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Abstract

Mahmoody et al. (TCC 2016-A) showed that basing indistinguishability obfuscation
(IO) on a wide range of primitives in a semi-black-box way is as hard as basing public-key
cryptography on one-way functions. The list included any primitive P that can be realized
relative to random trapdoor permutations or degree-O(1) graded encoding model for any
finite ring secure against computationally unbounded polynomial-query attackers.

In this note, we rely on the recent result of Brakerski, Brzuska, and Fleischhacker (ePrint
2016/226) and rule out fully black-box constructions of IO from any such primitive P ,
assuming the existence of one-way functions and NP 6⊆ coAM.

At a technical level, we show that attacks in idealized (randomized) oracle models that
succeed with constant advantage over the trivial bound (e.g., guessing the obfuscated
circuit with probability 1/2 + 1/10) would remain successful for an infinite sequence of
security parameters for a non-zero measure of the oracles.

Keywords: Indistinguishability Obfuscation, Black-Box Separations.

1 Introduction

Let P be any primitive that can be realized relative to the random trapdoor permutation oracle or
the degree-O(1) graded encoding model in a way that is secure against polynomial-query attackers.
Examples of P include CCA-secure public-key encryption [NY90, BR93], hierarchical identity based
encryption [GS02, HL02], non-interactive zero-knowledge proofs for NP [BDSMP91, BY96, Gol11],
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etc. This short note rules out fully-black-box constructions [RTV04] of indistinguishability obfus-
cators (IO) [BGI+01, GGH+13] from any such primitive P assuming the mildest of complexity
assumptions, namely existence of one-way functions and that NP 6⊆ coAM.1

Previously, Mahmoody et al. [MMN+16] showed the weaker separation result that realizing
a black-box construction of IO from P is as hard as solving the notoriously difficult problem of
constructing public-key cryptography from one-way functions.2 Their result (which relies on the
work of [CKP15, Pas15, MMN15]) starts from a construction of IO in an idealized model I, realizing
the primitive P, and shows how to “compile-out” the use of the oracle I (and consequently the
primitive P) to produce an approximate, i.e., sometimes incorrect, albeit statistically secure IO.
Subsequently, this small correctness error can be eliminated in the cases of primitives such as
public-key encryption [DNR04, Hol06].

Whereas Goldwasser and Rothblum [GR07, GR14] already rule out the possibility of statistically-
secure IO under NP 6⊆ coAM, at the time of the result of [MMN+16] nothing more was known
about the implications of statistically-secure approximate IO. Recently, Brakerski, Brzuska, and
Fleischhacker [BBF16] provide an elegant argument that resolves this gap—in fact, they show a
stronger result by ruling out δ-statistically secure ε-approximately correct IO (based on standard
assumptions) as long as 2ε+3δ < 1.3 Using [BBF16], we can extend the result of [MMN+16] to rule
out fully-black-box constructions of IO from P based on the same assumptions used in [BBF16].

Theorem 1.1 (Main–Informal). Assuming the existence of one-way functions and NP 6⊆ coAM,
there is no fully-black-box construction of IO from any primitive that can be constructed relative to
random trapdoor permutation oracle or degree-O(1) graded encoding model for any finite ring.

At first glance, such a result would seem to follow obviously from [MMN+16] and [BBF16]
as given a putative construction Q of IO from P, one can apply the “compiling-out” procedure
from [MMN+16] to produce an ε-approximate statistical IO scheme which cannot exist by the
result of [BBF16]. However, a closer look at this argument reveals some subtle challenges. More
formally, the above argument consists of two steps. Step one is a composition theorem: assuming
there is a fully-black-box construction Q of IO from P and assuming the existence of P relative to
I, we need to show that there is a black-box construction of approximate IO relative to I. Then,
the second step would be to rule out the existence of black-box constructions of approximate IO
relative to the ideal model I (which follows from the works of [MMN+16, BBF16]).

Weak vs. strong constructions in idealized models. We first note that the composition
theorem needed in the first step above does not hold for the “typical” proofs of security in idealized
models. Such proofs of security in idealized models, which we refer to as weak constructions,
bound the success probability of the adversary by negl(n) where this probability is also over the
randomness of the oracle. To get the desired composition theorem, we would need to fix the oracle
I and be secure (with high probability) with respect to the fixed oracle I. Here we refer to such
constructions as strong constructions in idealized models. As observed by [MMN+16] the desired
composition theorem does indeed hold with respect to strong constructions in idealized models
(see Lemma 3.5). Moreover, the primitives of interest to our separation from IO (e.g., CCA-secure
encryption, HIBE, etc.) all have strong black-box constructions in their corresponding idealized

1Note that NP ⊆ coAM would imply that the polynomial-time hierarchy collapses.
2However, the result of [MMN+16] is stronger as it also applies to semi-black-box constructions [RTV04] of IO.
3Surprisingly, they show that the primitive does exist when 2ε+ δ > 1.
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models. However, in order to get the desired separation we would also need to rule out strong
black-box constructions of IO in certain idealized models.

Ruling out strong constructions of IO. Weak constructions of IO in such models are already
ruled out by [MMN+16, BBF16]. Thus all we need to show is that such result (i.e., ruling out weak
constructions) also rules out strong constructions of IO in idealized models. Unfortunately, as it
turns out, these two notions are not comparable in general (see Remark 2.5). At a technical level, in
this note we show that ruling out weak constructions in idealized models also rules out the existence
of strong constructions so long as the attacker succeeds with Ω(1) advantage over the trivial bound
(as opposed to just the seemingly sufficient 1/ poly advantage). Fortunately the result of [BBF16]
shows how to break approximate statistical IO with a constant advantage over 1/2, which together
with our reduction between the strong and weak constructions in idealized models would finish the
proof. To prove our reduction, we show that any attacker that succeeds with constant probability
over an infinite number of security parameters remains a successful attacker (over an infinite number
of security parameters) with at least a constant measure over the choice of the full oracle I.

An alternative to Borel-Cantelli lemma. The standard technique in seemingly similar sit-
uations in black-box separation results is to use the Borel-Cantelli lemma (Lemma 2.8), but that
lemma does not apply in our case since the attacker’s success probability is not sufficiently close
to one. Rather, we show that an alternative lemma (see Lemma 2.9) could be used as an alterna-
tive tool to the Borel-Cantelli lemma in scenarios in which an infinite sequence of “good” events
each happen with a constant probability (as opposed to ≈ 1− 1/n2) to show that with constraint
measure over the probability space an infinite number of good events hold simultaneously.

2 Preliminaries

2.1 Definitions

Definition 2.1 (Fully black-box constructions [RTV04]). A fully-black-box construction of a prim-
itive Q from a primitive P consists of two PPT algorithms (Q,S) as follows:
• Implementation: if oracle P implements P, then QP implements Q.
• Security reduction: for any oracle P implementing P and for any (computationally un-

bounded) oracle adversary A breaking the security of QP , SP,A breaks the security of P .

Reingold, Trevisan and Vadhan [RTV04] also defined other (more relaxed) notions of black-box
constructions, and Baecher, Brzuska, and Fischlin [BBF13] further studied those notions in more
details. We refer the readers to [RTV04, BBF13] for those extensions. We will, however, assume
one general property about the primitives that we deal with in this work: function P implementing
P will be partitioned into sub-domains indexed by “security parameter” n and any adversary A
who successfully breaks P would have to “win” over an infinite number of security parameters for
a “noticeable” advantage.

We skip defining IO and approximate IO and directly define the generalized notion of approxi-
mate computational IO. We first recall a statistical variant of this notion defined by [BBF16].

Definition 2.2 ([BBF16] Approximate Statistical Correlation IO). A PPTO is an (ε, δ)-approximate
statistical computational IO (CIO for short) if:
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• Approximate correctness: Pr[O(C)(x) 6= C(x)] ≤ ε(|C|) where the probability is over the
randomness of the obfuscator and the input x.
• Statistical correlation: For every pair of circuits C1 ≡ C2 of the same size n, the statistical

distance between O(C1) and O(C2) (both defined over the randomness of O) is at most δ(n).

A computational variant of Definition 2.2 can be defined analogously:

Definition 2.3 (Approximate Computational Correlation IO). A PPT O is an (ε, δ)-approximate
computational CIO if it satisfies the same correctness condition as approximate statistical CIO and:
• Computational correlation: For every poly-time adversary A and for every pair of circuits
C1 ≡ C2 of equal size n, it holds that Pr[A(O(C1)) = 1]− Pr[A(O(C2))] ≤ δ(n).

Fully-black-box constructions of IO. A fully-black-box construction of approximate compu-
tational CIO from primitive P could be defined through a combination of Definitions 2.1 and 2.3.
Here we emphasize that the input circuits do not have any oracle gates while the obfuscation algo-
rithm and the final circuits could use the oracle implementing P. This seemingly restricted model
is in fact sufficient for all known applications (see [MMN+16] for more discussions).

Idealized Models. An idealized model I is a randomized oracle; examples include the random
oracle, random trapdoor permutation oracle, generic group model, graded encoding model, etc. An
I ← I can (usually) be represented as a sequence (I1, I2, . . . ) where In is the part of I that is
defined for “security parameter” n. The distribution over the infinite object I ← I could naturally
be defined through finite distributions Di over the finite space of Ii. Caratheodory’s extension
theorem shows that such finite probability distributions could always be extended consistently to
a measure space over the full infinite space of I ← I (see Theorem 4.6 of [Hol15] for a proof).

Definition 2.4 (Strong Black-Box Constructions in Idealized Models [MMN+16]). We say a prim-
itive P has a strong black-box construction in the idealized model I if there is an oracle-aided
algorithm P such that:
• Completeness: P I implements P correctly for every I ← I.
• Black-box security: Let A be an oracle-aided adversary AI where the query complexity of
A is bounded by the specified complexity of the attacks for primitive P. For example if P is
polynomially secure (resp., quasi-polynomially secure), then A only asks a polynomial (resp.,
quasi-polynomial) number of queries but is computationally unbounded otherwise. Then, for

any such A, with measure one over the choice of I
$←I, it holds that A does not break P I .

Remark 2.5 (Weak vs. Strong Constructions). We called the constructions of Definition 2.4
“strong” because many constructions in idealized models use a ”weaker” security variant. In a
weak construction P of a primitive P in an idealized model I, the completeness is defined similarly
to Definition 2.4, but when it comes to security, the advantage of A in breaking the scheme is
calculated also over the randomness of I. It can be shown that the strong and weak (black-box)
constructions in idealized models are not comparable in general.4 However, looking ahead, our

4For “weak 6⇒strong” consider a construction of (un-keyed) collision resistant hash functions in the random oracle
model R in which h(x) is equal to the first |x| − 1 bits of R(x). For “strong 6⇒weak” consider a trivial primitive in
the Boolean random oracle model B in which a trivial attacker A succeeds in its attack over security parameter n if
B is equal to 0 over the first log(n) queries. Then the only oracle for which A succeeds in its attack for an infinite
sequence of security parameters is the constant zero oracle, which has a measure zero of being sampled.
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proof of Theorem 1.1 shows that when the attacker achieves constant Ω(1) advantage over the
trivial bound, a strong black-box construction would is also a weak black-box construction.

In what follows, unless specified otherwise, by constructions in idealized models we refer to
strong black-box constructions.

2.2 Borrowed Results

Theorem 2.6 ([BBF16]). Suppose one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→ [0, 1] are
such that 2ε(n) + 3δ(n) < 1− 1/poly(n), then there is no (ε, δ) approximate statistical CIO for all
poly-size circuits.

Theorem 2.7 ([Pas15, MMN15]). Suppose O′ is an approximately correct obfuscation algorithm
with error at most ε′ in idealized model I where I is random trapdoor permutation oracle or the
degree-O(1) graded encoding model for finite rings. Suppose ε′′ ≥ 1/ poly(n). Then there is another
obfuscation algorithm O in the plain model such that:
• The running time of O is poly(n/ε′′(n)) where n is the size of the input circuit and it is

approximately correct with error at most ε = ε′ + ε′′.
• There is a simulator Sim in the idealized model that runs in time poly(n/ε′′(n)), and for any

circuit C, the distributions SimI(O′I(C)) and O(C) have statistical distance negl(|C|).

2.3 Measure Theoretic Tools

By a probability space we mean a measure space with total measure equal to one, and by Pr[E] we
denote the measure of the measurable set E. For a sequence of measurable sets E = (E1, E2, . . . ) de-
fined over some measure space, the limit supremum of E is defined as limSup(E) =

⋂∞
n=1

⋃∞
m=nEm.

It can be shown that limSup(E) is measurable if Ei is so for all i.

Lemma 2.8 (Borel–Cantelli [Bor09, Can17]). Let E = (E1, E2, . . . ) be a sequence of measurable
sets over some probability space, and

∑∞
n=1 Pr[Ei] = O(1). Then limSup(E) has measure zero.

Lemma 2.9. If E = (E1, E2, . . . ) is a sequence of measurable sets over some probability space, and
Pr[Ei] ≥ δ for all i ∈ N, then Pr[limSup(E)] ≥ δ.

Proof. We use the following proposition.

Proposition 2.10 ([Ale03] Proposition 37, Part (iii)). Let B1 ⊇ B2 ⊇ . . . be a sequence of
measurable sets over some measure space, and Pr[B1] <∞. Then Pr

[⋂∞
n=1Bn

]
= limn→∞ Pr[Bn].

Now let Bn =
⋃∞

m=nEm, and so limSup(E) =
⋂∞

n=1Bn. Since the measure space is a probability
space, thus we have Pr[B1] ≤ 1, and we can apply the above proposition to conclude that

lim
n→∞

Pr[Bn] = Pr
[ ∞⋂
n=1

Bn

]
= Pr[limSup(E)].

Finally, because Pr[Bn] ≥ Pr[Ei] ≥ δ for every n, we get δ ≤ limn→∞ Pr[Bn] = Pr[limSup(E)].
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3 Proving the Main Separation

In this section we prove Theorem 1.1. First we formalize the statement by specifying the way P is
constructed in the idealized models.

Theorem 3.1 (Main–Formal). Assuming the existence of one-way functions and NP 6⊆ coAM,
there is no fully-black-box construction of IO from any primitive P that has a strong black-box
construction in the random trapdoor permutation oracle or the degree-O(1) graded encoding model
for any finite ring.

In fact, we prove a stronger separation that holds for approximate computational CIO as well.

Theorem 3.2. Assuming there is no (ε, δ) approximate statistical CIO, there is no fully-black-box
construction of (ε′, δ′) approximate computational CIO for any ε′ ≤ ε− n−Ω(1), δ′ ≤ δ − Ω(1) from
any of the primitives listed in Theorem 3.1.

Proving Theorem 3.1 using Theorems 2.6 and 3.2. Theorem 2.6 rules out (ε, δ) approximate
statistical CIO (assuming OWFs and NP 6⊆ coAM) for some ε = 1/ poly(n) and δ = 2.99. Thus,
if we choose ε′ = ε/2 and δ′ = δ/2, then Theorem 3.1 follows from Theorems 3.2 and 2.6.

In the following we will focus on proving Theorem 3.2.

Remark 3.3 (The need for constant δ.). Our proof of Theorem 3.2 crucially relies on the fact that
δ − δ′ ≥ Ω(1) which in turn requires δ ≥ Ω(1). Thus, the separation holds because the attacker
of [BBF16] could achieve δ ≈ 1/3 (as opposed to just 1/poly(n)). More technically, our proof
will make use of Lemma 2.9 rather than the Borel-Cantelli lemma, and that is the source of our
need for δ ≥ Ω(1). However, in case one can improve the result of [BBF16] to cover the setting of
ε = 1/ poly(n) and δ = 1 − α for arbitrary small α = 1/poly(n), then our Theorem 3.2 could be
improved to any δ′ = δ−1/ poly(n). In fact the proof will be simple and will not use our Lemma 2.9
and could be based on the Borel-Cantelli lemma (see the end of this section for a sketch).

Remark 3.4 (Ruling out relativizing constructions). In Theorem 3.1 we focus on ruling out fully-
black-box constructions. However, the proof can be extended to rule out relativizing constructions
(of IO from the set of listed primitives) using standard techniques and the fact that an optimal
statistical distinguisher can be implemented in PSPACE. In particular, the separating oracle
would be a random sample from the idealized oracle I ← I and an oracle for a PSPACE-complete
oracle. However, interestingly, in our case the sampled I ← I would only work with constant
measure (which is enough since it is still a positive measure) due to using Lemma 2.9 as opposed
to measure one, which is typically the case in black-box separations.

Proof of Theorem 3.2. In the following, let Q denote the primitive of (ε′, δ′) approximate compu-
tational CIO. Also let P be any primitive that can be constructed in the idealized models listed in
Theorem 3.1 (according to Definition 2.4), and let P be the implementation of P relative to I.

For sake of contradiction, in the following we let Q be the fully-black-box construction of Q from
P. First we recall a composition lemma from [MMN+16] showing that Q could also be implemented
relative to I as well.5 Then we rule out the existence of black-box constructions of Q from I to
conclude that Q could not exist.

5[MMN+16] proved a variant of Lemma 3.5 for semi-black-box constructions, and sketched the proof for fully-
black-box case. For sake of completeness here we recall the proof for fully-black-box constructions.
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Lemma 3.5 (Composition lemma [MMN+16]). Suppose Q is a fully-black-box construction of Q
from P, and suppose P is (a strong black-box) implementation of P relative to I. Then QP is a
(strong black-box) implementation of Q relative to the same idealized model I.

Proof. It is easy to see that QP is an implementation of Q relative to I (by completeness of the
constructions P and Q), and so the completeness holds. The proof of security follows. For sake
of contradiction, let AI be any efficient query successful attacker against the implementation QP

(of Q) in the idealized model I which rules out its strong black-box property. Namely, there is a

non-zero measure fraction of I
$←I it holds that AI breaks the security of QP I

. For any such fixed I,
the security reduction SAI ,I (of the fully-black-box construction Q of P ) would break the security
of P I . By combining the algorithms S and A we get that the efficient query attacker (SA)I = BI

breaks the security of P I with non-zero measure over the sampled oracle I
$←I. But this contradicts

the assumption that P is securely realized in I in a strong black-box way. Therefore QP is also a
strong black-box construction of Q relative to I.

In the following we will use Theorems 2.7 and 2.6 to rule out the possibility of any strong
black-box construction of Q relative to I which (with Lemma 3.5) shows that Q could not exist.

Let ε′′ = ε − ε′ ≥ 1/ poly(n) and δ′′ = δ − δ′ ≥ Ω(1). Since P is a construction of P relative

to I, thus O′I = (QP )
I

is an ε′ approximate obfuscation mechanism relative to I. Let O be the
ε approximate obfuscator in the plain model that exists due to Theorem 2.7. The assumption in
Theorem 3.2 is that O cannot be an (ε, δ) approximate statistical CIO. Therefore, there is a com-
putationally unbounded adversary A and an infinite sequence of circuits (C1

0 , C
1
1 ), . . . , (Ci

0, C
i
1), . . .

such that for all i: |Ci
0| = |Ci

1|, Ci
0 ≡ Ci

1, and Prb←{0,1}[A(O(Ci
b)) = b] ≥ 1/2 + δ(n)/2.

Now consider another attacker A′ in the idealized model I which, given a circuit B′ as input,
runs the simulator of Theorem 2.7 to get the circuit B = SimI(B′) and then runs A over B to
output whatever A does. By the property of the simulator Sim we conclude that A′ is an efficient
query (computationally unbounded) attacker in the idealized model I that achieves

Pr
b←{0,1},I←I

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ(n)/2− negl(n)

where |Ci
0| = |Ci

1| = n.
A crucial point is that the above probability is also over the randomness of the oracle I ← I

for every i, while we are interested in fixing I ← I and getting a successful attack for infinitely
many circuits at the same time. By a simple averaging argument we can get:

Pr
I←I

[
Pr

b←{0,1}
[A′

I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ′(n)/2

]
≥ δ′′(n)/2− negl(n).

Thus, if we define the event Ei over the sampled oracle I ← I as:

Ei holds if: Pr
b←{0,1}

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ′/2

then we get Pr[Ei] ≥ δ′′(n)/2 − negl(n) ≥ δ′′/3 for every i ∈ N. Now we can apply Lemma 2.9
to conclude that with probability at least δ′′/3 over the choice of I ← I an infinite number of the
events Ei’s would happen at the same time for I. We call I ← I a good oracle if it is indeed the
case that infinitely many of the events Ei’s happen over I. By definition, for any good oracle I,
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the attacker A′ successfully breaks (QP )I (as an implementation of Q in model I) over infinitely
many pairs of circuits while asking only an efficient number of oracle queries to I. The existence of
such A′ who breaks (QP )I for non-zero (in fact ≥ δ′′/3) measure of the choice of the oracles I ← I
prevents QP from being a strong black-box construction of Q relative to I.

Case of δ′ ≈ 1 − 1/ poly(n). Theorem 3.2 was sufficient for us to derive Theorem 3.1, however
that is not the strongest separation one can imagine for approximate computational CIO as it
does not cover the case of 1 − 1/poly(n). The work of [BBF16] shows that whenever 2ε + δ > 1
then there is in fact a way to achieve (ε, δ) approximate statistical CIO. Thus one can imagine the
possibility that the result of [BBF16] could ultimately be improved to rule out (ε, δ) approximate
statistical CIO for O(ε) + δ < 1 − 1/ poly(n). Below, we show that such result, if proved, could
be used to derive lower bounds on complexity of (ε′, δ′) approximate computational CIO large
δ′ ≈ 1− 1/ poly(n).

Theorem 3.6. If there is no (ε, δ) approximate statistical CIO for δ = 1 − ρ for sufficiently
small ρ = 1/ poly(n) (e.g., ρ = 1/n4 suffices), then there is no fully-black-box construction of
(ε′, δ′ = 1 − √ρ) approximate computational CIO for any ε′ ≤ ε − n−Ω(1) from the primitives of
Theorem 3.1.

Thus, the main difference between Theorem 3.2 and Theorem 3.6 is that in Theorem 3.6 we
cover the case of δ′ = 1−1/ poly(n), but we also rely on stronger assumption that δ = 1−1/poly(n).

Proof of Theorem 3.6. The proof is identical to that of Theorem 3.2 except for the following. Since
the attackers A and A′ will succeed in guessing the correct circuit with probability 1−1/ poly(1) ≈ 1
we can do a better averaging argument to get a better attack after fixing the oracle. Namely, define
the event Ei as:

Ei holds if: Pr
b←{0,1}

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1−
√
ρ(n)/2

where n is the size of the circuits Ci
0, C

i
1. Then we can conclude that Pr[Ei] ≥ 1− 10

√
ρ(n). Now,

since the events Ei happen with large probability and that
∑

n 10
√
ρ(n) < ∞ we can apply the

Borel-Cantelli lemma (Lemma 2.8) to conclude that with measure one over the choice of the oracle
I ← I all but finitely many of Ei’s would happen. The rest of the proof is remains unchanged.
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