
Privately Outsourcing Exponentiation to a Single Server:

Cryptanalysis and Optimal Constructions

Céline Chevalier∗ Fabien Laguillaumie† Damien Vergnaud‡

Abstract

We address the problem of speeding up group computations in cryptography using a single untrusted
computational resource. We analyze the security of an efficient protocol for securely outsourcing multi-
exponentiations proposed at ESORICS 2014. We show that this scheme does not achieve the claimed
security guarantees and we present several practical polynomial-time attacks on the delegation protocol
which allows the untrusted helper to recover part (or the whole) of the device secret inputs. We then pro-
vide simple constructions for outsourcing group exponentiations in different settings (e.g. public/secret,
fixed/variable bases and public/secret exponents). Finally, we prove that our attacks on the ESORICS
2014 protocol are unavoidable if one wants to use a single untrusted computational resource and to limit
the computational cost of the limited device to a constant number of (generic) group operations. In
particular, we show that our constructions are actually optimal.

Keywords. Secure outsource computation, Cryptanalysis, Coppersmith methods, Protocols, Optimal-
ity results

1 Introduction

We address the problem of “outsourcing” computation from a (relatively) weak computational device to a
more powerful entity. This problem has been considered in various settings since many years (distributed-
computing projects – e.g., Mersenne prime search – or cloud computing) but the proliferation of mobile
devices, such as smart phones or RFID tags, provides yet another venue in which a computationally weak
device would like to be able to outsource a costly operation to a third party helper. Low-cost RFID tags do
not usually have the computational or memory resources to perform complex cryptographic operations and
it is natural to outsource these operations to some helper. The Near Field Technology (NFC) is embedded in
the current generation of cellphone and can be used for transport tickets, credit cards, transit pass, loyalty
cards or access control badges. This contactless technology raises many questions of disclosure of sensitive
personal information. To preserve privacy, complex anonymity-oriented cryptographic protocols should be
used and it is mandatory to delegate some of the costly operations from the chip to the phone, because
these protocols are highly resource-consuming. However, in this scenario, this helper (e.g. the phone) can,
potentially, be operated by a malicious adversary and we usually need to ensure that it does not learn
anything about what it is actually computing.

The wild and successful deployment of cloud storage services, like Google Drive, Dropbox, or Amazon
Cloud Drive make users outsource their data, for a personal or commercial purpose. These users actually
have to trust their storage providers concerning the availability of their data, and indeed outages happen
regularly. That is why it has been proposed to audit online storage services [34]. Cryptographic primitives
are needed to convince customers (or an external trusted auditor) that their platforms are reliable. Among
such primitives, provable data possessions [2] and proofs of retrievability [23] allow the storage cloud to
prove that a file uploaded by a client has not been deteriorated or that it can be entirely retrieved. The
computation needed on the verification side by the client are highly “exponentiation-consuming”.

Indeed, the core operation of these cryptosystems is group exponentiation, i.e., computing ua from a
group element u and an exponent a which is central to cryptography, and the main goal of this paper is to
analyze new and existing protocols outsourcing group exponentiation to a single untrusted helper.

∗Université Paris 2
†LIP (UCBL, U. Lyon, CNRS, ENS Lyon, INRIA)
‡DI/ENS (ENS, CNRS, INRIA, PSL)

1

1.1 Prior work

One can date back the first protocol for securely outsourcing group exponentiation to the pre-computation
scheme proposed by Schnorr in his seminal paper on discrete-logarithm based signatures [32]. Schnorr
proposed a scheme for fast generation of pairs (gk, k) where g is a generator of a cyclic group G = 〈g〉 of
prime-order p and k is a (purported) random element in Zp. The scheme was broken by de Rooij for the
small parameters suggested by Schnorr (see [16]) but new proposals with provable security were proposed
subsequently (see [7] and references therein).

Even if the problem of outsourcing cryptographic operations is not new, it has known a revival of interest
in the last ten years with the development of mobile technologies. In 2005, Hohenberger and Lysyanskaya
[21] provided a formal security definition for securely outsourcing computations from a computationally
limited device to an untrusted helper and they presented two practical schemes. Their first scheme shows
how to securely outsource group exponentiation to two, possibly dishonest, servers that are physically
separated (and do not communicate). Their protocol achieves security as long as one of them is honest
(even if the computationally limited device does not know which one). In 2012, Chen, Li, Ma, Tang and
Lou [11] presented a nice efficiency improvement to the protocol from [21], but the security of their scheme
also relies on the assumption that the two servers cannot communicate.

Since this separation of the two servers is actually a strong assumption hard to be met in practice, at
ESORICS 2014 [38], Wang, Wu, Wong, Qin, Chow, Liu and Tan proposed a protocol to outsource group
exponentiations to a single untrusted server. Their generic algorithm is very efficient and allows to outsource
multi-exponentiations with fixed or variable exponent and bases (that can be public or secret).

1.2 Contributions of the paper

Our contributions are both theoretical and practical.
Our first result is a practical attack on a protocol for outsourcing multi-exponentiation proposed at

ESORICS 2014 by Wang, Wu, Wong, Qin, Chow, Liu and Tan [38]. Our attack allows to recover secret
information in polynomial time using lattice reduction. It shows that their solution is completely insecure.
We will show that what they expected to achieve is actually theoretically impossible.

Our second contribution is the proposal of a taxonomy of exponentiation delegation protocols and the
associated simple yet precise and formal models of protocols that allow a client C (or delegator) who wants
to compute a multi-exponentiation (which is a computation of the form

∏n
i=1 u

ai
i for group elements ui’s and

exponents ai’s) to delegate an intermediate exponentiation to a more powerful server S (or delegatee). The
client’s contribution in the computation is then only few multiplications of group elements and arithmetic
operations modulo the underlying group order. We consider in this work only prime-order groups.

Our taxonomy covers all the practical situations : the group elements can be secret or public, variable
or fixed, the exponents can be secret or public, and the result of the multi-exponentiation can also be either
public or secret. As an example, a BLS digital signature [6] is a group element σ = h(m)a, where m is the
signed message, h a hash function, and a the secret key. The signature computation can be delegated with
our protocol for a public group element (the hashed value of the message), a secret exponent (the secret key),
and a public output (the signature). During an ElGamal decryption of a ciphertext (c1, c2) = (gr,m · yr)
(where m is the plaintext and y = ga is the public key), one may want to securely delegate the computation
of c1

a (to recover m as c2/c1
a). Such an exponentiation can be delegated with our protocol for known group

element (c1), secret exponent (a) and secret result (c1
a, in order to keep the plaintext m secret).

We propose a delegation protocol for each of the previously mentioned scenarios. The latency of sending
messages back and forth has been shown to often be the dominating factor in the running time of crypto-
graphic protocols. Indeed, round complexity has been the subject of a great deal of research in cryptography.
We thus focus on the problem of constructing one-round delegation protocols; i.e., we authorize the client
to call only once the server S, and give him access to some pre-computations (consisting of pairs of the
form (k, gk)). We then consider their complexity, in terms of the number of group operations needed by the
client to eventually get the desired result securely. These algorithms are simple and we prove that they are
essentially optimal.

Our third and main contribution is the computation of lower bounds on the number of group operations
needed on the delegator’s side to securely compute his exponentiation when it has access to a an helper
server. To give these lower bounds, we analyze the security of delegation protocols in the generic group
model which considers that algorithms do not exploit any properties of the encodings of group element.
This model is usually used to rule out classes of attacks by an adversary trying to break a cryptographic
assumption. We use it only to prove our lower bounds but we do not assume that an adversary against our
protocols is limited to generic operations in the underlying group. As mentioned above, these lower bounds

2

Constructions for Outsourcing Fixed Base Exp. Constructions for Outsourcing Var. Base Exp.

u a ua N
b

o
f

d
el

eg
a
ti

o
n

s

L
o
w

er
b

o
u

n
d

fo
r

#
o
p

er
a
ti

o
n

s
in

G

A
ch

ie
v
ed

C
o
m

p
le

x
it

y

O
p

ti
m

a
li
ty

u a ua N
b

o
f

d
el

eg
a
ti

o
n

s

L
o
w

er
b

o
u
n

d
fo

r
#

o
p

er
a
ti

o
n

s
in

G

A
ch

ie
v
ed

C
o
m

p
le

x
it

y

O
p

ti
m

a
li
ty

Pub. Pub. Pub. Pub. Pub. Pub.
Pub. Pub. Sec. Pub. Pub. Sec.

Pub. Sec. Pub. 1 0
0

(P. 2)
3 Pub. Sec. Pub. s log p

s+1

log p
s+1

(P. 4
and 5)

3

Pub. Sec. Sec. 1 1
1

(P. 3)
3 Pub. Sec. Sec. s log p

s+1

log p
s+1

(P. 4
and 5)

3

Sec. Pub. Pub. Sec. Pub. Pub.

Sec. Pub. Sec. 1 1
1

(P. 1)
3 Sec. Pub. Sec.

1 log p
`+3

∗ log p
`

(P. 8)
?

2 ≤ 3
3

(P. 7)
?

Sec. Sec. Pub. 1 0
0

(P. 2)
3 Sec. Sec. Pub. s log p

s+1

log p
s

(P. 6)
?

Sec. Sec. Sec. 1 1
1

(P. 1)
3 Sec. Sec. Sec. s log p

s+1

log p
s

(P. 6)
?

∗ ` is the number of available pairs (k, gk), p is the order of G, and P. means “Protocol” (See p. 11).

Table 1: Outsourcing Protocols for Single Exponentiation (Summary)

tell us that our protocols cannot be significantly improved. A summary of our results is given in Table 1
(and all our results are collected in Table 2 in the core of the paper).

2 Exponentiation Delegation: Definitions.

The (multi-)exponentiations are computed in a group G whose description is provided by an algorithm
GroupGen, which takes as input a security parameter λ. It provides a set params which contains the group
description, its prime1 order, say p, and one or many generators. Let n be an integer, we denote by a (resp.
u) a vector of n exponents ai ∈ Zp (resp. group elements ui ∈ G). The aim of the protocols that follows is
to compute

∏n
i=1 u

ai
i , denoted as ua.

We consider a delegation of an exponentiation as a 2-party protocol between a client C and a server S.
We denote as (yC , yS , tr)← (C(1λ, params, (a,u)),S(1λ)) the protocol at the end of which C knows yC and
S learns yS (usually an empty string). The string tr is the transcript of the interaction. In all our protocols,
the server will be very basic, since it will only perform exponentiations whose basis and exponent are sent
to him by the client. In [10], Cavallo et al. emphasized the need for delegation of group inverses since
almost all known protocols for delegated exponentiation do require inverse computations from the client.
They presented an efficient and secure protocol for delegating group inverses. However, our protocols do
not require such computations and our lower bounds hold even in groups in which inverse computation is
efficient (and therefore does not need to be delegated, see Remark 6).

To model the security notions, and to simplify the exposition, we describe by a computation code β (which
is a binary vector of length 4), the scenario of the computation. Indeed, according to the applications, some
of the data on which the computations are performed may be either public or secret. In the computation
of ua, the vector of basis u, the vector of exponents a or the result ua may be unknown (and especially
to the adversary). The three first entries of the code describe the secrecy of respectively u, a and ua: a
0 means that the data is hidden to the adversary, and 1 means that the data is public. The last entry
indicates whether the base if fixed (f) or variable (v). For instance, the code 101v means that u is public,
the exponent a is secret, and the result ua is public, while the base is variable. Note that we consider the
whole vectors (i.e., all of its coordinates) to be either public or private, whereas we could imagine that, for
a vector u of exponents for instance, some of these could be public, and others could be kept secret. The
following notions should then be declined according to these scenarios

1In this paper, following prior works, we consider only prime order groups, but most of our results can be generalized to
composite order groups.

3

2.1 Correctness

The correctness requirement for delegation of a (multi-)exponentiation means that when the server and the
client follow honestly the protocol, the client’s output is actually the expected (multi-)exponentiation.

Definition 1 (Correctness). Let λ be a security parameter. We say that (C,S) satisfies correctness if

Pr[params← GroupGen(1λ), (yC , yS , tr)← (C(1λ, params,a,u),S(1λ)) : yC =

n∏
i=1

uaii] = 1

for all a in the range Znp and all u in Gn.

2.2 One-wayness

The most natural security notion that a delegation protocol must fulfill is the one-wayness during the
computation. It basically means that an attacker cannot compute any secret data involved during the
computation. More precisely, Fig. 1 describes the one-wayness security experiment. The attack presented
in Section 4 against Wang et al.’s protocol is against the one-wayness of their scheme. The attacker A is
initially fed with information that depends on the scenario. The role of the procedure I is to set the initial
information given to the attacker. It takes as input u, a and the computation code β = (β1, β2, β3, β4) and
outputs a subset I(u,a;β) ⊆ {u,a,ua} such that

• u ∈ I(u,a;β) if and only if β1 = 1;

• a ∈ I(u,a;β) if and only if β2 = 1;

• ua ∈ I(u,a;β) if and only if β3 = 1.

The attacker then engages in a series of delegation protocols, where he can adaptively choose the secrets
involved during the protocols, and he eventually outputs an answer A? = (u?,a?, v?) ∈ Gn × Znp ×G. The
attacker is said to win this experiment, if the predicate P1(A?,u,a) holds where P1(A?,u,a) is equal to 1
if and only if the three following equalities hold:

• u? = u;

• a? = a;

• v? = ua.

Note that if the computation code β contains some values equal to 1, it is actually trivial for the adversary
to output an answer A? that satisfies some of these equalities. In particular, for the case where u, a, ua

are public (i.e., the computation code β = (1, 1, 1, β4)), the security notion cannot be achieved. Similarly,
the security notion for the cases with the computation code β = (1, 1, 0, β4) and β = (0, 1, 1, β4) cannot be
achieved (but the latter case may have some interest for composite order groups).

Definition 2 (One-wayness). Let λ be a security parameter, GroupGen be a group generator, and (C,S) be
a client-server protocol for the server-aided computation of the multi-exponentiation ua. Let β ∈ {0, 1}4 be
the computation code. We say that (C,S) satisfies (τ, ε)-one-wayness against a malicious adversary if, for
any algorithm running in time τ , it holds that

Pr[bit← Expow(A,β) : bit = 1] ≤ ε

where Expow(A,β) is the one-wayness experiment described in Figure 1.

2.3 Privacy

We describe now a notion of security that relaxes the usual simulation-based security from [21] and [38].
The simulation-based security notion captures in perhaps the most direct way the intuition of a good notion
of privacy. Roughly, it says that “whatever can be efficiently computed about the secret inputs given the
protocol’s view can be computed without this view”. However, it is a relatively complex and subtle notion
to formalize (see [21] or [38] for details).

In this paper we instead consider a simpler indistinguishability-based security notion, called privacy
that captures that an untrusted helper cannot tell which inputs the other parties might have used. The
formalization was provided in [10]. It is simple and easy to use: it says that if we take two secret inputs

4

Experiment Expow(A,β)

params← GroupGen(1λ)

(a,u)
R←− Znp ×Gn

init← I(β)
i← 1, tr0 ← ∅
(α, aux)← A(1λ, params, init)
while α 6= attack do

(yi, (α, (ai+1,ui+1), aux), tri)← (C(1λ, params, (ai,ui)),A(aux, tri−1))
i← i+ 1

(y,A?, tr)← (C(1λ, params, (a,u)),A(aux))
Return 1 if P1(A?,u,a) = 1 and 0 otherwise

Figure 1: One-wayness

(even adversarially chosen), an “honest-but-curious” adversary running the outsource protocol with one
input picked uniformly at random cannot tell which it was with a probability significantly better than that
of guessing. This notion is similar to Input-Indistinguishable Computation introduced by Micali, Pass and
Rosen in [27].

Note that this security notion is implied by the simulation-based one from [21, 38]. In particular, since
we will prove that the protocol from [38] does not achieve our security notion, we obtain that it does not
achieve the stronger simulation-based security notion from [21, 38] (contrary to what is claimed in [38]). In
Section 6, we prove that it is impossible to design some secure outsourcing exponentiation protocols (for our
security definition) for a single untrusted computational resource if one wants to limit the computational
cost of the limited device to a constant number of (generic) group operations. This result readily implies
that this task is also impossible for the stronger simulation-based security notion from [21] and [38].

Once again, the advantage of the adversary A in the privacy experiment, depicted in Fig. 2, will be
settled according to the context of the delegation. We use the predicate P2((a?0,u

?
0), (a?1,u

?
1),β) to tell that

when the base, the exponent or the result of the exponentiation is known (according to the computation
code), the base, the exponent chosen by the adversary or the corresponding result must be the same for both
pairs (otherwise, the privacy would be trivially broken). The predicate P2((a?0,u

?
0), (a?1,u

?
1),β) is defined

as the conjunction of the three following disjunctions:

• u?0 = u?1 or β1 = 0;

• a?0 = a?1 or β2 = 0;

• (u?0)a
?
0 = (u?1)a

?
1 or β3 = 0;

As above, the security definition cannot be achieved for some computation codes.

Definition 3 (Privacy). Let λ be a security parameter, GroupGen be a group generator, and (C,S) be a
client-server protocol for the server-aided computation of the multi-exponentiation ua. Let β ∈ {0, 1}4 be
the computation code. We say that (C,S) satisfies (τ, ε)-privacy against a malicious adversary if, for any
algorithm running in time τ , it holds that∣∣∣∣Pr[bit← Exppriv(A,β) : bit = 1]− 1

2

∣∣∣∣ ≤ ε
where Exppriv(A,β) is the privacy experiment described in Figure 2.

Remark 1. As mentioned in [12, 9], a delegation protocol that does not ensure verifiability may cause
severe security problems (in particular if the delegated computation occurs in the verification algorithm of
some authentication protocol). However, verifiability is not necessarily mandatory in scenarios where the
delegated computation is used for instance in an encryption scheme as a session key. In this case, one can
indeed use additional cryptographic techniques to ensure that the values returned by the powerful device are
correct (e.g. by adding a MAC or other redundancy to the ciphertext).

5

Experiment Exppriv(A,β)

params← GroupGen(1λ)
(α, (a1,u1), aux)← A(1λ, params)
i← 1, tr0 ← ∅
while α 6= attack do

(yi, (α, (ai+1,ui+1), aux), tri)← (C(1λ, params, (ai,ui)),A(aux, tri−1))
i← i+ 1

((a?0,u
?
0), (a?1,u

?
1), aux)← A(aux)

b
$←− {0, 1}

(y, b?, tr)← (C(1λ, params, (a?b ,u?b)),A(aux))
Return 1 if (b? = b) ∧ P2((a?0,u

?
0), (a?1,u

?
1),β)

0 otherwise

Figure 2: Privacy

3 Underlying Tools

3.1 Generic Group Model

Let GroupGen be a group generator which takes as input a security parameter λ. It provides a set params
which contains a description of a (multiplicative) group (G, ·), the group order, say p = |G|, and one generator
g. As usual, the generic group model in G is implemented by choosing a random encoding σ : G −→ {0, 1}m
(with 2m > p). Instead of working directly with group elements, a generic algorithm A takes as input (in
addition to the group order p) their image under σ. This way, all A can test is group elements equality
(by encoding equality). A is also given access to an oracle G computing group multiplication: taking two
encodings σ(g1) and σ(g2) of two group elements g1, g2 ∈ G as inputs and returning the encoding σ(g1 · g2)
of the product g1 · g2 ∈ G. We can assume that A submits to the oracle only encodings of elements it had
previously received. This is because we can choose m large enough so that the probability of choosing a
string that is also in the image of σ is negligible (see [35] for details). In particular, in this paper2, a generic
algorithm A cannot generate encodings of new group elements.

Usually, the generic group model is used to rule out classes of attacks by an adversary trying to break
a cryptographic assumption. In contrast, in this paper, we use the generic group model to prove a lower
bound on the complexity of the delegation protocol. In order to prove our complexity lower bounds, we
make intensive use of the following simple lemma:

Lemma 1. Let GroupGen be a group generator, let G be a group of prime order p output by GroupGen and
let A be a generic algorithm in G. If A is given as inputs encodings σ(g1), . . . , σ(gn) of groups elements
g1, . . . , gn ∈ G (for n ∈ N) and outputs the encoding σ(h) of a group element h ∈ G in time τ , then there
exists positive integers α1, . . . , αn such that h = gα1

1 . . . gαn
n and max(α1, . . . , αn) ≤ 2τ .

Proof. We can define a map π : {0, 1}m → Zn which associates to each encoding obtained by A during
its execution an n-dimensional vector in Zn. For each input encoding σ(gi), π(σ(gi)) is defined as the i-th
vector from the Zn canonical basis (for i ∈ {1, . . . , n}) and for each encoding σ(h1) and σ(h2) queried
to G, π(σ(h1 · h2)) = π(σ(h1)) + π(σ(h2). By construction, during the whole execution of A, we have
π(σ(h)) = (α1, . . . , αn) if and only if h = gα1

1 . . . gαn
n for all encodings σ(h) and the `∞-norm of π(σ(h1 ·h2))

is upper-bounded by `∞(π(σ(h1))) + `∞(π(σ(h2))). Since the `∞-norm of the input encodings π(σ(gi))
is equal to 1 (for i ∈ {1, . . . , n}) and the `∞-norm of encodings at most doubles for each query to G, we
obtained the claimed result.

All the exponentiation delegation protocols we present in Section 5 are generic (interactive) algorithms.
However, we want to stress that their security analysis is provided in the standard security model (with-
out any idealized assumption and in particular we do not assume that an adversary is limited to generic
operations in the underlying group).

In some specific groups, it is possible to improve the efficiency of exponentiation algorithms by using
non-generic operations (see [18, § 11.3], for instance):

2The lower bounds on the complexity of generic delegation protocols given in Section 6 and Section D do hold without this
assumption but with unnecessarily complicated proofs.

6

• One may take advantage of an additional structure in subgroups of the multiplicative group of
(non-prime) finite fields3 F∗qn with n ≥ 2. Indeed, in this setting one can use a normal basis

{α, αq, . . . , αqn−1} of Fqn over Fq to represent group elements in order to make the computation
of the q-th power of an element as a simple (and almost free) cyclic shift of its representation.

• One may also take advantage of the fact that in certain algebraic groups, group inversion is some-
times much more efficient than a group multiplication (in particular in subgroups of elliptic curves
over finite fields). In this case, one can use signed expansions of exponents when computing (multi-
)exponentiation and in particular the w-ary non-adjacent form method which guarantees that on
average there will be fewer group multiplications in Algorithm 1 for instance.

• One may use (more generally) groups equipped with efficient endomorphisms (e.g., Frobenius endo-
morphism, complex multiplication endomorphism). This method was originally proposed by Gallant,
Lambert and Vanstone [19] to perform group exponentiation with endomorphism decomposition. In
a cyclic group G, any endomorphism is the group exponentiation by some integer (eigenvalue of the
endomorphism) and for general group exponentiation, one can decompose the exponent as a weighted
sums of these eigenvalues (with “small” weights) and then use a multi-exponentiation algorithm such
as Algorithm 1.

It is sometimes possible to improve (but only by a constant factor) the efficiency of the exponentiation
delegation protocols we present in Section 5 by using similar techniques. In these situations, the complexity
lower bounds from Section 6 and Appendix D do no hold anymore but one can adapt our arguments (see
Remark 6 for instance).

3.2 Multi-exponentiation by Simultaneous 2w-ary method

Algorithm 1 computes the multi-exponentiation
∏t
i=1 g

xi
i ∈ G, for g1, . . . , gt ∈ G and x1, . . . , xt ∈ N by

using the simultaneous 2w-ary method introduced by Straus in 1964 [37]. The method looks at w bits of
each of the exponents for each evaluation stage group multiplication (where w is a small positive integer),
i.e. tw bits in total (see [28, 3] for details of different multi-exponentiation techniques).

Algorithm 1 Multi-Exponentiation by Simultaneous 2w-ary method

Input: g1, . . . , gt ∈ G, x1, . . . , xt ∈ N with ` = maxi∈{1,...,t}dlog xie and

xj =
∑b`/wc−1
i=0 ei,j2

wi ∈ N and ei,j ∈ {0, 2w − 1} for i ∈ {0, . . . , `/w − 1} and j ∈ {1, . . . , t}
Output: gx1

1 · · · g
xt
t ∈ G

for all non-zero t-tuples E = (E1, . . . , Et) ∈ {0, . . . , 2w − 1}t do
gE ←

∏
1≤i≤t g

Ei
i B Precomputation stage

end for
h← 1G
for i from b`/wc − 1 to 0 do

for j from 1 to w do
h← h2

end for
E ← (ei,1, ei,2, . . . , ei,t)
h← h · gE B Multiply h by table entry gE =

∏
1≤k≤t g

ei,k
i

end for
return h

Complexity: The precomputed table contains 2tw − 1− t non-trivial entries among which 2t(w−1) − 1 can
be computed by squaring other table entries (all the Ei are even). The remaining 2tw − 2t(w−1) − t entries
require one general multiplication each. The total cost is thus for the precomputation phase 2tw−2t(w−1)−t
multiplications and 2t(w−1) − 1 squarings and `(2tw − 1)/2tww ≤ `/w multiplications on average and `
squarings. For t = 2, the cost is minimal for w around 1/2 log `− log log ` with `(1 + 3/ log `) = `(1 + o(1))
multiplications overall.

3The most studied case was q = 2 but it is not interesting anymore in cryptography due to the recent impressive progress
on finite field discrete logarithms [5]. However, this technique may still found applications in pairing-based cryptography.

7

3.3 Exponents Decomposition

Let p be a prime number (in our protocols in the following, p will be the order of the underlying group G).
Let s ≥ 1 be an integer and ρ1, . . . , ρs ∈ Zp. Let a ∈ Zp, a s-dimensional decomposition of a with respect to
ρ = (ρ1, . . . , ρs) is an s-dimensional vector α = (α1, . . . , αs) ∈ Zsp such that

〈α,ρ〉 := α1ρ1 + · · ·+ αsρs = a mod p.

It is well-known that if the scalars ρi for i ∈ {1, . . . , s} have pairwise differences of absolute value at
least p1/s, then there exists a polynomial-time algorithm which on inputs a and ρ outputs a s-dimensional
decomposition α ∈ Zsp of a with respect to ρ such that 0 ≤ αi ≤ C · p1/s for i ∈ {1, . . . , s} (for some small
constant C > 0). To find this “small decomposition” of a, the algorithm applies a lattice reduction algorithm
(such as the LLL-algorithm) to produce a short basis of the Z-lattice of dimension s+1 spanned by the vectors
(p, 0, 0, . . . , 0), (ρ1, 1, 0, . . . , 0), (ρ2, 0, 1, . . . , 0), . . . , (ρs, 0, 0, . . . , 1) and applies Babai rounding algorithm [4]
to find a nearby vector in this lattice from (a, 0, . . . , 0) (see [36] for details). In the following, we will refer
to this algorithm as the GLV Decomposition Algorithm (GLV-Dec for short) since the method was first
introduced by Gallant, Lambert and Vanstone [19] to perform group exponentiations with endomorphism
decomposition.

Many important problems in cryptanalysis amount to solving polynomial equations with partial informa-
tion about the solutions. In 1996, Coppersmith introduced two celebrated lattice-based techniques [14, 13]
for finding small roots of polynomial equations. In the following, we will consider settings in which there
exists an s-dimensional decomposition of a scalar a that is shorter that the one produced by the GLV De-
composition Algorithm. Given some bounds X1, . . . , Xs in N such that X1 · · ·Xs < p, for a random scalar
a ∈ Zp and a random vector ρ ∈ Zsp, we expect a unique vector α = (α1, . . . , αs) ∈ Zsp such that 〈α,ρ〉 = a
with αi < Xi for all i ∈ {1, . . . , s}. In Section 4, we provide an algorithm that solves such a problem for
s = 2. In his PhD thesis [20], Herrmann mentions a “folklore method” to solve this problem. He states the
following theorem.

Theorem 1. [20, Theorem 6] Let p ∈ N and f(x1, . . . , xs) = ρ1x1 + · · · + ρsxs be a linear polynomial in
s variables with gcd(ρi, p) = 1 for at least one i ∈ {1, . . . , s}. Further let Xi ∈ N be upper-bounds on the
solutions αi (for i ∈ {1, . . . , s}) of the equation f(α1, . . . , αs) = 0 mod p. Heuristically, we can find the
solution (α1, . . . , αs) if

∏n
i=1Xi ≤ p in time polynomial in log p.

This Coppersmith-like results holds for the homogeneous case, so our exponent decomposition problem
can be solved by adding an extra variable αs+1. The heuristic assumption in the proof of Theorem 1 comes
from the fact that the lattice constructed by the algorithm may contain several solutions (bounded by the
Xi’s) which satisfy f(x1, . . . , xn) = 0 mod p (see [20] for details). In the context of our proof of optimality,
this is not an issue, since finding any solution will allow to distinguish between the challenge cases.

3.4 Computations of pairs (gk, k).

To outsource the computation of an exponentiation in a group G of prime order p, (pseudo-)random pairs
of the form (gk, k) ∈ G × Zp are sometimes used to hide sensitive information to the untrusted server.
This looks like a “chicken-and-egg problem” but there exist several techniques to make it possible for a
computationally limited device to have such pairs at its disposal, at a low cost. A trivial method is to load
its memory with many genuine (generated by a trusted party) random and independent couples. In other
settings, a mobile device with limited computing capabilities can precompute “offline” such pairs at low
speed and power. If the device can do a little more computation, there exist other preprocessing techniques,
that may depend whether the base or the exponent varies.

We only mention here the main technique to produce these pairs (among many others [15, 8, 26]). The
key ingredient is Boyko, Peinado and Venkatesan generator from [7]: the idea is to store a small number of
precomputed pairs (gαi , αi), and when a fresh pair is needed, the device outputs a product gk =

∏
i∈S g

αi

with k =
∑
i∈S αi for a random set S. It has then been improved by Nguyen, Shparlinski and Stern [29]

that allows to re-use some αi in the product. This generator is secure against adaptive adversaries and
performs O(log log(p)2) group operations. For some parameters, the generator from [29] is proved to have
an output distribution statistically close to the uniform distribution. Obviously, these generators are of
practical interest only if the base g is fixed and used multiple times.

In the sequel we will assume that the delegator may have access to some (pseudo-)random power gener-
ator B(·) that at invocation (with no input) outputs a single (pseudo)-random pair (gk, k) ∈ G× Zp where
k is uniformly distributed in Zp (or statistically close to the uniform distribution). If the generator B(·) is
invoked several times, we assume that the output pairs are independent. In order to evaluate the efficiency

8

of delegation protocols, we consider explicitly the query complexity to the generator B(·) (and depending
on the context, this can be interpreted as storage of precomputed values, offline computation or use of the
generator from [29] and thus additional multiplications in G).

4 Attack on Wang et al.’s algorithm from ESORICS 2014

Wang et al. proposed a generic algorithm to outsource the computation of several multi-exponentiations
with variable exponents and variable bases. There algorithm, called GExp, takes as input a list of tuples
(({ai,j}j=1,s; {ui,j}j=1,s))i=1,r and computes the list of multi-exponentiations (

∏r
j=1 u

ai,j
i,j)i=1,s. It is claimed

that this algorithm is secure in a strong model where the computation is outsourced to a single untrusted
server [38, Theorem 1]. We will show that the protocol can indeed be broken in polynomial time using lattice
reduction if two (simple) exponentiations are outsourced with the same exponent, which is the case in the
scenario of proof of data possession presented in [38, Section 4]. This means that their generic algorithm to
outsource exponentiations does not achieve the claimed security.

Description of Wang et al.’s protocol. The setting of Wang et al.’s protocol is the following: G is a
cyclic group of prime order p, and g is a generator. For 1 ≤ i ≤ r and 1 ≤ j ≤ s, ai,j are uniform and
independent elements of Z∗p, and ui,j are random elements from G. They assumed the ai,j ’s, the ui,j ’s and
the result are secret (and the ui,j are variable, i.e. β = 000v). The protocol is divided into three steps:

• Step 1. The delegator C generates four random pairs (αk, µk)k=1,4 where µk = gαk (using a pseudo-
random power generator). A Υ-bit element χ is randomly picked. Then, for all 1 ≤ i ≤ r and
1 ≤ j ≤ s, the elements bi,j are randomly picked in Z∗p. It sets4

ci,j = ai,j − bi,jχ mod p (1)

wi,j = ui,j/µ1 (2)

hi,j = ui,j/µ3 (3)

θi = (α1

s∑
j=1

bi,j − α2) + (α3

s∑
j=1

ci,j − α4) mod p. (4)

• Step 2. The second step consists in invoking the (untrusted) delegatee S for some exponentiations.
To do so, C generates (using a (pseudo-)random power generator) r + 2 random pairs (ti, g

ti)i=1,r+2

and queries (in random order) S on

– (θi/ti, g
ti) to obtain Bi = gθi for all 1 ≤ i ≤ r,

– (θ/tr+1, g
tr+1) to obtain A = gθ with θ = tr+2 −

∑r
i=1 θi mod p,

–

{
(bi,j , wi,j) to get Ci,j = (ui,j/µ1)bi,j

(ci,j , hi,j) to get Di,j = (ui,j/µ3)ci,j
for 1 ≤ i ≤ r and 1 ≤ j ≤ s.

• Step 3. It consists in combining the different values obtained from S to recover the desired multi-
exponentiations. In particular, an exponentiation to the power χ is involved. The protocol to be
efficient, needs χ not too large.

Simple attack. Suppose that a delegation of a single exponentiation ua, for u and a secret, is performed
using Wang et al.’s protocol. If a is a secret key, an element of the form ha is likely to be known at one point
to the adversary, together with h (one can think of a public key in a scenario of delegation of BLS signatures
[6], for instance)). In this case, as the attacker sees an element of the form c = a− bχ (see equation 1) and
knows b (cf. Step 2), he can compute hc which is equal to ha · (hχ)−b, so that recovering χ can be done by

computing the discrete logarithm of (ha/hc)b
−1

in base h. Using a baby-step giant-step algorithm, this can
be done in 2Υ/2 operations, which contradicts [38, Theorem 1].

Main attack. The crucial weakness of this protocol is the use of this small element χ which hides the
exponents. The authors suggest to take it of bit-size Υ, for Υ = 64. We will show that it cannot be
that small since it can be recovered in polynomial time if two exponentiations with the same exponent
are outsourced to the server S. The scenario of our attack is the following: two exponentiations of the
form GExp((a1,1, . . . , a1,s); (u1,1, . . . , u1,s)) and GExp((a1,1, . . . , a1,s); (u′1,1, . . . , u

′
1,s)) are queried to S. The

4Note that the protocol from [38] can also be described without inversion in the group G but to help the reader familiar
with this paper, we use the same description.

9

exponentiations are computed with the same exponents. This is typically the case in the first application
proposed in [38, Section 4.1] to securely offload Shacham and Waters’s proofs of retrievability [33].

For the sake of clarity, it is sufficient to focus on the elements that masks the first exponent a1,1.
An attacker will obtain (see Step 2) b1,1, b′1,1, c1,1 and c′1,1 such that c1,1 = a1,1 − b1,1χ mod p and
c′1,1 = a1,1−b′1,1χ′ mod p. Subtracting these two equations gives a modular bi-variate polynomial equation:

b1,1X − b′1,1Y + c1,1 − c′1,1 = 0 mod p (5)

which has χ and χ′ as roots, satisfying χ ≤ X and χ′ ≤ Y , for some X and Y which will be larger that 2Υ,
say 264. In the following, we show that it is (heuristically) possible to recover in polynomial time any χ and
χ′ that are lower than

√
p.

Solving this bi-variate polynomial equation with small modular roots can be done using the well-known
Coppersmith technique [14] (see also Section 3.3). Finding small roots of modular bi-variate polynomials
was studied in [24], but his method is very general, whereas we consider here only simple linear polynomials.
The following lemma, inspired by Howgrave-Graham’s lemma [22] suggests how to construct a particular
lattice that will help to recover small modular roots of a linear polynomial in Z[x, y]. We denote as ‖ · ‖ the
Euclidean norm of polynomials.

Lemma 2. Let g(x, y) ∈ Z[x, y] be a linear polynomial that satisfies

• g(x0, y0) = 0 mod p for some |x0| < X and |y0| < Y ,

• ‖g(xX, yY)‖ < p/
√

3.

Then g(x0, y0) = 0 holds over the integer.

Let us write a bi-variate linear polynomial as P (x, y) = x+by+c, with b, c ∈ Zp, which has a root (x0, y0)
modulo p satisfying |x0| < X and |y0| < Y . It suffices to divide by b1,1 the polynomial from Equation (5) to
make it unary in the first variable. Lemma 2 suggests to find a small-norm polynomial h(x, y) that shares
its root with the initial polynomial P (x, y). To do so, we construct the matrix whose rows are formed by
the coefficients of the polynomials p, pyY and P (xX, yY) in the basis (1, X, Y). Using the LLL algorithm
[25], we can find a small linear combination of these polynomials that will satisfy Lemma 2. Indeed, this
matrix has determinant p2XY and an LLL reduction of the basis of the lattice spanned by the rows of M
will output one vector of norm upper bounded by 23/4(det(M))1/3. We expect the second vector to behave
as the first, which is confirmed experimentally.

To obtain two polynomials which satisfy Lemma 2, we need 23/4(det(M))1/3 < p/
√

3, i.e. XY <
3−3/2 · 2−9/4p. If g(x, y) = g0 + g1x+ g2y and h(x, y) = h0 + h1x+ h2y are the polynomials corresponding
to the shortest vectors output by LLL, we can recover (x0, y0) as

x0 =
X(h0g2 − g0h2)

g1h2 − h1g2
and y0 =

Y (h0g1 − h1g0)

g2h1 − h2g1
.

As a consequence, this method makes it possible to recover in polynomial time any values χ and χ′

that masks the secret value a1,1 if they are both below
√
p. The complexity of Nguyen and Stehlé’s LLL

is quadratic [30], in our case it is O(d5 log(3/2 log(p))2), with d = 3. Then a1,1 can be computed as
a1,1 = c1,1 + b1,1χ mod p (see Appendix A for a practical example of this attack). The scheme from [38] is
therefore completely insecure.

Remark 2. One could fix this issue in Wang et al.’s protocol by using a larger Υ (such that the value χ is
actually uniformly distributed over Zp). This would make the protocol not more efficient for the delegator
than the actual computation of a single exponentiation. However, even this inefficient protocol would not
achieve the privacy security notion as explained in Appendix C.

5 Generic Constructions for Privately Outsourcing Exponentia-
tion

We focus in this section on protocols for outsourcing a single exponentiation (u, a) 7→ ua. Protocols for
outsourcing multi-exponentiations are given in Appendix C. As mentioned in the introduction, round
complexity is the main bottleneck in improving the efficiency of secure protocols due to latency, and we
consider only 1-round delegation protocols.

We recall that each case is referred to as its computation code β (see Section 2). All these protocols are
secure (in the (indistinguishability) privacy notion defined in Section 2 in the information-theoretic sense
(see Theorem 2). Optimality results (in terms of computation in the group G) are given in Section 6, and
summed up in Table 2.

10

T
ab

le
2:

O
u

ts
o
u

rc
in

g
p

ro
to

co
ls

fo
r

si
n

g
le

ex
p

o
n

en
ti

a
ti

o
n

C
on

st
ru

ct
io

n
s

fo
r

O
u

ts
ou

rc
in

g
F

ix
ed

B
as

e
E

x
p

o
n

en
ti

a
ti

o
n

(w
it

h
a

p
se

u
d

o
-r

a
n

d
o
m

p
ow

er
g
en

er
a
to

r
o
f

p
a
ir

s
(k
,u
k
)

av
a
il

a
b

le
)

C
o
d

e
u

a
u
a

S
ec

u
re

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y
L

ow
er

B
o
u

n
d

(f
o
r
G)

p
ro

to
co

l‡
R

es
o
u

rc
es

L
ow

er
B

o
u

n
d

P
ro

o
f

O
p

ti
m

a
li

ty
11

1f
P

u
b

li
c

P
u

b
li

c
P

u
b

li
c

T
ri

v
ia

l
11

0f
P

u
b

li
c

P
u

b
li

c
S

ec
re

t
N

on
-s

en
se

10
1f

P
u

b
li

c
S

ec
re

t
P

u
b

li
c

P
ro

to
co

l
2

1
S

+
1
B

(1
S,
`
B

)
0
G

F
ro

m
P

ro
to

co
l

2
3

10
0f

P
u

b
li

c
S

ec
re

t
S

ec
re

t
P

ro
to

co
l

3
1
S

+
1
G

+
1
B

(1
S,
`
B

)
1
G

F
ro

m
P

ro
to

co
l

3
3

01
1f

S
ec

re
t

P
u

b
li

c
P

u
b

li
c

N
on

-s
en

se
∗

01
0f

S
ec

re
t

P
u

b
li

c
S

ec
re

t
P

ro
to

co
l

1
1
S

+
1
G

+
2
B

(1
S,
`
B

)
1
G

F
ro

m
P

ro
to

co
l

1
3

00
1f

S
ec

re
t

S
ec

re
t

P
u

b
li

c
P

ro
to

co
l

2
1
S

+
1
B

(1
S,
`
B

)
0
G

F
ro

m
P

ro
to

co
l

2
3

00
0f

S
ec

re
t

S
ec

re
t

S
ec

re
t

P
ro

to
co

l
1

1
S

+
1
G

+
2
B

(1
S,
`
B

)
1
G

F
ro

m
C

a
se

0
1
0
f

3

C
on

st
ru

ct
io

n
s

fo
r

O
u

ts
ou

rc
in

g
V

ar
ia

b
le

B
a
se

E
x
p

o
n

en
ti

a
ti

o
n

(w
it

h
a

p
se

u
d

o
-r

a
n

d
o
m

p
ow

er
g
en

er
a
to

r
o
f

p
a
ir

s
(k
,g
k
)

av
a
il

a
b

le
)

C
o
d

e
u

a
u
a

S
ec

u
re

C
o
m

p
le

x
it

y
C

o
m

p
le

x
it

y
L

ow
er

B
o
u

n
d

(f
o
r
G)

p
ro

to
co

l
‡

R
es

o
u

rc
es

L
ow

er
B

o
u

n
d

P
ro

o
f

O
p

ti
m

a
li

ty
11

1v
P

u
b

li
c

P
u

b
li

c
P

u
b

li
c

T
ri

v
ia

l
11

0v
P

u
b

li
c

P
u

b
li

c
S

ec
re

t
N

on
-s

en
se

10
1v

P
u

b
li

c
S

ec
re

t
P

u
b

li
c

P
ro

to
co

l
4

1
S

+
L
p
/
2
G

(1
S,
`
B

)
L
p
/2
G

T
h

.
3
,

S
ec

.
6

3
P

ro
to

co
l

5
s
S

+
L
p
/
(s

+
1
)
G

(s
S,
`
B

)
L
p
/(
s

+
1
)
G

T
h

.
4
,

S
ec

.
6

3

10
0v

P
u

b
li

c
S

ec
re

t
S

ec
re

t
P

ro
to

co
l

4
1
S

+
L
p
/
2
G

(1
S,
`
B

)
L
p
/2
G

T
h

.
3
,

S
ec

.
6

3
P

ro
to

co
l

5
s
S

+
L
p
/
(s

+
1
)
G

(s
S,
`
B

)
L
p
/(
s

+
1
)
G

T
h

.
4
,

S
ec

.
6

3

01
1v

S
ec

re
t

P
u

b
li

c
P

u
b

li
c

N
on

-s
en

se
∗

01
0v

S
ec

re
t

P
u

b
li

c
S

ec
re

t
P

ro
to

co
l

8
1
S

+
L
p
/
`
G

+
`
B

(1
S,
`
B

)
L
p
/(
`

+
3
)
G

T
h

.
5
,

S
ec

.
6

?
P

ro
to

co
l

7
2
S

+
3
G

+
3
B

(2
S,
`
B

)
t
G†

F
ro

m
P

ro
to

co
l

7
?

00
1v

S
ec

re
t

S
ec

re
t

P
u

b
li

c
?

(1
S,
`
B

)
L
p
/2
G

F
ro

m
C

a
se

1
0
1
v

7
6

(u
si

n
g

4)
2
S

+
L
p
/
2
G

+
2
B

(2
S,
`
B

)
L
p
/3
G

F
ro

m
C

a
se

1
0
1
v

?
6

(u
si

n
g

5)
s
S

+
L
p
/
s
G

+
2
B

(s
S,
`
B

)
L
p
/(
s

+
1
)
G

F
ro

m
C

a
se

1
0
1
v

?

00
0v

S
ec

re
t

S
ec

re
t

S
ec

re
t

?
(1
S,
`
B

)
L
p
/2
G

F
ro

m
C

a
se

1
0
0
v

7
6

(u
si

n
g

4)
2
S

+
L
p
/
2
G

+
2
B

(2
S,
`
B

)
L
p
/3
G

F
ro

m
C

a
se

1
0
0
v

?
6

(u
si

n
g

5)
s
S

+
L
p
/
s
G

+
2
B

(s
S,
`
B

)
L
p
/(
s

+
1
)
G

F
ro

m
C

a
se

1
0
0
v

?

N
ot

at
io

n
s:
`

=
O

(1
)

an
d
L
p

=
lo

g
(p

).
‡

re
fe

rs
to

o
u

r
n
u

m
b

er
in

g
o
f

th
e

p
ro

to
co

ls
∗

P
ri

m
e

o
rd

er
se

tt
in

g
.

†
W

it
h
t
∈
{0
,1
,2
,3
}.

11

Protocol 1: 000f (and 010f)

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

(ur, r)← B(·)
(us, s)← B(·)
t← (a− s)/r mod p
h← S(ur, t mod p)
return h · us

Protocol 2: 001f (and 101f)

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B public result

(uk, k)← B(·)
h← S(uk, a/k mod p)
return h

Protocol 3: 100f

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

(uk, k)← B(·)
h← S(u, a− k mod p)
return h · gk

Protocol 4: 100v (and 101v)

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result
T ← d√pe
h← S(u, T)
a0 = a mod T
a1 = a div T B Euclidean division s.t.

a = a1 · T + a0

return ua0ha1 B using Algorithm 1

Protocol 5: 100v (and 101v)

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result
T ← dp1/s+1e
for i from 1 to s do
hi ← S(u, T i)

end for
temp← a
for i from s down to 0 do
ai = temp div T i

temp = temp− ai · T i
end for

B a = as · T s + · · ·+ a1T + a0

return ua0
∏s
i=1 h

ai
i B using Algo. 1

Protocol 6: 000v (and 001v)

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

(gk1 , k1)← B(·)
v ← u · gk1
h1 ← va B delegated using Prot. 4 or 5

(public base): h1 = va = ua · gak1
(gk2 , k2)← B(·)
h2 ← S(g,−ak1 − k2 mod p)

B h2 = g−ak1−k2

return h1 · h2 · gk2
Protocol 7: 010v

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

(gr, r)← B(·)
(gs, s)← B(·)
(gt, t)← B(·)
k ← (t− ra)/s mod p
h1 ← S(u · gr, a)
h2 ← S(gs, k)
return h1h2g

t

Protocol 8: 010v

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

(gr, r)← B(·)
for i from 1 to s do

(gti , ti)← B(·)
end for
(k0, k1, . . . , ks)←

GLV-Dec(1, t1, . . . , ts,−ra mod p)
B with ki ≤ p1/(s+1)

h1 ← S(u · gr, a)
h2 ← gk0(gt1)k1 . . . (gts)ks B using Algo.1
return h1h2

Protocol 9: 010v from [10]

Input: u ∈ G, a ∈ Zp
Output: ua ∈ G B private result

for i from 1 to s do
gi

R←− G
end for
I R←− Pm({1, . . . , s}) B random subset

of cardinal m of {1, . . . , s}
gs+1 ← u ·

∏
i∈I gi

for i from 1 to s do
hi ← S(gi,−a)

end for
hs+1 ← S(gs+1, a)
return hs+1 ·

∏
i∈I hi

5.1 Constructions for Outsourcing Fixed Base Exponentiation

When the base u is fixed, one can assume that C can use a pseudo-random power generator for u. As
described in Section 3.4, this generator B is invoked with no input and outputs a single (pseudo)-random
pair (uk, k) ∈ G×Zp where k is uniformly distributed in Zp (or statistically close to the uniform distribution).
If the generator B(·) is invoked several times, we assume that the output pairs are independent.
Trivial Cases. Obviously, the case 111f (everything public) is trivial (simply ask in clear to the delegatee S
the computation of ua as S(u, a)) and the case 110f does not make sense (public inputs and private output),
as well as the case 011f (secret base) in the prime order setting (but the latter case may have some interest

12

for composite order groups).
Cases where the Base is Secret (0∗∗f). If everything is secret (case 000f), it is rather easy to delegate
the computation of ua for any exponent a using Protocol 1. The delegator computation amounts to two
invocations of the pseudo-random power generator, one inversion modulo p and one multiplication in G,
with only one exponentiation delegated to S.

Even if the exponent is public (case 010f), Protocol 1 remains the best possible in terms of multiplications
in G (with only one invocation to S) since there is only one multiplication and it is needed to hide the private
result of the exponentiation.

If the result is public (case 001f), one can propose the improved Protocol 2, which needs only one
invocation of the pseudo-random power generator, one inversion modulo p and no multiplication in G, with
only one exponentiation delegated to S.
Cases where the Base is Public (1∗∗f). If the result is public (case 101f), Protocol 2 remains the best
possible in terms of multiplications in G (with only one invocation to S) since no multiplication is needed.

If the result is secret (case 100f), Protocol 3 is the best possible in terms of multiplications in G since
it only needs one invocation of the pseudo-random power generator and one multiplication in G (needed to
hide the private result of the exponentiation), with only one exponentiation delegated to S.

5.2 Constructions for Outsourcing Variable Base Exponentiation

In this paragraph, we consider the case when C wants to delegate the computation of ua but with a variable
u. In this setting, one cannot assume that C can use a pseudo-random power generator for u but we can
still suppose that it can use a pseudo-random power generator for a fixed generator g that we still call B
with the same properties as before.
Trivial Cases. As above, the case 111v (everything public) is trivial (simply ask in clear to the delegatee S
the computation of ua as S(u, a)) and the case 110v does not make sense (public inputs and private output),
as well as the case 011v (secret base) in the prime order setting.
Cases where the Base is Public (1∗∗v). We first consider the case where the variable base u can be made
public but not the public exponent nor the result (case 100v). We propose a family of protocols depending
on a parameter s that perform the computation of ua by delegating s exponentiations to a delegator and
log(p)/(s + 1) operations in G. This family of protocols are given in Protocol 5 and the specific case
s = 1 is Protocol 4. Note that these protocols do not make use of the pseudo-random power generator for
g. Unfortunately, the efficiency gain is only a factor s and if the number of delegated exponentiations is
constant the delegator still has to perform O(log p) operations in G. These protocols are actually optimal
in terms of operations in G, as shown in Theorems 3 and 4.

Obviously, we can also use these protocols if we allow the result ua to be public (case 101v) and the
optimal result of Theorems 3 and 4 show that even in this easier setting, the protocol cannot be improved.
Cases where the Base is Private (0∗∗v). We can use this protocol family to construct another delegation
protocol for the corresponding cases where the base is kept secret (000v and 001v). We obtain Protocol 6
that makes two invocations of the pseudo-random generator for g and requires the delegation of one further
exponentiation compared to Protocol 5 (and Protocol 4). We do not actually know if these protocols are
optimal but the gap is rather tight (see Table 2). Constructing an outsourcing protocol in these cases with
only one exponentiation delegation (or proving it is impossible) is left as an open problem.

We can also use this protocol if we allow the exponent a to be public (010v). However, in this case one
can improve it with Protocol 7 where the delegator performs only a constant number of group operations
in G. In this case, one can also improve it with Protocol 8 where the delegator makes only one call to the
delegatee, but at the price of a O(log(p)) number of group operations in G.

Remark 3. In [10], Cavallo et al. presented two other protocols for outsourcing private variable base and
public exponent exponentiation. The first one [10, §4, p. 164], recalled in Protocol 9, achieves only the
basic security requirement (i.e., in the sense of one-wayness instead of indistinguishability). It relies on a
subset-sum in a group and in order to achieve a stronger privacy notion, the delegation scheme actually
becomes less efficient for the delegator than performing the exponentiation on its own. The second scheme
is much more efficient since the delegator computation is constant but it requires a stronger pseudo-random
powers generator B that outputs pseudo-random triples of the form (gr, gar, r). In particular, this second
protocol can only be used for fixed values of the public exponent a.

Theorem 2. Let GroupGen be a group generator, let λ be a security parameter and let G be a group of prime
order p output by GroupGen(λ). Let (C,S) be one client-server protocol for the delegated computation of the
exponentiation ua described in Protocols 1 – 8 (for the corresponding computation code β ∈ {0, 1}4 given
in their description). The protocol (C,S) is unconditionally (τ, 0)-private against an honest-but-curious
adversary for any time τ .

13

Proof. Since the protocols (and thus the proofs) are all very similar, we focus on Protocol 1. The correctness
follows from the equality

h · us = [(ur)t mod p]us = [(ur)(a−s)/r mod p]us = ua.

We now prove that there is no adversary A (running in any time τ) for the privacy security notion from
Definition 3. The adversary chooses a group element u and two scalars (a0, a1) ∈ Z2

p. The challenger picks
uniformly at random a bit b ∈ {0, 1} and sets a = ab. The delegator runs the delegation protocol with
inputs u and a and delegates one exponentiation to the adversary acting as the delegatee. The adversary
has to guess the bit b.

Due to the properties of the pseudo-random power generator, r and s are uniformly distributed in Zp, so
that t is also uniformly distributed in Zp and does not depend on the value a. The invocation S(ur, t mod p)
thus does not reveal anything on the value a (in an information-theoretic sense), meaning that the advantage
of the adversary in guessing the bit b is 0.

Remark 4. Theorem 2 asserts that our protocols achieves unconditionally the privacy experiment described
in Fig. 2 (i.e., in the information theoretic sense).

Remark 5. In this paper, we do not consider the setting where the delegator can also store precomputed
values (in addition to having access to a pseudo-random power generator B and a delegatee oracle S). For
instance, in Protocol 8, we use the pseudo-random power generator s times in order to generate pairs (gti , ti)
for i ∈ {1, . . . , s} and then the GLV decomposition algorithm (GLV-Dec) in order to decompose the scalar
−ra mod p as −ra = k0 + k1t1 + · · · + ksts mod p with “small” scalars ki ≤ p1/(s+1). Actually, the pairs
(gti , ti) for i ∈ {1, . . . , s} can be re-used and they do not need to be pseudo-random to ensure privacy.
We can thus consider a simpler variant of Protocol 8 in which the delegator stores precomputed values gti

with ti = T i for T = dp1/(s+1)e for i ∈ {0, . . . , s} and decomposes the scalar −ra mod p in base T as
−ra = k0t0 + k1t1 + · · · + ksts mod p with “small” scalars ki < T as in Protocol 5. The resulting protocol
is then simpler and more efficient in practice. However, it has the same “oracle complexity” since it only
replaces queries to the pseudo-random power generator B by storage of precomputed values. It can be easily
seen that the complexity lower bounds from Section 6 can be generalized to this setting.

6 Complexity Lower Bound for One-Round Protocols

We focus on studying protocols with minimal interaction, namely the delegator is allowed to delegate the
computation of several group exponentiations but it must send all of them to the delegatee in only one
communication round. Indeed, interactions over computer networks are usually the most time consuming
operations (due to lagging or network congestion) and it is very important to study protocols which require
the minimal number of rounds to complete. In Appendix D, we present complexity lower bounds for
multi-round protocols.

By “lower bounds”, we mean that the number of calls to the delegatee oracle S and to the pseudo-random
power generator B are fixed, and that we consider the number of group operations. All the results concerning
this section are summed up in the column “Complexity Lower Bound” of Table 2. The last column of Table 2
gives a hint for the proof of those lower bounds. Concerning the first part of the table, the bounds come
from the protocols given in Section 5, since at least one call to the group oracle is mandatory when the
result is private (the delegator C needs to do at least one computation after having received a public result
from the delegatee oracle S). The cases 101v and 100v are then dealt with in Theorem 4. For all these
cases, the protocols proposed in Section 5 are thus actually optimal. As for Case 010v, the lower bound
for a unique call to S is proven in Theorem 5, whereas Protocol 7 gives a (constant) upper bound in case
we allow a second call to S. Finally, the lower bounds for Cases 001v and 000v come from the equivalent
bounds for Cases 101v and 100v, since the variable base is furthermore assumed to be secret.

In what follows, and as mentioned above, we use the generic group model to prove these lower bounds.
We model the different operations as follows:

• The group oracle G takes as inputs two encodings σ1 = σ(h1) and σ2 = σ(h2) and outputs the encoding
σ3 such σ3 = σ(h1h2) (see Section 3.1).

• The pseudo-random power generator B outputs pairs (t, σ(gt)) where the scalar t is picked uniformly
at random in Zp (independently for all queries).

• The delegatee oracle S takes as inputs an encoding σ = σ(h) and a scalar x and outputs the encoding
σ′ = σ(hx) (i.e. σ−1(σ′) = σ−1(σ)x).

14

The following theorems assert that for the cases 101v and 100v, the protocols proposed in Section 5 are
actually optimal in terms of calls to S and G.

For the ease of exposition, we first state our result and present a proof for the simple case where the
delegator C outsources only one exponentiation to the delegatee S:

Theorem 3. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of the exponentiation ua for the corresponding computation code β = 101v. We assume that
the delegator C is a generic group algorithm that uses

• c log(p) + O(1) generic group operations (for all groups G of primer order p output by GroupGen(λ))
for some constant c,

• ` = O(1) queries to the (private) pseudo-random power generator B

• and only 1 delegated exponentiation to the delegatee S
If c < 1/2, then (C,S) is not private: there exists an algorithm running in polynomial-time such that

Pr[bit← Exppriv(A) : bit = 1] ≥ 1− λO(1).

Proof. We assume that C gets as input two encodings σ(u), σ(g) of two group elements u and g and one
scalar a in Zp and outputs the encoding σ(ua) of the group element ua by making q queries to the group
oracle G, ` queries to the (private) pseudo-random power generator B and 1 query to S.

We assume that q = c log p + O(1) with c < 1/2 and we prove that it is not possible for C to compute
σ(ua) in such a way that the delegatee S learns no information on a. More precisely, we construct a
polynomial-time adversary A for the privacy security notion from Definition 3 (page 5). The adversary
chooses a group element u and two scalars (a0, a1) ∈ Z2

p. For the sake of simplicity, we assume that the
adversary picks (a0, a1) ∈ Z2

p uniformly at random among the scalars of bit-length log(p) and u uniformly
at random in G. The challenger picks uniformly at random a bit b ∈ {0, 1} and sets a = ab. The delegator
runs the delegation protocol with inputs u and a and delegates one exponentiation to the adversary acting
as the delegatee. The adversary has to guess the bit b.

Let us denote (t1, σ(gt1)), (t2, σ(gt2)), . . . , (t`, σ(gt`)) the pairs obtained from the pseudo-random power
generator B by the delegator C. Since B takes no inputs and outputs independent pairs, we can assume
without loss of generality that the delegator C makes the ` queries to B in a first phase of the delegation
protocol. We denote (σ(h), x) the unique pair encoding of group element/scalar made by C to the delegatee S
(which is executed by the adversary A in an “honest-but-curious” way). Using generic group operations, C
can only construct the corresponding group elements such that:

h = uα
′
· gκ

′
· gt1γ

′
1 · · · gt`γ

′
` (6)

for some scalars (α′, κ′, γ′1, . . . , γ
′
`). We denote k = hx the response of S. Eventually, the delegator C outputs

the encoding σ(ua) of the group element ua. Again, using generic group operations, it can only construct
it as

ua = uαgκ · gt1γ1 · · · gt`γ`kδhε (7)

for some scalars (α, κ, γ1, . . . , γ`, δ, ε). If we assume that q = c log n + O(1) (and in particular q = o(
√
p)),

the delegator C is not able to compute the discrete logarithm of u in base g. This means that necessarily
the exponent of g in Equation (7) cancels out. Recall that k = hx, h being constructed as in Equation (6).
Thus, taking only the discrete logarithms of powers of u in base u of this equation, we obtain

a = α+ εα′ + δα′x mod p (8)

We denote τ1 the number of group operations performed by C in the computation of h described in
Equation (6) and τ2 the number of operations in the computation of ua described in Equation (7). By
assumption, τ1 + τ2 ≤ c log p+O(1). Furthermore, since C only used generic group operations, we have (by
Lemma 1 in Section 3.1) α′ ≤ 2τ1 , α ≤ 2τ2 , δ ≤ 2τ2 and ε ≤ 2τ2 . If we note ρ1 = α + εα′ and ρ2 = δα′,
Equation (8) becomes a = ρ1 + xρ2 mod p, where x is known to the adversary, ρ2 = δα′ ≤ 2τ12τ2 =
2τ1+τ2 ≤ pc+o(1) and ρ1 = α+ εα′ ≤ 2τ1 + 2τ12τ2 ≤ pc+o(1).

The adversary A can then try to decompose a0 and a1 as ai = ρi,1+xρi,2 mod p, with ρi,1, ρi,2 ≤ pc+o(1).
For ab = a, the decomposition algorithm from Section 3.3 (which generalizes the main attack on Wang
et al.’s protocol) will recover ρb,1 and ρb,2 in polynomial time. However, for a given x and a random
a1−b of bit-length log(p), there is only a negligible probability that such a decomposition exists (less than
pc+o(1) × pc+o(1) = p2c+o(1) = o(p) scalars can be written in this way). Thus, the adversary can simply run
the decomposition algorithm from Section 3.3 on (a0, x) on one hand and on (a1, x) on the other hand and
returns the bit b for which the algorithm returns a “small decomposition” on input (ab, x). By the previous
analysis, its advantage is noticeable.

15

Theorem 4 generalizes Theorem 3 and consider the general case where the delegator C outsources s ≥ 1
exponentiations to the delegatee S:

Theorem 4. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of one exponentiation for the computation code β = 101v. We assume that the delegator C is
a generic group algorithm that uses

• c log(p) +O(1) generic group operations (for groups G of order p output by GroupGen(λ)),

• ` = O(1) queries to the (private) pseudo-random power generator B

• and s simultaneous delegated exponentiation to the delegatee S

If the constant c satisfies c < 1/(s + 1), then (C,S) is not private: there exists an algorithm running in
polynomial-time such that Pr[bit← Exppriv(A) : bit = 1] ≥ 1− λO(1).

Proof (Theorem 4). We assume that the delegator C gets as input two encodings σ(u), σ(g) of two group
elements u and g picked uniformly at random in G and one scalar a picked uniformly at random in Zp and
outputs the encoding σ(ua) of the group element ua by making only

• q queries to the group oracle G;

• ` queries to the pseudo-random power generator B;

• s simultaneous queries to the delegatee oracle S.

We assume that q = c log p + O(1) with c < 1/(s + 1) and we prove that it is not possible for C to
compute σ(ua) in such a way that the delegatee S learns no information on a.

More precisely, we construct a polynomial-time adversary A for the privacy security notion from Def-
inition 3. The adversary chooses a group element u ∈ G and two scalars (a0, a1) ∈ Z2

p. As above, for
the sake of simplicity, we assume that the adversary picks (a0, a1) ∈ Z2

p uniformly at random among the
scalars of bit-length log(p) and u uniformly at random in G. The challenger picks uniformly at random a
bit b ∈ {0, 1} and sets a = ab. The delegator runs the delegation protocol with inputs u and a and delegates
s exponentiations to the adversary acting as the delegatee. The adversary has to guess the bit b.

Let us denote (t1, σ(gt1)), (t2, σ(gt2)), . . . , (t`, σ(gt`)) the pairs obtained from the pseudo-random power
generator B by the delegator C. Since the pseudo-random power generator B takes no inputs and outputs
independent pairs, we can assume without loss of generality that the delegator C makes the ` queries to B
in a first phase of the delegation protocol.

We denote (σ(h1), x1), . . . , (σ(hs), xs) the pairs group element/scalar made by C to the delegatee S
(which is executed by the adversary A in an “honest-but-curious” way). Using generic group operations, C
can only construct the corresponding group elements such that:

h1 = uα1 · gκ1 · gt1γ1,1 · · · gt`γ1,`

h2 = uα2 · gκ2 · gt1γ2,1 · · · gt`γ2,`

h3 = uα3 · gκ3 · gt1γ3,1 · · · gt`γ3,`

...

hs = uαs · gκs · gt1γs,1 · · · gt`γs,`

(9)

for some scalars (α1, . . . , αs), (κ1, . . . , κs) and (γi,j)i=1,s;j=1,`. We note ki = hxi
i the response of the

delegatee S to the i-th query. Eventually, the delegator C outputs the encoding σ(ua) of the group element
ua and as above using generic group operations, it can only construct it as

ua = uαgκ · gt1γ1 · · · gt`γ`kδ11 k
δ2
2 . . . kδss h

ε1
1 h

ε2
2 . . . hεss (10)

for some scalars (α, κ, γ1, . . . , γ`, δ1, . . . , δs, ε1, . . . , εs). If we assume that q = c log n+O(1) (and in particular
q = o(

√
p)), the delegator C is not able to compute the discrete logarithm of u in base g. This means that

necessarily the exponents of g in Equation (10) cancel out. Recall that ki = hxi for all index i, hi being
constructed as in Equation (9). Thus, taking only the discrete logarithms of powers of u in base u of this
equation, we obtain

a = α+

s∑
i=1

(δiαixi + εiαi) mod p. (11)

16

We denote τi the number of group operations performed by C in the computation of hi described in
Equation (9) and τ the number of group operations performed by C in the computation of ua described in
Equation (10).

By assumption, τ1+· · ·+τs+τ ≤ c log p+O(1). Furthermore, since C only used generic group operations,
we have (by Lemma 1) αi ≤ 2τi , α ≤ 2τ , δi ≤ 2τ and εi ≤ 2τ for i ∈ {1, . . . , s}. If we note µ0 = α+

∑s
i=1 εiαi

and µi = δiαi for i ∈ {1, . . . , s}, Equation (11) becomes

a = µ0 + µ1x1 + µ2x2 + µ3x3 + · · ·+ µsxs mod p (12)

where x is known to the adversary, µi = δiαi ≤ 2τ2τi ≤ pc+o(1) for i ∈ {1, . . . , s} and µ0 = α+
∑s
i=1 εiαi ≤

2τ +
∑s
i=1 2τ+τi ≤ pc+o(1).

Therefore the delegatee S knows that a satisfies the equation (12), in which it knows the value x1, . . . , xs
and we have µi = o(p1/s). The adversary can then try to decompose a0 and a1 as

ab = µb,0 + µb,1x1 + µb,2x2 + µb,3x3 + · · ·+ µb,sxs mod p

with µ0,i, µ1,i ≤ pc+o(1) for i ∈ {0, . . . , s}. For ab = a, the by using the decomposition algorithm from
Section 3.3 (see Theorem 1) will recover the values µi,b in polynomial time (or a potentially even shorter
decomposition). Once again, for a given x and a random a1−b = a∗ of bit-length log(p), there is only a
negligible probability that such a decomposition exists (less than (pc+o(1))s+1 = p(s+1)c+o(1) = o(p) scalars a
can be written in this way). Thus, the adversary can simply run the decomposition algorithm from Section
3.3 on (a0, x) on one hand and on (a1, x) on the other hand and returns the bit b for which the algorithm
returns a “small decomposition” on input (ab, x). By the previous analysis, its advantage is noticeable.

Remark 6. It is worth mentioning that even in (generic) groups where division is significantly less expensive
than multiplication (such as elliptic curves or class groups of imaginary quadratic number fields), this lower
bound (as well as the following ones) still holds (see Appendix B for details).

Algorithm 7 shows that it is possible to delegate a secret base, public exponent exponentiation with
only a constant number of operations if the delegator can delegate at least two exponentiations. Theorem
5 asserts that if the delegator is only allowed to delegate one exponentiation then Algorithm 8 is almost
optimal in this setting. More precisely, we show that the delegator has to perform at least O(log(p)) group
operations if it delegates only one exponentiation and makes at most a constant number of queries to the
pseudo-random power generator B.

Theorem 5. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of one exponentiation for the computation code β = 010v. We assume that the delegator C is
a generic group algorithm that uses

• c log(p) +O(1) generic group operations (for groups G of order p output by GroupGen(λ)),

• ` = O(1) queries to the (private) pseudo-random power generator B

• and only 1 delegated exponentiation to the delegatee S

If the constant c satisfies c < 1/(`+ 2), then (C,S) is not private: there exists an algorithm running in time
O(pc/2+o(1)) such that Pr[bit← Exppriv(A) : bit = 1] = 1.

Proof. We assume that the delegator C gets as input two encodings σ(u), σ(g) of two group elements u and
g picked uniformly at random in G and one scalar a picked uniformly at random in Zp and outputs the
encoding σ(ua) of the group element ua by making only

• q queries to the group oracle G;

• ` queries to the pseudo-random power generator B;

• 1 query to the delegatee oracle S.

We assume that ` is constant (with respect to the underlying group order) and we will show that q =
log(p)/(`+2)+Ω(1) which proves indeed that Algorithm 8 is almost optimal since it requires log(p)/`+o(1)
group operations.

We assume that q = c log p + O(1) with c < 1/(` + 2) and we prove that it is not possible for C to
compute σ(ua) in such a way that the delegatee S learns no information on u.

More precisely, we construct a polynomial-time adversary A for the privacy security notion from Defini-
tion 3. The adversary chooses two scalars (u0, u1) ∈ G2 and a scalar a. For the sake of simplicity, we assume

17

that the adversary picks (u0, u1) ∈ G2 uniformly at random and picks a among the scalars of bit-length
log(p). The challenger picks uniformly at random a bit b ∈ {0, 1} and sets u = ub. The delegator runs the
delegation protocol with inputs u and a and delegates one exponentiation to the adversary acting as the
delegatee. The adversary has to guess the bit b.

Let us denote (t1, σ(gt1)), (t2, σ(gt2)), . . . , (t`, σ(gt`)) the pairs obtained from the pseudo-random power
generator B by the delegator C. Since the pseudo-random power generator B takes no inputs and outputs
independent pairs, we can assume without loss of generality that the delegator C makes the ` queries to B
in a first phase of the delegation protocol.

We denote (σ(h), x) the unique pair group element/scalar queried by C to the delegatee S (which is
executed by the adversary A in an “honest-but-curious” way). Using generic group operations, C can only
construct the corresponding group elements such that:

h = uγ1 · gγ2(gt1)θ1 . . . (gt`)θ` (13)

for some scalars (γ1, γ2, θ1, . . . , θ`) ∈ Z`+2
p . We denote h = uγ1gr (with r = γ2 + t1θ1 + · · ·+ t`θ`) and k = hx

the response of the delegatee S.
Eventually, the delegator C outputs5 the encoding σ(ua) of the group element ua and as above using

generic group operations, it can only construct it as

ua = uα1hα2kα3gα4 · gt1κ1 · · · gt`κ` (14)

for some scalars (α1, α2, α3, α4, κ1, . . . , κ`) ∈ Z`+4
p .

If we assume that q = c log n+O(1) (and in particular q = o(
√
p)), the delegator C is not able to compute

the discrete logarithm of u in base g. This means that necessarily the exponent of g in Equation (14) cancels
out. Recall that k = hx, h being constructed as in Equation (13). Thus, taking only the discrete logarithms
of powers of u in base u of this equation, we obtain

a = α1 + α2γ1 + α3γ1x mod p. (15)

Similarly, taking only the discrete logarithm of powers of g of this equation, we obtain

0 = rα2 + rxα3 + κ1t1 + · · ·+ κ`t` mod p. (16)

We denote τ1 the number of group operations performed by C in the computation of h described in
Equation (13) and τ2 the number of group operations performed by C in the computation of ua described
in Equation (14).

By assumption, τ1 + τ2 ≤ c log p + O(1). Furthermore, since C only used generic group operations, we
have γ1 ≤ 2τ1 , αi ≤ 2τ2 for i ∈ {1, 2, 4}. In particular α1 +α2γ1 ≤ 2τ1 + 2τ1+τ2 ≤ pc+o(1) and Equation (15)
implies that α3γ1x 6= 0 mod p.

The delegation protocol must ensure the privacy of u therefore in Equation (13), the value r such that
the group element gr masks uγ1 must be different from 0. Otherwise, the adversary can simply try to find
the (small) discrete logarithm of h in base u0 or u1 using for instance Shanks “baby steps, giant steps” or
Pollard λ algorithm in time O(

√
γ1) = O(pc/2+o(1)). Combining Equations (15) and (16), we have:

ra = rα1 + rα2γ1 − (rα2γ1 + κ1γ1t1 + · · ·+ κ`γ1t`) mod p.

with r 6= 0. Therefore, since r = γ2 + t1θ1 + · · ·+ t`θ`, the random scalar a can be written as:

a =
rα1 − (κ1γ1t1 + · · ·+ κ`γ1t`)

γ2 + t1θ1 + · · ·+ t`θ`
mod p

and

a =
γ2α1 +

∑`
i=1 ti(θiα1 − κiγ1)

γ2 + t1θ1 + · · ·+ t`θ`
mod p. (17)

For fixed values t1, . . . , t`, the number of scalars a that can be written in this form is upper-bounded by the
product of number of α1, γ1, γ2, θi’s and κi’s. We have, by Lemma 1

α1 ≤ 2τ2 γ1 ≤ 2τ1 γ2 ≤ 2τ1 θi ≤ 2τ1 κi ≤ 2τ2

for i ∈ {1, . . . , `}. Therefore, the number of scalars a that can be written as in Equation (17) is upper-
bounded by

2τ2 × 2τ1 × 2τ1 × (2τ1)` × (2τ2)` ≤ (2τ1+τ2)`+2.

Since 2τ1+τ2 ≤ pc+o(1) with c < 1/(` + 2), we have shown that all scalars a ∈ Zp cannot be written as in
Equation (17) and therefore, the delegation protocol is not correct.

5We do not assume that the adversary learns this value but only that the delegator C has to output it by the correctness
property.

18

Remark 7. It is worth noting that in the previous proof, we use only the fact that the scalar r (used in the
exponent of the masking group element gr) is not zero. It might be possible to improve our lower bound by
using the much stronger privacy notion.

7 Conclusion and Future Work

All our results on (one-round) secure delegation of group exponentation are collected in Table 2. In addition,
we also provide protocols and lower-bounds for multi-exponentiations in Appendix C and lower bounds for
multi-rounds delegation of exponentiation protocols in Appendix D. As a future work, understanding the
relationship between computational efficiency and memory usage is vital when implementing delegation
protocols. In particular, it is interesting to propose efficient delegation protocols and to improve our lower
bounds in settings where the memory complexity of the delegator is limited.

Acknowledgments

The authors are supported in part by the French ANR JCJC ROMAnTIC project (ANR-12-JS02-0004) and
by ERC Starting Grant ERC-2013-StG-335086-LATTAC. The second author thanks Guillaume Hanrot and
Damien Stehlé for helpful discussions.

References

[1] Martin Albrecht, Shi Bai, David Cadé, Xavier Pujol, and Damien Stehlé. fplll-4.0, a floating-point LLL
implementation. Available at http://perso.ens-lyon.fr/damien.stehle.

[2] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary N. J.
Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted stores. In Ning et al. [31],
pages 598–609.

[3] Roberto Maria Avanzi. The complexity of certain multi-exponentiation techniques in cryptography.
Journal of Cryptology, 18(4):357–373, September 2005.

[4] László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986.

[5] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé. A heuristic quasi-
polynomial algorithm for discrete logarithm in finite fields of small characteristic. In EURO-
CRYPT 2014, LNCS 8441, pages 1–16. Springer, May 2014.

[6] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In ASI-
ACRYPT 2001, LNCS 2248, pages 514–532. Springer, December 2001.

[7] Victor Boyko, Marcus Peinado, and Ramarathnam Venkatesan. Speeding up discrete log and factor-
ing based schemes via precomputations. In EUROCRYPT’98, LNCS 1403, pages 221–235. Springer,
May / June 1998.

[8] Ernest F. Brickell, Daniel M. Gordon, Kevin S. McCurley, and David Bruce Wilson. Fast exponentiation
with precomputation (extended abstract). In EUROCRYPT’92, LNCS 658, pages 200–207. Springer,
May 1993.

[9] Sébastien Canard, Julien Devigne, and Olivier Sanders. Delegating a pairing can be both secure and
efficient. In ACNS 14, LNCS 8479, pages 549–565. Springer, June 2014.

[10] Bren Cavallo, Giovanni Di Crescenzo, Delaram Kahrobaei, and Vladimir Shpilrain. Efficient and secure
delegation of group exponentiation to a single server. In Radio Frequency Identification. Security and
Privacy Issues - 11th International Workshop, RFIDsec 2015, New York, NY, USA, June 23-24, 2015,
Revised Selected Papers, LNCS 9440, pages 156–173. Springer, 2015.

[11] Xiaofeng Chen, Jin Li, Jianfeng Ma, Qiang Tang, and Wenjing Lou. New algorithms for secure outsourc-
ing of modular exponentiations. In ESORICS 2012, LNCS 7459, pages 541–556. Springer, September
2012.

19

[12] Benôıt Chevallier-Mames, Jean-Sébastien Coron, Noel McCullagh, David Naccache, and Michael Scott.
Secure delegation of elliptic-curve pairing. In Smart Card Research and Advanced Application, 9th
IFIP WG 8.8/11.2 International Conference, CARDIS 2010, Passau, Germany, April 14-16, 2010.
Proceedings, LNCS 6035, pages 24–35. Springer, 2010.

[13] Don Coppersmith. Finding a small root of a bivariate integer equation; factoring with high bits known.
In EUROCRYPT’96, LNCS 1070, pages 178–189. Springer, May 1996.

[14] Don Coppersmith. Finding a small root of a univariate modular equation. In EUROCRYPT’96, LNCS
1070, pages 155–165. Springer, May 1996.

[15] Peter de Rooij. Efficient exponentiation using procomputation and vector addition chains. In EURO-
CRYPT’94, LNCS 950, pages 389–399. Springer, May 1995.

[16] Peter de Rooij. On Schnorr’s preprocessing for digital signature schemes. Journal of Cryptology,
10(1):1–16, 1997.

[17] The Sage Developers. Sage Mathematics Software (Version 5.3), 2012. http://www.sagemath.org.

[18] Steven D. Galbraith. Mathematics of public key cryptography. Cambridge University Press, 2012.

[19] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic
curves with efficient endomorphisms. In CRYPTO 2001, LNCS 2139, pages 190–200. Springer, August
2001.

[20] Mathias Herrmann. Lattice-based Cryptanalysis using Unravelled Linearization. PhD thesis, Ruhr-
Universität Bochum, 2011.

[21] Susan Hohenberger and Anna Lysyanskaya. How to securely outsource cryptographic computations.
In TCC 2005, LNCS 3378, pages 264–282. Springer, February 2005.

[22] Nick Howgrave-Graham. Finding small roots of univariate modular equations revisited. In 6th IMA
International Conference on Cryptography and Coding, LNCS 1355, pages 131–142. Springer, December
1997.

[23] Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Ning et al. [31],
pages 584–597.

[24] Charanjit S. Jutla. On finding small solutions of modular multivariate polynomial equations. In
EUROCRYPT’98, LNCS 1403, pages 158–170. Springer, May / June 1998.

[25] Arjen K. Lenstra, Hendrik W. Jr. Lenstra, and László Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[26] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with precomputation. In CRYPTO’94,
LNCS 839, pages 95–107. Springer, August 1994.

[27] Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In 47th FOCS, pages
367–378. IEEE Computer Society Press, October 2006.

[28] Bodo Möller. Algorithms for multi-exponentiation. In SAC 2001, LNCS 2259, pages 165–180. Springer,
August 2001.

[29] Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular sums and the
security of server aided exponentiation. In Workshop on Comp. Number Theory and Crypt, pages
1–16, 1999.

[30] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In EUROCRYPT 2005, LNCS
3494, pages 215–233. Springer, May 2005.

[31] Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors. Proceedings of the 2007
ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA,
October 28-31, 2007. ACM, 2007.

[32] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

20

[33] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In ASIACRYPT 2008, LNCS
5350, pages 90–107. Springer, December 2008.

[34] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and Ram Swaminathan. Auditing to keep online storage
services honest. In Proceedings of HotOS’07: 11th Workshop on Hot Topics in Operating Systems, May
7-9, 2005, San Diego, California, USA. USENIX Association, 2007.

[35] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EUROCRYPT’97, LNCS
1233, pages 256–266. Springer, May 1997.

[36] Benjamin Smith. Easy scalar decompositions for efficient scalar multiplication on elliptic curves and
genus 2 Jacobians. Contemporary Mathematics Series, 637:15, 2015.

[37] Ernst Gabor Straus. Problems and solutions: Addition chains of vectors. American Mathematical
Monthly 71, 1964. p. 806–808.

[38] Yujue Wang, Qianhong Wu, Duncan S. Wong, Bo Qin, Sherman S. M. Chow, Zhen Liu, and Xiao
Tan. Securely outsourcing exponentiations with single untrusted program for cloud storage. In ES-
ORICS 2014, Part I, LNCS 8712, pages 326–343. Springer, September 2014.

[39] Ikkwon Yie. Cryptanalysis of Elgamal type digital signature schemes using integer decomposition.
Trends in Mathematics, 8(1):167–175, June 2005.

A Practical Example of the Attack on Wang et al.’s algorithm

In this section, we provide a concrete example of the attack described in Section 4.
For p a 256-bit prime, recovering roots which have less than 110 bits implies the reduction of lattice of

a dimension 3 with entries of largest bit-size around 360. Indeed, as mentioned in Section 4, we construct
the matrix

M =

 p 0 0
0 pY 0
c bY X


whose rows are formed by the coefficients of the polynomials p, pyY and P (xX, yY) in the basis (1, X, Y).

Let us consider a 256-bit prime

p = 10A98A92 2EC19799 E81125D6 D3B0C1EB

0D6FE6D8 67D32C56 492FC5521 D1398C33.

The bound X and Y are set as

X = Y = 42E0EA80 D850A1EF BDAFD0E7 6115D4.

The Coppersmith matrix M constructed as previously mentioned and the corresponding LLL-reduced
matrix Mred are given in Figure 3.

M =



10A98A92 2EC19799 E81125D6 D3B0C1EB
0D6FE6D8 67D32C56 492FC5521 D1398C33

0 0

0

45A59564 B7A06BF8 9C6D4ED4 D08C2DC1
E2F88EB6 24EE3B81 02FA2AA7 26D36A9A
2566E317 86B0B9A5 CD40EB20 7B493C

0

E71E5733 9704C37D 34AB38DA 83EA7927
D8E5676D 09D1923A 2143A36F B4F01EAE

3B82CE9A 11B11310 D12A193C E17FE212
B62B436F 73B01FF6 344FA7B5 F9D70DB5
5A89EE31 CCFD3555 126BA888 D138F4

42E0EA80 D850A1EF BDAFD0E7 6115D4



Mred =



38F18511 39F7E280 204C22CC F39537F
A9ECD308 6EBE1D8D 72E1DC04 E57429

−30D8F3AD 3FABCE99 D5AF4BC6 66B620FD
F9877F0C 3442C051 634A8E7B 64EA20

−1AE68949 B7191B94 7FE4E3CA 8DAE9011
15D27BC9 ED826539 2AEEDBC4 EE7FBC

51B23E00 A5CFD8D9 BA767703 77C8BA2D
1370FA7E CB28EE35 4DA3E306 9A4877

−21CF42F7 F543572A 10EA8711 75A197B7
B6DE5AA1 4089DEDD 5936F3E1 2D17F4

−4CBC8A4D 547515B7 B2679846 C4584C6C
0824AEEC 452BDF56 CB042105 E38B34

87160B64 1EA1A7B0 CF27D073 400D2950
1F9D68CF 50BFBAE5 AF103485 7F15677D

47D1FC34 CC4468C7 876C2516 AD3069EA
0D122117 7A0C3DCE A8A4F500 2EEC24A0

706BD602 2D5F627C 3D5F0F0C 68E6A0E5
E6F72D54 69080AC7 55CADFEF 1312F3D8



Figure 3: Example of an attack against [38]

21

The two first vectors allow to recover{
x0 = 37921F2A 890AA857 DAC77BBF 803B5D and
y0 = 2379CD0E 21A56BC1 33CAA48C 43B4B2.

in less than 0.1 second on a standard laptop, using Sage math software [17] and fplll [1] . These vectors are
of norms of size respectively 245 and 256 bits.

Remark 8. Note that an alternative attack can also be adapted from Yie’s paper [39], which aimed at
recovering an ElGamal signature secret key when two signatures with small message nonces are available.
Indeed, during the verification of an ElGamal signature, an equation of the form h(m) = xr+ ks mod q is
verified, where x (the secret key) and k (the nonce) are unknown, and r and s are part of the signature of
the message m. Two such equations make it possible to get rid of x, and we are back to an equation like
Eq. 5. Yie adapted the algorithm of Gallant, Lambert and Vanstone GLV-Dec. This algorithm uses the
extended Euclidean algorithm and has a complexity of O(log2(q)3).

B Outsourcing Exponentiations in Groups with Efficient Inverses

Let GroupGen be a group generator which takes as input a security parameter λ. It provides a set params
which contains a description of a (multiplicative) group (G, ·), the group order, say p = |G|, and one generator
g. In this Appendix, we consider a variant of the generic group model in G where the computation of group
inverse is easy. This generic group is still implemented by choosing a random encoding σ : G −→ {0, 1}m
(with 2m > p). As above, a generic algorithm A takes as input (in addition to the group order p) their
image under σ. This way, all A can test is group elements equality (by encoding equality). A is also
given access to an oracle G computing group multiplication: taking σ(g1) and σ(g2) encodings of two group
elements g1, g2 ∈ G and a sign in s ∈ {−1,+1} as inputs and returning σ(g1 ·gs2) the encoding of the product
g1 · gs2 ∈ G (i.e., g1 · g2 or g1/g2) . We assume again that A submits to the oracle only encodings of elements
it had previously received. In this enhanced generic group model, we have the following lemma analogous
to Lemma 1:

Lemma 3. Considering this enhanced generic group model, let GroupGen be a group generator, let G be a
group of prime order p output by GroupGen and let A be a generic algorithm in G. If A is given as inputs
encodings σ(g1),. . . ,σ(gn) of groups elements g1, . . . , gn ∈ G (for n ∈ N) and outputs the encoding σ(h) of
a group element h ∈ G in time τ , then there exists integers α1, . . . , αn ∈ Z such that h = gα1

1 . . . gαn
n and

max(|α1|, . . . , |αn|) ≤ 2τ .

Proof. We can – as in the proof of Lemma 1 – define a map π : {0, 1}m → Zn which associates to each
encoding obtained by A during its execution an n-dimensional vector in Zn. For each input encoding σ(gi),
π(σ(gi)) is defined as the i-th vector from the Zn canonical basis (for i ∈ {1, . . . , n}) and for each encoding
σ(h1) and σ(h2) and each sign s ∈ {−1, 1} queried to G, π(σ(h1 · h2)s) = π(σ(h1)) + s · π(σ(h2). By
construction, during the whole execution of A, we have π(σ(h)) = (α1, . . . , αn) if and only if h = gα1

1 . . . gαn
n

for all encodings σ(h). As in the proof of Lemma 1, the `∞-norm of π(σ(h1 · hs2)) is upper-bounded by
`∞(π(σ(h1))) + `∞(π(σ(h2)) Since the `∞-norm of the input encodings π(σ(gi)) is equal to 1 (for i ∈
{1, . . . , n}) and the `∞-norm of encodings at most doubles for each query to G, we obtained the claimed
result.

In this setting, we can consider a variant of Algorithm 1 that computes the multi-exponentiation∏t
i=1 g

xi
i , for g1, . . . , gt ∈ G and x1, . . . , xt ∈ N by interleaving signed expansions of exponents. In par-

ticular, we can use the w-ary non-adjacent form method which guarantees that on average there will be
fewer group multiplications for the same window size w (see [28, 3] for details). In this case, the precomputa-
tion stage generates

∏
1≤i≤t g

Ei
i (and the algorithm can use the values

∏
1≤i≤t g

−Ei
i) for all non-zero t-tuples

(E1, . . . , Et) ∈ {0, . . . , 2w − 1}t at no extra storage-cost). The total cost is thus for the precomputation
phase t2tw−2 − t multiplications and t squarings and overall less than `/(w + 1/t) ≤ `/w multiplications
on average and ` squarings. For t = 2, the cost is again minimal for w around 1/2 log ` − log log ` with
`(1 + 3/ log `) = `(1 + o(1)) multiplications overall. Therefore, the method does not improve the asymptotic
complexity (at least when the precomputation stage and the storage are not strongly limited). We can
replace the use of Algorithm 1 by this variant but this does not improve the asymptotic complexity of the
delegation protocols in the number of generic group operations (even with efficient inverses).

Actually, this fact is not surprising, since we can replace the use of Lemma 1 in the proof of our lower
bound complexities (Theorems 3 – 9) by the use of Lemma 3 to obtain the same lower bounds for delegation
protocols in the enhanced generic group model with inverses.

22

C Generic Constructions for Outsourcing Multi-Exponentiations

As mentioned in Section 4, even if one can fix Wang et al.’s protocol by using a larger Υ (such that the
value χ is actually uniformly distributed over Zp), the resulting inefficient protocol would still not achieve
the privacy security notion. Indeed, in their protocol the µ1 and µ3 used to mask the secret bases ui,j
in Equation (2) and Equation (3) are always the same for all bases. In particular, an adversary against
the privacy of this protocol can simply picked bases (u0

1,1, u
0
1,2) and (u1

1,1, u
1
1,2) in Exppriv(A) such that

u0
1,1/u

0
1,2 6= u1

1,1/u
1
1,2. Since, from Equation (3), we know that w1,1/w1,2 = ub1,1/u

b
1,2 then it can determine

the bit b used in the experiment with certainty.

Protocol 10: 100f (and 101f)

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G

for i from 1 to n do
(ukii , ki)← B(i)
hi ← S(ui, ai − ki mod p)

end for
return

∏n
i=1 hiu

ki
i

Protocol 11: 011v

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G

for j from 1 to n do
for i from 1 to s do
gi

R←− G
end for
I R←− Pm({1, . . . , s}) B random subset

of cardinal m of {1, . . . , s}
gs+1 ← uj ·

∏
i∈I gi

for i from 1 to s+ 1 do
hi ← S(gi, aj)

end for
vj ← hs+1/

∏
i∈I hi

end for
return v1 · · · vn

Protocol 12: 101v

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G
T ← dp1/s+1e
for i from 1 to n do

for j from 1 to s do
hi,j ← S(ui, T

j)
end for
temp← ai
for j from s down to 0 do
ai,j = temp div T j

temp = temp− ai,j · T j
end for

B ai = ai,s · T s + · · ·+ ai,1T + ai,0
end for
return

∏n
i=1

(
u
ai,0
i

∏s
j=1 h

ai,j
i,j

)
B using Algorithm 1

Protocol 13: 100v (and 101v)

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G
T ← dp1/s+1e
for j from 1 to n do

for i from 1 to s do
hi,j ← S(uj , T

i)
end for
temp← aj
for i from s down to 0 do
ai,j = temp div T i

temp = temp− ai,j · T i
end for

B aj = as,j · T s + · · ·+ a1,jT + a0,j

end for
return

∏n
j=1 u

a0
j

∏s
i=1 h

ai,j
i,j

B using Algorithm 1

Protocol 14: 010v

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G

for i from 1 to n do
(gri , ri)← B(·)
h1,i ← S(ui · gri , ai)

end for
(gs, s)← B(·)
(gt, t)← B(·)
k ← (t−

∑s
i=1 riai)/s mod p

h2 ← S(gs, k)
return

∏s
i=1 h1,ih2g

t

Protocol 15: 000v (and 001v)

Input: u1, . . . , un ∈ G, a1, . . . , an ∈ Zp
Output: ua11 · · ·uann ∈ G

for j from 1 to n do
(gk1,j , k1,j)← B(·)
vj ← uj · gk1,j
h1,j ← vaj B delegated using Prot. 13

B h1,j = vaj = uaj · gajk1,j
(gk2,j , k2,j)← B(·)
h2,j ← S(g,−ajk1,j − k2,j mod p)

B h2,j = g−ajk1,j−k2,j

end for
return

∏n
j=1 h1,j · h2,j · gk2,j

We thus give in this section several protocols for outsourcing multi-exponentiations (u1, . . . , un, a1, . . . , an) 7→
u1
a1 · · ·unan . Their security is stated in Theorem 6. The proof of this theorem as well as optimality results

are similar to those given in the core of the paper.

Theorem 6. Let GroupGen be a group generator, let λ be a security parameter and let G be a group of
primer order p output by GroupGen(λ). Let (C,S) be one client-server protocol for the delegated computation

23

of the multi-exponentiation u1
a1 · · ·unan described in Protocols 10 – 15 (for the corresponding computation

code β ∈ {0, 1}4 given in their description). The protocol (C,S) satisfies (τ, 0)-privacy against a malicious
adversary for any time τ .

C.1 Construction for Outsourcing Fixed Based Multi-Exponentiation

When the bases (u1, . . . , un) are fixed, one can assume that C can use a pseudo-random power generator B(i)
for each ui. As for the single exponentiation case, the cases 111f , 110f and 011f are trivial or do not make
sense.

We give Protocol 10 in case 100f where the bases are public, the exponents private and the result private.
This protocol obviously work in the cases where the exponents or the result become public (case 101f), but
could probably be improved in these latter cases.

This protocol does not apply when the bases are private and exponents public (case 010f), but one can
instead use Protocol 11.

C.2 Construction for Outsourcing Variable Base Multi-Exponentiation

Since multi-exponentiations are at least as difficult as single exponentiations, lower bounds obtained in
Section 6 show that it is impossible to construct a protocol using a constant number of operations in G
when something is secret and the bases are variable. This gives further evidence that the protocols given
in [38] cannot be private.

When the bases (u1, . . . , un) are variable, one cannot assume that C can use a pseudo-random power
generator B(i) for each ui, but he can still use one for the generator g, that we denote B in the following
constructions.

As for the single exponentiation case, the cases 111v, 110v and 011v are trivial or do not make sense.
We give Protocol 11 in case 011v where the bases are private, the exponents public and the result public

and Protocol 12 in case 101v where the bases are public, the exponents private and the result public.
Finally, we give three protocols for the cases 100v, 010v and 000v (Protocols 13, 14 and 15, respectively)

which are basically parallel repetitions of the protocols for single exponentiation for the same cases. One
may be tempted to reuse masks generated by the pseudo-random power generator B for several private
bases ui (for i ∈ {1, . . . , n}). However, one can prove using our techniques from Section 6 that this would
result in insecure protocols.

D Complexity Lower Bound for Multi-Round Protocols

D.1 Complexity Lower Bound for Two-Round Protocols

We consider the delegation of the exponentiation ua with variable and public base u and secret exponent a.
One can easily adapt the proof of Theorem 3 to the case where the delegator is allowed to delegate two group
exponentiations in an adaptive way (i.e., in two communication rounds). Informally, Theorem 7 asserts that
in this case the delegator needs to perform at least log(p)/4 group operations (even if it is allowed to make
an arbitrary constant number of queries to a pseudo-random power generator for a generator g 6= u).

Theorem 7. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of the exponentiation ua for the corresponding computation code β = 101v. We assume that
the delegator C is a generic group algorithm that uses

• c log(p) + O(1) generic group operations (for all groups G of primer order p output by GroupGen(λ))
for some constant c,

• ` = O(1) queries to the (private) pseudo-random power generator B

• and 2 adaptive delegated exponentiation to the delegatee S

If c < 1/(4), then (C,S) is not private: there exists an algorithm running in polynomial-time such that

Pr[bit← Exppriv(A)] : bit = 1] ≥ 1− λO(1).

Proof. The proof is similar to the proof of Theorem 3.
We assume that the delegator C gets as input two encodings σ(u), σ(g) of two group elements u and

g picked uniformly at random in G and one scalar a picked uniformly at random in Zp and outputs the
encoding σ(ua) of the group element ua by making only

24

• q queries to the group oracle G;

• ` queries to the (private) pseudo-random power generator B;

• 2 (adaptive) queries to the delegatee oracle S.

We assume that q = c log p+ O(1) with c < 1/4. and we prove that it is not possible for C to compute
σ(ua) in such a way that the delegatee S learns no information on a. More precisely, the challenger picks
uniformly at random a scalar a∗ ∈ Zp and a random bit b and sets (ab, a1−b) = (a, a∗) (i.e. {a0, a1} = {a, a∗}
in a random order). The adversary (with the knowledge of the delegatee S’s transcript) has to guess the
bit b.

Let us denote (t1, σ(gt1)), (t2, σ(gt2)), . . . , (t`, σ(gt`)) the pairs obtained from the pseudo-random power
generator B by the delegator C. Since the pseudo-random power generator B takes no inputs and outputs
independent pairs, we can assume without loss of generality that the delegator C makes the ` queries to B
in a first phase of the delegation protocol.

We denote (σ(h1), x1) the first pair group element/scalar made by C to the delegatee S. Using generic
group operations, C can only construct the corresponding group elements such that:

h = uα
′
· gκ

′
· gt1γ

′
1 · · · gt`γ

′
` (18)

for some scalars (α′, κ′, γ′1, . . . , γ
′
`). We denote k1 = hx1

1 the response of the S.
We denote (σ(h2), x2) the second pair group element/scalar made by C to the delegatee S. Using generic

group operations, C can only construct the corresponding group elements such that:

h2 = uα
′′
· gκ

′′
· gt1γ

′′
1 · · · gt`γ

′′
` kδ

′′

1 hε
′′

1 (19)

for some scalars (α′′, κ′′, γ′′1 , . . . , γ
′′
` , δ
′′, ε′′). We denote k2 = hx2

2 the response of the S.
Eventually, the delegator C outputs the encoding σ(ua) of the group element ua and as above using

generic group operations, it can only construct it as

ua = uαgκ · gt1γ1 · · · gt`γ`kδ1hε1k
ζ
2h

η
2 (20)

for some scalars (α, κ, γ1, . . . , γ`, δ, ε, ζ, η). If we assume that q = c log n+O(1) (and in particular q = o(
√
p)),

the delegator C is not able to compute the discrete logarithm of u in base g. This means that necessarily the
exponent of g in Equation (20) cancel out. Recall that k1 = hx1

1 and k2 = hx2
2 , h1 and h2 being constructed

as in Equation (18) and Equation (19). Thus, taking only the discrete logarithms of powers of u in base u
of this equation, we obtain

a = (α+ εα′ + η(α′′ + ε′′α′))
+(δα′ + ηδ′′α′)x1

+(α′′ + α′′ + ε′′α′)ζx2

+(ζδ′′α′)x1x2 mod p.

(21)

For a random choice of a ∈ Zp, we have a = Ω(p). We denote τ1 the number of group operations
performed by C in the computation of h1 described in Equation (18), τ2 the number of group operations
performed by C in the computation of h2 described in Equation (19) and τ3 the number of group operations
performed by C in the computation of ua described in Equation (20).

By assumption, τ1 + τ2 + τ3 ≤ c log p+O(1). If we note ρ1 = α+ εα′ + η(α′′ + ε′′α′), ρ2 = δα′ + ηδ′′α′,
ρ3 = (α′′ + α′′ + ε′′α′)ζ and ρ4 = ζδ′′α′ Equation (21) becomes

a = ρ1 + ρ2x1 + ρ3x2 + ρ4x1x2 mod p

where x1 and x2 are known to the adversary. Furthermore, since C only used generic group operations, we
have as above ρi ≤ pc+o(1) for i ∈ {1, 2, 3, 4}.

The adversary can then try to decompose a0 and a1 as

ai = ρi,1 + ρi,2x1 + ρi,3x2 + ρi,4x1x2 mod p

with ρi,j ≤ pc+o(1) for i ∈ {0, 1} and j ∈ {1, 2, 3, 4}. For ab = a, the algorithm from Section 3.3 will recover
ρb,1, ρb,2, ρb,3 and ρb,4 in polynomial time. However, for a given pair (x1, x2) and a random a1−b = a∗,
there is only a negligible probability that such a decomposition exists (less than (pc+o(1))4 = p4c+o(1) = o(p)
scalars can be written in this way). Thus, the adversary can simply run the Coppersmith-like algorithm on
(a0, 1, x1, x2, x1x2) on one hand and on (a1, 1, x1, x2, x1x2) on the other hand and returns the bit b for which
the algorithm returns a “small decomposition” on input (ab, 1, x1, x2, x1x2) . By the previous analysis, its
advantage is noticeable.

25

In this setting, the best delegation protocol (to our knowledge) requires log(p)/3 group operations for
the delegator: it is Protocol 5 from Section 5 (with s = 2) that do not take advantage of the fact that the
second delegated exponentiation may depend on the first one.

If there exists a way to express the exponent a as a weighted sum

a = α0 + α1x1 + α2x2 + α2x1x2 mod p (22)

with αi ≤ p1/4 for i ∈ {0, 1, 2} for some arbitrary scalars x1 and x2 that do not reveal information on a,
then the delegator may query the delegatee the exponentiation k1 = ux1 and subsequently k2 = (uk1)x2 =
(ux1+1)x2 such that ua = uα0kα1

1 kα2
2 . Using Algorithm 1, this approach would make it possible for the

delegator to compute ua with roughly log(p)/4 group operations by delegating two successive group expo-
nentiations to the delegatee (and in this case Theorem 7 will prove the optimality of this algorithm).

Unfortunately, the GLV decomposition algorithm (GLV-Dec) does not permit to obtain such decomposi-
tion (but only a decomposition of the form a = α0 +α1x1 +α2x2 +α3x1x2 with αi ≤ p1/4 for i ∈ {0, 1, 2, 3}
where α3 is very likely different from α2). We do not know how to obtain a “small” decomposition of the
form (22) (or a similar one). On the other hand, it seems impossible to rule out the existence of such
decompositions by combinatorial arguments (such as the one used in the proof of Theorem 5). We run
extensive experiments for small prime group orders p and we find out that in those case, all scalars a ∈ Zp
actually admits a large number of such decompositions.

Even if the computational improvement from log(p)/3 to log(p)/4 group operations would be marginal
in practice compared to the increase of the round complexity (and thus the latency of the protocol), it is
an interesting theoretical open problem to study the existence of such decompositions (and to provide an
efficient algorithm to construct them).

We can also consider the case where the delegator is allowed to delegate several group exponentiations
in an adaptive way but in only two rounds. We obtain the following theorem:

Theorem 8. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of the exponentiation ua for the corresponding computation code β = 101v. We assume that
the delegator C is a generic group algorithm that uses

• c log(p) + O(1) generic group operations (for all groups G of primer order p output by GroupGen(λ))
for some constant c,

• ` = O(1) queries to the (private) pseudo-random power generator B

• and s simultaneous delegated exponentiation to the delegatee S in two rounds

If c < 4/(4 + (s+ 1)2), then (C,S) is not private: there exists an algorithm running in polynomial-time such
that

Pr[bit← Exppriv(A)] : bit = 1] ≥ 1− λO(1).

Proof. The proof is similar to the proof of Theorem 4.

In particular, Theorem 8 asserts that in order to construct a delegation protocol in which the delegator
performs only a constant number a group operations, then the round complexity of the protocol should
be at least Ω(

√
log(p)). The proof of Theorem 8 actually shows the stronger result that even if the round

complexity is O(
√

log(p)), then the number of group operations for the delegator is also of order Ω(
√

log(p))
(and is therefore non-constant).

D.2 Complexity Lower Bound for Multiple-Round Protocols

For completeness, we mention that it is also possible to prove a lower bound on the efficiency of delegation
protocols with any round complexity. For simplicity, we state only the complexity lower bound in the case of
a delegation protocol that delegates the computation of s group exponentiations in s rounds (in an adaptive
way). The lower bound is not as strong as the previous one since it decrease exponentially with s. Roughly
speaking, Theorem 9 asserts that the best delegation protocol we can hope for requires Ω(log log(p)) rounds
in order to decrease the computational complexity of the delegator to only O(log log(p)) group operations.

Theorem 9. Let GroupGen be a group generator and let (C,S) be one client-server protocol for the delegated
computation of the exponentiation ua for the corresponding computation code β = 101v. We assume that
the delegator C is a generic group algorithm that uses

26

• c log(p) + O(1) generic group operations (for all groups G of primer order p output by GroupGen(λ))
for some constant c,

• ` = O(1) queries to the (private) pseudo-random power generator B

• and s simultaneous delegated exponentiation to the delegatee S

If c < 2−s, then (C,S) is not private: there exists an algorithm running in polynomial-time such that

Pr[bit← Exppriv(A) : bit = 1] ≥ 1− λO(1).

Proof. The proof is again similar to the proof of Theorem 4.

27

