show how our construction above can be easily adapted to get selectively secure attribute based
encryption for Turing machines with unbounded inputs, which illustrates the versatility of our techniques
above.

Theorem 2 (informal). Assuming the existence of secure indistinguishability obfuscators and injective
pseudorandom generators, there exists an ABE scheme for Turing machines that is selectively secure.

Recently, Ananth and Sahai [AS16] had an exciting result where they show adaptively secure functional
encryption for Turing machines with unbounded inputs. While our adaptation is limited to ABE, we believe
that the relative simplicity of our construction is an interesting feature. In addition, we were able to apply
our tail-hybrid approach to get an end-to-end polynomial time reduction.

1.1 Overview of our constrained PRF construction

To begin, let us consider the simple case of standard PRFs with unbounded inputs. Any PRF (with sufficient
input size) can be extended to handle unbounded inputs by first compressing the input using a collision-
resistant hash function (CRHF), and then computing the PRF on this hash value. Abusalah et al. [AFP14]
showed that by using diO, this approach can be extended to work for constrained PRFs. However, the proof
of security relies on the extractability property of diO in a fundamental way. In particular, this approach
will not work if iO is used instead of diO because general CRHFs are not ‘iO-compatible’3 (see Section 2
for a more detailed discussion on iO-compatibility).

2The restriction to bounded length inputs is due to the fact that their iO analysis requires a hybrid over all possible inputs.
They absorb this loss by growing the size of the obfuscated program polynomially in the input size using complexity leveraging
and a sub-exponential hardness assumption on the underlying circuit iO. Currently, there is no known way to avoid this.

3Consider the following toy example. Let C0, C1 be circuits such that C0(x, y) = 0 ∀(x, y) and C1(x, y) = 1 iff CRHF(x) =
CRHF(y) for x 6= y. Now, under the diO assumption, the obfuscations of C0 and C1 are computationally indistinguishable.
However, we cannot get the same guarantee by using iO, since the circuits are not functionally identical
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Challenges of a similar nature were addressed in [KLW15] by introducing new tools and techniques
that guarantee program functional equivalence at different stages of the proof. Let us review one such
tool called positional accumulators, and see why it is iO-compatible. A positional accumulator scheme is a
cryptographic primitive used to provide a short commitment to a much larger storage. This commitment
(also referred to as an accumulation of the storage) has two main features: succinct verifiability (there
exists a short proof to prove that an element is present at a particular position) and succinct updatability
(using short auxiliary information, the accumulation can be updated to reflect an update to the underlying
storage). The scheme also has a setup algorithm which generates the parameters, and can operate in
two computationally indistinguishable modes. It can either generate parameters ‘normally’, or it can be
enforcing at a particular position p. When parameters are generated in the enforcing mode, the accumulator
is information-theoretically binding to position p of the underlying storage. This information theoretic
enforcing property is what makes it compatible for proofs involving iO.

Returning to our constrained PRF problem, we need a special hash function that can be used with iO.
That brings us to the main insight of our work: the KLW positional accumulator can be repurposed to be
an iO-friendly hash function.4 Besides giving us an iO-friendly hash function, this also puts the input in a
data structure that is already suitable for the KLW framework.5

Our Construction : We will now sketch out our construction. Our constrained PRF scheme uses a
puncturable PRF F with key k. Let Hash-Acc(x) represent the accumulation of storage initialized with input
x = x1 . . . xn. The PRF evaluation (in our scheme) is simply F (k,Hash-Acc(x)).

The interesting part is the description of our constrained keys, and how they can be used to evaluate at
an input x. The constrained key for machine M consists of two programs. The first one is an obfuscated
circuit which takes an input, and outputs a signature on that input. The second one is an obfuscated circuit
which essentially computes the next-step of the Turing machine, and eventually, if it reaches the ‘accepting
state’, it outputs F (k,Hash-Acc(x)). This circuit also performs additional authenticity checks to prevent
illegal inputs - it takes a signature and accumulator as input, verifies the signature and accumulator before
computing the next step, and finally updates the accumulator and outputs a signature on the new state and
accumulator.

Evaluating the PRF at input x using the constrained key consists of two steps. The first one is the
initialization step, where the evaluator first computes Hash-Acc(x) and then computes a signature on
Hash-Acc(x) using the signing program. Then, it iteratively runs the obfuscated next-step circuit (also
including Hash-Acc(x) as input at each time step) until the circuit either outputs the PRF evaluation, or
outputs ⊥. While this is similar to the KLW message hiding encoding scheme, there are some major differ-
ences. One such difference is with regard to accumulation of the input. In KLW, the input is accumulated by
the ‘honest’ encoding party, while in our case, the (possibly corrupt) evaluator generates the accumulation
and feeds it at each step of the iteration. As a result, the KLW proof for message-hiding encoding scheme
needs to be tailored to fit our setting.

Proof of Security : Recall we are interested in proving selective security, where the adversary sends the
challenge input x∗ before requesting for constrained keys. Our goal is to replace the (master) PRF key k in
all constrained keys with one that is punctured at acc-inp∗ = Hash-Acc(x∗). Once this is done, the security
of puncturable PRFs guarantees that the adversary cannot distinguish between F(k, acc-inp∗) and a truly
random string. Let us focus our attention on one constrained key query corresponding to machine M , and
suppose M runs for t∗ steps on input x∗ and finally outputs ‘reject’.

To replace k with a punctured key, we need to ensure that the obfuscated program for M does not reach
the ‘accepting state’ on inputs with acc-inp = acc-inp∗. This is done via two main hybrid steps. First, we alter
the program so that it does not reach the accepting state within t∗ steps on inputs with acc-inp = acc-inp∗.

4More formally, it gives us an iO friendly universal one way hash function.
5We note that the somewhat statistically binding hash of [HW15] has a similar spirit to positional accumulators in that they

have statistical binding at a selected position. However, they are not sufficient for our purposes as positional accumulators
provide richer semantics such as interleaved reads, writes, and overwrites that are necessary here.
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Then, we have the tail hybrid, where we ensure that on inputs with acc-inp = acc-inp∗, the program does not
reach accepting state even at time steps t > t∗. For the first step, we follow the KLW approach, and define
a sequence of t∗ sub-hybrids, where in the ith hybrid, the obfuscated circuit does not reach accepting state
at time steps t ≤ i for inputs with acc-inp = acc-inp∗. We use the KLW selective enforcement techniques to
show that consecutive hybrids are computationally indistinguishable.

We have a novel approach for handling the tail hybrids Let T (= 2λ) denote the upper bound on the
running time of any machine M on any input. In KLW, the tail hybrid step was handled by defining T − t∗
intermediate hybrids. If we adopt a similar approach for our construction, it results in an exponential factor
security loss, which is undesirable for our application6. Our goal would be to overcome this to get an end to
end polynomial reduction to iO. Therefore, we propose a modification to our scheme which will allow us to
handle the tail hybrid with only a polynomial factor security loss. First, let us call the time step 2i as the ith

landmark, while the interval [2i, 2i+1− 1] is the ith interval. The obfuscated program now takes a PRG seed
as input at each time step, and performs some additional checks on the input PRG seed. At time steps just
before a landmark, it outputs a new (pseudorandomly generated) PRG seed, which is then used in the next
interval. Using standard iO techniques, we can show that if the program outputs ⊥ just before a landmark,
then we can alter the program indistinguishably so that it outputs ⊥ at all time steps in the next interval.
Since we know that the program outputs ⊥ at (acc-inp∗, t∗ − 1), we can ensure that the program outputs ⊥
for all (acc-inp∗, t) such that t∗ ≤ t ≤ 2t∗. Proceeding inductively, we can ensure that the program never
reaches accepting state if acc-inp = acc-inp∗.

Concurrent Work Independently and concurrently, Abusalah and Fuchsbauer [AF16] showed how to
improve the [AFP16] scheme to construct constrained PRFs for unbounded inputs with short keys. However,
the security of this scheme also relies on the pcdiO assumption.

1.2 Attribute Based Encryption for Turing Machines with Unbounded Inputs

We will now describe our ABE scheme for Turing machines with unbounded inputs. Let PKE be a public
key encryption scheme. Our ABE scheme’s master secret key is a puncturable PRF key k and the public
key is an obfuscated program Prog-PK and accumulator parameters. The program Prog-PK takes as input
a string acc-inp, computes r = F (k, acc-inp) and uses r as randomness for PKE.setup. It finally outputs the
PKE public key. To encrypt a message m for attribute x, one must first accumulate the input x, then feed
the accumulated input to Prog-PK to get a PKE public key pk, and finally encrypts m using public key pk.
The secret keys corresponding to Turing machine M is simply the constrained PRF key for M . This key can
be used to compute F (k,Hash-Acc(x)) if M(x) = 1, and therefore can decrypt messages encrypted for x.

1.3 Paper Organization

We present the required preliminaries in Section 2 and the notions of constrained PRFs for Turing machines
in Section 3. The construction of our constrained PRF scheme can be found in Section 4, while our ABE
scheme can be found in 5.

2 Preliminaries

2.1 Notations

In this work, we will use the following notations for Turing machines.

6An exponential loss in the security proof of randomized encodings in KLW was acceptable because the end goal was
indistinguishability obfuscation, which already requires an exponential number of hybrids.
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Turing machines A Turing machine is a 7-tuple M = 〈Q, Σtape, Σinp, δ, q0, qac, qrej〉 with the following
semantics:

- Q is the set of states with start state q0, accept state qac and reject state qrej.

- Σinp is the set of inputs symbols

- Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is a special blank symbol
‘ ’ ∈ Σtape \ Σinp.

- δ : Q× Σtape → Q× Σtape × {+1,−1} is the transition function.

2.2 Obfuscation

We recall the definition of indistinguishability obfuscation from [GGH+13b, SW14].

Definition 2.1. (Indistinguishability Obfuscation) Let C = {Cλ}λ∈N be a family of polynomial-size circuits.
Let iO be a uniform PPT algorithm that takes as input the security parameter λ, a circuit C ∈ Cλ and
outputs a circuit C ′. iO is called an indistinguishability obfuscator for a circuit class {Cλ} if it satisfies the
following conditions:

• (Preserving Functionality) For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that C ′(x) = C(x) where C ′ ← iO(1λ, C).

• (Indistinguishability of Obfuscation) For any (not necessarily uniform) PPT distinguisher B = (Samp,D),
there exists a negligible function negl(·) such that the following holds: if for all security parameters
λ ∈ N,Pr[∀x,C0(x) = C1(x) : (C0;C1;σ)← Samp(1λ)] > 1− negl(λ), then

|Pr[D(σ, iO(1λ, C0)) = 1 : (C0;C1;σ)← Samp(1λ)]−
Pr[D(σ, iO(1λ, C1)) = 1 : (C0;C1;σ)← Samp(1λ)]| ≤ negl(λ).

In a recent work, [GGH+13b] showed how indistinguishability obfuscators can be constructed for the
circuit class P/poly. We remark that (Samp,D) are two algorithms that pass state, which can be viewed
equivalently as a single stateful algorithm B. In our proofs we employ the latter approach, although here we
state the definition as it appears in prior work.

2.3 iO-Compatible Primitives

In this section, we define extensions of some cryptographic primitives that makes them ‘compatible’ with
indistinguishability obfuscation. 7 All of the primitives described here can be constructed from iO and one
way functions. Their constructions can be found in [KLW15].

2.3.1 Splittable Signatures

A splittable signature scheme is a normal deterministic signature scheme, augmented by some additional
algorithms and properties that we require for our application. Such a signature scheme has four different kinds
of signing/verification key pairs. First, we have the standard signing/verification key pairs, where the signing
key can compute signatures on any message, and the verification key can verify signatures corresponding
to any message. Next, we have ‘all-but-one’ signing/verification keys. These keys, which correspond to a
special message m∗, work for all messages except m∗; that is, the signing key can sign all messages except
m∗, and the verification key can verify signatures for all messages except m∗ (it does not accept any signature

7In Appendix A.1, we describe a toy example to illustrate why we need to extend/modify certain primitives in order to use
them with iO.
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corresponding to m∗). Third, we have ‘one’ signing/verification keys. These keys correspond to a special
message m′, and can only be used to sign/verify signatures for m′. For all other messages, the verification
algorithm does not accept any signatures. Finally, we have the rejection verification key which does not
accept any signatures. The setup algorithm outputs a standard signing/verification key together with a
rejection verification key, while a ’splitting’ algorithm uses a standard signing key to generate ‘all-but-one’
and ‘one’ signing/verification keys.

At a high level, we require the following security properties. First, the standard verification key and
the rejection verification key must be computationally indistinguishable. Intuitively, this is possible because
an adversary does not have any secret key or signatures. Next, we require that if an adversary is given
an ‘all-but-one’ secret key for message m∗, then he/she cannot distinguish between a standard verification
key and an ‘all-but-one’ verification key corresponding to m∗. We also have a similar property for the ‘one’
keys. No PPT adversary, given a ‘one’ signing key, can distinguish between a standard verification key and
a ‘one’ verification key. Finally, we have the ‘splittability’ property, which states that the keys generated by
splitting one signing key are indistinguishable from the case where the ‘all-but-one’ key pair and the ‘one’
key pair are generated from different signing keys.

We will now formally describe the syntax and correctness/security properties of splittable signatures.

Syntax: A splittable signature scheme S for message space M consists of the following algorithms:

Setup-Spl(1λ) The setup algorithm is a randomized algorithm that takes as input the security parameter λ
and outputs a signing key SK, a verification key VK and reject-verification key VKrej.

Sign-Spl(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing key SK and
a message m ∈M. It outputs a signature σ.

Verify-Spl(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input a verification
key VK, signature σ and a message m. It outputs either 0 or 1.

Split(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK and a message
m∗ ∈ M. It outputs a signature σone = Sign-Spl(SK,m∗), a one-message verification key VKone, an
all-but-one signing key SKabo and an all-but-one verification key VKabo.

Sign-Spl-abo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an all-but-one
signing key SKabo and a message m, and outputs a signature σ.

Correctness Let m∗ ∈ M be any message. Let (SK,VK,VKrej) ← Setup-Spl(1λ) and (σone, VKone,
SKabo, VKabo)← Split(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈M, Verify-Spl(VK,m,Sign-Spl(SK,m)) = 1.

2. For all m ∈M,m 6= m∗, Sign-Spl(SK,m) = Sign-Spl-abo(SKabo,m).

3. For all σ, Verify-Spl(VKone,m
∗, σ) = Verify-Spl(VK,m∗, σ).

4. For all m 6= m∗ and σ, Verify-Spl(VK,m, σ) = Verify-Spl(VKabo,m, σ).

5. For all m 6= m∗ and σ, Verify-Spl(VKone,m, σ) = 0.

6. For all σ, Verify-Spl(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈M, Verify-Spl(VKrej,m, σ) = 0.
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Security We will now define the security notions for splittable signature schemes. Each security notion is
defined in terms of a security game between a challenger and an adversary A.

Definition 2.2 (VKrej indistinguishability). A splittable signature scheme S is said to be VKrej indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKrej(1
λ,S,A):

1. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ) .Next, it chooses b ← {0, 1}. If b = 0, it sends
VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has no ability to produce them.
This is why the difference between VK and VKrej cannot be tested.

Definition 2.3 (VKone indistinguishability). A splittable signature scheme S is said to be VKone indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKone(1
λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo,

VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (σone,VKone) to A. Else, it
sends (σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK and VKone

behave identically.

Definition 2.4 (VKabo indistinguishability). A splittable signature scheme S is said to be VKabo indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKabo(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ). Next, it computes (σone, VKone, SKabo,

VKabo) ← Split(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (SKabo,VKabo) to A. Else, it
sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to create a signature on m∗. For
all signatures A can create by signing with SKabo, VKabo and VK will behave identically.

Definition 2.5 (Splitting indistinguishability). A splittable signature scheme S is said to be splitting in-
distinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-Spl(1λ,S,A):

1. A sends a message m∗ ∈M.
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2. Challenger computes (SK,VK,VKrej) ← Setup-Spl(1λ), (SK′,VK′,VK′rej) ← Setup-Spl(1λ). Next, it
computes (σone, VKone, SKabo, VKabo)←
Split(SK,m∗), (σ′one, VK′one, SK′abo, VK′abo) ← Split(SK′,m∗). . It chooses b ← {0, 1}. If b = 0, it
sends (σone,VKone,SKabo,VKabo) to A. Else, it sends
(σ′one,VK′one,SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone,SKabo,VKabo generated together by one
call of Setup-Spl or a “split” system of (σ′one,VK′one,SKabo,VKabo) where the all but one keys are generated
separately from the signature and key for the one message m∗. Since the correctness conditions do not link
the behaviors for the all but one keys and the one message values, this split generation is not detectable by
testing verification for the σone that A receives or for any signatures that A creates honestly by signing with
SKabo.

2.3.2 Positional Accumulators

An accumulator can be seen as a special hash function mapping unbounded8 length strings to fixed length
strings. It has two additional properties: succinct verifiability and succinct updatability. Let Hash-Acc(·) be
the hash function mapping x = x1 . . . xn to y. Then, succinct verifiability means that there exists a ‘short’
proof π to prove that bit xi is present at the ith position of x. Note that this verification only requires the
hash value y and the short proof π. Succinct updatability means that given y, a bit x′i, position i and some
‘short’ auxiliary information, one can update y to obtain y′ = Hash-Acc(x1 . . . x

′
i . . . xn). We will refer to y

as the tape, and xi the symbol written at position i. For notational simplicity in our construction, we have
an algorithm Prep-Read that takes the database and index as inputs, and outputs the message at index,
together with a succinct proof π. Similarly, we have an algorithm Prep-Write that takes as input the database
and index, and outputs auxiliary information aux. The update algorithm can then use aux to update the
accumulated hash at index.

The notion of accumulators is not sufficient for using with iO, and we need a stronger primitive called
positional accumulators that is iO-compatible. In a positional accumulator, we have three different setup
modes. The first one is the standard setup which outputs public parameters and the initial accumulation
corresponding to the empty tape. Next, we have the read-enforced setup mode. In this mode, the algorithm
takes as input a sequence of k pairs (symi, posi) which represent the first k symbols written and their posi-
tions. It also takes as input the enforcing position pos, and outputs public parameters and an accumulation
of the empty tape. As the name suggests, this mode is read enforcing at position pos - if the first k symbols
written are (sym1, . . . , symk), and their write positions are (pos1, . . . , posk), then there exists exactly one
opening for position pos : the correct symbol written at pos. Similarly, we have a write-enforcing setup
which takes as input k (symbol, position) pairs {(symi, posi)}i≤k representing the first k writes, and out-
puts public parameters and an accumulation of the empty tape. The write-enforcing property states that if
(symi, posi) are the first k writes, and acck−1 is the correct accumulation after the first k − 1 writes, then
there is a unique accumulation after the kth write (irrespective of the auxiliary string). Note that both the
read and write enforcing properties are information theoretic. This is important when we are using these
primitives with indistinguishability obfuscation. For security, we require that the different setup modes are
computationally indistinguishable.

We will now give a formal description of the syntax and properties. A positional accumulator for message
space Mλ consists of the following algorithms.

8Unbounded, but polynomial in the security parameter
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• Setup-Acc(1λ, T ) → (PP, acc0, store0) The setup algorithm takes as input a security parameter λ in
unary and an integer T in binary representing the maximum number of values that can stored. It
outputs public parameters PP, an initial accumulator value acc0, and an initial storage value store0.

• Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗)→ (PP, acc0, store0): The setup
enforce read algorithm takes as input a security parameter λ in unary, an integer T in binary represent-
ing the maximum number of values that can be stored, and a sequence of symbol, index pairs, where
each index is between 0 and T − 1, and an additional index∗ also between 0 and T − 1. It outputs
public parameters PP, an initial accumulator value acc0, and an initial storage value store0.

• Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)) → (PP, acc0, store0): The setup en-
force write algorithm takes as input a security parameter λ in unary, an integer T in binary representing
the maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1. It outputs public parameters PP, an initial accumulator value acc0, and
an initial storage value store0.

• Prep-Read(PP, storein, index) → (m,π): The prep-read algorithm takes as input the public param-
eters PP, a storage value storein, and an index between 0 and T − 1. It outputs a symbol m (that
can be ε) and a value π.

• Prep-Write(PP, storein, index)→ aux: The prep-write algorithm takes as input the public parameters
PP, a storage value storein, and an index between 0 and T − 1. It outputs an auxiliary value aux.

• Verify-Read(PP, accin,mread, index, π)→ {True, False}: The verify-read algorithm takes as input the
public parameters PP, an accumulator value accin, a symbol, mread, an index between 0 and T − 1,
and a value π. It outputs True or False.

• Write-Store(PP, storein, index,m) → storeout: The write-store algorithm takes in the public pa-
rameters, a storage value storein, an index between 0 and T − 1, and a symbol m. It outputs a
storage value storeout.

• Update(PP, accin,mwrite, index, aux) → accout or Reject: The update algorithm takes in the public
parameters PP, an accumulator value accin, a symbol mwrite, and index between 0 and T − 1, and an
auxiliary value aux. It outputs an accumulator value accout or Reject.

In general we will think of the Setup-Acc algorithm as being randomized and the other algorithms as
being deterministic. However, one could consider non-deterministic variants.

Correctness We consider any sequence (m1, index1), . . . , (mk, indexk) of symbols m1, . . . ,mk and in-
dices index1, . . . , indexk each between 0 and T − 1. We fix any PP, acc0, store0 ← Setup-Acc(1λ, T ).
For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and accj :=
Update(PP, accj−1,mj , indexj , auxj). Note that the algorithms other than Setup-Acc are deterministic, so
these definitions fix precise values, not random values (conditioned on the fixed starting values PP, acc0, store0).

We require the following correctness properties:

1. For every index between 0 and T − 1, Prep-Read(PP, storek, index) returns mi, π, where i is the
largest value in [k] such that indexi = index. If no such value exists, then mi = ε.

2. For any index, let (m,π)← Prep-Read(PP, storek, index). Then Verify-Read(PP, acck,m, index, π) =
True.
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Remarks on Efficiency In our construction, all algorithms will run in time polynomial in their input
sizes. More precisely, Setup-Acc will be polynomial in λ and log(T ). Also, accumulator and π values should
have size polynomial in λ and log(T ), so Verify-Read and Update will also run in time polynomial in λ and
log(T ). Storage values will have size polynomial in the number of values stored so far. Write-Store, Prep-Read,
and Prep-Write will run in time polynomial in λ and T .

Security Let Acc = (Setup-Acc, Setup-Acc-Enforce-Read, Setup-Acc-Enforce-Write, Prep-Read, Prep-Write,
Verify-Read, Write-Store, Update) be a positional accumulator for symbol set M. We require Acc to satisfy
the following notions of security.

Definition 2.6 (Indistinguishability of Read Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of read setup if any PPT adversary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices index1, . . . , indexk ∈ {0, . . . , T − 1} to the

challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, acc0, store0)← Setup-Acc(1λ, T ).

Else, it outputs (PP, acc0, store0)← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition 2.7 (Indistinguishability of Write Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of write setup if any PPT adversaryA’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ M and k indices index1, . . . , indexk ∈ {0, . . . , T − 1} to the

challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, acc0, store0)← Setup-Acc(1λ, T ).

Else, it outputs (PP, acc0, store0)← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition 2.8 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1} and any index∗ ∈ {0, . . . , T − 1}.

Let (PP, acc0, store0) ← Setup-Acc-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index∗). For j
from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj). We similarly
define auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and accj := Update(PP,
accj−1, mj , indexj , auxj). Acc is said to be read enforcing if Verify-Read(PP, acck, m, index∗, π) = True,
then either index∗ /∈ {index1, . . ., indexk} and m = ε, or m = mi for the largest i ∈ [k] such that
indexi = index∗. Note that this is an information-theoretic property: we are requiring that for all other
symobls m, values of π that would cause Verify-Read to output True at index∗ do no exist.

Definition 2.9 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1}. Let (PP, acc0, store0) ← Setup-Acc-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).
For j from 1 to k, we define storej iteratively as storej := Write-Store(PP, storej−1, indexj ,mj).
We similarly define auxj and accj iteratively as auxj := Prep-Write(PP, storej−1, indexj) and accj :=
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Update(PP, accj−1,mj , indexj , auxj). Acc is said to be write enforcing if Update(PP, acck−1,mk, indexk, aux) =
accout 6= Reject, for any aux, then accout = acck. Note that this is an information-theoretic property: we
are requiring that an aux value producing an accumulated value other than acck or Reject does not exist.

2.3.3 Iterators

In this section, we define the notion of cryptographic iterators. A cryptographic iterator essentially consists
of a small state that is updated in an iterative fashion as messages are received. An update to apply a new
message given current state is performed via some public parameters.

Since states will remain relatively small regardless of the number of messages that have been iteratively
applied, there will in general be many sequences of messages that can lead to the same state. However, our
security requirement will capture that the normal public parameters are computationally indistinguishable
from specially constructed “enforcing” parameters that ensure that a particular single state can be only be
obtained as an output as an update to precisely one other state, message pair. Note that this enforcement
is a very localized property to a particular state, and hence can be achieved information-theoretically when
we fix ahead of time where exactly we want this enforcement to be.

Syntax Let ` be any polynomial. An iterator I with message space Mλ = {0, 1}`(λ) and state space Sλ
consists of three algorithms - Setup-Itr, Setup-Itr-Enforce and Iterate defined below.

Setup-Itr(1λ, T ) The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound T (in binary) on the number of iterations. It outputs public parameters PP and an initial state
v0 ∈ Sλ.

Setup-Itr-Enforce(1λ, T,m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security pa-
rameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where each
mi ∈ {0, 1}`(λ) and k is some polynomial in λ. It outputs public parameters PP and a state v0 ∈ S.

Iterate(PP, vin,m) The iterate algorithm takes as input the public parameters PP, a state vin, and a message
m ∈ {0, 1}`(λ). It outputs a state vout ∈ Sλ.

For simplicity of notation, we will drop the dependence of ` on λ. Also, for any integer k ≤ T , we will use
the notation Iteratek(PP, v0, (m1, . . . ,mk)) to denote Iterate(PP, vk−1,mk), where vj = Iterate(PP, vj−1,mj)
for all 1 ≤ j ≤ k − 1.

Security Let I = (Setup-Itr,Setup-Itr-Enforce, Iterate) be an interator with message space {0, 1}` and state
space Sλ. We require the following notions of security.

Definition 2.10 (Indistinguishability of Setup). An iterator I is said to satisfy indistinguishability of Setup
phase if any PPT adversary A’s advantage in the security game Exp-Setup-Itr(1λ, I,A) at most is negligible
in λ, where Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,I,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ {0, 1}` to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (PP, v0) ← Setup-Itr(1λ, T ). Else, it

outputs (PP, v0)← Setup-Itr-Enforce(1λ, T, 1k,m = (m1, . . . ,mk)).
4. A sends a bit b′.

A wins the security game if b = b′.
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Definition 2.11 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and m1, . . . ,mk ∈ {0, 1}`. Let
(PP, v0) ← Setup-Itr-Enforce(1λ, T,m = (m1, . . . ,mk)) and vj = Iteratej(PP, v0, (m1, . . . ,mj)) for all 1 ≤
j ≤ k. Then, I = (Setup-Itr, Setup-Itr-Enforce, Iterate) is said to be enforcing if

vk = Iterate(PP, v′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

2.4 Attribute Based Encryption

An ABE scheme where policies are represented by Turing machines comprises of the following four algorithms
(ABE.setup,ABE.enc,ABE.keygen,ABE.dec):

• ABE.setup(1λ)→ (PKABE,MSKABE): The setup algorithm takes as input the security parameter λ and
outputs the public key PKABE and the master secret key MSKABE

• ABE.enc(m,x,PKABE) → ct: The encryption algorithm takes as input the message m, the attribute
string x of unbounded length and the public key PKABE and it outputs the corresponding ciphertext
ctx specific to the attribute string.

• ABE.keygen(MSKABE,M) → SK{M}: The key generation algorithm takes as input MSKABE and a
Turing machine M and outputs the secret key SK{M} specific to M

• ABE.dec(SK{M}, ct) → m or ⊥: The decryption algorithm takes in SK{M} and ciphertext ct and
outputs either a message m or ⊥.

The correctness of the scheme guarantees that if ABE.enc(m,x,PKABE)→ ctx and ABE.keygen(MSKABE,M)→
SK{M} then ABE.dec(SK{M}, ctx)→ m.

2.5 Selective Security

Consider the following experiment between a challenger C and a stateful adversary A:

• Setup Phase: A sends the challenge attribute string x∗ of his choice to C. C runs the ABE.setup(1λ)
and sends across PKABE to A.

• Pre-Challenge Query Phase: A gets to query for secret keys corresponding to Turing machines.
For each query M such that M(x∗) = 0, the challenger computes SK{M} ← ABE.keygen(MSKABE, .)
and sends it to A.

• Challenge Phase A sends two messages m0,m1 with |m0| = |m1|, the challenger chooses bit b
uniformly at random and outputs ct∗ = ABE.enc(mb, x

∗,PKABE).

• Post-Challenge Query Phase: This is identical to the Pre-Challenge Phase.

• Guess: Finally, A sends its guess b′ and wins if b = b′.

The advantage of A, AdvABEA (λ) in the above experiment is defined to be |Pr[b′ = b]− 1
2 |.

Definition 2.12. An ABE scheme is said to be selectively secure if for all PPT adversaries A, the advantage
AdvABEA (λ) is a negligible function in λ.
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3 Constrained Pseudorandom Functions for Turing Machines

The notion of constrained pseudorandom functions was introduced in the concurrent works of [BW13, BGI14,
KPTZ13]. Informally, a constrained PRF extends the notion of standard PRFs, enabling the master PRF
key holder to compute ‘constrained keys’ that allow PRF evaluations on certain inputs, while the PRF
evaluation on remaining inputs ‘looks’ random. In the above mentioned works, these constraints could only
handle bounded length inputs. In order to allow unbounded inputs, we need to ensure that the constrained
keys correspond to polynomial time Turing Machines. A formal definition is as follows.

Let Mλ be a family of Turing machines with (worst case) running time bounded by 2λ. Let K denote
the key space, X the input domain and Y the range space. A pseudorandom PRF : K×X → Y is said to be
constrained with respect to the Turing machine familyMλ if there is an additional key space Kc, and three
algorithms PRF.setup, PRF.constrain and PRF.eval as follows:

• PRF.setup(1λ) is a PPT algorithm that takes the security parameter λ as input and outputs a key
K ∈ K.

• PRF.constrain(K,M) is a PPT algorithm that takes as input a PRF key K ∈ K and a Turing machine
M ∈Mλ and outputs a constrained key K{M} ∈ Kc.

• PRF.eval(K{M}, x) is a deterministic polynomial time algorithm that takes as input a constrained key
K{M} ∈ Kc and x ∈ X and outputs an element y ∈ Y. LetK{M} be the output of PRF.constrain(K,M).
For correctness, we require the following:

PRF.eval(K{M}, x) = F (K,x) if M(x) = 1.

For simplicity of notation, we will use PRF(K{M}, x) to denote PRF.eval(K{M}, x).

3.1 Security of Constrained Pseudorandom Functions

Intuitively, we require that even after obtaining several constrained keys, no polynomial time adversary can
distinguish a truly random string from the PRF evaluation at a point not accepted by the queried Turing
machines. In this work, we achieve a weaker notion of security called selective security, which is formalized
by the following security game between a challenger and an adversary Att.

Let PRF : K × X → Y be a constrained PRF with respect to a Turing machine family M. The security
game consists of three phases.

Setup Phase The adversary sends the challenge input x∗. The challenger chooses a random key K ← K
and a random bit b ← {0, 1}. If b = 0, the challenger outputs PRF(K,x∗). Else, the challenger outputs a
random element y ← Y.

Query Phase In this phase, Att is allowed to ask for the following queries:

• Evaluation Query Att sends x ∈ X , and receives PRF(K,x).
• Key Query Att sends a Turing machineM ∈M such thatM(x∗) = 0, and receives PRF.constrain(K,M).

Guess Finally, A outputs a guess b′ of b.

A wins if b = b′ and the advantage of Att is defined to be AdvAtt(λ) =
∣∣∣Pr[Att wins]− 1/2

∣∣∣.
Definition 3.1. The pseudorandom function PRF is a secure constrained PRF with respect to M if for all
PPT adversaries A AdvAtt(λ) is negligible in λ.
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3.2 Puncturable Pseudorandom Functions

A special class of constrained PRFs, called puncturable PRFs, was introduced in the work of [SW14]. In a
puncturable PRF, the constrained key queries correspond to points in the input domain, and the constrained
key is one that allows PRF evaluations at all points except the punctured point.

Formally, a PRF F : K × X → Y is a puncturable pseudorandom function if there is an additional key
space Kp and three polynomial time algorithms F.setup, F.eval and F.puncture as follows:

• F.setup(1λ) is a randomized algorithm that takes the security parameter λ as input and outputs a
description of the key space K, the punctured key space Kp and the PRF F .

• F.puncture(K,x) is a randomized algorithm that takes as input a PRF key K ∈ K and x ∈ X , and
outputs a key Kx ∈ Kp.

• F.eval(Kx, x
′) is a deterministic algorithm that takes as input a punctured key Kx ∈ Kp and x′ ∈ X .

Let K ∈ K, x ∈ X and Kx ← F.puncture(K,x). For correctness, we need the following property:

F.eval(Kx, x
′) =

{
F(K,x′) if x 6= x′

⊥ otherwise

The selective security notion is analogous to the security notion of constrained PRFs.

4 Construction

A high level description of our construction: Our constrained PRF construction uses a puncturable
PRF F as the base pseudorandom function. The setup algorithm chooses a puncturable PRF key K together
with the public parameters of the accumulator and an accumulation of the empty tape (it also outputs addi-
tional parameters for the authenticity checks described in the next paragraph). To evaluate the constrained
PRF on input x, one first accumulates the input x. Let y denote this accumulation. The PRF evaluation is
F (K, y).

Next, let us consider the constrained key for Turing machine M . The major component of this key is an
obfuscated program Prog. At a very high level, this program evaluates the next-step circuit of M . Its main
inputs are the time step t, hash y of the input and the symbol, state, position of TM used at step t. Using
the state and symbol, it computes the next state and the symbol to be written. If the state is accepting, it
outputs F (K, y), else it outputs the next state and symbol. However, this is clearly not enough, since the
adversary could pass illegal states and symbols as inputs. So the program first performs some additional
authenticity checks, then evaluates the next (state, symbol), and finally outputs authentication required
for the next step evaluation. These authenticity checks are imposed via the accumulator, signature scheme
and iterator. For these checks, Prog takes additional inputs: accumulation of the current tape acc, proof π
that the input symbol is the correct symbol at the tape-head position, auxiliary string aux to update the
accumulation, iterated value and signature σ. The iterated value and the signature together ensure that the
correct state and accumulated value is input at each step, while the accumulation ensures that the adversary
cannot send a wrong symbol. Finally, to perform the ‘tail-cutting’, the program requires an additional input
seed. The first and last step of the program are for checking the validity of seed, and to output the new seed
if required. The constrained key also has another program Init-Sign which is used to sign the accumulation
of the input. In the end, if all the checks go through, the final output will be the PRF evaluation using the
constrained key.

Formal description: We now describe our constrained pseudorandom function where the constrained
keys correspond to Turing machines. Let Acc = (Setup-Acc, Setup-Acc-Enforce-Read, Setup-Acc-Enforce-Write,
Prep-Read, Prep-Write, Verify-Read, Write-Store, Update) be a positional accumulator, Itr = (Setup-Itr,
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Setup-Itr-Enforce, Iterate) an iterator, S = (Setup-Spl, Sign-Spl, Verify-Spl, Split, Sign-Spl-abo) a splittable
signature scheme and PRG : {0, 1}λ → {0, 1}2λ a length doubling injective pseudorandom generator.

Let F be a puncturable pseudorandom function whose domain and range are chosen appropriately, de-
pending on the accumulator, iterator and splittable signature scheme. For simplicity, we assume that F
takes inputs of bounded length, instead of fixed length inputs. This assumption can be easily removed by
using different PRFs for different input lengths (in our case, we will require three different fixed-input-length
PRFs). Also, to avoid confusion, the puncturable PRF keys (both master and punctured) are represented
using lower case letters (e.g. k, k{z}), while the constrained PRF keys are represented using upper case
letters (e.g. K, K{M}).

• PRF.setup(1λ): The setup algorithm takes the security parameter λ as input. It first chooses a punc-
turable PRF keys k ← F.setup(1λ). Next, it runs the accumulator setup to obtain (PPAcc, acc0, store0)←
Setup-Acc(1λ). The master PRF key is K = (k,PPAcc, acc0, store0).

• PRF Evaluation: To evaluate the PRF with key K = (k,PPAcc, acc0, store0) on input x = x1 . . . xn,
first ‘hash’ the input using the accumulator. More formally, let Hash-Acc(x) = accn, where for all
j ≤ n, accj is defined as follows:

– storej = Write-Store(PPAcc, storej−1, j − 1, xj)
– auxj = Prep-Write(PPAcc, storej−1, j − 1)
– accj = Update(PPAcc, accj−1, xj , j − 1, auxj)

The PRF evaluation is defined to be F (k,Hash-Acc(x)).

• PRF.constrain(K = (k,PPAcc, acc0, store0),M): The constrain algorithm first chooses puncturable
PRF keys k1, . . ., kλ and ksig,A and runs the iterator setup to obtain (PPItr, it0) ← Setup-Itr(1λ, T ).
Next, it computes an obfuscation of program Prog (defined in Figure 1) and Init-Sign (defined in Figure
2). The constrained key K{M} = (PPAcc, acc0, store0, PPItr, it0, iO(Prog), iO(Init-Sign)).

• PRF Evaluation using Constrained Key: Let K{M} = (PPAcc, acc0, store0, PPItr, it0, P1, P2) be a
constrained key corresponding to machine M , and x = x1, . . . , xn the input. As in the evaluation using
master PRF key, first compute acc-inp = Hash-Acc(x).

To begin the evaluation, compute a signature on the initial values using the program P2. Let σ0 =
P2(acc-inp).

Suppose M runs for t∗ steps on input x. Run the program P1 iteratively for t∗ steps. Set pos0 = 0,
seed0 =‘ ’, and for i = 1 to t∗, compute

1. Let (symi−1, πi−1) = Prep-Read(PPAcc, storei−1, posi−1).
2. Compute auxi−1 ← Prep-Write(PPAcc, storei−1, posi−1).
3. Let out = P1(i, seedi−1, posi−1, symi−1, sti−1, acci−1, πi−1, auxi−1, acc-inp, iti−1, σi−1).

If j = t∗, output out. Else, parse out as (symw,i, posi, sti, acci, iti, σi, seedi).
4. Compute storei = Write-Store(PPAcc, storei−1, posi−1, symw,i).

The output at step t∗ is the PRF evaluation using the constrained key.
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Program Prog

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc, Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux, accumulation of input acc-inp

Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rA = F(ksig,A, (acc-inp, t− 1)). Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA).

(b) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′A = F(ksig,A, (acc-inp, t)). Compute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A).

(b) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 1: Program Prog

Program Init-Sign

Constants: Puncturable PRF key ksig,A, Initial TM state q0, Iterator value it0

Input: Accumulation of input acc-inp

1. Let F (ksig,A, (acc-inp, 0)) = rsig. Compute (SK,VK,VKrej) = Setup-Spl(1λ; rsig).
2. Output σ = Sign-Spl(SK, (it0, q0, acc-inp, 0)).

Figure 2: Program Init-Sign

4.1 Proof of Selective Security

Proof Outline To prove security, we will first describe a sequence of hybrid experiments, and then show
that consecutive hybrid experiments are computationally indistinguishable. Recall that our goal is to achieve
selective security, and therefore the challenger knows the input and the accumulated hash of input acc-inp
before receiving any constrained key queries. At a very high level, our approach is similar to the one in [BZ14]
- we will replace the PRF key in the obfuscated program with one that is punctured at acc-inp. Once this
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is done, the adversary cannot distinguish between a PRF evaluation at acc-inp, and a truly random string.
But before we can replace the PRF key with a punctured key, we must ensure that all these obfuscated
programs output ⊥ on inputs corresponding to acc-inp. This is the critical part here, since there exist other
‘legal’ inputs that may hash to acc-inp.

Our proof will consist of a sequence of computationally indistinguishable hybrid experiments. The first
hybrid experiment (Hybrid0) will correspond to the real experiment. In the next hybrid (Hybrid1), all con-
strained key queries are such that they output ⊥ on all inputs that hash to acc-inp. To show that Hybrid0
and Hybrid1 are computationally indistinguishable, we will use a sequence of intermediate hybrids Hybrid0,j
(the number of intermediate hybrids depends on the number of constrained key queries).

In the final hybrid (Hybrid2), the program now has a PRF key that is punctured at acc-inp. At this point,
the PPT adversary cannot distinguish between the PRF evaluation at acc-inp and a truly random string.
Finally, we will argue that any PPT adversary has atmost negligible advantage in Hybrid2.

Sequence of Hybrid Experiments We will first set up some notation for the hybrid experiments.
Let q denote the number of constrained key queries made by the adversary. Let x∗ denote the challenge
input chosen by the adversary, (k,PPAcc, acc0, store0) the master key chosen by challenger, acc-inp∗ =
Hash-Acc(x∗) as defined in the construction. Let Mj denote the jth constrained key query, and t∗j be the
running time of machine Mj on input x∗, and τj be the smallest power of two greater than t∗j . The program
Progj denotes the program Prog with machine Mj hardwired.

Hybrid0 This corresponds to the real experiment.

Next, we define q hybrid experiments Hybrid0,j for 1 ≤ j ≤ q.

Hybrid0,j : Let Prog-1 denote the program defined in Figure 3. In this experiment, the challenger sends

an obfuscation of the program Prog-1i (Prog-1 with machine Mi hardwired) for the ith query if i ≤ j. For
the remaining queries, the challenger outputs an obfuscation of Progi.

Hybrid1 : This experiment is identical to hybrid Hybrid0,q. In this experiment, the challenger sends an
obfuscation of Prog-1i for all constrained key queries.

Hybrid2 : In this experiment, the challenger punctures the PRF key k at input acc-inp∗ and uses the
punctured key for all key queries. More formally, after receiving the challenge input x∗, it chooses (PPAcc,
acc0, store0) ← Setup-Acc(1λ) and computes acc-inp∗ = Hash-Acc(x∗). It then chooses a PRF key k
and computes k{acc-inp∗} ← F.puncture(k, acc-inp∗). Next, it receives constrained key queries for machines
M1, . . . ,Mq. For each query, it chooses (PPItr, it0) ← Setup-Itr(1λ) and PRF keys k1, . . ., kλ, ksig,A. It
computes an obfuscation of Prog-1{Mi , PPAcc, PPItr, k{acc-inp∗}, ksig,A}.

Hybrid0 ≡ Hybrid0,0 Hybrid0,1 . . . Hybrid0,q ≡ Hybrid1

Hybrid20
PPRF
≈

4.1 4.1 4.1

iO

4.1.1 Analysis

Let AdvAi denote the advantage of any PPT adversary A in the hybrid experiment Hybridi (similarly, let
AdvA0,j denote the advantage of A in the intermediate hybrid experiment Hybrid0,j).
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Program Prog-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time t∗ ∈ [T ]

Public parameters for accumulator PPAcc,Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A ∈ K
Hardwired accumulated value acc-inp∗

Inputs: Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux, accumulation of input acc-inp

Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig = F (ksig,A, t− 1). Compute (SK,VK,VKrej) = Setup-Spl(1λ; rsig).

(b) Let min = (itin, stin, accin, posin, acc-inp). If Verify-Spl(VK,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

(c) If stout = qac and acc-inp 6= acc-inp∗, output F(k, acc-inp).

Else If stout = qac output ⊥.

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If wout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig = F (ksig,A, t). Compute (SK′,VK′,VK′rej)← Setup-Spl(1λ; r′sig).

(b) Let mout = (itout, stout, accout, posout, acc-inp) and σout = Sign-Spl(SK′,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 3: Program Prog-1

Recall Hybrid0,0 corresponds to the experiment Hybrid0, and Hybrid0,q corresponds to the experiment

Hybrid1. Using the following lemma, we can show that |AdvA0 − AdvA1 | ≤ negl(λ).

Lemma 4.1. Assuming F is a puncturable PRF, Acc is a secure positional accumulator, Itr is a secure
positional iterator, S is a secure splittable signature scheme and iO is a secure indistinguishability obfuscator,
for any PPT adversary A, |AdvA0,j − AdvA0,j+1| ≤ negl(λ).

The proof of this lemma involves multiple hybrids, and is similar to the [KLW15] security proof for
message hiding encodings. We give a high level description of the proof here, and defer the full details to
Appendix B. Let M be the jth query, and let us assume M outputs 0 on input x∗ after t∗ steps. The only
difference between Prog and Prog-1 corresponding to M is that the latter, on input acc-inp∗, never outputs
F (K, acc-inp∗), even if the program reaches qac. Of course, if the program is executed honestly, then it does
not reach the accepting state. However, we need to argue that even if the adversary feeds illegal inputs,
the program does not reach qac. A natural approach would be the following: define t∗ intermediate hybrid
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programs, where the ith hybrid program does not reach qac for the first i steps on inputs corresponding to
acc-inp∗. However, it is not clear how to implement such a ‘direct’ approach. Instead, we need to employ
some preprocessing and post-processing hybrids.

Preprocessing hybrid: The first step is to modify the program Prog to allow additional valid signatures
without being detected. In particular, we have an additional PRF key in the program, and this generates
‘bad’ signing/verification keys. The program first checks if the input signature is accepted by the usual ‘good’
verification key. If not, it checks if it is accepted by the ‘bad’ verification key. If the incoming signature is
bad, then the output signature is also computed using the bad signing key. Let us call this hybrid Hyb-1.
This switch is indistinguishable because the Init-Sign program only outputs a good signature, and we use the
rejection-verification key indistinguishability property to show that this change is indistinguishable.

Next, we define t∗ intermediate hybrid programs Hyb-(1, i). These ensure that the program does not
reach the accepting state for first i steps on inputs corresponding to acc-inp∗.

Intermediate hybrids Hyb-(1, i): In the ith intermediate hybrid, the program does not output PRF
evaluation if t ≤ i and acc-inp = acc-inp∗. Moreover, if acc-inp = acc-inp∗, it only accepts good signatures
for the first i− 1 steps. For the ith step, if acc-inp = acc-inp∗, it accepts only good signatures, but outputs a
bad signature if the input iterated value, accumulated value or state are not the correct ones for time step i
(here, the program has the correct values for step i hardwired). We now need to go from step Hyb-(1, i) to
step Hyb-(1, i+ 1).

For this, we will first ensure that if acc-inp = acc-inp∗, the only signature accepted at step i+ 1 is the one
corresponding to the correct (iterated value, accumulated value, state) input tuple at step i+ 1. Intuitively,
this is true because the program, at step i, outputs a bad signature for all other tuples. To enforce this, we
use the properties of the splittable signature schemes. Next, we make the accumulator read-enforcing. This
would mean that both the state and symbol input at step i+1 are the correct ones. As a result, the program
cannot output the PRF evaluation at step i+1 if acc-inp = acc-inp∗. So now, the state and symbol output at
step i+ 1 also have to be the correct ones. To ensure that the accumulated value and iterated value output
are also correct, we make the accumulator write-enforcing and iterator enforcing respectively. Together,
these will ensure that the transition from Hyb-(1, i) and Hyb-(1, i+ 1) are computationally indistinguishable.

Post-processing hybrids: Continuing this way, we can ensure, step by step, that the program does not
output the PRF evaluation on acc-inp∗. However, the approach described above will require exponential hy-
brids. To make the number of intermediate hybrids polynomial, we use the ‘tail-cutting’ technique described
in Section 1. Note that the program, after t∗ steps, only outputs ⊥. Suppose t∗ is a power of two. Using a
PRG trick, we can wipe out steps t∗ to 2t∗ in one shot. At every step where t is a power of two, the program
outputs a new PRG seed, and this PRG seed’s validity is checked till t reaches the next power of two. Now,
if no PRG seed is output at step t∗, then using the PRG security, one can ensure that the PRG seed validity
check fails. As a result, for all t ∈ (t∗, 2t∗), the program outputs ⊥.

Lemma 4.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |AdvA1 −
AdvA2 | ≤ negl(λ).

Proof. Let us assume for now that the adversary makes exactly one constrained key query corresponding to
machine M1. This can be naturally extended to the general case via a hybrid argument.

Note that the only difference between the two hybrids is the PRF key hardwired in Prog-1. In one case,
the challenger sends an obfuscation of P1 = Prog-1{M1, PPAcc, PPItr, k, k1, . . ., kλ, ksig,A}, while in the
other, it sends an obfuscation of P2 = Prog-1{M1, PPAcc, PPItr, k{acc-inp∗}, k1, . . ., kλ, ksig,A}. To prove
that these two hybrids are computationally indistinguishable, it suffices to show that the P1 and P2 are
functionally identical. Note that program P1 computes F(k, acc-inp) only if acc-inp 6= acc-inp∗. As a result,
using the correctness property of puncturable PRFs, the programs have identical functionality.

Lemma 4.3. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |AdvA2 | ≤
negl(λ).

19



Proof. Suppose there exists a PPT adversary A such that |AdvA2 | = ε. We will use A to construct a PPT
algorithm B that breaks the security of the puncturable PRF F .

To begin with, B receives the challenge input x∗ fromA. It chooses (PPAcc, acc0, store0)← Setup-Acc(1λ).
It then computes acc-inp∗ = Hash-Acc(x∗), and sends acc-inp∗ to the PRF challenger as the challenge input.
It receives a punctured key k′ and an element y (which is either the pseudorandom evaluation at acc-inp∗ or
a truly random string in the range space). B sends y to A as the challenge response.

Next, it receives multiple constrained key requests. For the ith query corresponding to machine Mi, B
chooses PRF keys k1, . . ., kλ, ksig,A ← F.setup(1λ), (PPItr, it0)← Setup-Itr(1λ) and computes an obfuscation
of Prog-1{Mi, PPAcc, PPItr, k

′, k1, . . ., kλ, ksig,A}. It sends this obfuscated program to A as the constrained
key.

Finally, after all constrained key queries, A sends its guess b′, which B forwards to the challenger. Note
that if A wins the security game against PRF, then B wins the security game against F. This concludes our
proof.

5 Attribute Based Encryption for Turing Machines

In this section, we describe an ABE scheme where policies are associated with Turing machines, and as a
result, attributes can be strings of unbounded length. Our ABE scheme is very similar to the constrained
PRF construction described in Section 4.

Let PKE = (PKE.setup,PKE.enc,PKE.dec) be a public key encryption scheme and F a puncturable PRF
for Turing machines, with algorithms PRF.setup and PRF.constrain. Consider the following ABE scheme:

• ABE.setup(1λ) The setup algorithm chooses a puncturable PRF key k ← F.setup(1λ) and (PPAcc, acc0,
store0) ← Setup-Acc(1λ, T ). Next, it computes an obfuscation of Prog-PK{k} (defined in Figure
4). The public key PKABE = (PPAcc, acc0, store0, iO(Prog-PK{k})), while the master secret key is
MSKABE = k.

Program Prog-PK

Constants: Puncturable PRF key k
Input: Accumulation of input acc-inp

1. Let F (k, acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).
2. Output pk.

Figure 4: Program Prog-PK

• ABE.enc(m,x,PKABE) Let PKABE = (PPAcc, acc0, store0,Programpk) and x = x1 . . . xn. As in Section
4, the encryption algorithm first ‘accumulates’ the attribute x using the accumulator public parameters.
Let acc-inp = accn, where for all j ≤ n, accj is defined as follows:

– storej = Write-Store(PPAcc, storej−1, j − 1, xj)
– auxj = Prep-Write(PPAcc, storej−1, j − 1)
– accj = Update(PPAcc, accj−1, xj , j − 1, auxj)

Next, the accumulated value is used to compute a PKE public key. Let pk = Programpk(acc-inp).
Finally, the algorithm outputs ct = PKE.enc(m,pk).

• ABE.keygen(MSKABE,M) Let MSKABE = k and M = a Turing machine. The ABE key corresponding
to M is exactly the constrained key corresponding to M , as defined in Section 4. In particular, the
key generation algorithm chooses (PPItr, it0) ← Setup-Itr(1λ, T ) and a puncturable PRF key ksig,A,
and computes an obfuscation of Prog{M,k, ksig,PPAcc,PPItr} (defined in Figure 1) and Init-Sign{ksig,A
(defined in Figure 2). The secret key SK{M} = (PPItr, it0, iO(Prog), iO(Init-Sign)).
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• ABE.dec(SK{M}, ct, x) Let SK{M} = (PPItr, it0, Program1, Program2), and suppose M accepts x in
t∗ steps. As in the constrained key PRF evaluation, the decryption algorithm first obtains a signature
using Program2 and then runs Program1 for t∗ steps, until it outputs the pseudorandom string r. Using
this PRF output r, the decryption algorithm computes (pk, sk) = PKE.setup(1λ; r) and then decrypts
ct using sk. The algorithm outputs PKE.dec(sk, ct).

5.1 Proof of Security

We will first define a sequence of hybrid experiments, and then show that any two consecutive hybrid
experiments are computationally indistinguishable.

5.1.1 Sequence of Hybrid Experiments

Hybrid H0 This corresponds to the selective security game. Let x∗ denote the challenge input, and
acc-inp∗ = Hash-Acc(x∗).

Hybrid H1 In this hybrid, the challenger sends an obfuscation of Prog-1 instead of Prog. Prog-1, on inputs
corresponding to acc-inp∗, never reaches the accepting state qac. This is similar to Hybrid1 of the constrained
PRF security proof in Section 4.1.

Hybrid H2 In this hybrid, the challenger first punctures the PRF key k at acc-inp∗. It computes k′ ←
F.puncture(k, acc-inp∗) and (pk∗, sk∗) = PKE.setup(1λ;F (k, acc-inp∗)). Next, it uses k′ and pk∗ to define
Prog-PK′{k′,pk∗} (see Figure 5). It sends an obfuscation of Prog-PK′ as the public key. Next, for each of
the secret key queries, it sends an obfuscation of Prog-1. However unlike the previous hybrid, Prog-1 has k′

hardwired instead of k.

Program Prog-PK′

Constants: Punctured PRF key k′, Hardwired accumulation acc-inp∗ and public key pk∗.
Input: Accumulation of input acc-inp

1. If acc-inp = acc-inp∗, set pk = pk∗.
Else let F (k′, acc-inp) = r. Compute (pk, sk) = PKE.setup(1λ; r).

2. Output pk.

Figure 5: Program Prog-PK′

Hybrid H3 In this hybrid, the challenger chooses (pk∗, sk∗) ← PKE.setup(1λ); that is, the public key is
computed using true randomness. It then hardwires pk∗ in Prog-PK. The secret key queries are same as in
previous hybrids.

5.1.2 Analysis

Let AdvAi denote the advantage of A in hybrid Hi.

Lemma 5.1. Assuming iO is a secure indistinguishability obfuscator, Acc is a secure positional accumulator,
Itr is a secure iterator, S is a secure splittable signature scheme and F is a secure puncturable PRF, for any
adversary A, |AdvA0 − AdvA1 | ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 4.1.

Lemma 5.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |AdvA1 −
AdvA2 | ≤ negl(λ).
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Proof. Similar to the proof of Lemma 4.2, k can be replaced with k′ in all the secret key queries, since
F (k, acc-inp∗) is never executed. As far as Prog-PK and Prog-PK′ are concerned, (pk∗, sk∗) is set to be
PKE.setup(1λ;F (k, acc-inp∗)), and therefore, the programs are functionally identical.

Lemma 5.3. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, |AdvA2 −Adv
A
3 | ≤

negl(λ).

Proof. The proof of this follows immediately from the security definition of puncturable PRFs. Suppose there
exists an adversary that can distinguish between H2 and H3 with advantage ε. Then, there exists a PPT
algorithm B that can break the selective security of F. B first receives x∗ from the adversary. It computes
acc-inp∗, sends acc-inp∗ to the PRF challenger and receives k′, y, where y is either the PRF evaluation at
acc-inp∗, or a truly random string. Using y, it computes (pk∗, sk∗) = PKE.setup(1λ; y), and uses k′,pk∗ to
define the public key iO(Prog-PK′{k′,pk∗}). The secret key queries are same in both hybrids, and can be
answered using k′ only. As a result, B simulates either H2 or H3 perfectly. This concludes our proof.

Lemma 5.4. Assuming PKE is a secure public key encryption scheme, for any PPT adversary A, AdvA3 ≤
negl(λ).

Proof. Suppose there exists a PPT adversary A such that AdvA3 = ε. Then there exists a PPT adversary
B that breaks IND-CPA security of PKE . B receives a public key pk∗ from the challenger. It chooses PRF
key k, punctures it at acc-inp∗ and sends the public key iO{Prog-PK′}. Next, it responds to the secret key
queries, and finally, on receiving challenge messages m0,m1, it forwards them to the challenger, and receives
ct∗, which it forwards to the adversary. The post challenge key query phase is also simulated perfectly, since
it has all the required components.
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comments.
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A Cryptographic Primitives Compatible with iO

A.1 The Need for iO-Compatible Primitives

To see why we require iO-compatible cryptographic primitives, let us consider the following toy example.
Suppose we have a security game between a challenger and an adversary, where the challenger first chooses
a signing key SK and verification key VK of a secure signature scheme. Next, the challenger chooses a secret
message s, and computes an obfuscation of the program P defined in Figure 6 below. The program takes as
input a message m and a signature σ, and it outputs the secret s if σ is a valid signature corresponding to
m. The challenger sends an obfuscation of P , along with VK to the adversary.

Program P

Constants: Secret s, Verification key VK

Input: Message m, signature σ

1. if Verify(VK,m, σ) = 1, output s. Else output ⊥.

Figure 6: Program P

Intuitively, we’d expect that the adversary cannot learn the secret s, since the program is obfuscated,
and the adversary cannot forge a signature. In particular, we want to use the security of the obfuscator and
the signature scheme to say that the obfuscation of P is indistinguishable from the obfuscation of a circuit
P⊥ that outputs ‘⊥’ on all inputs. This would imply that the adversary cannot learn the secret s. If the
obfuscator was a differing input obfuscator, then one can claim that if an adversary can distinguish between
an obfuscation of P and an obfuscation of P⊥, then one can use this adversary to output a signature forgery.

However, using iO is tricky, and general signature schemes are not iO-compatible. Therefore, we require
some other properties of the signature scheme when using it with indistinguishability obfuscation. In the toy
example above, we can prove security under iO by extending the signature scheme as follows. Let us assume
the signature scheme has two modes for setup: a standard mode in which the setup algorithm outputs a
signing key and a verification key as usual, and a rejection mode in which the setup outputs a ‘rejection
verification key’ that does not accept any signature. Suppose this signature scheme has the property that no
PPT adversary can distinguish between a verification key output by standard mode setup and a verification
key output by rejection mode setup 9. Then we can prove security in the toy example. The program P
can be first modified to have a rejection verification key instead of the standard verification key. This is
indistinguishable because of the (new) security property of the signature scheme. Next, we can replace the
program P with P⊥. This step is computationally indistinguishable due to the security of iO, and due to
the fact that if P has a rejection key, then it always outputs ⊥.

B Proof of Lemma 1

In Lemma 1, we need to show that hybrid experiments Hybrid0,j and Hybrid0,j+1 are computationally in-

distinguishable. The only difference between Hybrid0,j and Hybrid0,j+1 corresponds to the (j + 1)th query.
In one case, the challenger sends an obfuscation of Progj+1

10, while in the other, it sends an obfuscation
of Prog-1j+1 (the other components - Init-Sign, PPItr and it0 are the same in both hybrids). To prove this
lemma, we will define a sequence of intermediate hybrids to gradually transform Prog to Prog-1.

Recall, t∗j+1 denotes the running time of Mj+1 on input x∗, and τ∗j+1 denotes the smallest power of two
greater than t∗j+1. For simplicity of notation, in this section, we will skip the (j + 1) in subscript.

9Note that in this security game, the adversary is not given any signature queries. Clearly, if the adversary had signature
queries, then it can easily distinguish between a standard verification key and a rejection mode verification key.

10Recall Progj+1 refers to the program Prog with the (j + 1)th query Turing machine Mj+1 hardwired. Similarly, Prog-1j+1

is Prog-1 with Mj+1 hardwired.

25



As mentioned in the proof outline (Section 4.1), we will first define a pre-processing hybrid Hyb0,j-1 which
introduces ‘bad’ valid signatures. Next, we gradually ensure that the program does not reach accepting state
for inputs corresponding to acc-inp∗ at time steps t ≤ i. This is done in the hybrid Hyb(0,j)-(1, i). In this
hybrid, the program outputs a good signature at time step i for inputs corresponding to acc-inp∗ only if the
input symbol, iterator and accumulator are the correct ones. Next, we define a hybrid Hyb′(0,j)-(1, i) which
outputs a good signature at time step i for inputs corresponding to acc-inp∗ only if the output symbol, iterator
and accumulator are the correct ones. This acts as a bridge between Hyb(0,j)-(1, i) and Hyb(0,j)-(1, i + 1).
Further details can be found below.

Sequence of Hybrids

Hyb0,j-0 : This corresponds to Hybrid0,j . Let P0 denote Progj+1.

Hyb0,j-1 : In this hybrid, the challenger outputs an obfuscation of program P1 (defined in Figure 7) instead
of P0. To define this program, the challenger first chooses another PRF key ksig,B to sign/verify ‘B’ type
signatures. Using ksig,B , it defines the program P1 ≡ P1{Mj+1, PPAcc, PPItr, k, ksig,A, ksig,B}. The (j+ 1)th

constrained key query response is K{Mj+1} = (PPAcc, acc0, store0, PPItr, it0, iO(P1), iO(Init-Sign)).

We will now define 2t∗ hybrid experiments Hyb0,j-(1, i) and Hyb′0,j-(1, i) for 0 ≤ i ≤ t∗.

Hyb0,j-(1, i) In this hybrid, the challenger first computes the ‘correct message’ mi to be signed at step i.
The message mi is computed as follows:

Let st0 = q0, pos0 = 0. For j = 1 to i:

1. (symj , πj) = Prep-Read(PPAcc, storej−1, posj−1).
2. auxj = Prep-Write(PPAcc, storej−1, posj−1).
3. (stj , symw,j , β) = δ(stj−1, symj−1).
4. accj = Update(PPAcc, accj−1, symw,j , posj−1, auxj).
5. itj = Iterate(PPItr, itj−1, (stj−1, accj−1, posj−1)).
6. storej = Write-Store(PPAcc, storej−1, posj−1, symw,j).
7. posj = posj−1 + β.

It sets mi = (iti, sti, acci, posi) and computes the obfuscation of P1,i ≡ P1,i{PPAcc, PPItr, k, ksig,A, ksig,B ,
mi} (defined in Figure 8). The remaining components of the constrained key are same as in H1.

Hyb′0,j-(1, i) : As in the previous hybrid, the challenger first computes the ‘correct message’ mi to be signed
at step i. Next, it computes an obfuscation of P ′1,i ≡ P ′1,i{PPAcc, PPItr, k, ksig,A, ksig,B , mi} (defined in
Figure 9).

Hyb0,j-2 In this hybrid, the challenger outputs an obfuscation of P2 (defined in Figure 10) which is func-
tionally identical to P ′1,t∗−1.
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Program P1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)).

(c) Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B)

(d) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(e) If α =‘-’ and (t > t∗ or t ≤ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(f) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)).

(b) Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(c) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 7: Program P1

Analysis Let AdvAy denote the advantage of adversary A in hybrid experiment Hyb0,j-y, and Adv′Ay the

advantage of A in hybrid experiment Hyb′0,j-y. The proofs of Lemma B.1, B.2, B.3, B.4 and B.5 are along
the same lines as the corresponding proofs in [KLW15].
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Program P1,i

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Hardwired accumulated input acc-inp∗, correct message mi

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(d) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(e) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

(b) Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(c) Let mout = (itout, stout, accout, posout).

(d) If (acc-inp, t) = (acc-inp∗, i) and mout = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i), mout 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 8: Program P1,i
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Program P ′1,i

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Hardwired accumulated input acc-inp∗, correct message mi

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

4. (a) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(b) If α =‘-’ and (t > t∗ or t ≤ i+ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(c) If α =‘-’ output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

(b) Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(c) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i+ 1) and min = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1), min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 9: Program P ′1,i
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Program P2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Hardwired accumulated input acc-inp∗

Inputs : Time t, String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).
6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

(b) Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(c) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 10: Program P2

Lemma B.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure pseudorandom
function, S is a secure splittable signature scheme satisfying Definition 2.2 , for any PPT adversary A,
|AdvA0 − AdvA1 | ≤ negl(λ).

The proof of this lemma is described in Appendix B.1.
Next, we will show that Hyb0,j-1 and Hyb′0,j-(1, 0) are computationally indistinguishable.

Lemma B.2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure pseudorandom
function, S is a secure splittable signature scheme satisfying Definition 2.3 and Acc satisfies indistinguisha-
bility of Read Setup (Definition 2.6), for any PPT adversary A, |AdvA1 − Adv′A1,0| ≤ negl(λ).
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Program P3

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Hardwired accumulated input acc-inp∗

Inputs : Time t, String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If t > t∗ and acc-inp = acc-inp∗, output ⊥.

3. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

4. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

(b) Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(c) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 11: Program P3

The proof of this lemma is given in Appendix B.2.

Lemma B.3. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure pseudoran-
dom function, S is a secure splittable signature scheme satisfying Definitions 2.3, 2.4, 2.5 and Acc satisfies
indistinguishability of Read Setup (Definition 2.6), for any PPT adversary A, |AdvA1,i − Adv′A1,i| ≤ negl(λ).

The proof of this lemma is described in Appendix B.3.
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Lemma B.4. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure pseudorandom
function, Acc satisfies indistinguishability of Read Setup (Definition 2.6) and indistinguishability of Write
Setup (Definition 2.7) and Itr satisfies indistinguishability of Setup (Definition 2.10), for any PPT adversary

A, |Adv
′A
1,i − AdvA1,i+1| ≤ negl(λ).

The proof of this lemma is described in Appendix B.4.

Lemma B.5. Assuming iO is a secure indistinguishability obfuscator and Acc satisfies indistinguishability

of Read Setup (Definition 2.6) , for any PPT adversary A, |Adv
′A
1,t∗−1 − AdvA2 | ≤ negl(λ).

The proof of this lemma is described in Appendix B.5.

Lemma B.6. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure pseudorandom
function and PRG is a secure pseudorandom generator, for any PPT adversary A, |AdvA2 −AdvA3 | ≤ negl(λ).

The proof of this lemma involves handling the ‘tail hybrid’. As mentioned in Section 1, our approach
for handling this hybrid is different from the one in [KLW15]. This is because the [KLW15] approach leads
to exponential intermediate hybrids, while in our case, the security loss is only polynomial in the security
parameter. The proof is described in Appendix B.6.

B.1 Proof of Lemma B.1

Proof Intuition Let us consider the differences between P0 and P1.

1. For inputs corresponding to t > t∗ or acc-inp 6= acc-inp∗, both programs are identical.
2. For inputs corresponding to t ≤ t∗ and acc-inp = acc-inp∗, P1 first checks if it is an ‘A’ type signature.

If not, it checks if it a ‘B’ type signature. The output signature (if any) is of the same type as the input
signature. Also, if the incoming signature is a ‘B’ type signature and stout = qac, then the program
cannot output F(k, acc-inp∗); instead, it aborts.

So, we need to allow ‘B’ type signatures for steps 1 ≤ t ≤ t∗ if acc-inp = acc-inp∗. We do this in a ‘top-down’
manner, and define intermediate hybrid experiments Ht∗ , . . . ,H0, where Hi outputs P0-i, which allows only
‘A’ type signatures for t ≤ i or t > t∗ if acc-inp = acc-inp∗.

Consider the programs P0-i and P0-(i− 1): the only difference is corresponding to inputs with t = i and
acc-inp = acc-inp∗. On such inputs, P0-i accepts only ‘A’ type signatures, while P0-(i− 1) accepts both ‘A’
and ‘B’ type. We modify P0-i as follows: on inputs corresponding to t = i and acc-inp = acc-inp∗, it verifies
using VKA, and if this fails, it verifies using VKB,rej. Clearly, if VKA verification fails, then the program
outputs ⊥ since VKB,rej verification always fails. Next, we replace VKB,rej with VKB , therefore allowing ‘B’
type signatures to be verified. Here, our ‘top-down’ approach is crucial - to replace VKB,rej with VKB , it
is important that the program does not output any B type signatures corresponding to t = i and acc-inp =
acc-inp∗, which is the case here. As a result, we can show that P0-i and P0-(i − 1) are computationally
indistinguishable. Note that there will also be additional hybrids, where we puncture/unpuncture the PRF
key used to generate the ‘B’ type verification keys.

Formal proof We will first define t∗ intermediate hybrids H0-1, . . . ,H0-t∗ such that H0-t∗ corresponds to
Hyb0 and H0-1 corresponds to Hyb1.

Hybrid H0-i In this experiment, the challenger outputs an obfuscation of P0-i{Mj+1, PPAcc, PPItr, k,
ksig,A, ksig,B} (defined in Figure 12).

In order to show that Hyb0 and Hyb1 are computationally indistinguishable, it suffices to show that H0-i
and H0-(i− 1) are computationally indistinguishable. Let AdviA denote the advantage of A in Hi.

Claim B.1. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and S is
a splittable signature scheme satisfying Definition 2.2, for any PPT adversary A, |AdviA−Advi−1A | ≤ negl(λ).

Proof. We will first define intermediate hybrid experiments H0-i-0, . . . ,H0-i-5.
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Program P0-i

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(d) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(e) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 12: Program P0-i

Hybrid H0-i-0 This corresponds to H0-i.

Hybrid H0-i-1 In this hybrid, the challenger outputs an obfuscation of P0-i-1{Mj+1, PPAcc, PPItr, k ksig,A,
ksig,B} (described in Figure 13).
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Program P0-i-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Set VK = VKB,rej.

(d) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(e) If α =‘-’ and (t > t∗ or t ≤ i− 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and t = i and Verify-Spl(VK,min, σin) = 0 output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(f) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 13: Program P0-i-1

Hybrid H0-i-2 In this hybrid, the challenger first punctures the PRF key ksig,B on input (acc-inp∗, i− 1).
It computes k′sig,B ← F.puncture(ksig,B , (acc-inp

∗, i− 1)). Next, it computes rC = F (ksig,B , (acc-inp
∗, i− 1))

and (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC). It hardwires k′sig,B and VKC,rej in the program P0-i-2{M ,
PPAcc, PPItr, k, ksig,A, ksig,B , VKC,rej} (defined in Figure 14).
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P0-i-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, punctured PRF key k′sig,B

Hardwired verification key VKC

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

(b) Let rsig,B = F (k′sig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(d) If α =‘-’ and (t > t∗ or t ≤ i− 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and t = i and Verify-Spl(VKC ,min, σin) = 0 output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(e) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 14: P0-i-2

Hybrid H0-i-3 This experiment is similar to Hi,b, except that rC is chosen uniformly at random. More for-
mally, the challenger computes punctured key k′sig,B as before. However, it chooses (SKC ,VKC ,VKC,rej)←
Setup-Spl(1λ). The obfuscated program has VKC,rej hardwired as before.
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Hybrid H0-i-4 In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) ← Setup-Spl(1λ) as before.
However, instead of hardwiring VKC,rej, it hardwires VKC .

Hybrid H0-i-5 In this hybrid, the challenger uses a pseudorandom string to compute (SKC ,VKC ,VKC,rej).
More formally, the challenger computes rC = F (ksig,B , (acc-inp

∗, i−1)), (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC).
It hardwires VKC .

Hybrid H0-i-6 This experiment corresponds to H0-(i− 1).

Analysis Let AdvyA denote the advantage of A in H0-i-y.

Claim B.2. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv0A − Adv1A| ≤
negl(λ).

Proof. First, since Verify-Spl(VKB,rej,min, σin) = 0 for all min, σin, both programs output ⊥ when α =‘B’ and
(acc-inp, t) = (acc-inp∗, i). For inputs corresponding to t 6= i or t > t∗ or acc-inp 6= acc-inp∗, both programs
have same functionality. Therefore, both programs have identical functionality, and their obfuscations are
computationally indistinguishable.

Claim B.3. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv1A − Adv2A| ≤
negl(λ).

Proof. The only difference between P0-i-1 and P0-i-2 is that the latter uses a punctured PRF key k′sig,B
which can evaluate the PRF at all points except (acc-inp∗, i − 1). During the verification phase, the PRF
generated ‘B’ type verification key is not used if t = i and acc-inp = acc-inp∗. During the signing phase, the
signing algorithm needs to compute ‘B’ type keys only for t ≥ i. As a result, k′sig,B is not evaluated on input

(acc-inp∗, i− 1). This ensures that the two programs are functionally identical.

Claim B.4. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, |Adv2A−Adv
3
A| ≤

negl(λ).

Proof. If there exists an adversary A such that Adv2A − Adv3A = ε, then there exists a PPT algorithm B
that breaks the puncturable PRF security. It receives a punctured key k′sig,B and z, which is either a truly
random string or the pseudorandom evaluation at (acc-inp∗, i−1). B then chooses the remaining components
by itself, and using k′sig,B and z, simulates either H0-i-2 or H0-i-3.

Claim B.5. Assuming S is a splittable signature scheme satisfying VKrej indistinguishability (Definition
2.2), for any PPT adversary A, |Adv3A − Adv4A| ≤ negl(λ).

Proof. Here, we rely crucially on the fact that SKC was not hardwired in the program. As a result, given
only VKC or VKC,rej, the experiments are indistinguishable.

Claim B.6. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, |Adv4A−Adv
5
A| ≤

negl(λ).

Proof. This step is similar to the proof of Claim B.4, and follows analogously from the security of the
puncturable PRF.

Claim B.7. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv5A − Adv6A| ≤
negl(λ).
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Proof. The only difference between H0-i-5 and H0-i-6 is that H0-i-5 uses a PRF key k′sig,B punctured at
(acc-inp∗, i− 1), while H0-1-6 uses ksig,B itself. Using the correctness property of puncturable PRFs, we can
argue that the programs output by these two hybrids are functionally identical, and therefore, by iO, the
hybrids are computationally indistinguishable.

To conclude, for any PPT adversary A, if A has advantage Adv0A in Hybrid0 and Adv1A in Hybrid1, then
|Adv0A − Adv1A| ≤ negl(λ).

B.2 Proof of Lemma B.2

Proof Intuition: In this lemma, we switch from Hyb1 to Hyb′1,0. In Hyb1, the challenger outputs an

obfuscation of P1 (see Figure 7), while in Hyb′1,0, the challenger outputs an obfuscation of P ′1,0 (see Figure
9). There are two major differences between these programs. First, P ′1,0 aborts if the output state is accepting
at t = 1 and acc-inp = acc-inp∗. Secondly, at t = 1 for inputs corresponding to acc-inp∗, the program outputs
a good signature only if the input accumulator, iterator and state are the correct ones. Intuitively, we can
make these switches because the adversary only gets a good signature for t = 0, acc-inp = acc-inp∗ (the
Init-Sign program outputs this good signature). To begin with, the program P1 is modified so that for
t = 1, acc-inp = acc-inp∗, the input accumulator, iterator and state must be correct. This is enforced using
the splittable signatures properties. Next, once it is ensured that the accumulator is correct, we can be
sure that the program does not reach accepting state. This is done using the read enforcing property of the
accumulator.

Formal Proof: We will define a sequence of hybrids to prove this lemma.

B.2.1 Sequence of Hybrids

Hybrid H1-0 This corresponds to Hyb1.

Hybrid H1-1 In this hybrid experiment, the challenger first punctures the PRF key ksig,A at input
(acc-inp∗, 0). It computes k′sig,A ← F.puncture(ksig,A, (acc-inp

∗, 0)). Next, it computes the signing/verification

keys generated using rC = F(ksig,A, (acc-inp
∗, 0)). It computes (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC) and

σC = Sign-Spl(SKC , (it0, q0, acc-inp
∗, 0)). It modifies the programs Init-Sign and Prog-1 to use the punc-

tured key, and has the signing/verification keys hardwired. More formally, it defines programs Init-Sign′ =
Init-Sign{k′sig,A, σC} (see Figure 16), W1 = P1-1{k, k′sig,A, ksig,B , VKC , acc-inp∗} (see Figure 15). It computes

iO(Init-Sign′) and iO(P1-1), and outputs these as part of the constrained key query for machine Mj+1.

Hybrid H1-2 In this hybrid, the challenger uses a truly random string to compute VKC . It chooses
(SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) and uses VKC in the obfuscated program P1-1{k, k′sig,A, ksig,B , VKC ,
acc-inp∗} .

Hybrid H1-3 In this hybrid, the challenger ‘punctures’ V KC atm0 = (it0, q0, acc-inp∗, 0). It chooses (SKC ,
VKC , VKC,rej)← Setup-Spl(1λ) and then computes (σC , VKC,one, SKC,abo, VKC,abo)← Split(SKC ,m0). It
hardwires VKC,one instead of VKC .

Hybrid H1-4 In this hybrid, the challenger makes the accumulator ‘read-enforcing’ at position 0. Let enf =
((x1, 0), . . . , (xn, n−1)). The challenger computes (PPAcc, acc0, store0)← Setup-Acc-Enforce-Read(1λ, T, enf, 0).
This ensures that the adversary cannot input the wrong symbol at time step 1 and accumulated input
acc-inp∗.
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Program P1-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,B , punctured PRF key k′sig,A

hardwired accumulated value acc-inp∗, hardwired verification key VKC

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, 1), let rsig,A = F (k′sig,A, (acc-inp, t− 1)). Compute (SKA, VKA,

VKA,rej) = Setup-Spl(1λ; rsig,A).

Else set VKA = VKC .

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(d) If α =‘-’ and (t > t∗ or t ≤ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(e) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (k′sig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout) and σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 15: Program P1-1

Hybrid H1-5 Recall in the previous hybrid, the challenger made the accumulator ‘read-enforcing’ at posi-
tion 0. As a result, the adversary’s (state, symbol) input with t = 1 and acc-inp = acc-inp∗ must be (q0, x1).
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Program Init-Sign′

Constants: Punctured PRF key k′sig,A, Initial TM state q0, Iterator value it0, hardwired signature σC ,

hardwired accumulated value acc-inp∗,

Input: Accumulation of input acc-inp

1. If acc-inp = acc-inp∗, output σC .

Else let F (ksig,A, (acc-inp, 0)) = rsig,A. Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rsig). Output
σ = Sign-Spl(SK, (it0, q0, acc-inp, 0)).

Figure 16: Program Init-Sign′

Therefore, in this experiment, the challenger outputs an obfuscation of the program W5 = P1-2{PPAcc, PPItr,
k′sig,A, ksig,B , VKC,one, m0} defined in Figure 17.

Hybrid H1-6 In this hybrid, the challenger uses normal accumulator setup instead of read-enforced setup.

Hybrid H1-7 In this hybrid, the challenger hardwires VKC instead of VKC,one in the program P1-2.

Hybrid H1-8 In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) using the pseudorandom string
rC = F(ksig,A, (acc-inp

∗, 0)). It computes (SKC ,VKC ,VKC,rej) = Setup-Spl(1λ; rC).

Hybrid H1-9 This corresponds to Hybrid Hyb′1,0.

B.2.2 Analysis

Let AdvyA denote the advantage of A in hybrid H1-y. We will now show that any PPT adversary has at most
negligible advantage in consecutive hybrids.

Lemma B.7. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv0A −
Adv1A| ≤ negl(λ).

Proof. The proof of this lemma follows directly from the correctness of puncturable PRFs. Note that we
need to show that Init-Sign and Init-Sign′ are functionally identical, and same for P1 and P1-1. For both
these pairs of programs, program equivalence is immediate, since the punctured PRF output is correct at
all non-punctured points. At the points of puncturing, the correct signing/verification keys are hardwired
in the program.

Lemma B.8. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |Adv1A −
Adv2A| ≤ negl(λ).

Proof. The proof of this lemma follows from the selective security definition of puncturable PRFs. In Hybrid
H1-0, the challenger uses a pseudorandom string to compute (SKC ,VKC ,VKC,rej), while in Hybrid H1-1, it
uses a truly random string.

Lemma B.9. Assuming S satisfies VKone indistinguishability (Definition 2.3), for any PPT adversary A,
|Adv2A − Adv3A| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv2A−Adv3A| = ε. Then we can construct a reduction
algorithm B that breaks the VKone indistinguishability of S. B sends mi to the challenger. The challenger
chooses (SKC ,VKC ,VKC,rej) ← Setup-Spl(1λ), (σC,one,VKC,one,SKC,abo,VKC,abo) and B receives (σ,VK),
where σ = σC,one and VK = VKC or VKC,one. It chooses the remaining components (including SKD,abo
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and VKD), and computes P1-1{k′sig,A, ksig,B , σ, VK, SKD,abo, VKD}. Now, note that B perfectly simulates

either H1-2 or H1-3, depending on whether VK was VKC or VKC,one.

Lemma B.10. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT
adversary A, |Adv3A − Adv4A| ≤ negl(λ).

Proof. This follows directly from the ‘Indistinguishability of Read Setup’ security property (Definition 2.6)
of positional accumulators.

Lemma B.11. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv4A−
Adv5A| ≤ negl(λ).

Proof. The only inputs for which the two programs can possibly differ correspond to (acc-inp∗, 1). Also note
that the accumulator is enforcing, and as mentioned in the hybrid description, the (state/symbol) input must
be (q0, x1). Hence stout cannot be qac. Also, note that the verification key hardwired is VKC,one, which only
accepts min = m0. This ensures that if min = m0, (acc-inp, t) = (acc-inp∗, 0), then both programs output an
‘A’ type signature, else both output ⊥. This concludes our proof.

Lemma B.12. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT
adversary A, |Adv5A − Adv6A| ≤ negl(λ).

Proof. This follows directly from the ‘Indistinguishability of Read Setup’ security property (Definition 2.6)
of positional accumulators.

Lemma B.13. Assuming S satisfies VKone indistinguishability (Definition 2.3), for any PPT adversary A,
|Adv6A − Adv7A| ≤ negl(λ).

Proof. This follows directly from the ‘VKone indistinguishability’ security property (Definition 2.3) of split-
table signatures.

Lemma B.14. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |Adv7A −
Adv8A| ≤ negl(λ).

Proof. The proof of this lemma follows from the selective security definition of puncturable PRFs. In Hybrid
H1-7, the challenger uses a truly random string to compute (SKC ,VKC ,VKC,rej), while in Hybrid H1-8, it
uses a pseudorandom string.

Lemma B.15. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv8A−
Adv9A| ≤ negl(λ).

Proof. We need to argue that the corresponding programs as used in Hybrid H1-8 and Hybrid H1-9 are
functionally identical. For Init-Sign and Init-Sign′, both are functionally identical since σC is correctly com-
puted using F(ksig,A, (acc-inp

∗, 0)). Similarly, since VKC is correctly computed using F(ksig,A, (acc-inp
∗, 0)),

both programs in P1-2 and P ′1,0 are functionally identical.
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Program P1-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,B , punctured PRF key k′sig,A

hardwired accumulated value acc-inp∗, hardwired verification key VKC

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, 1), let rsig,A = F (k′sig,A, (acc-inp, t − 1)). Compute (SKA, VKA,
VKA,rej) = Setup-Spl(1λ; rsig,A).

Else set VKA = VKC .

(b) Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(d) If α =‘-’ and (t > t∗ or t ≤ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(e) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (k′sig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, 1) and min = m0, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, 1), min 6= m0 output σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 17: Program P1-2
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B.3 Proof of Lemma B.3

Proof Intuition Let us first note the differences between P1,i and P ′1,i.

Input corr. to P1,i P ′1,i
t > t∗ or t < i or
acc-inp 6= acc-inp∗

Verify ‘A’ signatures only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature.

Verify ‘A’ signatures only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature.

t = i and acc-inp =
acc-inp∗

Verify ‘A’ signature only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature if mout = mi,
‘B’ signature if mout 6=
mi.

Verify ‘A’ signatures only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature.

t = i + 1 and
acc-inp = acc-inp∗

Verify ‘A/B’ signatures,
output ⊥ if ‘B’ type signa-
ture and stout = qac, out-
put signature of same type
as incoming signature.

Verify ‘A’ signature only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature if min = mi, ‘B’
signature if min 6= mi.

i + 2 ≤ t ≤ t∗ and
acc-inp = acc-inp∗

Verify ‘A/B’ signatures,
output ⊥ if ‘B’ type signa-
ture and stout = qac, out-
put signature of same type
as incoming signature.

Verify ‘A/B’ signatures,
output ⊥ if ‘B’ type signa-
ture and stout = qac, out-
put signature of same type
as incoming signature.

As is evident from the table above, the only difference between the two programs is corresponding to
acc-inp = acc-inp∗ and t = i, i+ 1. Program P1,i outputs a good signature at time t = i for acc-inp∗ only if
the output accumulator, iterator and state are the correct ones. Program P ′1,i aborts at t = i+ 1, acc-inp =
acc-inp∗ if the program reaches accepting state. If the state is not accepting, it outputs a good signature at
time only if the input accumulator, iterator and state are the correct ones.

The first step is similar to the proof of Lemma B.2. Using the properties of splittable signatures, we
modify P1,i so that, at time t = i+1, for acc-inp∗, the only signature accepted is for the correct accumulator,
iterator and state. This ensures that the input accumulator, iterator and state at t = i+ 1 for acc-inp∗ are
the correct ones. Next, using the read enforcing property of accumulator, we can ensure that the symbol
input at t = i+ 1 is the correct one. Since both the input state and symbol are correct, the program cannot
reach accepting state at t = i+ 1.

Formal Proof To prove Lemma B.3, we will first define a sequence of hybrids H1,i-0, . . . ,H1,i-13, where
H1,i-0 corresponds to Hyb1,i and H1,i-13 corresponds to Hyb′1,i.

B.3.1 Sequence of Hybrid Experiments

Hybrid H1,i-0 This experiment corresponds to Hyb1,i.

Hybrid H1,i-1 In this experiment, the challenger punctures key ksig,A, ksig,B at input (acc-inp∗, i), uses
F (ksig,A, (acc-inp

∗, i)) and F (ksig,B , (acc-inp
∗, i)) to compute (SKC ,VKC) and (SKD,VKD) respectively.

More formally, it computes k′sig,A ← F.puncture(ksig,A, (acc-inp
∗, i)), rC = F (ksig,A, (acc-inp

∗, i)), (SKC ,

VKC , VKC,rej) = Setup-Spl(1λ; rC) and k′sig,B ← F.puncture(ksig,B , (acc-inp
∗, i)), rD = F (ksig,B , (acc-inp

∗, i)),

(SKD, VKD, VKD,rej) = Setup-Spl(1λ; rD).
It then hardwires k′sig,A, k

′
sig,B , SKC ,VKC ,SKD,VKD in an altered program W1 = P1,i-1{k′sig,A, k′sig,B ,

SKC , VKC , SKD, VKD, mi}(defined in Figure 18) and outputs its obfuscation. P1,i-1 is identical to P1,i,
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except that it uses a punctured PRF key k′sig,A instead of ksig,A, and k′sig,B instead of ksig,B . On input
corresponding to (acc-inp∗, i), P uses the hardwired signing/verification keys.

Hybrid H1,i-2 In this hybrid, the challenger chooses rC , rD uniformly at random instead of computing
them using F (ksig,A, (acc-inp

∗, i)) and F (ksig,B , (acc-inp
∗, i)). In other words, the secret key/verification key

pairs are sampled as (SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) and (SKD,VKD,VKD,rej)← Setup-Spl(1λ).

Hybrid H1,i-3 In this hybrid, the challenger computes constrained signing keys using the Split algorithm.
As in the previous hybrids, it first computes the ith message mi. Then, it computes (σC,one, VKC,one, σC,abo,
VKC,abo) = Split(SKC ,mi) and (σD,one, VKD,one, σD,abo, VKD,abo) = Split(SKD,mi).

It then hardwires σC,one, SKD,abo in W3 = P1,i-2{k′sig,A, k′sig,B , σC,one, VKC , SKD,abo, VKD, mi} (defined
in Figure 19) and outputs an obfuscation of P . Note that the only difference between P1,i-2 and P1,i-1 is
that P1,i-1, on input corresponding to step i, signs the outgoing message m using SKC if m = mi, else it
signs using SKD. On the other hand, at step i, P1,i-2 outputs σC,one if the outgoing message m = mi, else
it signs using SKD,abo.

Hybrid H1,i-4 This hybrid is similar to the previous one, except that the challenger hardwires VKC,one

in P1,i-2 instead of VKC ; that is, it computes (σC,one, VKC,one, σC,abo, VKC,abo) = Split(SKC ,mi) and
(σD,one, VKD,one, σD,abo, VKD,abo) = Split(SKD,mi) and outputs an obfuscation of W4 = P1,i-2{k′sig,A,
k′sig,B , σC,one, VKC,one, SKD,abo, VKD, mi}).

Hybrid H1,i-5 In this hybrid, the challenger hardwires VKD,abo instead of VKD. As in the previous
hybrid, it uses Split to compute (σC,one, VKC,one, σC,abo, VKC,abo) and (σD,one, VKD,one, σD,abo,VKD,abo)
from SKC and SKD respectively. However, it outputs an obfuscation of W5 = P1,i-2{k′sig,A, k′sig,B , σC,one,
VKC,one, SKD,abo, VKD,abo, mi}.

Hybrid H1,i-6 In this hybrid, the challenger outputs an obfuscation of P = P1,i-3{k′sig,A, k′sig,B , σC,one,
VKC,one, SKC,abo,VKC,abo,mi} (described in Figure 20). This program performs extra checks before comput-
ing the signature. In particular, the program additionally checks if the input corresponds to (acc-inp∗, i+ 1).
If so, it checks whether min = mi or not, and accordingly outputs either ‘A’ or ‘B’ type signature.

Hybrid H1,i-7 In this hybrid, the challenger makes the accumulator ‘read enforcing’. It computes the first
i ‘correct inputs’ for the accumulator. Initially, the state is st0 = q0. Let tape be a T dimensional vector
representing the Turing machine tape, the first n bits being x1, . . . , xn, and let sym0 = tape[0], pos0 = 0.
For j = 1 to i

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).
2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((x1, 0), . . . , (xn, n− 1), (symw,1, pos0), . . . , (symw,i, posi−1)). The challenger computes (PPAcc,

acc0, store0)← Setup-Acc-Enforce-Read(1λ, T , enf, posi).

Hybrid H1,i-8 In this hybrid, the challenger outputs an obfuscation of program W8 = P1,i-4{k′sig,A, k′sig,B ,

σC,one, VKC,one, SKD,abo, VKD,abo, mi} (defined in Figure 21). This program outputs ⊥ if on (i+ 1)th step,
the input signature ‘A’ verifies, and the output state is qac. Note that the accumulator is ‘read enforced’ in
this hybrid.

Hybrid H1,i-9 In this hybrid, the challenger uses normal setup for the accumulator related parameters;
that is, it computes (PPAcc, acc0, store0)← Setup-Acc (1λ, T ). The remaining steps are exactly identical to
the corresponding ones in the previous hybrid.
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P1,i-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, punctured PRF keys k′sig,A, k
′
sig,B

Signing/Verification keys SKC ,VKC ,SKD,VKD

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, i+ 1), let rA = F(k′sig,A, (acc-inp, t− 1)),

rB = F(k′sig,B , (acc-inp, t− 1)). Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA),

(SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).

Else set VKA = VKC ,VKB = VKD.

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) If (acc-inp, t) 6= (acc-inp∗, i), let r′A = F(k′sig,A, (acc-inp
∗, t)), r′B = F(k′sig,B , (acc-inp

∗, t)). Com-

pute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

Else set SK′A = SKC , SK′B = SKD.

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i) and mout = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i) and mout 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 18: P1,i-1
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P1,i-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, punctured PRF keys k′sig,A, k
′
sig,B

Signing/Verification keys σC ,VKC , SKabo,D,VKD

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, i+ 1), let rA = F(k′sig,A, (acc-inp, t− 1)), rB = F(k′sig,B , (acc-inp, t− 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).

Else set VKA = VKC ,VKB = VKD.

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) If (acc-inp, t) 6= (acc-inp∗, i), let r′A = F(k′sig,A, (acc-inp
∗, t)), r′B = F(k′sig,B , (acc-inp

∗, t)). Com-
pute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i) and mout = mi, σout = σC .

Else if (acc-inp, t) = (acc-inp∗, i) and mout 6= mi, σout = Sign-Spl-abo(SK′abo,D,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 19: P1,i-2

Hybrid H1,i-10 In this hybrid, the challenger computes (σC,one,VKC,one, σC,abo,VKC,abo) = Split(SKC ,mi),
but does not compute (SKD,VKD). Instead, it outputs an obfuscation of W10 = P1,i-4{k′sig,A, k′sig,B , σC,one,
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VKC,one, SKC,abo, VKC,abo,mi}. Note that the hardwired keys for verification/signing (that is, σC,one,
VKC,one, SKC,abo,VKC,abo) are all derived from the same signing key SKC , whereas in the previous hybrid,
the first two components were derived from SKC while the next two from SKD.

Hybrid H1,i-11 In this hybrid, the challenger obfuscates a program P1,i-5 (defined in Figure 22) which has
a secret key, verification key pair hardwired, instead of the four components in P1,i-4. More formally, the
challenger chooses (SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) and outputs an obfuscation of W11 = P1,i-5{k′sig,A,
k′sig,B , SKC ,VKC}.

Hybrid H1,i-12 In this hybrid, the challenger chooses the randomness rC used to compute (SKC ,VKC)
pseudorandomly; that is, it sets rC = F(ksig,A, (acc-inp

∗, i)).

Hybrid H1,i-13 This corresponds to the hybrid Hyb′1,i.

B.3.2 Analysis

We will now show that the consecutive hybrid experiments are computationally indistinguishable. Let AdvyA
denote the advantage of A in hybrid experiment H1,i-y.

Claim B.8. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv0A −
Adv1A| ≤ negl(λ).

Proof. The only difference between H1,i-0 and H1,i-1 is that H1,i-0 uses program P1,i, while H1,i-1 uses P1,i-1.
From the correctness of puncturable PRFs, it follows that both programs have identical functionality for t 6= i
or acc-inp 6= acc-inp∗. For (acc-inp, t) = (acc-inp∗, i), the two programs have identical functionality because
(SKC ,VKC) and (SKD,VKD) are correctly computed using F(ksig,A, (acc-inp

∗, i)) and F(ksig,B , (acc-inp
∗, i))

respectively. Therefore, by the security of iO, it follows that the obfuscations of the two programs are
computationally indistinguishable.

Claim B.9. Assuming F is a selectively secure puncturable PRF, for any adversary A, |Adv1A − Adv2A| ≤
negl(λ).

Proof. We will construct an intermediate experiment H, where rC is chosen uniformly at random, while
rD = F (ksig,B , (acc-inp

∗, i)). Now, if an adversary can distinguish between H1,i-1 and H, then we can
construct a reduction algorithm that breaks the security of F. The reduction algorithm sends (acc-inp∗, i)
as the challenge, and receives k′sig,A, r. It then uses r to compute (SKC , VKC , VKC,rej) = Setup-Spl(1λ; r).
Depending on whether r is truly random or not, B simulates either hybrid H or H1,i-1. Clearly, if A can
distinguish between H1,i-1 and H with advantage ε, then B breaks the PRF security with advantage ε.

Claim B.10. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv2A −
Adv3A| ≤ negl(λ).

Proof. This follows from correctness property 2 of splittable signatures. This correctness property ensures
that P1,i-1 and P1,i-2 have identical functionality.

Claim B.11. Assuming S satisfies VKone indistinguishability (Definition 2.3), for any PPT adversary A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of Lemma B.9. Note that the challenger in H1,i-3 and
H1,i-4 requires only σC . As a result, VKC and VKC,one are computationally indistinguishable.

Claim B.12. Assuming S satisfies VKabo indistinguishability (Definition 2.4), for any PPT adversary A,
|Adv4A − Adv5A| ≤ negl(λ).
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Proof. This proof is similar to the previous one. If there exists an adversary A such that Adv4A −Adv5A = ε,
then there exists a reduction algorithm B that breaks the VKabo security of S with advantage ε. In this
case, the reduction algorithm uses the challenger’s output to set up SKD,abo and VK, which is either VKD

or VKD,abo.

Claim B.13. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv5A −
Adv6A| ≤ negl(λ).

Proof. Let P0 = P1,i-2{k′sig,A, k′sig,B , σC,one, VKC,one, SKD,abo, VKD,abo, mi} and P1 = P1,i-3{k′sig,A, k′sig,B ,
σC,one, VKC,one, SKC,abo,VKC,abo,mi}, where the constants of both programs are computed identically. It
suffices to show that P0 and P1 have identical functionality. Note that the only inputs where P0 and P1

can possibly differ correspond to step (acc-inp∗, i + 1). Fix any input (i + 1, min = (vin, stin, accin, posin),
acc-inp, symin, π, aux). Let us consider two cases:

(a) min = mi. In this case, using the correctness properties 1 and 3, we can argue that for both
programs, α =‘A’. Now, P0 outputs Sign-Spl(SK′α,mout), while P1 is hardwired to output Sign-Spl(SK′A,mout.
Therefore, both programs have the same output in this case.

(b) min 6= mi. Here, we use the correctness property 5 to argue that α 6=‘A’, and correctness properties
2, 1 and 6 to conclude that α =‘B’. P1 is hardwired to output Sign-Spl(SK′B ,mout), while P0 outputs
Sign-Spl(SK′α,mout).

Claim B.14. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, |Adv6A − Adv7A| ≤ negl(λ).

Proof. This follows from Definition 2.6. Suppose, on the contrary, there exists an adversary A such that
|Adv6A − Adv7A| = ε which is non-negligible in λ. We will construct an algorithm B that uses A to break the
Read Setup indistinguishability of Acc. B first computes the first i tuples to be accumulated. It computes
(symw,l, posl) for l ≤ i as described in Hybrid H1,i-7, and sends (symw,l, posl) for l < i, and posi to the
challenger, and receives (PPAcc, acc0, store0). B uses these components to compute the encoding. Note
that the remaining steps are identical in both hybrids, and therefore, B can simulate them perfectly. Finally,
using A’s guess, B guesses whether the setup was normal or read-enforced.

Claim B.15. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv7A −
Adv8A| ≤ negl(λ).

Proof. Let P0 = P1,i-3{k′sig,A, k′sig,B , σC,one, VKC,one, SKC,abo,VKC,abo,mi} and P1 = P1,i-4{k′sig,A, k′sig,B ,
σC,one, VKC,one, SKC,abo,VKC,abo,mi}. We need to show that P0 and P1 have identical functionality. Note
the only difference could be in the case where (acc-inp, t) = (acc-inp∗, i+1). If Verify-Spl(VKC,one,min, σin) =
1 and the remaining inputs are such that stout = qac, then both programs can have different functionality.
We will show that this case cannot happen.

From the correctness property 5, it follows that if Verify-Spl(VKC,one,min, σin) = 1, then min = mi. As a
result, accin = acci, posin = posi, stin = sti. Therefore, (symin = ε or Verify-Read(PPAcc, symin, acci, posi, π) =
1) =⇒ symin = symi, which implies stout = sti+1. However, since M is not accepting, sti+1 6= qac. There-
fore, (acc-inp, t) = (acc-inp∗, i+ 1) and Verify-Spl(VKC,one, min, σin) = 1 and stout = qac cannot take place.

Claim B.16. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, |Adv8A − Adv9A| ≤ negl(λ).

Proof. This step is a reversal of the step from H1,i-6 to H1,i-7, and therefore the proof of this claim is similar
to that of Claim B.14.
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Claim B.17. Assuming S satisfies splitting indistinguishability (Definition 2.5), for any PPT adversary A,
|Adv9A − Adv10A | ≤ negl(λ).

Proof. We will use the splittable indistinguishability property (Definition 2.5) for this claim. Assume
there is a PPT adversary A such that |Adv9A − Adv10A | = ε. We will construct an algorithm B that uses
A to break the splitting indistinguishability of S. B first receives as input from the challenger a tuple
(σone,VKone,SKabo,VKabo), where either all components are derived from the same secret key, or the first
two are from one secret key, and the last two from another secret key. Using this tuple, B can define the
constants required for P1,i-4. It computes k′sig,A, k

′
sig,B , PPAcc,PPItr, mi as described in hybrid H1,i-9 and

hardwires σone,VKone,SKabo,VKabo in the program. In this way, B can simulate either H1,i-9 or H1,i-10,
and therefore, use A’s advantage to break the splitting indistinguishability.

Claim B.18. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv10A −
Adv11A | ≤ negl(λ).

Proof. This claim follows from correctness properties of S. Note that the programs W10 and W11 can
possibly differ only if (acc-inp, t) = (acc-inp∗, i + 1) or (acc-inp, t) = (acc-inp∗, i). Let us consider all the
possible scenarios. Each of those can be addressed using one/more of the correctness properties of S.

1. Signatures verify and stin = qac. Both programs output ⊥.
2. Verify-Spl(VKC,one,min, σin) = 1 and stout 6= qac. In this case, W10 outputs Sign-Spl(SK′A,mout).

Note that using correctness properties 3 and 5, we get that min = mi, and therefore, W11 outputs
Sign-Spl(SK′A,mout).

3. Verify-Spl(VKC,one,min, σin) = 0 but Verify-Spl(VKC,abo,min, σin) = 1. In this case, W10 sets α =‘B’,
and therefore the program outputs Sign-Spl(SK′B ,
mout). Using property 6, it follows that min 6= mi, and hence W11 also gives the same output.

4. Signatures do not verify at both steps. In this case, both programs output ⊥.

Claim B.19. Assuming F is a selectively secure puncturable PRF scheme, for any PPT adversary A,
|Adv11A − Adv12A | ≤ negl(λ).

Proof. The proof of this claim is identical to the proof of Claim B.9.

Claim B.20. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv12A −
Adv13A | ≤ negl(λ).

Proof. This proof is identical to the proof of Claim B.8; it follows directly from the correctness of puncturable
PRFs.

48



P1,i-3

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, punctured PRF keys k′sig,A, k
′
sig,B

Signing/Verification keys σC ,VKC , SKabo,D,VKD

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, i+ 1), let rA = F(k′sig,A, (acc-inp, t− 1)), rB = F(k′sig,B , (acc-inp, t− 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).

Else set VKA = VKC ,VKB = VKD.

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) If (acc-inp, t) 6= (acc-inp∗, i), let r′A = F(k′sig,A, (acc-inp
∗, t)), r′B = F(k′sig,B , (acc-inp

∗, t)). Com-
pute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i) and mout = mi, σout = σC .

Else if (acc-inp, t) = (acc-inp∗, i) and mout 6= mi, σout = Sign-Spl-abo(SK′abo,D,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1), min = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1), min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 20: P1,i-3
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P1,i-4

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, punctured PRF keys k′sig,A, k
′
sig,B

Signing/Verification keys σC ,VKC , SKabo,D,VKD

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, i+ 1), let rA = F(k′sig,A, (acc-inp, t− 1)), rB = F(k′sig,B , (acc-inp, t− 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).

Else set VKA = VKC ,VKB = VKD.

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) If (acc-inp, t) 6= (acc-inp∗, i), let r′A = F(k′sig,A, (acc-inp
∗, t)), r′B = F(k′sig,B , (acc-inp

∗, t)). Com-
pute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i) and mout = mi, σout = σC .

Else if (acc-inp, t) = (acc-inp∗, i) and mout 6= mi, σout = Sign-Spl-abo(SK′abo,D,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1) and min = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1) and min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 21: P1,i-4
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P1,i-5

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, punctured PRF keys k′sig,A, k
′
sig,B

Signing/Verification keys SKC ,VKC

Inputs : Time t,String seed, position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inpIterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) If (acc-inp, t) 6= (acc-inp∗, i+ 1), let rA = F(k′sig,A, (acc-inp, t− 1)), rB = F(k′sig,B , (acc-inp, t− 1)).
Compute (SKA, VKA, VKA,rej) = Setup-Spl(1λ; rA), (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rB).

Else set VKA = VKC .

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) If (acc-inp, t) 6= (acc-inp∗, i), let r′A = F(k′sig,A, (acc-inp
∗, t)), r′B = F(k′sig,B , (acc-inp

∗, t)). Com-
pute (SK′A, VK′A, VK′A,rej) = Setup-Spl(1λ; r′A), (SK′B ,VK′B ,VK′B,rej) = Setup-Spl(1λ; r′B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i), σout = Sign-Spl(SKC ,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1) and min = mi, σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i+ 1) and min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 22: P1,i-5
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B.4 Proof of Lemma B.4

Proof Intuition Let us first note the differences between P ′1,i and P1,i+1.

Input corr. to P ′1,i P1,i+1

t > t∗ or t < i+1 or
acc-inp 6= acc-inp∗

Verify ‘A’ signatures only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature.

Verify ‘A’ signatures only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature.

t = i + 1 and
acc-inp = acc-inp∗

Verify ‘A’ signature only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature if min = mi, ‘B’
signature if min 6= mi.

Verify ‘A’ signature only,
output ⊥ if stout ∈
{qac, qrej}, else output ‘A’
signature if mout = mi+1,
‘B’ signature if mout 6=
mi+1.

i + 2 ≤ t ≤ t∗ and
acc-inp = acc-inp∗

Verify ‘A/B’ signatures,
output ⊥ if ‘B’ type signa-
ture and stout = qac, out-
put signature of same type
as incoming signature.

Verify ‘A/B’ signatures,
output ⊥ if ‘B’ type signa-
ture and stout = qac, out-
put signature of same type
as incoming signature.

The two programs differ in functionality at t = i+1 for inputs corresponding to acc-inp∗. In program P ′1,i,
the program outputs a good signature only if the input accumulator, iterator and state are the correct ones.
We first modify the program to add an additional condition that that the input symbol should also be correct
in order to output a good signature. This is enforced using the read-enforcing property of accumulators.
Since both the input state and symbol are correct, the output state and symbol are also correct. Next, using
the write enforcing property of the accumulator, we can ensure that the signature is good if additionally,
the output accumulator is also correct. Finally, by making the iterator enforcing, we can ensure that the
program outputs a good signature only if the output accumulator, iterator and state are correct.

Formal Proof We will first define a sequence of hybrid experiments H0, . . . ,H8, where H0 corresponds to
Hyb′1,i and H9 corresponds to Hyb1,i+1.

Hybrid H0 This corresponds to Hyb′1,i.

Hybrid H1 In this hybrid, the challenger uses ‘read enforced’ setup for the accumulator. The challenger
computes the first n + i ‘correct tuples’ for the accumulator. Initially, the state is st0 = q0. Let tape be a
T dimensional vector, the first `inp entries of tape correspond to the input inp. The remaining are ‘ ’. Let
sym0 = tape[0] and pos0 = 0. For j = 1 to i

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).
2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((x1, 0), . . . , (xn, n− 1), (symw,1, pos0), . . . , (symw,i, posi−1)). The challenger computes (PPAcc,

ãcc0, s̃tore0)← Setup-Acc-Enforce-Read(1λ, T , enf, posi). The remaining steps are same as in the previous
hybrid.

Hybrid H2 In this hybrid, the challenger uses program W2 = P ′1,i-1 (defined in Figure 23), which is
similar to P1,i. However, in addition to checking if min = mi, it also checks if (itout, posout, stout) =
(iti+1, posi+1, sti+1).

Hybrid H3 In this experiment, the challenger uses normal setup instead of ‘read enforced’ setup for the
accumulator.
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P ′1,i-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i+ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

(b) Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).
7. (a) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i + 1) and min = mi and (vout, posout, stout) = (vi+1, posi+1, sti+1),

σout = Sign-Spl(SK′A,mout).

Else if (acc-inp, t) = (acc-inp∗, i+1) and (min 6= mi or (vout, posout, stout) 6= (vi+1, posi+1, sti+1)),

σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout.

Figure 23: P ′1,i-1
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Hybrid H4 In this hybrid, the challenger ‘write enforces’ the accumulator. As in hybrid H1, the challenger
computes the first `inp+i+1 ‘correct tuples’ to be accumulated. Let symw,j , posj be the symbol output and the

position after the jth step. The challenger computes (PPAcc, ãcc0, s̃tore0) ← Setup-Acc-Enforce-Write(1λ,
T , enf), where enf = ((x1, 0), . . ., (xn, n − 1), (symw,1, pos0), . . ., (symw,i, posi−1), (symw,i+1, posi)). The
remaining computation is same as in previous step.

Hybrid H5 In this experiment, the challenger outputs an obfuscation ofW5 = P ′1,i-2{i, ksig,A, ksig,B ,mi,mi+1}
(defined in Figure 24), which is similar to W2. However, on input where t = i+1, before computing signature,
it also checks if accout = acci+1. Therefore, it checks whether min = mi and mout = mi+1.

Hybrid H6 This experiment is similar to the previous one, except that the challenger uses normal setup
for accumulator instead of ‘enforcing write’.

Hybrid H7 This experiment is similar to the previous one, except that the challenger uses enforced setup
for iterator instead of normal setup. It first computes PPAcc, acc0, store0 as in the previous hybrid. Next,
it computes the first i+ 1 ‘correct messages’ for the iterator. Let st0 = q0 and pos0 = 0. For j = 1 to i+ 1

1. (symj , πj) = Prep-Read(PPAcc, storej−1, posj−1).
2. Let (stj , symw,j , β) = δ(stj−1, symj−1).
3. auxj = Prep-Write(PPAcc, storej−1, posj−1).
4. accj = Update(PPAcc, accj−1, symw,j , posj−1, auxj).
5. storej = Write-Store(PPAcc, storej−1, posj−1, symw,j).
6. posj = posj−1 + β.

Let enf = ((st0, w0, pos0), . . . , (sti, wi, posi)). It computes (PPItr, it0)←
Setup-Itr-Enforce(1λ, T, enf). The remaining hybrid proceeds as the previous one.

Hybrid H8 In this experiment, the challenger outputs an obfuscation of W8 = P ′1,i-3{i, ksig,A, ksig,B ,mi+1}
(defined in Figure 25), which is similar to W5, except that it only checks if mout = mi+1.

Hybrid H9 This corresponds to Hyb1,i+1. The only difference between this experiment and the previous
one is that this uses normal Setup for iterator.

B.4.1 Analysis

Let AdviA denote the advantage of A in hybrid Hi.

Claim B.21. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, |Adv0A − Adv1A| ≤ negl(λ).

Proof. This proof is identical to the proof of Claim B.14; it follows from Read Setup indistinguishability
(Definition 2.6) of Acc.

Claim B.22. Assuming Acc is Read enforcing (Definition 2.8) and iO is a secure indistinguishability obfus-
cator, for any PPT adversary A, |Adv1A − Adv2A| ≤ negl(λ).

Proof. In order to prove this claim, it suffices to show that P0 = Prog′-2-i{i,M, T,
msgb,PPAcc,PPItr, ksig,A, ksig,B ,mi} and P1 = Prog-2-i-b{i,M, T,msgb,PPAcc,PPItr,
ksig,A, ksig,B ,mi, vi+1, posi+1, sti+1} are functionally identical. P0 and P1 are functionally identical iff min =
mi =⇒ (vout, posout, stout) = (vi+1, posi+1, sti+1). Here, we will use the Read enforcing property. Note that
min = mi =⇒ win = wi, vin = vi, stin = sti and posin = posi. From Definition 2.8 and the definition of
H1/H2, it follows that if Verify-Read(PPAcc, wi, symin,
posin, π) = 1, then symin = symi. This, together with stin, vin, posin implies that vout = vi+1, posout = posi+1

and stout = sti+1. This completes our proof.
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P ′1,i-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i+ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i+ 1) and min = mi and mout = mi+1, σout = Sign-Spl(SK′A,mout) .

Else if (acc-inp, t) = (acc-inp∗, i + 1) and (min 6= mi or mout 6= mi+1), σout =

Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 24: P ′1,i-2

Claim B.23. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, |Adv2A − Adv3A| ≤ negl(λ).
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P ′1,i-3

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let α = ‘-’ and min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 1 set α =‘A’.

(c) If α =‘-’ and (t > t∗ or t ≤ i+ 1 or acc-inp 6= acc-inp∗), output ⊥.

Else if α =‘-’ and Verify-Spl(VKB ,min, σin) = 1 set α =‘B’.

(d) If α =‘-’ output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and α =‘B’, output ⊥.

Else if stout = qac and α =‘A’ and acc-inp = acc-inp∗ and t ≤ i+ 1 output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej)← Setup-Spl(1λ; r′sig,A).

Let r′sig,A = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, i+ 1) and min = mi, σout = Sign-Spl(SK′A,mout) .

Else if (acc-inp, t) = (acc-inp∗, i+ 1) and min 6= mi, σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′α,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout.

Figure 25: P ′1,i-3

Proof. This step is a reversal of the step from H0 to H1; its proof is identical to that of Claim B.8.

Claim B.24. Assuming Acc satisfies indistinguishability of Write Setup (Definition 2.7), for any PPT
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adversary A, |Adv3A − Adv4A| ≤ negl(λ).

Proof. This proof follows from the Write Setup indistinguishability (Definition 2.7) of Acc. Suppose there
exists an adversary A such that Adv3A − Adv4A = ε. We will construct an algorithm B that uses A to break
the Write Setup indistinguishability of Acc. B first computes the first `inp + i+ 1 tuples to be accumulated
- enf = ((inp[0], 0), . . . , (inp[`inp − 1], `inp − 1), (symw,1, pos0), . . . , (symw,i+1, posi)). Next, it sends enf to the

challenger, and receives PPAcc, w̃0, s̃tore0. The remaining encoding computation is identical in both hybrids,
and therefore, B can simulate it perfectly using PPAcc, w̃0, s̃tore0. In this manner, B can perfectly simulate
either H3 or H4, depending on the challenger’s input, and then use A’s response to win the security game
with non-negligible advantage.

Claim B.25. Assuming Acc is Write enforcing (Definition 2.9) and iO is a secure indistinguishability
obfuscator, for any PPT adversary A, |Adv4A − Adv5A| ≤ negl(λ).

Proof. Let P0 = Prog-2-i-b{msgb,mi, vi+1, posi+1, sti+1} and P1 = Prog-2-i-c{msgb, mi, mi+1}. In order to
prove that P0 and P1 have identical functionality, it suffices to show that min = mi and (vout, posout, stout)=
(vi+1, posi+1, sti+1) =⇒ wout = wi+1. Here, we will use the Write enforcing property (Definition 2.9).
Using the Write enforcing property, we can conclude that wout = Update(PPAcc, wi, symw,i+1, posi, aux) =⇒
wout = wi+1 or wout = Reject. In either case, we get that the functionality of P0 and P1 is identical,
therefore implying that their obfuscations are indistinguishable.

Claim B.26. Assuming Acc satisfies indistinguishability of Write Setup (Definition 2.7), for any PPT
adversary A, |Adv5A − Adv6A| ≤ negl(λ).

Proof. This step is a reversal of the step from H3 to H4; its proof is identical to that of Claim B.24.

Claim B.27. Assuming Itr satisfies indistinguishability of Setup (Definition 2.10), for any PPT adversary
A, |Adv6A − Adv7A| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv6A − Adv7A| is non-negligible. We will construct
an algorithm B that breaks the Setup indistinguishability of Itr (Definition 2.10). B computes the first i+ 1
tuples to be ‘iterated’ upon. Let stj , wj and posj be the state, accumulated value and position after jth step
(as described in hybrid H7). B sets enf = ((st0, w0, pos0), . . . , (sti, wi, posi)) and sends it to the Itr challenger.
It receives PPItr, v0 from the challenger. The remaining computation is identical in both hybrids. Finally, it
sends the encoding to A and using A’s response, it computes the output to challenger. Since |Adv6A−Adv7A|
is non-negligible, B’s advantage is also non-negligible.

Claim B.28. Assuming Itr is enforcing (Definition 2.11) and iO is a secure indistinguishability obfuscator,
for any PPT adversary A, |Adv7A − Adv8A| ≤ negl(λ).

Proof. In order to prove this claim, we need to argue that P5 = P5{i, ksig,A, ksig,B ,
mi,mi+1} and P8 = P8{i,KA,KB ,mi+1} are computationally indistinguishable. If we can show that P5 and
P8 are functionally identical, then using iO security, we can argue that their obfuscations are computationally
indistinguishable. Note that the only difference between P5 and P8 is in Step 6: P5 checks if (min =
mi) and (mout = mi+1), while P8 only checks if (mout = mi+1). Therefore, we need to show that mout =
mi+1 =⇒ min = mi. This follows directly from the enforcing property of Itr (recall in both hybrids,
PPItr, v0 are computed using Setup-Itr-Enforce). Since vout = vi+1, it implies vin = vi and (stin, win, posin) =
(sti, wi, posi). This concludes our proof.

Claim B.29. Assuming Itr satisfies indistinguishability of Setup (Definition 2.10), for any PPT adversary
A, |Adv8A − Adv9A| ≤ negl(λ).

Proof. This is a reversal of the step from H7 to H8, and its proof is similar to that of Claim B.27.

57



B.5 Proof of Lemma B.5

Formal Proof We will now describe a sequence of hybrids, where H0 corresponds to P ′1,(t∗−1){Mj+1,

PPAcc, PPItr, k, ksig,A, ksig,B , mt∗−1} and H3 corresponds to P2{Mj+1, PPAcc, PPItr, k, ksig,A, ksig,B}.

Hybrid H1 In this hybrid, the challenger computes the parameters for the accumulator using read-enforced
setup at position post∗−1. It first computes the first t∗ − 1 ‘correct inputs’ to be accumulated. Initially, the
state is st0 = q0. Let tape be a T dimensional vector, the first n entries of tape are x1, . . . , xn. The remaining
are ‘ ’. Let sym0 = tape[0] and pos0 = 0. For j = 1 to t∗ − 1

1. Let (stj , symw,j , β) = δ(stj−1, symj−1).

2. Set tape[posj−1] = symw,j , posj = posj−1 + β, symj = tape[posj ].

Let enf = ((x1, 0), . . . , (xn, n−1), (symw,1, pos0), . . . , (symw,t∗−1, post∗−2)) and let (PPAcc, acc0, store0)←
Setup-Acc-Enforce-Read(1λ, T, enf, post∗−1). The remaining hybrid proceeds as Hyb′1,t∗−1.

Hybrid H2 In this hybrid, the challenger outputs an obfuscation of W2 = P2{Mj+1, PPAcc, PPItr, k, ksig,A,
ksig,B}.

Hybrid H3 In this program, the challenger uses Setup-Acc for Acc instead of using Setup-Acc-Enforce-Read.
Note that this corresponds to Hyb3.

B.5.1 Analysis

Let AdviA denote the advantage of an adversary A in hybrid Hi.

Claim B.30. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, Adv0A − Adv1A ≤ negl(λ).

Proof. This proof is identical to the proof of Claim B.14; it follows from Read Setup indistinguishability
(Definition 2.6) of Acc.

Claim B.31. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv1A −
Adv2A ≤ negl(λ).

Proof. To prove this claim, we need to argue that W1 = Prog′-2-t∗ − 1{M,T , t∗, PPAcc, PPItr, msgb, ksig,A,
ksig,B , mt∗−1} and W2 = Prog-3{M,T , t∗, PPAcc, PPItr, msgb, ksig,A, ksig,B} have identical functionality.
The only possible reason for differing functionality is that W1 could output ‘A’ type signature when min =
mt∗−1, while W2 could output ‘B’ type signature. The critical observation here is that since min = mt∗−1,
both programs output ⊥. Since min = mt∗−1, win = wt∗−1, posin = post∗−1 and stin = stt∗−1. If we can
show that symin = symt∗−1, then it follows that stout = stt∗ = qrej.

Since setup is read enforced at post∗−1, there are two possibilities:

1. Verify-Read(PPAcc, wt∗−1, symin, post∗−1, π) = 0, in which case both programs output ⊥.
2. Verify-Read(PPAcc, wt∗−1, symin, post∗−1, π) = 1, in which case, symin = symt∗−1. This implies stout =
qrej, and therefore, both programs output ⊥.

Hence, both programs have identical functionality. As a result, by the security of iO, their obfuscations are
computationally indistinguishable.

Claim B.32. Assuming Acc satisfies indistinguishability of Read Setup (Definition 2.6), for any PPT ad-
versary A, Adv2A − Adv3A ≤ negl(λ).

Proof. This step is a reversal of the step from H0 to H1; the proof is identical to the proof of Claim B.14.
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B.6 Proof of Lemma B.6

Recall, t∗ represents the running time of machine Mj+1 on input x∗, and τ∗ is the smallest power of two
greater than t∗.

Formal Proof We will first define t̃ = τ∗ − t∗ + 1 intermediate hybrids H2-t∗, . . . ,H2-τ∗. Then, there
are two main parts to the proof. The first one is showing that H2-i and H2-(i + 1) are computationally
indistinguishable. This analysis is similar to the tail hybrid analysis in [KLW15], and is presented in Section
B.6.1. Next, we need to show that H2-τ∗ and Hyb3 are computationally indistinguishable, which is described
in Section B.6.2.

H2-i In this hybrid, the challenger outputs an obfuscation of P2-i{Mj+1, k, ksig,A, ksig,B ,mt∗−1} (defined
in Figure 26).

Note that Programs P2 and P2-t∗ are functionally identical, and therefore Hyb2 and H2-t∗ are computa-
tionally indistinguishable.

B.6.1 Tail Hybrid - Part 1

In this subsection, we will prove that H2-i and H2-(i+ 1) are computationally indistinguishable for t∗ ≤ i <
τ∗. This step requires the following intermediate hybrid experiments H2-i-0, . . ., H2-i-5 such that H2,i-0
corresponds to H2-i and H2-i-5 corresponds to H2-(i+ 1).

Hybrid H2-i-0 : This corresponds to H2-i.

Hybrid H2-i-1 : In this hybrid, the challenger first punctures the PRF key ksig,A at input (acc-inp∗, i); that
is, k′sig,A ← F.puncture(ksig,A, (acc-inp

∗, i)). Next, it computes rC = F (ksig,A, (acc-inp
∗, i)), (SKC ,VKC ,VKC,rej) =

Setup-Spl(1λ; rC) and finally, outputs an obfuscation of Pb = P2-i-2{k, k′sig,A, ksig,B , VKC} (defined in Figure
27). It has verification key VKC hardwired.

Hybrid H2-i-2 In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) ← Setup-Spl(1λ) using true
randomness instead of pseudorandom string. It then hardwires VKC in P2-i-2.

Hybrid H2-i-3 In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej)← Setup-Spl(1λ) as before, but
instead of hardwiring VKC , it hardwires VKC,rej in P2-i-2; that is, it outputs an obfuscation of P2-i-2{k,
k′sig,A, ksig,B , mt∗−1, VKC,rej}.

Hybrid H2-i-4 In this hybrid, the challenger chooses (SKC ,VKC ,VKC,rej) using F (ksig,A, (acc-inp
∗, i)). It

computes rC = F (ksig,A, (acc-inp
∗, i)), (SKC ,VKC ,

VKC,rej) = Setup-Spl(1λ; rC), iO(P2-i-2{k′sig,A, ksig,B , mt∗−1, VKC,rej}).

Hybrid H2-i-5 This hybrid corresponds to H2-(i+ 1).

Analysis We will show that H2-i-y and H2-i-(y + 1) are computationally indistinguishable. Let AdvyA
denote the advantage of adversary A in H2-i-y.

Claim B.33. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |Adv0A −
Adv1A| ≤ negl(λ).
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P2-i

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If t∗ < t ≤ i and acc-inp = acc-inp∗ output ⊥.

3. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

4. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′sig,A). Let
r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 26: P2-i

Proof. The only difference between H2-i-0 and H2-i-1 is that H2-i-0 outputs an obfuscation of P2-i, while
H2-i-1 outputs an obfuscation of P2-i-2. P2-i uses puncturable PRF key ksig,A, while P2-i-2 uses punctured
key k′sig,A punctured at (acc-inp∗, i). P2-i-2 also has verification key VKC hardwired, which is computed
using F (ksig,A, (acc-inp

∗, i)). For (acc-inp, t) 6= (acc-inp∗, i + 1), both programs have identical functionality
(this follows from the correctness of puncturable PRFs). For (acc-inp, t) = (acc-inp∗, i + 1), the verification
part is identical, since VKC hardwired is computed correctly. Also, note that the corresponding secret key
is not required at (acc-inp, t) = (acc-inp∗, i) (for input (acc-inp∗, t) , both programs do not output an ‘A’
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P2-i-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If t∗ < t ≤ i and acc-inp = acc-inp∗ output ⊥.

3. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

4. (a) If t 6= i+ 1, let rA = F.eval(KA{i}, t− 1), rB = F (KB , t− 1). Compute (SKA,VKA,VKA,rej) =

Setup-Spl(1λ; rA).

Else let VKA = VK.

(b) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(c) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′sig,A). Let
r′sig,A = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 27: P2-i-2

type signature). As a result, the programs have identical functionality. Therefore, this claim follows from
the security of iO.

Claim B.34. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, Adv1A−Adv
2
A ≤
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negl(λ).

Proof. The proof of this claim follows from the security of puncturable PRFs.

Claim B.35. Assuming S satisfies VKrej indistinguishability, for any PPT adversary A, Adv2A − Adv3A ≤
negl(λ).

Proof. Note that the secret key SKC is not used in both the hybrids. As a result, if there exists a PPT
adversary A such that Adv2A − Adv3A is non-negligible, then there exists a PPT algorithm that breaks the
VKrej indistinguishability of S. B receives a verification key VK from the challenger, which is either a normal
verification key or a reject-verification key. It hardwires VK in P2-i-2. The remaining steps are identical in
both hybrids. Based on A’s guess, B guesses whether VK is a normal verification key or if it always rejects.
Since Adv2A − Adv3A is non-negligible, B’s advantage is also non-negligible.

Claim B.36. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, Adv3A−Adv
4
A ≤

negl(λ).

Proof. This step is the reverse of the step from H2-i-1 to H2-i-2; the proof follows from the security of
puncturable PRFs.

Claim B.37. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv4A −
Adv5A ≤ negl(λ).

Proof. The only differences between the programs P2-i-2 and P2-i+ 1 are:

1. P2-i-2 uses a punctured PRF key k′sig,A, and has the reject-verification key computed using F(k′sig,A,
(acc-inp∗, i)). As a result, it outputs ⊥ for all inputs corresponding to (acc-inp, t) = (acc-inp∗, i + 1).
P2-i + 1, on the other hand, uses a puncturable PRF key ksig,A, and for inputs corresponding to
(acc-inp, t) = (acc-inp∗, i+ 1), directly outputs ⊥.

Using the correctness of puncturable PRFs, and the fact that VKrej always outputs ⊥, we get that the two
programs are functionally identical, and therefore, H2-i-5 and H2-(i+ 1) are computationally indistinguish-
able.

B.6.2 Tail Hybrid: Part 2

In this section, we will show that H2-τ∗ and Hyb3 are computationally indistinguishable. Let τ∗ = 2δ
∗
. For

this, we will define intermediate hybrids H-y-z for y ∈ [δ∗, λ] and z ∈ [0, 5], where H-δ∗-0 corresponds to
H2-τ∗, and H-λ-0 corresponds to Hyb3.

Sequence of Hybrids

Hybrid H-y-0: In this experiment, the challenger outputs an obfuscation of P -y defined in Figure 28.

Hybrid H-y-1 In this hybrid, the key ky is punctured at input acc-inp∗. Let k′y ← F.puncture(ky, acc-inp
∗)

and chk = PRG(F(ky, acc-inp
∗)). The challenger sends an obfuscation of P -y-1{k′y, chk} (defined in Figure

29).

Hybrid H-y-2 This hybrid is identical to the previous one, except that in this hybrid, the check string
chk is set to be the PRG evaluation at a uniformly random point. More formally, let α ← {0, 1}λ and
chk = PRG(α).
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P -y

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If t∗ < t ≤ 2y and acc-inp = acc-inp∗ output ⊥.

3. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

4. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′sig,A). Let
r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 28: P -y

Hybrid H-y-3 This hybrid is identical to the previous one, except that the check string chk is chosen
uniformly at random.

Hybrid H-y-4 In this hybrid, the challenger outputs an obfuscation of program P -y-2 defined in Figure
30.
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P -y-1

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

String chk

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. Let δ be an integer such that 2δ ≤ t < 2δ+1.
If δ = y and acc-inp = acc-inp∗ and PRG(seed) 6= chk output ⊥.
Else If PRG(seed) 6= PRG(F(kδ, acc-inp)) and t > 1, output ⊥.

2. If t∗ < t ≤ 2y and acc-inp = acc-inp∗ output ⊥.

3. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

4. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

5. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

6. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

7. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′sig,A). Let
r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

8. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
9. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 29: P -y-1

Hybrid H-y-5 In this hybrid, the check string chk is computed as PRG(α), where α is chosen uniformly
at random.

Hybrid H-y-6 In this hybrid, the check string chk is computed as PRG(F(ky,
acc-inp∗)).
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P -y-2

Constants : Turing machine M = 〈Q,Σtape, δ, q0, qac, qrej〉, time bound T

Public parameters for accumulator PPAcc,

Public parameters for Iterator PPItr

Puncturable PRF keys k, k1, . . . , kλ, ksig,A, ksig,B

String chk

Inputs : Time t, String seed,position posin, symbol symin, TM state stin

Accumulator value accin, proof π, auxiliary value aux,

accumulation of input acc-inp, Iterator value itin, signature σin.

1. If t∗ < t ≤ 2y+1 and acc-inp = acc-inp∗ output ⊥.

2. If Verify-Read(PPAcc, accin, symin, posin, π) = 0 output ⊥.

3. (a) Let rsig,A = F (ksig,A, (acc-inp, t− 1)). Compute (SKA,VKA,VKA,rej) = Setup-Spl(1λ; rsig,A).

Let rsig,B = F (ksig,B , (acc-inp, t− 1)). Compute (SKB ,VKB ,VKB,rej) = Setup-Spl(1λ; rsig,B).

(b) Let min = (itin, stin, accin, posin). If Verify-Spl(VKA,min, σin) = 0 output ⊥.

4. (a) Let (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej output ⊥.

Else if stout = qac and acc-inp = acc-inp∗ and t ≤ t∗ output ⊥.

Else if stout = qac, output F(k, acc-inp).

5. (a) Compute accout = Update(PPAcc, accin, symout, posin, aux). If accout = Reject, output ⊥.

(b) Compute itout = Iterate(PPItr, itin, (stin, accin, posin)).

6. (a) Let r′sig,A = F (ksig,A, (acc-inp, t)). Compute (SK′A,VK′A,VK′A,rej) ← Setup-Spl(1λ; r′sig,A). Let
r′sig,B = F (ksig,B , (acc-inp, t)). Compute (SK′B ,VK′B ,VK′B,rej)← Setup-Spl(1λ; r′sig,B).

(b) Let mout = (itout, stout, accout, posout).

If (acc-inp, t) = (acc-inp∗, t∗), σout = Sign-Spl(SK′B ,mout).

Else σout = Sign-Spl(SK′A,mout).

7. If t+ 1 = 2δ
′
, set seed′ = F(kδ′ , acc-inp).

Else, set seed′ = .
8. Output posout, symout, stout, accout, itout, σout, seed

′.

Figure 30: P -y-2

Analysis Let AdvAy,z denote the advantage of an adversary in hybrid H-y-z.

Claim B.38. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |AdvAy,0 −
AdvAy,1| ≤ negl(λ).

Proof. To prove this claim, it suffices to show that the programs P -y and P -y-1 are computationally in-
distinguishable. Note the only places ky is used is in Step 1 (on inputs corresponding to (acc-inp∗, t) for
2y ≤ t < 2y+1) and in Step 8 (on input corresponding to (acc-inp∗, 2y − 1)). If an input corresponds to
(acc-inp∗, t) for 2y ≤ t < 2y+1, then both programs have identical functionality since chk is computed cor-
rectly. For inputs corresponding to (acc-inp∗, 2y−1), both programs output ⊥ due to Step 2. This concludes
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our proof.

Claim B.39. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |AdvAy,1 −
AdvAy,2| ≤ negl(λ).

The proof of this claim follows immediately from the security definition of puncturable PRFs.

Claim B.40. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, |AdvAy,2 −
AdvAy,3| ≤ negl(λ).

Proof. Suppose there exists an adversary such that AdvAy,2−Adv
A
y,3 = ε. Then, we can construct an algorithm

B that breaks the PRG security. B receives a challenge string chk, where chk is either PRG(α) for a random
string α, or a truly random string. B can then choose the remaining components required to perfectly
simulate either H-y-2 or H-y-3.

Claim B.41. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |AdvAy,3 −
AdvAy,4| ≤ negl(λ).

Proof. Note that the only inputs on which P -y-1 and P -y-2 can possibly differ correspond to inputs (acc-inp∗, t)
for 2y ≤ t < 2y+1. However, for any such input, Step 1 will fail with overwhelming probability because chk
is chosen uniformly at random, and therefore, there exists no seed such that PRG(seed) = chk.

Claim B.42. Assuming PRG is a secure pseudorandom generator, for any PPT adversary A, |AdvAy,4 −
AdvAy,5| ≤ negl(λ).

This is similar to the proof of Claim B.40.

Claim B.43. Assuming F is a selectively secure puncturable PRF, for any PPT adversary A, |AdvAy,5 −
AdvAy,6| ≤ negl(λ).

This also follows directly from the security of puncturable PRFs.

Claim B.44. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, |AdvAy,6 −
AdvAy+1,0| ≤ negl(λ).

Proof. This claim is also immediate from the construction. Note that the only differences are at Step 1 and
Step 8. In Step 1, P -y-2 has the correct hardwired check string chk, so the programs are functionally identical
there. Also, both programs do not reach Step 8 on inputs corresponding to (acc-inp∗, 2y− 1). Therefore, the
programs are functionally identical.
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