
A Formal Treatment of Backdoored Pseudorandom Generators

Yevgeniy Dodis1, Chaya Ganesh1, Alexander Golovnev1, Ari Juels2, and
Thomas Ristenpart3

1Department of Computer Science, New York University
{dodis,ganesh,golovnev}@cs.nyu.edu

2Jacobs Institute, Cornell Tech, juels@cornell.edu
3Department of Computer Sciences, University of Wisconsin, rist@cs.wisc.edu

Abstract

We provide a formal treatment of backdoored pseudorandom generators (PRGs). Here a
saboteur chooses a PRG instance for which she knows a trapdoor that allows prediction of
future (and possibly past) generator outputs. This topic was formally studied by Vazirani and
Vazirani, but only in a limited form and not in the context of subverting cryptographic protocols.
The latter has become increasingly important due to revelations about NIST’s backdoored Dual
EC PRG and new results about its practical exploitability using a trapdoor.

We show that backdoored PRGs are equivalent to public-key encryption schemes with pseu-
dorandom ciphertexts. We use this equivalence to build backdoored PRGs that avoid a well
known drawback of the Dual EC PRG, namely biases in outputs that an attacker can exploit
without the trapdoor. Our results also yield a number of new constructions and an explanatory
framework for why there are no reported observations in the wild of backdoored PRGs using
only symmetric primitives.

We also investigate folklore suggestions for countermeasures to backdoored PRGs, which
we call immunizers. We show that simply hashing PRG outputs is not an effective immunizer
against an attacker that knows the hash function in use. Salting the hash, however, does
yield a secure immunizer, a fact we prove using a surprisingly subtle proof in the random
oracle model. We also give a proof in the standard model under the assumption that the hash
function is a universal computational extractor (a recent notion introduced by Bellare, Tung,
and Keelveedhi).

1 Introduction

Pseudorandom number generators (PRGs) stretch a short, uniform bit string to a larger sequence of
pseudorandom bits. Beyond being a foundational primitive in cryptography, they are used widely in
practice within applications requiring relatively large amounts of cryptographic randomness. Seed
the PRG via the output of some (more expensive to use) source of randomness, such as a system
random number generator, and then use it to efficiently generate effectively unbounded number of
pseudorandom bits for the application. Unfortunately, an adversary that can distinguish such bits
from uniform or, worse yet, outright predict the outputs of a PRG, almost invariably compromises
security of higher level applications. This fragility in the face of poor pseudorandom sources is
borne out by a long history of vulnerabilities [7, 8, 15,17,18,23,25,34].

1

Perhaps it is no coincidence, then, that PRGs have also been a target for backdoors. As far
back as 1983, Vazirani and Vazirani [31, 32] introduce the notion of trapdoored PRGs and show
the Blum-Blum-Shub PRG is one [10]. Their purpose was not for sabotaging systems, however,
but instead they used the property constructively in a higher level protocol. The best known
example of potential sabotage is the backdoored NIST Dual EC PRG [24]. It is parameterized
by two elliptic curve points; call them P and Q. The entity that selects these points can trivially
know d = dlogQ P , and armed with d any attacker can from an output of the PRG predict all
future outputs. This algorithm and the proposed use of it as a way of performing key escrow
was detailed at length in a patent by Brown and Vanstone [11]. The possibility of the Dual EC
PRG having been standardized so as to include a backdoor was first discussed publicly by Shumow
and Ferguson [28]. More recent are allegations that the United States government did in fact
retain trapdoor information for the P and Q constants mandated by the NIST standard. The
practical implications of this backdoor, should those constants be available, were recently explored
experimentally by Checkoway et al. [14]: they quantified how saboteurs might decrypt TLS sessions
using the trapdoor information and sufficient computational resources.

Given the importance of backdoored PRGs (and protecting against them), we find it striking
that there has been, thus far, no formal treatment of the topic of maliciously backdoored PRGs.
We rectify this, giving appropriate notions for backdoored PRGs (building off of [31]) that not
only capture Dual EC, but allow us to explore other possible avenues by which a backdoored PRG
might be designed, the relationships between this primitive and others, and the efficacy of potential
countermeasures against backdoors. We provide an overview of each set of contributions in turn.

Backdoored PRGs. We focus on families of PRGs, meaning that one assumes a parameter
generation algorithm that outputs a public set of parameters that we will call, for reasons that
will become clear shortly, a public key. A generation algorithm takes a public key, the current
state of the generator, and yields a (hopefully) pseudorandom output, as well as a new state. This
is standard. A backdoored PRG, on the other hand, has a parameter generation algorithm that
additionally outputs a trapdoor value that we will also call a secret key. A backdoored PRG should
provide, to any party that has just the public key, a sequence of bits that are indistinguishable
from random. To a party with the secret key these bits may be easily distinguishable or, better yet
from the attacker’s perspective, predictable with some reasonable success probability.

As an example, the generation algorithm for backdoored Dual EC picks a fixed group element
Q, a random exponent d, and outputs as public key the pair P = Qd and Q. The secret key is d.
(We use multiplicative notation for simplicity.) Generation works by taking as input an initial,
random state s, and then computing s′ = P s as the next state. An output is computed as all but
the last 16 bits of Qs

′
. (We ignore here for simplicity the possible use of additional input.) An

attacker that knows d can guess the unknown 16 bits of Qs
′

and compute P s
′
, the value which

defines the next output as well as all future states. In practice applications allow the attacker to
check guesses against future PRG outputs, allowing exact discovery of the future state (c.f., [14]).

The Dual EC PRG does not provide outputs that are provably indistinguishable from random
bits, and in fact some analysis has shown that despite dropping the low 16 bits, abusable biases
remain [26]. A natural question is whether one can build a similarly backdoored PRG but which
is provably secure as a PRG?

We answer this in the positive. To do so, we first show a more general result: the equivalence
of pseudorandom public-key encryption (PKE) and backdoored PRGs whose outputs are pseudo-

2

random (to those without the trapdoor). Pseudorandom PKE schemes have ciphertexts that are
indistinguishable from random bits. Constructions from elliptic curves include Möller’s [22] and
the more recent Elligator proposal [9] and its variants [2, 30]. Another approach to achieve pseu-
dorandom bits is via public-key steganography [3, 13, 33, 37]. We give a black-box construction of
backdoored PRGs from any pseudorandom PKE. To complete the equivalence we show how any
secure backdoored PRG can be used to build pseudorandom PKE scheme. The latter requires using
an amplification result due to Holenstein [19].

We also show how a saboteur can get by with key encapsulation mechanisms that have pseu-
dorandom ciphertexts (which are simpler than regular PKE). A KEM encapsulate algorithm takes
as input randomness and a public key, and outputs a ciphertext and a one-time-use secret key. We
use this algorithm directly as a generator for a backdoored PRG: the ciphertext is the output and
the session key is the next state. The secret key for decapsulation reveals the next state. Seen in
this light, the Dual EC PRG is, modulo the bit truncations, an instantiation of our generic KEM
construction using the ElGamal KEM.

The types of backdoored PRGs discussed thus far only allow use of a trapdoor to predict future
states. We formalize another type of backdoored PRG which requires the attacker to be able to
determine any output (as chosen at random from a sequence of outputs) using another output (again
chosen at random from the same sequence). Such “random access” could be useful to attackers
that want to predict previous outputs from future ones, for example.

Immunization countermeasures. So far we have formalized the problem and discussed im-
proved backdoored PRGs. We now turn to countermeasures, a topic of interest given the reduced
trust in PRGs engendered by the possibility of backdooring. While the best countermeasure would
be to use only trusted PRGs, this may not be possible in all circumstances. For example, existing
proprietary software or hardware modules may not be easily changed, or PRG choices may be man-
dated by standards, as in the case of FIPS. Another oft-suggested route, therefore, is to efficiently
post-process the output of a PRG in order to prevent exploitation of the backdoor. We call such a
post-processing strategy an immunizer.

A clear candidate for an immunizer is a cryptographic hash function, such as SHA-256 (or
SHA-3). A natural assumption is that hashing the output of a PRG will provide security even
when the attacker knows the trapdoor, as the hash will hide the data the attacker might use to
break PRG security. (This assumption presumes that SHA-256 is itself not backdoored; we have
no evidence otherwise, although see [1].) Another, similar idea is to truncate a large number of the
output bits.

We show that successful immunization is, perhaps surprisingly, more subtle than näıve ap-
proaches like this would suggest. We show that, a saboteur that knows the immunizer strategy
ahead of time can build a backdoored PRG that bypasses the immunizer. We refer to this setting as
the public immunizer security model, as both the PRG designer and the backdoor exploiter know
the exact immunizer function. We show that for any such immunizer, the attacker can leak secret
state bit-by-bit. Hence, this is true even when hashing and truncating, and even when modeling
the hash function as a random oracle (RO).

This observation suggests that a the designer of a secure PRG should not have exact knowledge
of the immunizer. We introduce two further security models for immunizers. In the semi-private
model, the immunizer can use randomness unknown to the PRG designer, but which is revealed
to the backdoor exploiter. In the private model, the randomness is never revealed to the saboteur.

3

Constructing provably strong immunizers is straightforward in this last model, but not necessarily
practical ones.

For semi-private immunizers, one can prevent basic immunizer-bypassing attacks against hash-
ing (such as we describe below) by using the immunizer’s randomness as a salt for the hash. While
this immunization strategy thwarts such attacks, proving that it is secure — meaning that its
outputs are provably indistinguishable from random bits even for an attacker that has the trap-
door secret of the original backdoored RNG and the immunization salt — is surprisingly tricky.
One would like to argue that since the PRG must be indistinguishable from random to attackers
without the secret trapdoor, then they must have high entropy, and hence hashing with a salt can
extract uniform bits from these unpredictable outputs. However, the distinguisher here does know
the trapdoor, and thus we cannot directly use the assumed backdoored PRG’s security against
distinguishers who do not know the trapdoor. Giving an analysis in the RO model (ROM), we
overcome this hurdle by exploiting the fact that, to achieve standard PRG security (no trapdoor
available) across multiple invocations with fresh seeds, the backdoored PRG must have low collision
probability of outputs. We can in turn use the collision probability as a bound on the predictability
of outputs by an adversary, and thereby prove the security of the hashed outputs. We also extend
this result to work in the standard model assuming only that the hash function is a universal
computational extractor (UCE) [4].

Further related work. As already mentioned, Vazirani and Vazirani [31, 32] introduce the no-
tion of trapdoored generators and use them constructively in protocol design. We build on their
notion, but require stronger security in normal operation (indistinguishability from random bits).
We also generalize to other trapdoor exploitation models, and study broader connections and coun-
termeasures. Their trapdoor PRG using Blum-Blum-Shub can be recast to work as a backdoored
PRG using our KEM-style framework (the generated parity bits being the next state and the fi-
nal squaring of the seed being the generator output). This approach does produce an unbounded
number of bits, however, as no further bits can be produced once the final squaring is output.

Young and Yung studied what they called kleptography: subversion of cryptosystems by modify-
ing encryption algorithms in order to leak information subliminally [35–37]. Juels and Guajardo [21]
propose an immunization scheme for kleptographic key-generation protocols that involves publicly-
verifiable injection of private randomness by a trusted entity. More recent work by Bellare, Paterson,
and Rogaway [5] treats a special case of Young and Yung’s setting for symmetric encryption. We
treat a different case, that of PRGs, that has not yet been extensively treated (but our general
setting is the same).

Goh et al. [16] investigate how to modify TLS or SSH implementations in order to leak session
keys to network attackers that know a trapdoor. One could use a backdoored PRG to accomplish
this; indeed this was seemingly the intent behind use of Dual EC in TLS [14]. However, their work
does not try to subvert PRGs.

Some of our results, in particular the backdoored PRG that foils public immunizers, use channels
that can be viewed as subliminal in the sense introduced by Simmons [29]. Our technique is also
reminiscent of the one used to build secret-key steganography [20].

4

2 Models and Definitions

Notation. We denote the set of all binary strings of length n by {0, 1}n, and the set of all binary
strings {0, 1}∗ = ∪∞i=0{0, 1}i. We denote the concatenation of two bit strings s1 and s2 by s1‖s2.
We use lsb and lsb2 to mean the last bit and the last two bits of a bit string, respectively. We
denote by R�1 and R�2 the bit strings obtained by one and two right shifts of R, respectively.

An algorithm is a function mapping inputs from some domain to outputs in some range. For
non-empty sets X ,Y,Z, we denote the composition of algorithms F: X → Y and G: Y → Z by
F ◦ G, i.e. (F ◦ G)(s) = F(G(s)). A randomized algorithm is an algorithm with a designated
bit-string input (always the last) called the coins. We write F(x; r) to denote the output resulting
from running F on input x and coins r. We write y ← F(x; r) to assign y that value. We will write
F(x) when the coins are understood from context and write y←$ F(x) to denote picking a fresh r
appropriately and running F(x; r). We assume r is always of some sufficient length that we leave
implicit. For brevity, we often introduce algorithms without their domain and range when these
are clear from context.

The running time of an algorithm is the worst-case number of steps to compute it in an abstract
model of computation with unit basic operation costs. In most cases the implementation will be
clear, and we will clarify when not; our results extend in straightforward ways to finer-grained
models of computation.

We write x←$ X to denote sampling a value x uniformly from a set X . We use the same
notation for non-uniform distributions, and in such cases specify the distribution. We let Un
denote the uniform distribution over {0, 1}n and Uqn the uniform distribution over Un × · · · × Un
(q repeats of Un). For ease of notation, we abbreviate Un to U when the length n is clear from
context. Applying an algorithm (or other function) to a distribution, e.g., F(x;U), denotes the
implied distribution over outputs.

PRFs, PRPs, and Encryption. We recall a number of standard cryptographic primitives.

Definition 1 (Computational Indistinguishability). Two distributions X and Y are called (t, ε)-
computationally indistinguishable (denoted by CDt(X,Y) ≤ ε) if for any algorithm D running in
time t, |Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ ε.

Definition 2 (Pseudorandom Function). A family of algorithms {Fsk : {0, 1}m → {0, 1}n | sk ∈
{0, 1}k} is called a family of (t, q, δ)-pseudorandom functions if AdvPRF

F , maxD AdvPRF
F (D) ,

maxD(2 |Pr[GPRF
F (D)⇒ true]− 1

2 |) ≤ δ where the maximum is taken over all algorithms D running
in time t and making up to q queries to the oracle O (the game GPRF

F (D) is shown in Fig. 1).
Function F in Fig. 1 is a uniformly selected random function F : {0, 1}m → {0, 1}n.

Definition 3 (Pseudorandom Permutation). A family of functions {fseed : {0, 1}n → {0, 1}n |
seed ∈ {0, 1}`} is called a (t, q, ε)-pseudorandom permutation if it is a (t, q, ε)-pseudorandom func-
tion and fseed is a permutation for every seed ∈ {0, 1}`.

Conventional public-key encryption (PKE) schemes meet semantic security style notions, mean-
ing no partial information about plaintexts is leaked. Many traditional ones additionaly are such
that ciphertexts are indistinguishable from uniformly chosen group elements (e.g., ElGamal). We
use something slightly different still: public-key encryption (PKE) with pseudorandom ciphertexts.
These schemes have ciphertexts that are indistinguishable from random bit strings (of appropriate

5

Game GPRF
F (D)

sk ← Uk
b←$ {0, 1}
if b = 1 then
O ← Fsk

else
O ← F

b′ ← DO

return (b = b′)

Figure 1: PRF game

Game GCPA
K,Enc(D)

(pk, sk)←$ K
b←$ {0, 1}
if b = 1 then
O ← Encpk

else
O ← R

b′ ← DO(pk)
return (b = b′)

Figure 2: IND$-CPA Game

length). Both theoretical and practical constructions of such public key encryption schemes were
shown in [3, 13,33]. Constructions from elliptic curves include [22] and [9].

Definition 4 (IND$-CPA Public Key Encryption). A triple (K,Encpk,Decsk), where K→ {0, 1}p×
{0, 1}k, pk ∈ {0, 1}p,Encpk : {0, 1}m × {0, 1}ρ → {0, 1}n, sk ∈ {0, 1}k,Decsk : {0, 1}n → {0, 1}m is
called a (t, q, δ)− IND$-CPA public key encryption scheme if

• Pr[Decsk(Encpk(s;α)) = s] = 1, where s← {0, 1}m, (pk, sk)← K, α← {0, 1}ρ,

• AdvCPA
K,Enc(D) , 2 |Pr[GCPA

K,Enc(D) ⇒ true] − 1
2 | ≤ δ for any algorithm D running in time t and

making up to q queries to the oracle O. (The game GCPA
K,Enc(D) is defined in Fig. 2, the function

R outputs a uniformly selected output of length n.)

Pseudorandom generators. A pseudorandom generator (PRG) is a pair of algorithms (K,G).
The parameter generation algorithm K takes input coins and outputs a pair (pk, sk), called the
public key and secret or private key (or trapdoor). Traditionally, a PRG has no trapdoor, and pk
would be referred to as the public parameter. Our notation of public / private keys is for consistency
with the next section; for an ordinary PRG, sk may be taken as null. We assume that sk uniquely
determines pk. A public key pk designates a family of algorithms denoted by G. Each algorithm
Gpk : S → {0, 1}n × S maps an input called the state to an n-bit output and a new state. We
drop the subscript pk where it is clear from context. We refer to S as the state space; it will often
simply be bit strings of some length. We will always specify a distribution over S that specifies the
selection of an initial state, written s←$ S, for the PRG. For any integer q ≥ 1, we let outq(G, s)
for s ∈ S denote the sequence of bit strings (r1, r2, . . . , rq) output by running (r1, s1)← G(s), then
(r2, s2) ← G(s1), and so on. By stateq(G, s) we denote the sequence of states (s1, s2, . . . , sq). A
PRG is secure when no adversary can distinguish between its outputs and random bits.

Definition 5 (PRG security). A PRG (K,G) is a (t, q, δ)-secure PRG if for pk ← K,
CDt((pk, out

q(Gpk,U)),U) ≤ δ.

This definition does not capture forward-secrecy, meaning that past outputs should be indis-
tinguishable from random bits even if the current state is revealed. In all the PRG constructions

6

that follow, we point out which of the results satisfy the forward-security notion and which are
forward-insecure.

3 Backdoored Pseudorandom Generators

A backdoored pseudorandom generator (BPRG) is a triple of algorithms (K,G,A). The pair (K,G)
is a PRG, as per the definition in the last section. The third algorithm A we call the adversary,
although it is in fact co-designed with the rest of the scheme. It uses the trapdoor output by K to
violate security of the PRG in one of several potential ways. We give games defining these distinct
ways of violating security in Figure 3.

Game GBPRG
dist (K,G,A)

(pk, sk)←$ K

s←$ S
r0

1, . . . , r
0
q ← outq(Gpk, s)

r1
1, . . . , r

1
q ←$ Uqn

b←$ {0, 1}
b′ ← A(sk, rb1, . . . , r

b
q)

return (b = b′)

Game GBPRG
next (K,G,A)

(pk, sk)←$ K

s←$ S
r1, . . . , rq ← outq(Gpk, s)

s1, . . . , sq←$ stateq(Gpk, s)

s′q←$ A(sk, r1, . . . , rq)

return (s′q = sq)

Game GBPRG
rseek (K,G,A, i, j)

(pk, sk)←$ K

s←$ S
r1, . . . , rq ← outq(Gpk, s)

r′j ←$ A(sk, i, j, ri)

return (rj = r′j)

Figure 3: Security games defining success of trapdoor-equipped adversaries.

The first game is identical to the standard PRG definition except that the adversary here gets
the trapdoor. The second tasks A with recovering the current state, given the trapdoor and a
sequence of outputs. This is, by definition, sufficient information to produce all future outputs of
Gpk. The last tasks A with predicting the full output of some state j given the trapdoor and the
output for i.

Definition 6 (Backdoored PRG). A triple (K,G,A) is called a (t, q, δ, (Gtype, ε))-backdoored PRG
for type ∈ {dist, next, rseek} if (K,G) is a (t, q, δ)-secure PRG and AdvBPRG

type (K,G,A) ≥ ε, where

AdvBPRG
dist (K,G,A) , 2 ·

∣∣∣∣Pr[GBPRG
dist (K,G,A)⇒ true]− 1

2

∣∣∣∣ ,
AdvBPRG

next (K,G,A) , Pr[GBPRG
next (K,G,A)⇒ true], and

AdvBPRG
rseek (K,G,A) , min

1≤i,j≤q
Pr[GBPRG

rseek (K,G,A, i, j)⇒ true].

A Gdist-BPRG is only interesting when ε� δ, as otherwise the distinguisher without the trap-
door information can distinguish already with advantage δ. For the other types, even if ε < δ the
definition is still meaningful.

A (t, q, δ, (Gnext, ε)-BPRG is (strictly) better for the saboteur than achieving a Gdist-BPRG under
the same parameters. The random seek notion is orthogonal; it may or may not be better depending
on the situation. Our attacks and (looking ahead to later sections) defenses will be given according

7

to the strongest definitions. That is when taking on the role of the sabotuer, we will build Gnext-
BPRGs and/or Grseek-BPRGs with as efficient as possible A. When considering defenses against
saboteurs by way of immunization, we will target showing that no efficient A can succeed in Gdist.

Example: the Dual EC BPRG. As an example of a BPRG we turn to Dual EC. It uses an
elliptic curve group G with generator g. For consistency with later sections, we use multiplicative
notation for group operations. We also skip for simplicity some details about representation of
elliptic curve points, these being unimportant for understanding the attack. For a more detailed
description of the algorithm and backdoor see [14].

Key generation K picks a random point Q ∈ G and an exponent d←$ Z|G|. It computes P = Qd.
The public key is set to pk = (P,Q) and the secret is x. The state space is S = Z|G|. On input
a seed si ∈ S, the generation algorithm G computes si+1 ← P si and computes ri+1 as all but the
last 16 bits of Qsi+1 . The output is (ri+1, si+1).

With knowledge of d and given two consecutive outputs r1, r2 corresponding to states s, s1 we
can give a Gnext adversary A that efficiently recovers s2. Adversary A starts by computing from
r1 a set of at most 216 possibilities for Qs1 . Let these possibilities be X1, . . . , X216 . Then for each
i ∈ [1..216], the adversary checks whether QX

d
i has all but last 16 bits that match r2. If so it outputs

s2 = Xd
i = Qs1d = P s1 . Note that while A cannot recover the generator’s second state s1, it can

predict the generator’s second output r2, the third state s2, and all subsequent states and outputs.
Also A is relatively efficient, working in time about 216 operations.

As for basic PRG security without the trapdoor, a result due to Schoenmakers and Sidorenko [26]
gives an attack working in time about 216 using a single output to achieve distinguishing advantage
around 1/100. Thus, putting it all together, we have that Dual EC is a (t, q, δ, (Gnext, 1))-BPRG for
t ≈ 216, q > 2, and δ ≈ 1/100.

From a saboteur’s perspective, that Dual EC doesn’t achieve PRG security (against distinguish-
ers without the trapdoor) seems a limitation. One can truncate more than 16 bits to achieve better
security, but this would make A exponentially less efficient. In the next section we will show how
a saboteur can construct a BPRG with strong PRG security and efficient state recovery.

4 Backdoored PRG Constructions

We start by simplifying and improving the Dual EC BPRG. Let G be a group and g a generator
of G. Let K pick a random secret key x←$ Z|G| and let pk , X = gx. The PRG works simply as
G(pk, si) = (ri+1, si+1) = (gsi , Xsi). A Gnext adversary can recover si+1 = Xsi by computing ri+1

x.
For a G that is DDH secure and for which uniform group elements are indistinguishable from bit
strings (e.g., [2, 9, 30]), this construction can be proven GPRG

dist secure under the DDH assumption.

4.1 Backdoored PRGs from Key Encapsulation

We in fact can generalize significantly by observing that the previous construction is actually using
the ElGamal key encapsulation scheme (KEM) in a direct way. Recall that a KEM scheme is
a triple of algorithms KEM Γ = (Gen,Encap,Decap). The key generation outputs a public key
/ secret key pair (pk, sk) ← Gen. The encapsulation algorithm takes the public key, random
coins r ∈ {0, 1}n for some n and outputs a ciphertext-key pair (c,K) ← Encap(pk; r) where
K ∈ {0, 1}n. The decapsulation algorithm takes a secret key and ciphertext and outputs a key:

8

Game DistDKEM

(pk, sk)←$ Gen
r←$ {0, 1}n
(c0,K0)←$ Encap(pk; r)
c1←$ {0, 1}n
K1←$ {0, 1}n
b←$ {0, 1}
b′←$ D(pk, cb,Kb)
return (b = b′)

Figure 4: Pseudorandom KEM security.

K′

(pk, sk)←$ Gen
return (pk, sk)

G′(pk, s)
(r′, s′)← Encap(pk; s)
return (r′, s′)

A′(sk, r1, . . . , rq)

s′ ← Decap(sk, rq)
return s′

Figure 5: Backdoored PRG from a pseudorandom KEM.

Decap(sk, c) = K̃ ∈ {0, 1}n ∪{invalid}. We require correctness, meaning that Decap(sk, c) = K for
(c,K) = Encap(pk; r) and for all pk, sk pairs generatable by Gen and all coin strings r.

We give a variant of KEM security that requires ciphertexts to be pseudorandom: the output of
Encap is indistinguishable from a pair of random bit strings. See Figure 4. We define AdvDist

KEM(D) =
2
∣∣Pr[DistDKEM ⇒ true]− 1

2

∣∣. A KEM Γ is said to be a (t, δ)-pseudorandom KEM if AdvDist
Γ
··=

maxD AdvDist
Γ (D) ≤ δ, where the maximum is taken over all algorithms D running in time t.

This is a strictly stronger security notion than the conventional one for KEMs [27], which
does not demand that ciphertexts have any particular appearance to attackers. This stronger
pseudorandomness requirement was first introduced by Möller [22]. He gave an elliptic curve variant
of ElGamal that provably meets it, and other KEM constructions can be built using [2, 9, 30].

We have the following result showing that any pseudorandom KEM gives a Gnext-BPRG.

Proposition 1. Let Γ = (Gen,Encap,Decap) be a (t, δ)-pseudorandom KEM. Then (K′,G′,A′)
defined in Fig. 5 is a (t, q, qδ, (Gnext, 1))-BPRG.

Proof. The correctness of the KEM gives that AdvBPRG
next (K′,G′,A′) = 1 and that A′ is efficient.

We now prove (standard) PRG security against distinguishers without the trapdoor. To do so
we use a hybrid argument, applying the pseudorandom KEM security q times. Let H0 be the
GPRG
dist game with b = 0 and Hq be GPRG

dist with b = 1. Let Hi for 1 ≤ i ≤ q − 1 be the same
as game Hi−1 except that we replace the ith output of Encap with two independent, random bit
strings. A straightforward reduction gives that CDt(Hi, Hi+1) ≤ δ, and since we have q hybrids
AdvPRG

dist (K,G,D) ≤ qδ for any D running in time t.

9

4.2 Random Seek Backdoored PRGs

We now show a prediction attack, where the prediction algorithm can seek to any output quickly.
Given one output, we can predict any other, and the prediction can seek in both directions, that is
predict previous outputs as well. In the construction shown, we use the lsb of a random string to
make a decision, and we shift by one bit, so that the randomness used later is independent of the
bit used for decision. We assume that the underlying PRG or PRF was used to get enough number
of bits so that after the shift we have enough random bits for encryption.

Proposition 2. Let (K,Encpk,Decsk) be a (t, q, δ)-IND$-CPA public key encryption scheme, Fsk be
a (t, q, δ)-pseudorandom function. Then (K′,G′,A′) defined in Fig. 6 is a (t, q, 3δ, (Grseek, 1

4 − δ))-
backdoored pseudorandom generator.

K′

(pk, sk)← K
return (pk, sk)

G′(pk, (s0, s1, count))
α← Fs1(count)
if lsb(α) = 0 then

r ← Encpk(s0;α�1)
else

r ← Fs0(count)
count← count + 1
return (r, (s0, s1, count))

A′(sk, i, j, ri)

if (i = j) then
return ri

s0 ← Decsk(ri)
if (s0 = ⊥) then

return 0
rj ← Fs0(j)
return rj

Figure 6: Random seek backdoored PRG

Proof.

AdvBPRG
rseek (K′,G′,A′) = Pr[rj = r′j] ≥ Pr[lsb(Fs1(i)) = 0 ∧ lsb(Fs1(j)) = 1] ≥ 1

4
− δ.

From pseudorandomness of F’s outputs

CDt(Fs0(1), . . . ,Fs0(q),U) ≤ δ,CDt(Fs1(1), . . . ,Fs1(q),U) ≤ δ.

Then CDt((pk, s0,Encpk(s0;α�1)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security. Thus,

CDt((pk, out
q(G′pk,U)),U) ≤ 3δ.

The distinguishing and predicting PRGs we discussed also satisfy the notion of forward security,
whereas the Grseek construction in Fig 6 is forward-insecure.

10

Gen
(pk, sk)← K
return (pk, sk)

Enc(pk, b)
s← U
if (b = 0) then

r ← U
else

r ← outq(Gpk, s)
return r

Dec(sk, r)
b′ ← A(sk, r)
return b′

Figure 7: Bit Encryption

4.3 Public-key Encryption from a Backdoor PRG

We show that the existence of backdoored PRGs implies public-key encryption (PKE). From a back-
doored PRG, we construct a bit encryption scheme with noticeable correctness and overwhelming
secrecy. Using parallel repetition and privacy amplification of key-agreement [19], we can amplify
secrecy and correctness without increasing the number of rounds. Since the number of rounds is
not increased, we obtain secure public-key encryption.

Theorem 1. If (K,Gpk,A) is a (t, q, δ, (Gdist, ε))-backdoored PRG, then the protocol in Fig. 7 is a
bit-encryption protocol with correctness ε and security 1− δ against attackers running in time t.

Proof. Correctness:

Pr[Dec(sk,Enc(pk, b)) = b] = Pr[b = b′] = Pr[GBPRG
dist (K,G,A)⇒ true] ≥ 1

2
+
ε

2
.

Security:
For any adversary D who runs in time t,

Pr[D(pk, r) = b] =
1 + CDt((pk, out

q(G,U)),U)

2
≤ 1

2
+
δ

2
.

Note that combining this result with our earlier construction of backdoored PRGs from PKE
and Proposition 1, we arrive at the promised conclusion that backdoored PRGs and pseudorandom
PKE are equivalent. We capture this with the following informal theorem, which is a corollary of
the results so far.

Theorem 2. Backdoor PRGs exist iff public-key encryption with pseudorandom ciphertexts exists.

5 Immunization

In this section, we ask how to immunize a potentially backdoored PRG. A natural idea is for the
user to apply a non-trivial function f to the output of the PRG. So now the attacker A learns
f(ri) rather than ri. We ask the question: when does f successfully immunize a PRG? We study
the immunization functions that turn a backdoored PRG into a backdoor-less PRG. Letting the

11

immunization function be a family of algorithms {fseed | seed ∈ {0, 1}`}, we consider the following
immunization models:

1. Public immunization: In this model, seed is revealed to the attacker A prior to construction
of the PRG algorithm. The attacker thus knows the immunization function fseed that will
be applied to the outputs of the generator. In this setting, the goal of the attacker A is to
develop a PRG G with a backdoor that bypasses the known immunization.

2. Semi-private immunization: In this model, the PRG generator G is constructed without
reference to seed. We may view this as a setting in which the PRG attacker A learns seed,
and thus fseed, only after the specification of G. This situation can arise, for example, when
the immunization function f depends upon a source of fresh public randomness.

3. Private immunization: In this model, seed is secret, in the sense that G is constructed without
reference to seed and A never learns seed. We might imagine the user using a source of private
randomness, unavailable to A, to seed the immunization function f . (Note that although
the user has some private randomness, she might still need the PRG to generate longer
pseudorandom strings.)

Now we give formal definitions of secure immunization in the three models discussed above. We
slightly abuse notation in the following way: For a PRG G such that (ri, si) ← G(si−1), we write
f ◦G to mean f(ri), i.e., f applied to the output of G only (and not G’s internal state). Similarly,
by outq(f ◦G, s) we mean the sequence (f(r1), . . . , f(rq)), where (r1, . . . , rq) = outq(G, s).

Definition 7 (Public Immunization). Let type ∈ {dist, next, rseek}. A family of algorithms
{fseed | seed ∈ {0, 1}`} is called a public ((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any
(t, q, δ)-secure PRG (K,G), and for any algorithm A running in time t′,

• {fseed ◦Gpk(seed, ·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-pseudorandom generator,

• AdvBPRG
type (K, fseed ◦G(seed, ·),A(seed, ·)) ≤ ε.

Definition 8 (Semi-private Immunization). Let type ∈ {dist, next, rseek}. A family of algorithms
{fseed | seed ∈ {0, 1}`} is called a semi-private ((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any
(t, q, δ)-secure PRG (K,G), and for any algorithm A running in time t′,

• {fseed ◦Gpk(·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-pseudorandom generator,

• AdvBPRG
type (K, fseed ◦G(·),A(seed, ·)) ≤ ε.

Definition 9 (Private Immunization). Let type ∈ {dist, next, rseek}. A family of algorithms
{fseed | seed ∈ {0, 1}`} is called a private ((t, q, δ), (t′, q′, δ′), (Gtype, ε))-immunization, if for any
(t, q, δ)-secure PRG (K,G), and for any algorithm A running in time t′,

• {fseed ◦Gpk(·) | (seed, pk) ∈ {0, 1}` × {0, 1}p} is a (t′, q′, δ′)-pseudorandom generator,

• AdvBPRG
type (K, fseed ◦G(·),A(·)) ≤ ε.

12

K′

(pk, sk)← Gen
return (pk, sk)

G′(pk, s)
(α, β)← G(s)
(r′, s′)← Encap(pk;α)
return (r′, s′)

A′(sk, seed, fseed(ri))

c← f−1
seed(fseed(ri))

s′ ← Decap(c, sk)
return s′i

Figure 8: PRP Immunization Insecure in Semi-private Model

In Section 5.1 we show that it is possible to successfully create a PRG backdoor in the public
immunization setting. On the other hand, in Section 5.2 we show that there exist immunizations
in the semi-private model that separate these two models. Also, as we will see in Section 5.3, a
pseudorandom function is a secure private immunization. To separate semi-private and private
models, in the following simple lemma we show that a pseudorandom permutation is not a semi-
private immunization. The construction we give for the separation in Fig. 8 also satisfies forward
security.

Lemma 1. Let fseed be a (t, q, δ)-pseudorandom permutation. Then there exists a triple (K′,G′,A′),
such that (K′, fseed ◦G′(·),A′(seed, ·)) is a (t, q, 2qδ, (Gnext, 1))-backdoored pseudorandom generator.

Proof. Let G be a (t′, q, δ)-pseudorandom generator, and Γ = (Gen,Encap,Decap) be a (t, δ)-
pseudorandom ciphertext KEM. Consider the triple (K′,G′pk,A

′(seed, ·)) shown in Fig. 8. Then

AdvBPRG
next (K′, fseed ◦ G′,A′) = Pr[Decap(r′, sk) = s′|(r′, s′) ← Encap(pk;α), (pk, sk) ← Gen] = 1.

From pseudorandomness of G’s outputs CDt(out
q(G,U),U) ≤ δ, (t, δ)-pseudorandomness of Γ, and

using a hybrid argument similar to the proof of Proposition 1,

CDt((pk, out
q(G′pk,U)),U) ≤ 2qδ.

5.1 Public Immunization Model

In the public immunization model, the PRG algorithms G and A know the seed of the immu-
nization function that will be applied on the output. In this section we demonstrate backdoored
pseudorandom generator that cannot be immunized in the public immunization model. Since seed
of the immunization function fseed is known to both G and A, in order to construct a backdoored
pseudorandom generator from the viewpoint of the saboteur, we fix the strongest function from this
family so that for any function in the family, the backdoored PRG after immunization is compro-
mised. The idea behind the construction is to leak the initial state bit by bit, by rejection sampling
of the output of the immunization function such that the bias is unnoticeable. For a bit string s,
we denote the ith bit of s by s(i).

Lemma 2. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryption scheme, G be a
(t, q, δ)-pseudorandom generator, and f such that for seed← {0, 1}` , CDt(fseed(U),U) ≤ δ. Then
(K′,G′,A′) defined in Fig. 9 is a (t, q − L lnL

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator,

where ε = 1− L · exp
(
− ln2 L
3(1−δ)

)
, L is the length of ciphertexts produced by Encpk.

13

K′

(pk, sk)← K
return (pk, sk)

G′(pk, seed, (s0, s1, count))
c← Encpk(s1)
L← |c|
if count ≤ L then

j ← 0
s′0 ← s0

count2 ← 0
repeat

count2 ← count2 + 1
(r′, s′0)← G(s′0)

until (fseed(r′)(1) = c(count))∨
(count2 >

lnL
1−δ);

s′1 ← s1

else
(r′, s′1)← G(s1)
s′0 ← 0

count′ ← count + 1
return (r′, (s′0, s

′
1, count

′))

A′(sk, seed, fseed(r1), . . . , fseed(rq))

for 1 ≤ i ≤ L do
ci ← fseed(ri)(1)

s1 ← Decsk(c)
for L+ 1 ≤ i ≤ q do

r′i, s1 ← G(s1)
return (0, s1, q + 1)

Figure 9: Predicting backdoored PRG in Public Model

Proof. From pseudorandomness of G’s outputs CDt(out
q(G,U),U) ≤ δ and pseudorandomness of

ciphertexts CDt((pk, s1,Encpk(s1)), (pk, s1,U)) ≤ δ,

CDt((pk, out
q(G′pk,U)),U) ≤ 2δ.

From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1− L · Pr[count2 ≥

lnL

1− δ
] ≥ 1− L · exp

(
− ln2 L

3(1− δ)

)
.

5.2 Semi-private Immunization Model

In the semi-private model, the generator G does not know seed of fseed, but the attacker does. We
show that a Random Oracle and a Universal Computational Extractor are secure immunizations
in the semi-private model. We will first bound the collision probability of pseudorandom outputs.
The collision probability bounds the probability that an algorithm can predict the output of a PRG
run on a uniformly random seed, even with the knowledge of some trapdoor information, because,
intuitively, the output of a PRG should depend on the input seed also.

Definition 10. The conditional predictability of X conditioned on Y is defined as

Pred(X|Y) ··= Ey←Y [max
x

(Pr[X = x|y = Y])].

14

Definition 11. The conditional collision probability of X conditioned on Y is defined as

Col(X|Y) ··= Ey←Y [Pr
x1,x2←X

[x1 = x2|Y = y]].

Lemma 3. For any distributions X and Y , Pred(X|Y) ≤
√

Col(X|Y).

Proof. Let py = Pr[Y = y], px|y = Pr[X = x|Y = y]. Then

Pred[X|Y] =
∑
y

py ·max
x

px|y =
∑
y

√
py · (

√
py max

x
px|y) ≤√∑

y

py ·
∑
y

py max p2
x|y ≤

√
1 ·
∑
y

(py ·
∑
x

p2
x|y) =

√
Col(X|Y).

Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a family of algorithms, then by
outi(Gpk,U) we denote the distribution of Gpk’s ith output, i.e. the distribution of ri where
(r1, . . . , ri, . . . , rq)← outq(Gpk,U).

Lemma 4. Let {Gpk : {0, 1}m → {0, 1}n×{0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-pseudorandom gener-
ator. 1 Then for any 1 ≤ i ≤ q, for any K → {0, 1}p × {0, 1}k such that CDt(pk, Up) ≤ δ, where
(pk, sk)← K,

Pred(outi(Gpk,U)|sk) ≤
√
δ +

1

2n
.

Proof. We show that Col(outi(Gpk,U)|sk) ≤ δ + 1
2n , then Lemma 3 implies the desired bound.

Assume, to the contrary, Col(outi(Gpk,U)|sk) > δ + 1
2n . This implies that there exists i such

that E(pk,sk)←K Pr[ri = r′i|sk] > δ + 1
2n , where ri, r

′
i ← outi(Gpk,U). Let D be a PRG-distinguisher

for Gpk as defined in Fig. 10. Then,

|Pr[D(outq(Gpk,U)) = 1]− Pr[D(U) = 1]| ≥ Col(outi(Gpk,U)|sk)− 1

2n
> δ,

which contradicts the (t, q, δ)-pseudorandomness of {Gpk}.

5.2.1 Positive result in Random Oracle Model.

A random oracle (RO) is an oracle that responds to every unique query with a random response
chosen uniformly from its output domain. If a query is repeated it responds the same way every
time that query is submitted. A RO : {0, 1}n × {0, 1}k → {0, 1}n is chosen uniformly at random
from the set of all functions that map {0, 1}n+k to {0, 1}n. We show that in the semi-private model,
a Random Oracle is a secure immunization function.

1Here and below we assume that t > C(p+ q(n+m+ time(Gpk))) for some absolute constant C > 0, so that the
attacker can always parse the input, and run G for q times.

15

D(pk, r1, . . . , rq)

s← {0, 1}m
r′1, · · · , r′q ← outq(Gpk, s)

if ri = r′i then
return 1

else
return 0

Figure 10: Distinguisher D for Gpk

Theorem 3. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-pseudorandom
generator. Then fseed(x) = RO(x‖seed) is a semiprivate ((t, q, δ), (t, q, δ), (Gdist, ε))-immunization
for Gpk, where

ε = δ +
q2

2n
+
qG
2k

+ qqA

√
δ +

1

2n
,

k = |seed|, qG and qA are the bounds on the number of times G and A query the random oracle,
respectively.

Proof. Assume, to the contrary, there exists a pair of algorithms (K,A) running in time t′, such
that the triple (K, fseed ◦G(·),A(seed, ·)) is a (t, q, δ, (Gdist, ε))-backdoored pseudorandom generator.
I.e.,

AdvBPRG
dist (K, fseed ◦G,A) = 2

∣∣∣∣Pr[GBPRG
dist (K, fseed ◦G,A)⇒ true]− 1

2

∣∣∣∣ > ε

in Game GBPRG
dist (K, fseed ◦ G,A) from Fig. 3. Let r1, . . . , rq be the outputs of Gpk before the

immunization, i.e. s← U , (r1, . . . , rq)← outq(Gpk, s). The immunization is fseed(ri) = RO(ri‖seed)
for 1 ≤ i ≤ q.

We define the following three events:

• W1: ri = rj for i 6= j.

• W2: Gpk queries (ri‖seed) for some 1 ≤ i ≤ q.

• W3: A queries (ri‖seed) for some 1 ≤ i ≤ q.

Note that if none of the events above happened then the two distributions in the distinguishing
game corresponding to the challenge bit being 0 or 1, are identical. Now we proceed to bound the
probabilities of these three events.

• Since the PRG-security of G is δ, Pr[W1] ≤ q2

2n + δ.

• In the semiprivate model G does not see seed, therefore, the probability that G queries ri‖seed
in one of its queries is the probability that the G guesses seed, and by the union bound this

is bounded from above by qG

2k
. Thus, Pr[W2] ≤ qG/2k.

16

• Now, we look at the probability that A makes a relevant query, given that G did not query
ri‖seed for all i. Assume A predicts ri for i ∈ I ⊆ [q]. Then there exists i ∈ I that was
predicted first, i.e. when all fseed(rj) looked random to A. Then, the probability that A
predicts at least one ri is at most

∑q
i=1 Pr[A predicts ri using qA queries given sk]. Since A

makes at most qA calls to the random oracle, the latter probability, by the union bound, is
bounded by qA

∑q
i=1 Pr[A predicts ri using one query given sk]. Now Lemma 4 gives us the

following bound:

Pr[W3] ≤
q∑
i=1

Pr[A predicts ri using qA queries|sk]

≤ qA

q∑
i=1

Pr[A predicts ri using one query|sk]

≤ qA

q∑
i=1

Pred[ri|sk] ≤ qqA

√
δ +

1

2n
.

By the claims above,

ε = Pr[W1] + Pr[W2] + Pr[W3] ≤ δ +
q2

2n
+
qG

2k
+ qqA

√
δ +

1

2n
.

5.2.2 Positive result in standard model.

In this section, we show that replacing the Random Oracle with a UCE function [4] is secure in the
standard model. First, we briefly recall Universal Computational Extractor (UCE) defined in [4]
by Bellare et al. UCE is a family of security notions for a hash function family.

UCE Security. A notion of UCE security is specified by specifying a class of sources S. The
source is given oracle access to the hash function. UCE security for the class of sources S states
that for any PPT algorithm called the distinguisher D, who receives the key of the hash function
and leakage L passed by the source, cannot tell better than random guessing whether Hk was used
or a random function. We now give the formal definitions. A source S is a PPT algorithm which
is given oracle access to Hash, and outputs a value L called the leakage. For a pair of source S and
distinguisher D, define the UCES,DH game as shown in Fig. 11.

Definition 12. A function H is called UCE[S, qD, ε]-secure, if for all sources S ∈ S, and all
polynomial-time algorithms D that make at most qD queries to H, AdvUCE

H (S,D) ··= 2 Pr[UCES,DH ⇒
true]− 1 ≤ ε.

Brzuska and Mittelbach [12] introduced the notion of strongly statistical unpredictable sources.
For a source S, and a polynomial-time algorithm P called the predictor, define the game PredPS as
shown in Fig. 12.

17

Main UCES,DH
b← {0, 1}
k ← K
L← SHash

b′ ← D(k, L)
return (b′ = b)

Hash(x)

if T [x] = ⊥ then
if (b = 1) then

T [x]← H(k, x)
else

T [x]← {0, 1}k
return T [x]

Figure 11: Game UCE and Hash Oracle

PredPS
done← false
Q← ∅
L← SHash

done← true
Q′ ← PHash(L, Y)
return (Q ∩Q′ 6= ∅)

Hash(x)

if done← false then
Q← Q ∪ {x}

if T [x] = ⊥ then
T [x]← {0, 1}k
Y [x]← T [x]

return T [x]

Figure 12: Game Pred and Hash Oracle

Definition 13. A source S is called (l, qA, ε)-strongly statistically unpredictable, denoted by S ∈
Ss-sup[l, qA, ε], if for all computationally unbounded algorithms P that output a list of at most l
guesses and make at most qA oracle queries, AdvPred

S,P
··= Pr[PredPS ⇒ true] ≤ ε.

Theorem 4. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-pseudorandom
generator. Then fseed(x) = Hseed(x) is a semiprivate ((t, q, δ), (t, q, δ + ε), (Gdist, ε′))-immunization
for Gpk, where

ε′ = 2ε+ δ +
q2

2n
,

H ∈ UCE[S, qD, ε], S = Ss-sup[l, qA, δ + q2

2n + q(qA + l)
√
δ + 1

2n].

Proof. Given an adversary A playing the distinguishing attack game GBPRG
dist (K, H ◦G,A(seed)) we

will construct a statistically unpredictable source S and a polynomial-time distinguisher D (see

Fig. 13) such that AdvBPRG
dist (K, H ◦G,A(seed)) ≤ 2AdvUCE

H (S,D) + δ + q2

2n .

Let b be the challenge bit in the UCE game UCES,DH . Then,

Pr[UCES,DH ⇒ true|b = 1] = Pr[GBPRG
dist (K, H ◦G,A(seed))⇒ true],

Pr[UCES,DH ⇒ true|b = 0] = 1− Pr[GBPRG
dist (K,RO ◦G,A(seed))⇒ true],

where in the RO immunization game, A has to distinguish uniformly random outputs from RO
applied to the outputs of G. If r’s are distinct, then these two distributions are identical. From the

18

SHash

(pk, sk)← K
s← {0, 1}m
r1, r2, · · · , rq ← outq(Gpk, s)
for 1 ≤ i ≤ q do

u0
i ← Hash(Ri)
u1
i ← {0, 1}n

d← {0, 1}
I = {ud1, . . . , udq}
return (d, pk, sk, I)

D(d, sk, I, k)
d′ ← A(sk, I, k)
if (d = d′) then

return 1
else

return 0

Figure 13: Source S and Distinguisher D

PRG security, the probability of the event ri = rj for i 6= j is less than δ + q2

2n . Therefore,

Pr[UCES,DH ⇒ true|b = 0] ≥ 1

2
− 1

2
(δ +

q2

2n
)

Summing yields,

AdvUCE
H (S,D) =

1

2
AdvBPRG

dist (K, H ◦G,A)− 1

2
δ − 1

2
.
q2

2n
,

AdvBPRG
dist (K, H ◦G,A) ≤ 2AdvUCE

H (S,D) + δ +
q2

2n
.

Now we argue that S is statistically unpredictable; that is, it is hard to guess the source’s Hash
queries even given the leakage, in the random case of the UCE game. Consider an arbitrary
predictor P , and the advantage of P in the game PredPS . If all Ri are distinct (which happens with

probability 1−δ− q2

2n), the probability that P guesses at least one of r’s given the leakage is at most
qPred(R|sk). Now, since P outputs a list of length l and makes up to qA queries, by Lemma 4,

AdvPred
S,P ≤ δ +

q2

2n
+ q(qA + l)

√
δ +

1

2n
.

5.3 Private Immunization Model

We now study the strongest model of immunization which is the private model, where seed is secret
from both the PRG and the attacker. We show that a PRF is an immunization function in this
model. But if users had access to a backdoor-less PRF, then instead of using it to immunize a
backdoored PRG, they could use the PRF itself for pseudorandomness. In this section, we explore
using functions weaker than PRF as immunization functions, and show that some natural functions
are not secure immunizations.

19

5.3.1 PRF Immunization.

Lemma 5. Let {Gpk : {0, 1}m → {0, 1}n × {0, 1}m|pk ∈ {0, 1}p} be a (t, q, δ)-pseudorandom gen-
erator, let also {fseed : {0, 1}n → {0, 1}k|seed ∈ {0, 1}l} be a (t, q, ε)-pseudorandom function. Then
fseed is a private ((t, q, δ), (t, q, δ + ε), (Gdist, ε′))-immunization for Gpk, where

ε′ = ε+ δ +
q2

2n
.

Proof. From the definition of PRF, no distinguisher D running in time t given q outputs of Fseed can
distinguish the output from uniformly random with advantage greater than ε. By PRG security
of Gpk, CDt((pk, out

q(Gpk,U)),U) ≤ δ. Therefore, {fseed ◦ Gpk(·)|(seed, pk) ∈ {0, 1}` × {0, 1}p}
is a (t, q, δ + ε)-pseudorandom generator. Similar to the proof of Theorem 3, AdvBPRG

dist (K, fseed ◦
G(·),A(·)) ≤ AdvPRF

f + Pr[∃i, j : ri = rj |(r1, . . . , rq)← outq(Gpk,U)] ≤ ε+ δ + q2

2n .

5.3.2 Attack against XOR.

One of natural candidates for the immunization function in the private randomness model is the
function XOR with a random string as private randomness. In this section we show an attack against
fseed(x) = seed⊕x, where seed is private randomness of immunization function f . The backdoored
PRG works as follows: it outputs strings such that the XOR of two consecutive outputs leaks one
bit of s1 where s1 is a part of the seed of length n, such that the bias introduced is negligible. After
(n+ 1) outputs A can recover all of s1, and can predict future outputs.

Lemma 6. Let (K,Encpk,Decsk) be a (t, q, δ) − IND$-CPA public key encryption scheme, G be a
(t, q, δ)-pseudorandom generator. Then for (K′,G′,A′) defined in Fig. 14 and fseed(x) = seed ⊕ x,
(K′, fcirc ◦ G′(·),A′(·)) is a (t, q − n logn

1−δ , 2δ, (Gnext, ε))-backdoored pseudorandom generator, where

ε = 1− n · exp
(
− ln2 n
3(1−δ)

)
.

Proof. From the Chernoff bound:

AdvBPRG
next (K′,G′,A′) ≥ 1− n · Pr[count2 ≥

lnn

1− δ
] ≥ 1− n · exp

(
− ln2 n

3(1− δ)

)
.

From pseudorandomness of G’s outputs CDt(out
q(Gpk,U),U) ≤ δ, and

CDt((pk, s1,Enc(s1)), (pk, s1,U)) ≤ δ due to IND$-CPA security. Thus,
CDt((pk, out

q(G′pk,U)),U) ≤ 2δ.

5.3.3 Extensions of XOR-attack.

The previous attack can be extended in two ways. First, the PRG can be modified so that one
does not need to see q > n outputs to guess the next one, with high probability it is enough
to see just three random outputs. Although this kind of attack is weaker than the definition of
rseek-attack, it is much stronger than next-attack. Second, using homomorphic encryption, the
previous attack can be extended to some other natural immunization functions. Here we show
an example where the multiplication with a private random string is not a private immunization.
Let (K,Encpk,Decsk) be a homomorphic (t, q, δ) − IND$-CPA encryption scheme. For simplicity

20

K′

(pk, sk)← K
return (pk, sk)

G′(pk, (s0, s1, c, rprev, count))

s′0 ← s0

s′1 ← s1

if count = 1 then
(α, s0)← G(s0)
c← Encpk(s1;α)
n← |c|
(r′, s′0)← G(s0)

if 1 < count ≤ n+ 1 then
count2 ← 0
repeat

(r′, s′0)← G(s′0)
until ((r′ ⊕ rprev)(1) = c(i)) ∨
(count2 >

lnn
1−δ);

if count > (n+ 1) then
(r′, s′1)← G(s1)

rprev = r′

count← count + 1
return (r′, (s′0, s

′
1, c, rprev, count))

A′(sk, fseed(r1), · · · fseed(rq))

for 1 ≤ i ≤ n do
c(i) ← (fseed(ri)⊕ fseed(ri+1))(1)

c = c(1)c(2) . . . c(n)

s1 ← Decsk(c)
r′n+2 ← G(s1)
seed′ ← r′n+2 ⊕ f(seed, r′n+2)
for n+ 1 < j ≤ q + 1 do

(r′j , s1)← G(s1)
return r′q+1 ⊕ seed′

Figure 14: Predicting backdoored PRG — Private immunization with fseed(x) = seed⊕ x

we assume that Encpk : Zb → Zn,Decsk : Zn → Zb, and Encpk(m1) · Encpk(m2) = Enc((m1 + m2)
mod b), and the immunization function fseed(r) = (seed · r) mod n (e.g., one can think of Benaloh
cryptosystem [6]).

By 3rseek we mean the rseek-game where the adversary gets to see 3 outputs rather than just
one.

Lemma 7. Let (K,Encpk,Decsk) be a (t, q, δ)− IND$-CPA public key encryption scheme which is
multiplicatively homomorphic as above, Fsk be a (t, q, δ)-pseudorandom function for q ≥ 4. Then for
(K′,G′,A′) defined in Fig. 15 and fseed(x) = seed·x, (K′, fseed◦G′(·),A′(·)) is a (t, q, 3δ, (G3rseek,

1
64−

δ))-backdoored pseudorandom generator.

Proof. From pseudorandomness of F’s outputs

CDt((Fs0(1), . . . ,Fs0(q)),U) ≤ δ,CDt((Fs1(1), . . . ,Fs1(q)),U) ≤ δ.

Then CDt((pk, s0,Enc(s0;α�2)), (pk, s0,U)) ≤ 2δ due to IND$-CPA security. Thus,

CDt((pk, out
q(G′pk,U)),U) ≤ 3δ.

21

K′

(pk, sk)← K
return (pk, sk)

G′(pk, s0, s1, count)
α← Fs1(count)
if (lsb2(α) = 00) then

r′ ← Encpk(0;α�2)
else if (lsb2(α) = 10) then

r′ ← 1/(Encpk(s0;α�2))
else

r′ ← Fs0(count)
return (r′, (s0, s1, count + 1))

A′(sk, fseed(ra), fseed(rb), fseed(rc), d)
e← (fseed(ra))/fseed(rb)
s′0 ← Decsk(e)
if s′0 6= ⊥ then

r′c ← Fs′0(c)

seed′ ← fseed(rc)/r
′
c

r′d ← Fs′0(d) · seed′
return r′d

return 0

Figure 15: Predicting Backdoored PRG — Private Immunization

AdvBPRG
3rseek (K′, fseed ◦G′,A′) = Pr[rd = r′d] ≥

Pr[lsb(Fs1(d)) = 1 ∧ seed′ = seed ∧ s′0 = s0] ≥
Pr[lsb(Fs1(d)) = 1 ∧ r′c = rc ∧ s′0 = s0] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ s′0 = s0] ≥
Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ ra = Encpk(0) ∧ rb = 1/(Encpk(s0))] ≥

Pr[lsb(Fs1(d)) = 1 ∧ lsb(Fs1(c)) = 1 ∧ lsb2(Fs1(a)) = 00 ∧ lsb2(Fs1(b)) = 10] ≥
1

64
− δ

for q ≥ 4.

Acknowledgements. The research of Yevgeniy Dodis is partially supported by gifts from
VMware Labs and Google, and NSF grants 1319051, 1314568, 1065288, 1017471. We would like
to thank Arno Mittelbach for helpful discussions on UCE and pointing out the notion of strong
statistical unpredictability.

References

[1] Albertini, A., Aumasson, J.P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious hashing:
Eve’s variant of SHA-1. Cryptology ePrint Archive, Report 2014/694 (2014), http://eprint.
iacr.org/

[2] Aranha, D.F., Fouque, P.A., Qian, C., Tibouchi, M., Zapalowicz, J.C.: Binary elligator
squared. Cryptology ePrint Archive, Report 2014/486 (2014), http://eprint.iacr.org/

[3] Backes, M., Cachin, C.: Public-key steganography with active attacks. In: Theory of Cryp-
tography, pp. 210–226. Springer (2005)

[4] Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. In: Advances
in Cryptology–CRYPTO 2013, pp. 398–415. Springer (2013)

[5] Bellare, M., Paterson, K., Rogaway, P.: Security of symmetric encryption against mass surveil-
lance. In: Advances in Cryptology–CRYPTO 2014, pp. 1–19. Springer (2014)

[6] Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the workshop on selected areas
of cryptography. pp. 120–128 (1994)

22

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[7] Bendel, M.: Hackers describe PS3 security as epic fail,
gain unrestricted access, http://www.exophase.com/20540/
hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/

[8] Bernstein, D.J., Chang, Y.A., Cheng, C.M., Chou, L.P., Heninger, N., Lange, T., van Someren,
N.: Factoring RSA keys from certified smart cards: Coppersmith in the wild. In: Advances in
Cryptology — ASIACRYPT 2013, pp. 341–360. Springer (2013)

[9] Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points in-
distinguishable from uniform random strings. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. pp. 967–980. ACM (2013)

[10] Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number generator.
SIAM Journal on computing 15(2), 364–383 (1986)

[11] Brown, D., Vanstone, S.: Elliptic curve random number generation (2007), http://www.
google.com/patents/US20070189527

[12] Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via uces. In: Advances in
Cryptology–ASIACRYPT 2014, pp. 122–141. Springer (2014)

[13] Cachin, C.: An information-theoretic model for steganography. In: Information Hiding. pp.
306–318. Springer (1998)

[14] Checkoway, S., Fredrikson, M., Niederhagen, R., Green, M., Lange, T., Ristenpart, T., Bern-
stein, D.J., Maskiewicz, J., Shacham, H.: On the practical exploitability of Dual EC DRBG
in TLS implementations (2014)

[15] Everspaugh, A., Zhai, Y., Jellinek, R., Ristenpart, T., Swift, M.: Not-so-random numbers in
virtualized linux and the Whirlwind RNG (2014)

[16] Goh, E.J., Boneh, D., Pinkas, B., Golle, P.: The design and implementation of protocol-based
hidden key recovery. In: Information Security, pp. 165–179. Springer (2003)

[17] Goldberg, I., Wagner, D.: Randomness and the Netscape browser. Dr Dobb’s Journal pp.
66–71 (1996)

[18] Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and Qs: Detec-
tion of widespread weak keys in network devices. In: USENIX Security. pp. 205–220. USENIX
(2012)

[19] Holenstein, T.: Key agreement from weak bit agreement. In: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing. pp. 664–673. ACM (2005)

[20] Hopper, N., von Ahn, L., Langford, J.: Provably secure steganography. Computers, IEEE
Transactions on 58(5), 662–676 (May 2009)

[21] Juels, A., Guajardo, J.: RSA key generation with verifiable randomness. In: Public Key
Cryptography. pp. 357–374. Springer (2002)

[22] Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In: Computer
Security–ESORICS 2004, pp. 335–351. Springer (2004)

[23] Mowery, K., Wei, M., Kohlbrenner, D., Shacham, H., Swanson, S.: Welcome to the Entropics:
Boot-time entropy in embedded devices. pp. 589–603. IEEE (2013)

23

http://www.exophase.com/20540/ hackers-describe-ps3-security-as-epic-fail-gain-unrestricted- access/
http://www.exophase.com/20540/ hackers-describe-ps3-security-as-epic-fail-gain-unrestricted- access/
http://www.google.com/patents/US20070189527
http://www.google.com/patents/US20070189527

[24] National Institute of Standards and Technology: Special Publication 800-90: Recommenda-
tion for random number generation using deterministic random bit generators (2012), http:
//csrc.nist.gov/publications/PubsSPs.html#800-90A, (first version June 2006, second
version March 2007)

[25] Ristenpart, T., Yilek, S.: When good randomness goes bad: Virtual machine reset vulnerabil-
ities and hedging deployed cryptography. In: NDSS (2010)

[26] Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudorandom gen-
erator. IACR Cryptology ePrint Archive 2006, 190 (2006)

[27] Shoup, V.: A proposal for an iso standard for public key encryption (version 2.1). IACR
E-Print Archive 112 (2001)

[28] Shumow, D., Ferguson, N.: On the possibility of a back door in the NIST SP800-90 Dual Ec
Prng. Proc. Crypto’07 (2007)

[29] Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Advances in Cryptol-
ogy. pp. 51–67. Springer (1984)

[30] Tibouchi, M.: Elligator squared: Uniform points on elliptic curves of prime order as uniform
random strings. Cryptology ePrint Archive, Report 2014/043 (2014), http://eprint.iacr.
org/

[31] Vazirani, U.V., Vazirani, V.V.: Trapdoor pseudo-random number generators, with applications
to protocol design. In: FOCS. vol. 83, pp. 23–30 (1983)

[32] Vazirani, U.V., Vazirani, V.V.: Efficient and secure pseudo-random number generation. In:
Advances in cryptology. pp. 193–202. Springer (1985)

[33] Von Ahn, L., Hopper, N.J.: Public-key steganography. In: Advances in Cryptology-
EUROCRYPT 2004. pp. 323–341. Springer (2004)

[34] Yilek, S., Rescorla, E., Shacham, H., Enright, B., Savage, S.: When private keys are public:
Results from the 2008 Debian OpenSSL vulnerability. In: SIGCOMM Conference on Internet
Measurement. pp. 15–27. ACM (2009)

[35] Young, A., Yung, M.: The dark side of “black-box” cryptography or: Should we trust capstone?
In: Advances in Cryptology—CRYPTO’96. pp. 89–103. Springer (1996)

[36] Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In: Advances
in Cryptology—Eurocrypt’97. pp. 62–74. Springer (1997)

[37] Young, A., Yung, M.: Kleptography from standard assumptions and applications. In: Security
and Cryptography for Networks, pp. 271–290. Springer (2010)

24

http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://csrc.nist.gov/publications/PubsSPs.html#800-90A
http://eprint.iacr.org/
http://eprint.iacr.org/

	Introduction
	Models and Definitions
	Backdoored Pseudorandom Generators
	Backdoored PRG Constructions
	Backdoored PRGs from Key Encapsulation
	Random Seek Backdoored PRGs
	Public-key Encryption from a Backdoor PRG

	Immunization
	Public Immunization Model
	Semi-private Immunization Model
	Positive result in Random Oracle Model.
	Positive result in standard model.

	Private Immunization Model
	PRF Immunization.
	Attack against XOR.
	Extensions of XOR-attack.

