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Abstract

The Fiat-Shamir paradigm [CRYPTO’86] is a heuristic for converting three-round identifica-
tion schemes into signature schemes, and more generally, for collapsing rounds in constant-round
public-coin interactive protocols. This heuristic is very popular both in theory and in practice,
and its security has been the focus of extensive study.

In particular, this paradigm was shown to be secure in the so-called Random Oracle Model.
However, in the plain model, mainly negative results were shown. In particular, this heuristic was
shown to be insecure when applied to computationally sound proofs (also known as arguments).
Moreover, recently it was shown that even in the restricted setting, where the heuristic is applied
to interactive proofs (as opposed to arguments), its soundness cannot be proven via a black-box
reduction to any so-called falsifiable assumption.

In this work, we give a positive result for the security of this paradigm in the plain model.
Specifically, we construct a hash function for which the Fiat Shamir paradigm is secure when ap-
plied to proofs (as opposed to arguments), assuming the existence of a sub-exponentially secure
indistinguishability obfuscator, the existence of an exponentially secure input-hiding obfuscator
for the class of multi-bit point functions, and the existence of a sub-exponentially secure one-way
function.

1 Introduction

In 1986, Fiat and Shamir [FS86] proposed a general method for reducing interaction in any constant-
round public-coin protocol by replacing the verifier with a hash function. Initially, this heuristic
was proposed for the sake of transforming three-round public-coin identification (ID) schemes into
digital signature schemes. This so-called Fiat-Shamir heuristic, quickly gained popularity both in
theory and in practice, since known ID schemes (in which a sender interactively identifies himself
to a receiver) are significantly simpler and more efficient than known signature schemes, and thus
this heuristic gives an efficient and easy way to implement digital signature schemes.

The Fiat-Shamir heuristic also has important applications outside the regime of ID and signature
schemes. For example, it was used by Micali in his construction of CS-proofs [Mic94]. More
generally, the importance of the Fiat-Shamir heuristic stems from the fact that latency, caused
by sending messages back and forth, is often a bottleneck in running cryptographic protocols
[MNPS04,BDNP08].
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The Fiat-Shamir method is extremely simple and intuitive: The basic idea is to reduce interac-
tion by having the verifier send the prover a hash function H (chosen at random from some family
of hash functions). The prover then “simulates” all the verifier’s messages on his own by apply-
ing H to the transcript so far. For example, a three-message interactive proof, where we denote
the transcript by (α, β, γ), is converted to the following 2-message protocol, where the verifier first
sends a hash function H to the prover, and then the prover simulates the three messages on his
own as follows: He first computes his first message α, then he computes the verifier’s message β by
setting β = H(α), and finally he computes his final message γ, and sends (α, β, γ) to the verifier.

The intuition for why this method is secure, is that if H looks like a truly random function,
and if all the prover can do is use H in a black-box manner, then interacting with H is similar
to interacting with the real verifier, and hence security follows. This intuition was formalized by
Pointcheval and Stern [PS96], who proved that the Fiat-Shamir heuristic is secure in the so-called
Random Oracle Model (ROM) – when the hash function is modeled by a random oracle [BR93].
This led to the belief that if a 2-message protocol, obtained by applying the Fiat-Shamir paradigm,
is insecure, then it must be the case that the hash family used is not “secure enough”, and the
hope was that there exists another hash family that is sufficiently secure.

Since Pointcheval and Stern published their positive result (in the ROM), and due to the
popularity and importance of the Fiat-Shamir heuristic, many researchers tried to prove the security
of this paradigm in the plain model. Unfortunately, these attempts led mainly to negative results.
Barak [Bar01] gave the first negative result, by constructing a (contrived) constant-round public-
coin protocol such that when the Fiat-Shamir heuristic is applied to it, the resulting 2-round
protocol is not sound, no matter which hash family is used. In a followup work, Goldwasser
and Kalai [GK03], gave another (contrived) construction for a 3-round public-coin ID scheme, for
which the resulting signature scheme obtained by applying the Fiat-Shamir heuristic, is insecure,
no matter which hash family is used. However, both these negative results are for protocols that
are only computationally sound, also known as arguments.

This gave rise to the following question:

Is the Fiat-Shamir method secure when applied to interactive proofs (as opposed to arguments)?

Barak, Lindell and Vadhan [BLV03] presented a security property for the Fiat-Shamir hash
function, which if realized, would imply the security of the Fiat-Shamir paradigm applied to any
constant-round public-coin interactive proof system.1 However, they left open the problem of
realizing this security definition under standard hardness assumptions (or under any assumption
beyond simply assuming that the definition holds for a given hash function). Recently, Dodis,
Ristenpart and Vadhan [DRV12] showed that under specific assumptions regarding the existence
of robust randomness condensers for seed-dependent sources, the definitions of [BLV03] can be
realized. However, the question of constructing such suitable robust randomness condensers was
left open by [DRV12].

On the other hand, Bitansky et. al. [BDG+13] gave a negative result. They showed that that
soundness of the Fiat-Shamir paradigm, even when applied to interactive proofs, cannot be proved
via a black-box reduction to any so-called falsifiable assumption (see Naor [Nao03]).2

1Loosely speaking, a hash family {hs} is said to have this security property if for every probabilistic polynomial
time adversary A, that is given a random seed s and outputs an element in the domain of hs, the random variable
hs(A(s)) conditioned on A(s) has almost full min entropy.

2Our assumptions (see Section 1.1), which deal with exponential-time (rather than polynomial-time) adversaries,
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Finally, we remark that in a recent work Canetti, Chen and Reyzin [CCR15] construct a cor-
relation intractable function ensemble that withstands relations that can be computed in a-priori
bounded polynomial complexity. This does not have implications to the security of the Fiat-Shamir
paradigm, where we need correlation intractable ensembles for hard-to-compute relations. A further
discussion follows the description of our results.

1.1 Our Results

In this work, we prove that the Fiat-Shamir paradigm when applied to interactive proofs (as opposed
to arguments) is sound, under the following three cryptographic assumptions:

1. The existence of 2n-secure indistinguishability obfuscation iO, where 2n is the domain size of
the functions being obfuscated.3

Recently, several constructions of iO obfuscation were proposed, starting with the work of
Garg et al. [GGH+13]. However, to date, non of these constructions are known to be provably
secure under what is known as a complexity assumption [GK16] or more generally a falsifiable
assumption [Nao03]. We mention that [GLSW14] provided a construction and proved its
security under the subgroup elimination assumption, which is a complexity assumption (and
in particular is a falsifiable assumption). However, this assumption has been refuted in all
candidate multi-linear groups.

2. The existence of 2n-secure puncturable pseudo-random function (PRF) family F , where 2n

is the domain size.

Puncturable PRFs were defined in [BW13, BGI14, KPTZ13]. The PRF family of [GGM86]
is a puncturable PRF family, and thus 2n-secure puncturable PRFs can be constructed from
any sub-exponentially secure one-way function.

3. The existence of an exponentially secure input-hiding obfuscation hideO for the class of multi-
bit point functions {In,k}. The class {In,k} consists of functions of the form Iα,β where |α| = n
and |β| = k, and where Iα,β(x) = β for x = α and Iα,β(x) = 0 otherwise. An obfuscation
for this class is said to be input-hiding with T -security if any poly-size adversary that is
given an obfuscation of a random function Iα,β in this family, guesses α with probability at
most T−1. We note that the value β may be correlated with α and furthermore, it may be
computationally difficult to find β from α. For our construction we require T which is roughly
equal to 2n/µ, where µ is the soundness of the underlying proof-system. For example, if we
start off with an interactive-proof with soundness 2−n

ε
, then we require roughly T = 2n−n

ε
.

This assumption was considered in [CD08,BC14], who also provided a candidate construction
based on a strong variant of the DDH assumption (we elaborate on this in Section 2.4).4

Theorem 1.1. [(Informally Stated)] Under the assumptions above, for any constant-round interac-
tive proof Π, the resulting 2-message argument ΠFS, obtained by applying the Fiat-Shamir paradigm
to Π with the function family iO(F), is secure.

are inherently not falsifiable.
3This assumption has been made in many previous works on iO and is referred to as sub-exponential iO since the

security parameter can be polynomially larger than n (which makes 2n sub-exponential in the security parameter).
4While DDH (and even discrete log) can be broken in time less than 2n (even in the generic group model - e.g., by

the baby-step giant-step algorithm), this does not imply a non-trivial polynomial-time attack (i.e., one with success
probability greater than poly(n)/2n).
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Here and throughout this work iO(F) refers to an iO obfuscation of a program that computes the
PRF, using a hardwired random seed.

This result has interesting corollaries. In particular, Dwork et. al. [DNRS99] (and independently,
Hada and Tanaka [HT98]) observed an intriguing connection between the security of the Fiat-
Shamir paradigm and the existence of certain zero-knowledge protocols. In particular, if there
exists a constant-round public-coin zero-knowledge proof for a language outside BPP, then the
Fiat-Shamir paradigm is not secure when applied to this zero-knowledge proof. Intuitively, this
follows from the following observation: Consider the cheating verifier that behaves exactly like the
Fiat-Shamir hash function. The fact that the protocol is zero-knowledge implies that there exists
a simulator who can simulate the view in an indistinguishable manner. Thus, for elements in the
language the simulator generates accepting transcripts. The simulator cannot distinguish between
elements in the language and elements outside the language (since the simulator runs in poly-time
and the language is outside of BPP). In addition, the protocol is public coin, which implies that
the simulator knows whether the transcript is accepted or not. Hence, it must be the case that
the simulator also generates accepting transcripts for elements that are not in the language, which
implies that the Fiat-Shamir paradigm is not secure.

Thus, Theorem 3.1 implies the following corollary.

Corollary 1.2. Under the assumptions above, there does not exist a constant-round public-coin
zero-knowledge proof with negligible soundness for languages outside BPP.

In particular, this corollary implies that (under the assumptions above) parallel repetition of
Blum’s Hamiltonicity protocol for NP [Blu87] is not zero-knowledge. Previously it was not known
whether (in general) parallel repetition preserves zero-knowledge. Our result shows that it does
not (under the assumptions above).

We note that even for those who are skeptical about the obfuscation assumptions we make,
this corollary implies that finding a constant-round public-coin zero-knowledge proof requires over-
coming technical barriers, and in particular requires disproving the existence of sub-exponentially
secure iO obfuscation, or the existence of exponentially secure input-hiding obfuscation for the class
of multi-bit point functions (or, less likely, disproving the existence of sub-exponential OWF).

Comparison to Canetti et al. [CCR15]. As mentioned above, in very recent work [CCR15]
construct a correlation intractable function ensemble that withstands all relations computable in
a-priori bounded polynomial complexity. Namely, for any fixed polynomial p, they construct a
function ensemble as follows: for any evasive (see below) relation R computable in time p, given a
random function f in the ensemble, it is hard to find x such that (x, f(x)) ∈ R.

As mentioned above, this result does not have any implications to the security of the Fiat-
Shamir paradigm, since to prove the security of this paradigm we need a correlation intractable
ensemble for relations that cannot be computed in polynomial time.

In terms of the assumptions used, [CCR15] assume the existence of sub-exponentially secure in-
distinguishability obfuscation, the existence of a sub-exponentially secure puncturable PRF family,
and the existence of input-hiding obfuscation for the class of evasive functions. An evasive family
is a collection of functions where for any input x, a random function from the collection outputs
0 on x with overwhelming probability [BBC+14]. Comparing to the assumptions we make in this
work, we also make the first two assumptions. However, we assume input-hiding obfuscation only
for multi-bit point functions (a significantly smaller family compared to general evasive functions).
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On the other hand, we require an exponentially secure input-hiding obfuscation, whereas their work
only needs polynomial-time hardness of the input-hiding obfuscation.

1.2 Overview

Throughout this overview we focus on proving the security of the Fiat-Shamir paradigm, when
applied to 3-round public-coin interactive proofs. The more general case, of any constant number5

of rounds, is then proved by induction on the number of rounds (we refer the reader to Section 4
for details). Consider any 3-round proof Π for a language L. Denote the transcript by (α, β, γ)
where α is the first message sent by the prover, β is the random message sent by the verifier, and
γ is the final message sent by the prover. Fix any x /∈ L. The fact that Π is a sound proof means
that for every α, for most of the verifier’s messages β, there does not exist γ that makes the verifier
accept.

The basic idea stems from the original intuition for why the Fiat-Shamir is secure, which is that
if we use a hash function H that looks like a truly random function, then all the prover can do is
use H in a black-box manner, in which case interacting with H is similar to interacting with the
real verifier, and hence security follows.

The first idea that comes to mind is to choose the hash function randomly from a pseudo-random
function (PRF) family. However, the security guarantee of a PRF is that given only black-box access
to a random function f in the PRF family, one cannot distinguish it from a truly random function.
No guarantees are given if the adversary is given a succinct circuit for computing f .

Obfuscation to the Rescue. A natural next step is to try to obfuscate f , in the hope that
whatever can be learned given the obfuscation of f can also be learned from black-box access
to f . However, this requires virtual-black-box (VBB) security, and VBB obfuscation is known
not to exist [BGI+12]. Moreover, there are specific PRF families for which VBB obfuscation is
impossible [BGI+12]. Further obstacles to VBB obfuscation of PRFs and, more generally, functions
with high pseudo-entropy (w.r.t. auxiliary input) are given in [GK05, BCC+14]. Given these
obstacles to achieving VBB obfuscation, could we hope to prove security using relaxed notions of
obfuscation, such as iO obfuscation? The question is:

Is iO obfuscation strong enough to prove the security of the Fiat-Shamir paradigm?

It is well known that iO obfuscation is not strong enough to prove the security of the Fiat-Shamir
paradigm when applied to computationally sound interactive arguments. Indeed the Fiat-Shamir
paradigm is known be insecure when applied to arguments as opposed to proofs.6 In contrast, we
show that iO obfuscation (together with additional assumptions) is strong enough to prove security
when the Fiat-Shamir paradigm is applied to interactive proofs (rather than arguments).

For proving security of the Fiat-Shamir paradigm for proofs, consider a cheating prover for the
transformed protocol ΠFS, who receives the obfuscation iO(fs) of a pseudo-random function fs.
Since fs is a PRF, we know that there will only be a small set Bads of inputs α (corresponding to
the prover’s first message in the proof Π), for which the communication prefix (α, fs(α)) can lead

5The Fiat Shamir paradigm refers to constant round protocols. Indeed, there are interactive proofs with a super-
constant number of rounds (and negligible soundness error) for which the Fiat Shamir paradigm is insecure.

6More specifically, the insecurity is in the sense that there exist contrived interactive arguments such that for
any hash family H, applying the Fiat-Shamir paradigm with the hash family H, results in an insecure 2-round
protocol [Bar01,GK03].
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the verifier in the interactive proof to accept (i.e. α’s for which there exists γ s.t. (α, f(α), γ) is an
accepting transcript).

To show the security of the resulting protocol, we now want to claim that the obfuscation hides
this (small) set Bads of inputs, and that a cheating prover P ∗ cannot find any input α ∈ Bads. Note,
however, that iO obfuscation only guarantees that one cannot distinguish between the obfuscation
of two functionally equivalent circuits of the same size, and it does not give any hiding guarantees.

Puncturable PRFs to the Rescue? As mentioned above, iO obfuscation does not immediately
seem to give any hiding guarantees. Nonetheless, starting with the beautiful work of Sahai and
Waters [SW14], iO has proved remarkably powerful in the construction of a huge variety of crypto-
graphic primitives. A basic technique used in order to get a hiding guarantee from iO obfuscation,
as pioneered in [SW14], is to use it with a puncturable PRF family.

A puncturable PRF family is a PRF family that allows the “puncturing” of the seed at any
point α in the domain of f . Namely, for any point α in the domain, and for any seed s of the
PRF, one can generate a “punctured” seed, denoted by s{α}. This seed allows the computation
of fs anywhere in the domain, except at point α, with the security guarantee that for a ran-
dom seed s chosen independently of α, the element fs(α) looks (computationally) random given
(s{α}, α). The security of iO obfuscation guarantees that one cannot distinguish between iO(s)
and iO(s{α}, α, fs(α)),7 which together with the security of the puncturable PRF, implies that
one cannot distinguish between iO(s) and iO(s{α}, α, u) for a truly random output u. Thus, we
managed to use iO, together with the puncturing technique, to generate a circuit for computing fs
that hides the value of fs(α). We emphasize that this technique crucially relies on the fact that
the punctured point α is independent of the seed s, and hence as a result fs(α) is computationally
random.

It is natural to try and use obfuscated puncturable PRFs to show security of the Fiat-Shamir
paradigm. Consider the following naive (and flawed) analysis, which loosely speaking proceeds in
three steps: Suppose that there exists a poly-size cheating prover P ∗ that convinces the verifier to
accept x /∈ L. Recall that we denote transcripts by (α, β, γ). The (statistical) soundness of Π implies
that for every α, for most of the verifier’s messages β, there does not exist γ that makes the verifier
accept. For any function f consider the (evasive) relation R = {(α, β) : ∃γ s.t. V (x, α, β, γ) = 1}.
Suppose that the cheating prover P ∗, given iO(s), outputs α such that (α, fs(α)) ∈ R, with non-
negligible probability.

1. Puncture the PRF at a random point α∗ s.t. α∗ ∈ Bads, and send the obfuscation of
iO(s{α∗}, α∗, fs(α∗)) to the cheating prover P ∗. Note that this does not change the func-
tionality.

Therefore, we can use the (sub-exponential) security of iO to argue that the cheating prover
P ∗ cannot tell where we punctured the PRF, and still succeeds with non-negligible probability.
In particular, taking M to be the expected number of α’s such that (α, fs(α)) ∈ R, we have
that P ∗ outputs α∗ with probability ≈ 1/M (up to poly(n) factors).8

2. Next, we want to use the (sub-exponential) security of the puncturable PRF to argue that the
cheating prover P ∗ cannot distinguish between (s{α∗}, α∗, fs(α∗)) and (s{α∗}, α∗, β∗) where

7We use (s{α}, α, fs(α)) to denote the circuit that on input α outputs the hardwired value fs(α), and on any
other input x 6= α computes fs(x) using the punctured seed s{α}.

8We think of n as polynomially related to the security parameter, where 2n is the domain size of fs.
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(α∗, β∗) is random in R. Thus, given iO(s{α∗}, α∗, β∗) the cheating prover P ∗ still outputs
α∗ with probability ≈ 1/M (up to poly(n) factors).

3. In the final step, we argue that α∗ is close to uniform (for an appropriate modification of the
original protocol) and independent of s. Thus, given iO(s{α∗}, α∗, β∗), the cheating prover
P ∗ outputs α∗ with probability ≈ 1/M (up to poly(n) factors), where α∗ is close to truly
random. We want to argue that this contradicts the (sub-exponential) security of iO.

Unfortunately, the argument sketched above is doubly-flawed. In particular, the arguments
in Step (2) and Step (3) are simply false. In Step (2) we start with a distribution where fs is
punctured at a point α∗ for which (α∗, fs(α

∗)) is not (computationally) random, and in fact the
choice of α∗ depends on the seed s. We want to argue that this is indistinguishable from the case
where we pick (α∗, β∗) randomly in R, and then puncture at α∗. It is not a-priori clear why the
puncturable PRF or iO would guarantee this indistinguishability. Indeed, the functions generated
by these two distributions can be distinguished with some advantage by simply counting the number
of input-output pairs that are in R.

Nevertheless, in our analysis (see Lemma 3.3) we manage to argue that the cheating prover P ∗,
given iO(s{α∗}, α∗, β∗) where (α∗, β∗) is random in R, still outputs α∗ with probability signifi-
cantly higher than 1/2n (i.e., significantly higher than guessing). Indeed, P ∗ still outputs α∗ with
probability ≈ 1/M (up to poly(n) factors).

We next move to the flaw in Step (3). The problem here is that puncturing at the point α∗ does
not at all hide α∗. It is also not clear whether the iO obfuscation of the punctured seed hides α∗.

Input-Hiding Obfuscation to the Rescue. We overcome this hurdle by using an exponentially
secure input-hiding obfuscation to hide the punctured point.

Namely, we replace iO(s{α∗}, α∗, β∗) with iO(s, hideO(α∗, β∗)), where hideO is an exponentially
secure input hiding obfuscator, and where we did not change the functionality of the circuit; i.e.
the circuit on input x first runs hideO(α∗, β∗) to check if x = α∗; if so it outputs β∗ and otherwise it
outputs fs(x). The security of iO implies that P ∗(iO(s, hideO(α∗, β∗))) outputs α∗ with probability
1/M (up to poly(n) factors).

It remains to note that s is independent of (α∗, β∗), and hence we conclude that there exists
a poly-size adversary that given hideO(α∗, β∗) outputs α∗ with probability 1/M (up to poly(n)
factors). In the last step we replace the distribution of (α∗, β∗) with a distribution where α∗ is
chosen uniformly at random from {0, 1}n and β∗ is chosen at random such that (α∗, β∗) ∈ R
and prove that still there exists a poly-size adversary that given hideO(α∗, β∗) (where (α∗, β∗) is
according to the new distribution) outputs α∗ with probability 1/M (up to poly(n) factors). This
contradicts the exponential security of the input-hiding obfuscator hideO.

Remark 1.3. We note that the input-hiding obfuscator was only used in the security analysis. It
plays no role in the construction itself. This is similar to some other recent uses of indistinguisha-
bility obfuscation in the literature.

We hope that the idea of using input-hiding obfuscation to hide the punctured point, will find
further applications.
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2 Preliminaries

2.1 Indistinguishability.

Definition 2.1. For any function T : N → N and for any function µ : N → [0, 1], we say that
µ = negl(T ) if for every constant c > 0 there exists K ∈ N such that for every k ≥ K,

µ(k) ≤ T (k)−c.

Definition 2.2. Two distribution families X = {Xκ}κ∈N and Y = {Yκ}κ∈N are said to be T -

indistinguishable (denoted by X
T
≈ Y) if for every circuit family D = {Dκ}κ∈N of size poly(T (κ)),

AdvX ,YD (S)
def
= |Pr[D(x) = 1]− Pr[D(y) = 1]| = negl(T (κ)),

where the probabilities are over x← Xκ and over y ← Yκ.

2.2 Puncturable PRFs

Our construction uses a 2n-secure pseudo-random function (PRF) family that is puncturable [BW13,
BGI14,KPTZ13,SW14], see the definitions below.

Definition 2.3 (T -Secure PRF [GGM86]). Let m = m(κ), n = n(κ) and k = k(κ) be ensembles
of integers. A PRF family is an ensemble F = {Fκ}κ∈N of function families, where Fκ = {fs :
{0, 1}n → {0, 1}k}s∈{0,1}m. The PRF F is T -secure, for T = T (κ), if for every poly(T )-size
(non-uniform) adversary Adv:∣∣∣Advfs(1κ)−Advf (1κ)

∣∣∣ = negl(T (κ)),

where fs is a random function in Fκ, generated using a uniformly random seed s ∈ {0, 1}m(κ), and
f is a truly random function with domain {0, 1}n and range {0, 1}k.

We use 2n-secure PRF families in our construction (for k = poly(n)). We can construct such
PRFs assuming subexponentially hard one-way functions by taking the seed length m to be a
sufficiently large polynomial in n. Observe that, since the entire truth table of the function can
be constructed in time poly(n) · 2n, we get that 2n-security implies that the entire truth table of a
PRF fs is indistinguishable from a uniformly random truth table.9

Definition 2.4 (T -Secure Puncturable PRF [SW14]). A T -secure family of PRFs (as in Definition
2.3) is puncturable if there exist PPT procedures puncture and eval such that

1. Puncturing a PRF key s ∈ {0, 1}m at a point r ∈ {0, 1}n gives a punctured key s{r} that can
still be used to evaluate the PRF at any point r′ 6= r

∀r ∈ {0, 1}n, r′ 6= r : Pr
s,s{r}←puncture(s,r)

[
eval(s{r}, r′) = fs(r

′)
]

= 1

9The fact that subexponential OWF yield PRFs for which distinguishing the entire truth table from a random
truth table the truth table of a random function has been previously noted in the literature, most notably by Razborov
and Rudich [RR97] in their work on natural proofs.
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2. For any fixed r ∈ {0, 1}n, given a punctured key s{r}, the value fs(r) is pseudorandom:

(s{r}, r, fs(r))
T (κ)
≈ (s{r}, r, u),

where s{r} is obtained by puncturing a random seed s ∈ {0, 1}m(κ) at the point r, and u is
uniformly random in {0, 1}k.

We note that the GGM-based construction of PRFs gives a construction of 2n-secure punc-
turable PRFs from any subexponentially hard one-way function [GGM86,HILL99].

2.3 Indistinguishability Obfuscation

Our construction uses an indistinguishability obfuscator iO with 2−n security. A candidate con-
struction was first given in the work of Garg et al. [GGH+13].

Definition 2.5 (T -secure Indistinguishability Obfuscator [BGI+12]). Let T : N→ N be a function.
Let C = {Cn}n∈N be a family of polynomial-size circuits, where Cn is a set of boolean circuits
operating on inputs of length n. Let iO be a PPT algorithm, which takes as input a circuit C ∈ Cn
and a security parameter κ ∈ N, and outputs a boolean circuit iO(C) (not necessarily in C).

iO is a T -secure indistinguishability obfuscator for C if it satisfies the following properties:

1. Preserving Functionality: For every n, κ ∈ N, C ∈ Cn, x ∈ {0, 1}n:

(iO(C, 1κ))(x) = C(x).

2. Indistinguishable Obfuscation: For every two sequence of circuits {C1
n}n∈N and {C2

n}n∈N,
such that for every n ∈ N, |C1

n| = |C2
n|, C1

n ≡ C2
n, and C1

n, C
2
n ∈ Cn , it holds that for any

n = n(κ) ≤ poly(κ):

iO(C1
n, 1

κ)
T (κ)
≈ iO(C2

n, 1
κ).

2.4 Input-Hiding Obfuscation

An input-hiding obfuscator for a class of circuits C, as defined by Barak et al. [BBC+14], has the
security guarantee that given an obfuscation of a randomly drawn circuit in the family C, it is hard
for an adversary to find an accepting input. In our work, we consider input-hiding obfuscation
for the class of multi-bit point functions. A multi-bit point function Ix,y is defined by an input
x ∈ {0, 1}n, and an output y ∈ {0, 1}k. Ix,y outputs y on input x, and 0 on all other inputs.
Informally, we assume that given the obfuscation of Ix,y for a uniformly random x and an arbitrary
y, it is hard for an adversary to recover x.

Definition 2.6 (T -secure Input-Hiding Obfuscator [BBC+14]). Let T : N→ N be a function, and
let C = {Cn}n∈N be a family of poly-size circuits, where Cn is a set of boolean circuits operating
on inputs of length n. A PPT obfuscator hideO is a T -secure input-hiding obfuscator for C, if it
satisfies the preserving functionality requirement of Definition 2.5, as well as the following security
requirement. For every poly-size (non-uniform) adversary Adv and all sufficiently large n,

Pr
C←Cn,hideO

[C(Adv(hideO(C))) 6= 0] ≤ T−1(n)

9



We emphasize that (unlike other notions of T -security used in this work), we only allow the
adversary for a T -secure input hiding obfuscation to run in polynomial time. Nevertheless, depend-
ing on the function T , the definition of T -secure input hiding is quite strong. In particular, for
the typical case of proof-systems with soundness 2n

ε
(where ε > 0 is a constant) we will assume

input-hiding obfuscation for T = 2n−n
ε
, which means that a polynomial-time adversary can only do

sub-exponentially better than the trivial attack that picks random inputs until it finds an accepting
input (this attack succeeds with probability poly(n)/2n). This is also why we do not separate the
security parameter from the input length (the adversary can always succeed with probability 2−n,
assuming there exists an accepting input).

We assume input-hiding obfuscation for the class of multi-bit point functions (see above), where
the point x is drawn uniformly at random, and the output y is arbitrary. In particular, we do not
assume that the collection C of pairs (x, y) can be sampled efficiently, only that its marginal
distribution on x is uniform.

Assumption 2.7 (T -secure Input-Hiding for Multi-Bit Point Functions). Let T, k : N → N be
functions. An obfuscator hideO is a T -secure input-hiding obfuscator for (n, k)-multi-bit point
functions if for every collection C as below, hideO is a T -secure input-hiding obfuscator for C. In
the collection C , for every n ∈ N, every function Ix,y ∈ Cn has x ∈ {0, 1}n, y ∈ {0, 1}k(n), and the
marginal distribution of a random draw from Cn on x is uniform.

The assumption is strong in that we do not assume that a random function in C can be sampled
efficiently, or that the output y is an efficient function of the input x. This assumption was
studied in [CD08, BC14]. A candidate construction was provided in [CD08]. Loosely speaking,
their construction is an extension of the point function obfuscation of Canetti [Can97], where the
obfuscation of Ix,y consists of a pair of the form (r, rx), together with k pairs of the form (ri, r

αi
i )

where αi = x if yi = 1 and is uniformly random otherwise. It was proved in [BC14] that this
construction is secure in the the generic group model, where the inversion probability is at most
poly(n) · 2−n.

2.5 The Fiat-Shamir Paradigm

In this section, we recall the Fiat-Shamir paradigm. For the sake of simplicity of notation, we
describe this paradigm when applied to 3-round (as opposed to arbitrary constant round) public-
coin protocols. Let Π = (P, V ) be a 3-round public-coin proof system for an NP language L. We
denote its transcripts by (α, β, γ), where β are the messages sent by the verifier, and α, γ are the
messages sent by the prover. We denote by n the length of α (i.e., α ∈ {0, 1}n), and we denote by k
the length of β (i.e., β ∈ {0, 1}k). We assume that k ≤ poly(n) (since otherwise we can just pad).

Let {Hn}n∈N be an ensemble of hash functions, such that for every n ∈ N and for every h ∈ Hn,

h : {0, 1}n → {0, 1}k.

We define ΠFS, with respect to the hash family H to be the 2-round protocol obtained by applying
the Fiat-Shamir transformation to Π using H. A formal presentation of the “collapsed” protocol
ΠFS = (P FS, V FS) is in Figure 2.1.
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Protocol ΠFS(1n, x) for an NP Language L

Prover’s Input: Statement x and a witness w for x ∈ L.

Verifier’s Input: Statement x.

V FS → P FS: The verifier V FS chooses a random h← Hn, and sends h to the prover P FS.

P FS → V FS: The prover P FS simulates an execution with the prover P of Π in the following way:

• Choose a random tape for P and continue the emulation of (P, V ) by running P . Let
α ∈ {0, 1}n be the first message sent by P in Π.

• Compute h(α) = β.

• Continue the emulation of P assuming P received β as the second message from V FS.
Let γ be the third message sent by P .

Send (α, β, γ) to the verifier V FS.

Verification: The verifier V FS accepts if and only if:

• h(α) = β.

• V accepts the transcript (α, β, γ).

Figure 2.1: Collapsing a 3-round Protocol Π = (P, V ) into a 2-round Protocol ΠFS = (P FS, V FS)
using H

3 Security of Fiat-Shamir for 3-Message Proofs

We show an instantiation of the Fiat-Shamir paradigm that is sound when it is applied to interactive
proofs (as opposed to arguments). Taking n to be a bound on the message lengths of the prover in
Π, our instantiation assumes the existence of a 2n-secure indistinguishability obfuscation scheme
iO, a 2n-secure puncturable PRF family F , and a 2n-secure input-hiding obfuscation for the class
of multi-bit point functions In,k.

For clarity of exposition, we first show that our instantiation is secure for 3-round public-coin
interactive proofs. This is the regime for which the Fiat-Shamir paradigm was originally suggested.
We then build on the proof for the 3-message case (or rather the 4-message case, see below), and
prove security for any constant number of rounds.

Theorem 3.1 (Fiat-Shamir for 3-message Proofs). Let Π be a public-coin 3-message interactive
proof system, where the lengths of the prover’s message are bounded by n, the verifier’s message is
of length k ≤ poly(n), and the soundness error is negligible.

Assume the existence of a 2n-secure puncturable PRF family F , the existence of a 2n-secure
Indistinguishability Obfuscation iO, and the existence of a 2n-secure input-hiding obfuscation for
the class of multi-bit point functions {In,k}. Then the resulting 2-round argument ΠFS, obtained by
applying the Fiat-Shamir paradigm (see Figure 2.1) to Π with the function family iO(F), is secure.
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In Section 4 we prove the security of the Fiat-Shamir paradigm when applied to any constant
round interactive proof. To prove the general (constant round) case, we need to rely on a more
general (and more technical) variation of Theorem 3.1. First, we rely on the security of the Fiat-
Shamir paradigm for any 4-round interactive proof Π where the first message is sent by the verifier.
In the transformed protocol ΠFS, the first message of the verifier consists of the first message as in
Π, along with a Fiat-Shamir hash function, which will be applied to the prover’s first message. In
addition, in the generalized theorem we allow the verifier in the original protocol Π to run in time
2O(n).

We state the generalized theorem below.

Theorem 3.2 (Theorem 3.1, more General Statement). Let Π be a 4-message public-coin in-
teractive proof system, where the first message is sent by the verifier, the lengths of the prover’s
messages are bounded by n, the verifier’s messages are of length k ≤ poly(n), the soundness error
is µ(n) = negl(n), and the running time of the verifier is 2O(n).

Let ε > 0 be a constant. Assume the existence of a 2n-secure puncturable PRF family F ,
the existence of a 2n-secure Indistinguishability Obfuscation iO, and the existence of a T -secure
input-hiding obfuscation for the class of multi-bit point functions {In,k}, where T = µ · 2n ·poly(n).

Then the resulting 2-round argument ΠFS, obtained by applying the Fiat-Shamir paradigm10 to
Π with the function family iO(F), is secure.

We remark that µ · 2n · poly(n) is a shorthand for a function T such that for every c > 0 and
all sufficiently large n ∈ N it holds that T (n) ≥ µ(n) · 2n · nc.

Proof of Theorem 3.2. Fix any 4-round interactive proof Π = (P, V ) as claimed in the theorem
statement. Let µ = negl(n) be the soundness error of Π. Suppose for the sake of contradiction
that there exists a poly-size cheating prover P ∗ who breaks the soundness of the protocol ΠFS with
respect to some x∗ /∈ L with probability ν = 1/poly(n).

There must exist a choice for the verifier’s first message τ in Π, such that the following two
conditions hold: (i) Even conditioned on the first part of the first message in ΠFS being τ , the
cheating prover P ∗ still breaks the soundness of the protocol ΠFS on x∗ with probability at least
(ν/2), and (ii) even conditioned on the first message in Π being τ , the original protocol Π still
has soundness error at most (2µ/ν) . Such a τ must exist because at least a (ν/2)-fraction of the
messages must satisfy condition (i) (otherwise P ∗ cannot break ΠFS with total probability ν), and
the fraction that do not satisfy condition (ii) must be smaller than (ν/2) (otherwise the soundness
of Π is smaller than µ).

Fix the verifier’s first message to always be τ (both in the original and in the transformed
protocols). We have that:

Pr
s,iO

[
P ∗(τ, iO(s)) = (α, γ) s.t. V (x∗, τ, α, fs(α), γ) = 1

]
≥ ν/2, (3.1)

where iO(s) refers to the iO obfuscation of a random function fs from the family F .

10For 4-message proofs, the same paradigm as in Figure 2.1 is used, except that the verifier also sends its first
message from the base proof-system (i.e., a random string) in the first round.
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The relaxed verifier and its properties. To obtain a contradiction, we analyze a relaxed
verifier V ′ (which is only used in the security analysis). The relaxed verifier accepts a transcript
(α, β, γ) if the original verifier V would accept, or if the first dlog(ν/(2µ)e bits of β are all 0 (where
recall that µ is the soundness error of Π).11 In particular, whenever V accepts, the relaxed verifier
V ′ also accepts, and so:

Pr
s,iO

[
P ∗(τ, iO(s)) = (α, γ) s.t. V ′(x∗, τ, α, fs(α), γ) = 1

]
≥ ν/2. (3.2)

We take µ′ to be the soundness of the interactive proof (P, V ′) (after τ is fixed), which runs the
relaxed verifier. Observe that by a union bound

µ′ ≤ (2µ/ν) + 2−dlog(ν/(2µ))e ≤ 4µ/ν,

(in particular if µ is negligible, then so is µ′).

We define:

ACC =
{

(α, β) : ∃γ s.t. V ′(x∗, τ, α, β, γ) = 1
}

Observe that membership in ACC can be computed in time 2n · poly(n) = 2O(n) by enumerating
over all γ’s and running V ′. Equation (3.2) implies that there exists a poly-size adversary A (that
just outputs the first part of P ∗’s output) such that:

Pr
s,iO

[
A(iO(s)) outputs some α s.t.

(
α, fs(α)

)
∈ ACC

]
≥ ν/2. (3.3)

Using Eq. (3.3) we prove our main lemma.

Lemma 3.3.

Pr
s,α∗,u∗,iO

[
A
(
iO(s{α∗}, α∗, u∗)

)
= α∗

∣∣∣ (α∗, u∗) ∈ ACC
]
≥ 2−n+2 · ν/µ′

where α∗ and u∗ are uniformly distributed (in {0, 1}n and {0, 1}k, respectively) and iO(s{α∗}, α∗, u∗)
refers to an iO obfuscation of the program that contains the seed s punctured at the point α∗, and
on input α first checks if α = α∗ and if so outputs u∗ and otherwise outputs fs(α).

Proof. We prove the lemma by analyzing the probability that the event(
A(iO(s{α∗}, α∗, u∗)) = α∗

)
∧
((
α∗, u∗

)
∈ ACC

)
occurs.

11In the original protocol Π, it may be the case that different messages α sent by the prover can lead the verifier
to accept with different probabilities. E.g., some specific α’s may lead the verifier to accept with probability µ and
others with probability 0. This presents a technical difficulty later in the proof and so we construct the relaxed verifier
V ′ so that every string α leads it to accept with roughly the same probability (up to a small multiplicative constant)
without increasing the soundness error by too much.
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By the exponential hardness of the puncturable PRF, and the fact that membership in ACC is
computable in 2O(n) time, we have that

Pr
s,α∗,u∗,iO

 A(iO(s{α∗}, α∗, u∗)) = α∗

∧(
α∗, u∗

)
∈ ACC

 ≥ Pr
s,α∗,iO

 A(iO(s{α∗}, α∗, fs(α∗))) = α∗

∧(
α∗, fs(α

∗)
)
∈ ACC

− 2−2n.

(3.4)

Further applying the exponential hardness of the iO scheme (and the fact that membership in ACC
can be decided in 2O(n) time), we get that:

Pr
s,α∗,u∗,iO

 A(iO(s{α∗}, α∗, u∗)) = α∗

∧(
α∗, u∗

)
∈ ACC

 ≥ Pr
s,α∗,iO

 A(iO(s)) = α∗

∧(
α∗, fs(α

∗)
)
∈ ACC

− 2 · 2−2n. (3.5)

Using elementary probability theory, we have that:

Pr
s,α∗,iO

 A(iO(s)) = α∗

∧(
α∗, fs(α

∗)
)
∈ ACC

 = Pr
s,α∗,iO

[⋃
α

(
(A(iO(s)) = α∗) ∧

((
α∗, fs(α

∗)
)
∈ ACC

)
∧ (α∗ = α)

)]

=
∑
α

Pr
s,α∗,iO

[(
(A(iO(s)) = α) ∧

((
α, fs(α)

)
∈ ACC

)
∧ (α∗ = α)

)]
= 2−n

∑
α

Pr
s,iO

[
(A(iO(s)) = α) ∧

((
α, fs(α)

)
∈ ACC

)]
= 2−n Pr

s,iO

[
A(iO(s)) outputs some α s.t.

(
α, fs(α)

)
∈ ACC

]
≥ 2−n · ν/2

where the last inequality is by Eq. (3.3). Thus, we have that:

Pr
s,α∗,u∗,iO

 A(iO(s{α∗}, α∗, u∗)) = α∗

∧(
α∗, u∗

)
∈ ACC

 ≥ 1

4
· 2−n · ν.

By the soundness of the underlying proof-system, it holds that Prα∗,u∗ [(α
∗, u∗) ∈ ACC] ≤ µ′ (since

otherwise a cheating prover could violate soundness by just sending a random α∗).12 By definition
of conditional probability we have that

Pr
s,α∗,u∗,iO

[
A(iO(s{α∗}, α∗, u∗)) = α∗

∣∣∣(α∗, u∗) ∈ ACC
]

=

Prs,α∗,u∗,iO

 A(iO(s{α∗}, α∗, u∗)) = α∗

∧(
α∗, u∗

)
∈ ACC


Prα∗,u∗ [(α∗, u∗) ∈ ACC]

≥ 1

4
· 2−n · ν/µ′,

and the lemma follows.
12It may at first seem odd that we only use the soundness of the underlying proof-system with respect to a cheating

prover that just sends a random message α∗. Recall however that here we consider the relaxed verifier who, by design,
has a (roughly) similar acceptance probability given any string α.
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We are now ready to use (and break) our input-hiding obfuscator hideO. Lemma 3.3, together
with the 2n-security of the iO implies that

Pr
s,α∗,u∗,iO

[
A(iO(s, hideO(α∗, u∗))) = α∗

∣∣∣(α∗, u∗) ∈ ACC
]
≥ 1

4
· 2−n · ν/µ′ − 2−n ≥ 1

8
· 2−n · ν/µ′,

(3.6)

where α∗ and u∗ are uniformly distributed and iO(s, hideO(α∗, u∗)) refers to the iO obfuscation of
the program that contains a seed s for a PRF (in its entirety), and the input-hiding obfuscation
hideO(α∗, u∗) of a multi-bit point function that on input α∗ outputs u∗. The program uses the input-
hiding obfuscation to check if its input equals α∗, and if so outputs the same value as hideO(α∗, u∗).
Otherwise the program behaves like the PRF.

Eq. (3.6) is almost what we want. Namely, an adversary that given access to hideO(α∗, u∗)
produces α∗ with probability ω(poly(n)/2n) (since ν is inverse polynomial and µ is a negligible
function). The only remaining problem is that the distribution of (α∗, u∗) is not quite what we need.
More specifically, in Eq. (3.6) (α∗, u∗) are distributed uniformly conditioned on (α∗, u∗) ∈ ACC,
whereas we need for the marginal distribution of α to be uniform in order to break the hideO
obfuscation. Using the properties of the relaxed verifier, we show that these two distributions are
actually closely related.

We define the following two distributions. The distribution T1 is obtained by jointly picking a
pair (α, β) uniformly from ACC (this is the distribution from which (α∗, u∗) are sampled from in
Eq. (3.6)). T2 is the distribution obtained by picking a uniformly random α ∈ {0, 1}n and then
a random β conditioned on (α, β) ∈ ACC (i.e. the marginal distribution on α is uniform). For
α∗ ∈ {0, 1}n, β∗ ∈ {0, 1}k, we use T1[α∗, β∗] and T2[α∗, β∗] to denote the probability of the pair
(α∗, β∗) by T1 and by T2 (respectively).

Proposition 3.4. For any α∗ ∈ {0, 1}n and β∗ ∈ {0, 1}k:

T2[α∗, β∗] ≥
1

4
T1[α∗, β∗]

Proof. For every α∗ denote by:

Sα∗ =
{
β∗ ∈ {0, 1}k : (α∗, β∗) ∈ ACC

}
.

By construction of the relaxed verifier V ′, we know that for every α ∈ {0, 1}n it holds that

µ

ν
≤ |Sα|

2k
≤ 4µ

ν
.

In particular, for any α, α∗ ∈ {0, 1}n:

|Sα| ≥
1

4
|Sα∗ |.

Now we have that:

T1[α∗, β∗] =
1∑

α∈{0,1}n |Sα|
≤ 4∑

α∈{0,1}n |Sα∗ |
=

4

2n · |Sα∗ |
= 4T2[α∗, β∗] (3.7)
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In particular, drawing by T2 rather than T1 can only decrease the success probability of A by
a multiplicative factor of 4. Moreover, when drawing by T2, the marginal distribution on α∗ is
uniform. Thus Proposition 3.4 and Eq. (3.6) imply that there exists a poly-size adversary A, such
that

Pr
(α∗,u∗)←T2,hideO

[A(hideO(α∗, u∗)) = α∗] ≥ 1

32
· ν

µ′ · 2n

where α∗ drawn by T2 is uniformly random. Since ν is an inverse polynomial and µ′ = O(µ/ν),
this contradicts the T = µ · 2n · poly(n)-security of the input-hiding obfuscation hideO.

4 Security of Fiat-Shamir for Multi-Round Proofs

In this section we show a secure instantiation of the Fiat-Shamir methodology for transforming
any constant-round interactive proof into a 2-round computationally-sound argument. We assume
for the sake of simplicity, and without loss of generality, that the verifier always sends the first
message, and thus consider interactive protocols with an even number of rounds. Namely, for any
constant c ≥ 2, we consider a 2c-round interactive proof Π = (P, V ). We assume without loss of
generality that all of the prover’s messages are of the same length, and denote this length by n (i.e
∀i, αi ∈ {0, 1}n). Similarly, we assume without loss of generality that all of the verifier’s messages
are of the same length, and denote this length by k (i.e. ∀i, βi ∈ {0, 1}k). We assume without loss
of generality that k ≤ n. All these assumptions are only for the simplicity of notations, and can be
easily achieved by padding.

For every i ∈ [c− 1], let {F (i)
n }n∈N be an ensemble of hash functions, such that for every n ∈ N

and for every f (i) ∈ Fn,
f : {0, 1}i·(n+k) → {0, 1}k.

We assume without loss of generality that there exists a polynomial p such that for every i ∈ [c−1]
and for every n ∈ N,

F (i)
n = {f (i)s }s∈{0,1}p(n) .

We define ΠFS to be the 2-round protocol obtained by applying the multi-round Fiat-Shamir

transformation to Π using (iO(f
(1)
s1 ), . . . , iO(f

(c−1)
sc−1 )), where f

(i)
si ← F

(i)
n for every i ∈ [c − 1]. The

security of ΠFS is shown in Theorem 4.1 below.

Theorem 4.1 (Fiat-Shamir Transform for Multi-Round Interactive Proofs). Let µ : N→ [0, 1] be
a function. Assume the existence of a 2n-secure puncturable PRF family F , assume the existence
of a 2n-secure Indistinguishability Obfuscation, and assume the existence of a µ · 2n ·poly(n)-secure
input-hiding obfuscation for the class of multi-bit point functions {In,k}.

Then for any constant c ∈ N such that c ≥ 2, and any 2c-round interactive proof Π with
soundness µ, the resulting 2-round argument ΠFS, obtained by applying the multi-round Fiat-Shamir
transformation to Π with the function family iO(F), is secure.

Proof. The proof is by induction on c ∈ N, for c ≥ 2. The base case c = 2 follows immediately
from Theorem 3.1. Suppose the theorem statement is true for < c rounds, and we will prove that
it is true for c rounds.

To this end, fix any 2c-round interactive proof Π for proving membership in a language L.
Suppose for the sake of contradiction that ΠFS is not secure. Namely, there exists a poly-size
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cheating prover P ∗ and there exists x∗ /∈ L such that P ∗ succeeds in convincing the verifier of ΠFS

that x∗ ∈ L with non-negligible probability.
Consider the following protocol Ψ for proving membership in L, which consists of 2c−2 rounds:

In the first round the verifier chooses the first message that it would have sent in Π, which we
denote by β0. In addition, it chooses a random seed s1 ← {0, 1}p(n), and sends to the prover the

pair (β0, iO(f
(1)
s1 )). Then, the prover chooses (α1, β1, α2) such that β1 = f

(1)
s1 (α1), and such that α1

and α2 are chosen as in Π. It sends (α1, β1, α2) to the verifier. Then the prover and verifier continue
to execute the protocol Π interactively, conditioned on (β0, α1, β1, α2). Finally, the verifier accepts

if and only if the verifier of Π would have accepted the resulting transcript and β1 = f
(1)
s1 (α1).

If Ψ is a sound proof, then by our induction hypothesis (Ψ)FS is sound. However, note that P ∗

can be trivially converted into a cheating prover that breaks the soundness of (Ψ)FS, contradicting
our induction hypothesis that the Fiat-Shamir transformation is sound for interactive proofs with
2(c − 1) rounds (with the function family iO(F)). Thus, it must be the case that Ψ is not a
sound proof. Namely, there exists a poly-size cheating prover P ∗∗, an element x∗ /∈ L, and a
polynomial q, such that P ∗∗ convinces the verifier of Ψ to accept x∗ with probability ≥ 1/q(κ) for
infinitely many κ ∈ N.

Consider the 4-round protocol Φ, which consists of the first 4 rounds of Π, denoted by (β0, α1, β1, α2).
Given a transcript (β0, α1, β1, α2) the verifier of Φ accepts if and only if there exists a strategy of
the (cheating) prover of Π that causes the verifier of Π to accept with probability ≥ 1/q(κ) con-
ditioned on the first 4-rounds of Π being (β0, α1, β1, α2). Note that the verifier of Φ runs in time
poly(2c(n+k)) = 2O(n). The soundness of Π implies that Φ is also sound. Note however that ΦFS

is not sound since P ∗∗ can be used to break the soundness of ΦFS. This is in contradiction to
Theorem 3.2.
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