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Abstract

Semi-adaptive security is a notion of security that lies between selective and adaptive security for
Attribute-Based Encryption (ABE) and Functional Encryption (FE) systems. In the semi-adaptive
model the attacker is forced to disclose the challenge messages before it makes any key queries, but is
allowed to see the public parameters.

We show how to generically transform any selectively secure ABE or FE scheme into one that is
semi-adaptively secure with the only additional assumption being public key encryption, which is already
naturally included in almost any scheme of interest. Our technique utilizes a fairly simple application of
garbled circuits where instead of encrypting directly, the encryptor creates a garbled circuit that takes
as input the public parameters and outputs a ciphertext in the underlying selective scheme. Essentially,
the encryption algorithm encrypts without knowing the ‘real’ public parameters. This allows one to
delay giving out the underlying selective parameters until a private key is issued, which connects the
semi-adaptive to selective security. The methods used to achieve this result suggest that the moral gap
between selective and semi-adaptive security is in general much smaller than that between semi-adaptive
and full security.

Finally, we show how to extend the above idea to generically bundle a family of functionalities under
one set of public parameters. For example, suppose we had an inner product predicate encryption scheme
where the length of the vectors was specified at setup and therefore fixed to the public parameters. Using
our transformation one could create a system where for a single set of public parameters the vector length
is not apriori bounded, but instead is specified by the encryption algorithm. The resulting ciphertext
would be compatible with any private key generated to work on the same input length.

1 Introduction

Traditionally, in a public key encryption system a user will encrypt data m under a second user’s public key to
create a ciphertext. A receiver of the ciphertext can decrypt the data if they possess the corresponding secret
key; otherwise, they will learn nothing. Over the last several years there has been a dramatic re-envisioning
of the expressiveness of encryption systems with the introduction of Identity-Based Encryption (IBE) [34,
12, 19], Attribute-Based Encryption (ABE) [32] and culminating in Functional Encryption (FE) [33], which
encompasses IBE and ABE.

In these systems a setup algorithm produces a master public/secret key pair, where the master public
key is made public and the master secret key is retained by an authority. Any user can encrypt data m
using the public parameters1 to produce a ciphertext ct. In parallel the authority may issue (any number of
times) to a user a secret key skf that allows the user to learn the output f(m) of a ciphertext that encrypts
data m. The message spaceM and function space F allowed depend on the expressiveness of the underlying
cryptosystem.

∗Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare, Microsoft Faculty Fellowship, and Packard Foun-
dation Fellowship.

1We use public parameters and master public key interchangeably.
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The security of this class of systems is captured by an indistinguishability based security game between
a challenger and an attacker.2 In this game the challenger will first generate the master public key that
it sends to the attacker. The attacker begins by entering the first key query phase where it will issue a
polynomial number of key queries, each for a functionality f ∈ F . For each query the attacker receives
back a corresponding secret key SKf . Next the attacker submits two challenge messages m0,m1 with the
restriction that f(m0) = f(m1) for all functions f queried on earlier. The challenger will flip a coin b ∈ {0, 1}
and return a challenge ciphertext ct∗ encrypting mb. Next, the attacker will engage in a second set of private
key queries with the same restrictions. Finally, it will output a guess b′ ∈ {0, 1} and win if b = b′. For any
secure scheme the probability of winning should be negligibly close to 1

2 .
The above game, called full or adaptive security game, captures our intuitive notion of what an indistin-

guishability based security game should look like. Namely, that an attacker cannot distinguish between two
messages unless he receives keys that trivially allow him to — even if the attacker gets to adaptively choose
what the keys and messages are. One issue faced by researchers is that when striving for a new functionality
it is often difficult at first to achieve full security if we want to restrict ourselves to polynomial loss in the
reductions and avoid relying on sub-exponential hardness assumptions. To ease the initial pathway people
often consider security under a weaker notion of selective [17] security where the attacker is forced to submit
the challenge messages m0,m1 before seeing the public parameters. After gaining this foothold, later work
can circle back to move from selective to adaptive security.

Over the past decade there have been several examples of this process in achieving adaptive security for
IBE, ABE and FE. The first such examples were the “partitioning” techniques developed by Boneh and
Boyen [11] and Waters [35] in the context of achieving Identity-Based Encryption in the standard model,
improving upon earlier selectively secure realizations [17, 10]. While partitioning methods were helpful in
realizing full security for IBE, they did not generalize to more complex functionalities. To that end a new set
of techniques were developed to move beyond partitioning which include those by Gentry and Halevi [21, 22]
and Waters’ Dual System Encryption [36] methodology. The latter which spawned several other works within
that methodology, e.g., [27, 29, 39].

More recently, Ananth et al. [2], building upon the bootstrapping concepts of [38], showed how to gener-
ically convert an FE scheme that supports arbitrary poly-sized circuits from selective security into one
that achieves full security.3 Their result, however, does not apply to the many ABE or FE schemes that
fall below this threshold in functionality. Moreover meeting this bar might remain difficult as it has been
shown [3, 9, 4] that achieving functional encryption for this level of functionality is as difficult as achieving
indistinguishability obfuscation [7, 20].

Delaying Parameters and Semi-Adaptive Security One remarkable feature of almost all of the afore-
mentioned works is that the security reductions treat the second key query phase identically to the first.
Indeed papers will often simply describe the proof of Phase 2 key queries as being the same as Phase 1.
Lewko and Waters [28] first departed from this paradigm in a proof where they gave an ABE scheme with
a security reduction handled Phase 1 and Phase 2 keys differently. Central to their proof was what they
called a “delayed parameters” technique that delayed the release of part of the public parameters in a way
that gave a bridge for building adaptive security proofs utilizing selective type techniques. These ideas were
extended and codified into a framework by Attrapadung [6].

Chen and Wee [18] introduced the definition of semi-adaptive security as a notion of security where an
attacker discloses the challenge messages after it sees the public parameters, but before it makes any key
queries. It is easy to see that this notion falls somewhere between selective and adaptive in terms of strength.

Most recently, Brakerski and Vaikuntanathan [16] gave an interesting circuit ABE scheme that was prov-
ably secure in the semi-adaptive model from the Learning with Error assumption [31]. Their cryptosystem
and proof of security build upon the (arithmetic) circuit ABE scheme of Boneh et al. [13] and requires a
somewhat elaborate two level application of these techniques integrated with a pseudorandom function (we
note that some of the complexity is due to their parallel goal of bundling functionalities; we will return to

2There also exists simulation-based notions of security [14, 30], but these will not be a focus of this work.
3We note that FE for poly-sized circuits is achievable by bootstrapping FE for NC1 [23].
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this). Like the earlier work of [28], they also apply a “delayed parameter” concept, although its flavor and
execution are significantly different.

1.1 Going from Selective to Semi-Adaptive Security Generically

We now arrive at the first goal of this work.

Can we generically transform any selectively secure attribute-based encryption or functional encryption
scheme into one that is semi-adaptively secure?

It turns out that this transformation is possible and moreover that the method to do so is quite simple.
Here is our idea in a nutshell. Instead of encrypting the data outright, the encryptor will consider a circuit
that fixes the message and randomness for encryption and takes the functional encryption scheme’s public
parameters as input. It then garbles this circuit and encrypts each pair of input wire values under pairs
of standard PKE public keys provided by the authority. The garbled circuit plus pairs of encrypted wires
comprise the ciphertext. In generating a secret key, the authority will output both the underlying functional
encryption secret key as well as give one of the PKE secret keys for each pair corresponding to the underlying
selectively secure FE public parameters. The decryption algorithm will first evaluate the garbled circuit to
obtain the underlying ciphertext and then decrypt using the FE secret key. In this manner, the core FE
parameters are literally not committed to until a key is given out.

We now elaborate our description. Let FEsel = (Setupsel,Encsel,KeyGensel,Decsel) be the underlying se-
lectively secure FE scheme. Our semi-adaptively secure FE setup algorithm generates a master public/secret
key pair (mpksel,msksel) using Setupsel, and chooses 2` public/secret key pairs {pki,b, ski,b} for a semantically
secure PKE scheme, where ` = |mpksel|. The public key of FEsel consists of these 2` PKE public keys {pki,b},
but not the public key mpksel. To encrypt any message m, the encryptor constructs a circuit that takes
as input an ` bit string str and outputs Encsel(str,m; r) – an encryption of m using str as the public key
and r as randomness. The encryptor garbles this circuit and encrypts each of the 2` garbled circuit input
wire keys wi,b under the corresponding public key pki,b. The ciphertext consists of the garbled circuit and
the 2` encrypted wire keys. The secret key for any function f consists of three parts — the master public
key mpksel, ` PKE secret keys to decrypt half of the encrypted wire keys wi,b corresponding to mpksel, and
FEsel secret key skf,sel to decrypt the actual FEsel ciphertext. The key skf,sel is simply generated using the
KeyGensel algorithm, and the ` PKE secret keys released correspond to the bits of mpksel. For decrypting
any ciphertext, the decryptor first decrypts the encrypted input wire keys. Then, these wire keys are used
to evaluate the garbled circuit. This evaluation results in an FEsel ciphertext under mpksel, which can be
decrypted using skf,sel.

The crucial observation here is that the underling FEsel public key mpksel is information theoretically
hidden until any secret key is given out as the encryptor computes the ciphertext oblivious to the knowledge
of mpksel. Therefore, the semi-adaptive security proof follows from a simple sequence of hybrids. In the
first hybrid, we switch the ` encryptions of input wire keys (given out in the challenge ciphertext) which are
never decrypted to encryptions of zeros. Next, in the following hybrid, we simulate the garbled circuit (given
out in the challenge ciphertext) instead of constructing the actual encryption circuit and garbling it. After
these two indistinguishable hybrid jumps, we could directly reduce the semi-adaptive security to selective se-
curity as the FEsel public key is hidden. Our construction and security proof is described in detail in Section 4.

The overhead associated with our transformation to semi-adaptive security is readily apparent. Instead
of evaluating the underlying encryption algorithm, the transformed encryption algorithm will need to garble
the encryption circuit. The ciphertext will grow proportionally to the size of this garbled circuit. Similarly,
the decryption algorithm will first have to evaluate the garbled circuit before executing the core decryption.
In the description above one will replace each bit of the original public parameters with a pair of PKE public
keys. However, if one optimizes by using IBE instead of PKE for this step, the public parameters could
actually become shorter than the original ones. In many cases our transformation will incur greater overhead
than non-generic techniques designed with knowledge of the underlying scheme such as [18].
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Interpreting our Result It is useful to step back and see what light our result can shed on the relationship
between selective, semi-adaptive and adaptive security. Ideally, we would like to claim that semi-adaptive
security gives us a half-way point between selective and adaptive where the next idea could take us all the
way between the two endpoints. While this might turn out to be the case, the way in which we delay
parameters seems primarily to exploit the closeness of selective and semi-adaptive security as opposed to
crossing a great divide. To us this suggests that the moral gap between selective and semi-adaptive security
is much smaller than that between semi-adaptive and full security (at least for functionalities that fall below
the threshold needed by [2]). We view illuminating this relationship as one of the contributions of this paper.

1.2 Bundling Functionalities

We now turn to the second goal of our work. Before doing so, we describe a more general definition of
functional encryption, which will later help us to explain our idea of bundling functionalities. Any functional
encryption scheme is associated with a message space M and function space F . In many scenarios, the
function space F and message space M themselves consists of a sequence of function spaces {Fn}n and
message spaces {Mn}n respectively, parameterized by the ‘functionality index’ n. In our definition of
functional encryption, we assume that the setup algorithm takes two inputs - the security parameter λ and
the functionality index n. This notation decouples the security of the scheme from the choice of functionality
it provides. We note that such terminology has appeared in several prior works. For example, Goyal et al.
[25] have a setup algorithm that takes as input the number of attributes along with the security parameter.
Similarly, in the works of Boyen and Waters [15] and Agrawal et al. [1], the setup algorithms also take the
length of vectors as an input. And other works [24, 13] specify the maximum depth of a circuit in an ABE
scheme during setup.

Using the above convention, Setup(1λ, 1n) creates a master public/secret key for message spaceMn and
function space Fn. For example, in an inner product encryption scheme, the setup algorithm fixes the
length of vectors to be encrypted once the master public key is fixed. However, one goal could be to allow
more flexibility after the public key is published. In particular, would it be possible to have all message
and function spaces available even after setup? Continuing our example, we might want an inner product
encryption scheme where the encryptor/key generator are allowed to encrypt/ generate keys for arbitrary
length vectors after the public parameters have been fixed.

Looking more generally, a natural question to ask is — “Can we generically transform any (standard)
functional encryption scheme into one where a single set of public parameters can support the union of
underlying message/function spaces?” We answer this in the affirmative, and show a generic transformation
using identity based encryption, pseudorandom functions and garbled circuits, all of which can be realized
from standard assumptions. More formally, we show how to transform an FE scheme with message space
{Mn}n and function space {Fn}n to an FE scheme for message space M = ∪nMn and function space
F = ∪nFn. The key for a function f ∈ Fn can be used with a ciphertext for message m ∈ Mn to compute
f(m). If f and m are not compatible (i.e. f ∈ Fn and m ∈Mn′), then the decryption fails.

As a simple instantiation, using our transformation, one can construct an inner product encryption scheme
where the encryption algorithm and the key generation algorithm can both take arbitrary length vectors as
input. However, given a secret key for vector v and an encryption of vector w, the decryption algorithm
tests orthogonality only if v and w have same length; else the decryption algorithm fails. Similarly, our
transformation can also capture the recent result of Brakerski and Vaikuntanathan [16]. They give a circuit
ABE scheme where under a single set of parameters an encryptor can encrypt messages for an attribute of
unbounded length. Later if a private key is given out and is tied to the same attribute length it can decrypt
if the circuit matches. In our transformation we would start with a selective scheme for circuit ABE such
as [24] where 1n denotes the number of attributes and then apply our transformation. We observe that
we could even choose to obtain more flexibility where we might allow both the attribute length and circuit
depth to depend on 1n.

One should be careful to point out the limits of such bundling. The main restriction is that in order for
decryption to do anything useful the functionality index used to encrypt must match that of the private key;
otherwise they simply are not compatible. So such a technique cannot be used to emulate a functionality
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such as ABE for DFAs [37] or Functional Encryption for Turning Machines [5] where the base private key is
meant to operate on ciphertext attributes of unrestricted size.

Our Transformation for Bundling Functionalities Our method for achieving such a transformation
follows in a similar line to the selective to semi-adaptive transformation given above. In addition, it also am-
plifies to semi-adaptive security along the way for free. Recall, in the base scheme, Setupsel takes functionality
index n as input and outputs master public/secret keys. Let `(n) denote the bit-length of public keys output
by Setupsel. In our transformed scheme, the setup algorithm chooses IBE public/secret keys (mpkIBE,mskIBE)
and sets mpkIBE as the public key. To encrypt a message m ∈ Mn, the encryptor first constructs a circuit
which takes a ` = `(n) bit input string str, and then outputs Encsel(str,m; r). The encryptor then garbles
this circuit, and each wire key wi,b is encrypted for identity (n, i, b). The final ciphertext consists of the
garbled circuit, together with encryptions of wire keys. Note that ` is not fixed during setup, and hence we
need to use IBE instead of PKE.

The secret key for a function f ∈ Ft is computed as follows. First, the key generation algorithm chooses
pseudorandom FEsel keys (mpkt,mskt) using Setupsel(1

λ, 1t). Next, it computes IBE secret keys for identities
(t, i,mpkt[i]). Finally, it computes an FEsel secret key for the function f . The decryption procedure is
similar to the one described in Section 1.1. Let ct = (C, {cti,b}) and skf = ({ski}, skf,sel). First, note
that it is important that the message underlying the ciphertext, and the function underlying the secret key
are compatible. If so, the decryptor first decrypts cti,b to compute the garbled circuit wire keys. Next, it
evaluates the garbled circuit to get an FEsel ciphertext, which it then decrypts using skf,sel. The proof of
security is along the lines of selective to semi-adaptive transformation proof.

The overhead involved in this transformation is similar to the overhead in going from selective to semi-
adaptive security, except that the size of the garbled circuit, and the number of wire keys grows with the
functionality index. Overhead comparisons between our approach and the non-generic approach of [16] are
less clear, since their approach requires increasing the maximum depth of the circuit to accommodate a PRF
evaluation before evaluating the main circuit.

2 Preliminaries

2.1 Garbled Circuits

Our definition of garbled circuits [40] is based upon the work of Bellare et al. [8]. Let {Cn}n be a family of
circuits where each circuit in Cn takes n bit inputs. A garbling scheme GC for circuit family {Cn}n consists
of polynomial-time algorithms Garble and Eval with the following syntax.

• Garble(C ∈ Cn, 1λ): The garbling algorithm takes as input the security parameter λ and a circuit
C ∈ Cn. It outputs a garbled circuit G, together with 2n wire keys {wi,b}i≤n,b∈{0,1}.

• Eval(G, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit G and n wire keys {wi}i≤n
and outputs y ∈ {0, 1}.

Correctness: A garbling scheme GC for circuit family {Cn}n is said to be correct if for all λ, n, x ∈ {0, 1}n
and C ∈ Cn, Eval(G, {wi,xi

}i≤n) = C(x), where (G, {wi,b}i≤n,b∈{0,1})← Garble(C, 1λ).

Security: Informally, a garbling scheme is said to be secure if for every circuit C and input x, the garbled
circuit G together with input wires {wi,xi

}i≤n corresponding to some input x reveals only the output of the
circuit C(x), and nothing else about the circuit C or input x.

Definition 2.1. A garbling scheme GC = (Garble,Eval) for a class of circuits C = {Cn}n is said to be a
secure garbling scheme if there exists a polynomial-time simulator Sim such that for all λ, n, C ∈ Cn and
x ∈ {0, 1}n, the following holds:
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{
Sim

(
1λ, 1n, 1|C|, C(x)

)}
≈c
{

(G, {wi,xi}i≤n) :
(
G, {wi,b}i≤n,b∈{0,1}

)
← Garble(C, 1λ)

}
.

2.2 Public Key Encryption

A Public Key Encryption (PKE) scheme PKE = (SetupPKE, EncPKE, DecPKE) with message space M =
{Mλ}λ consists of the following polynomial-time algorithms:

• SetupPKE(1λ)→ (pk, sk) : The setup algorithm is a randomized algorithm that takes security parameter
λ as input and outputs a public-secret key pair (pk, sk).

• EncPKE(pk,m ∈Mλ)→ ct : The encryption algorithm is a randomized algorithm that takes as inputs
the public key pk, and a message m and outputs a ciphertext ct.

• DecPKE(sk, ct)→Mλ : The decryption algorithm is a deterministic algorithm that takes as inputs the
secret key sk, and a ciphertext ct and outputs a message m.

Correctness : For correctness, we require that for all λ ∈ N, m ∈Mλ, and (pk, sk)← SetupPKE(1λ),

Pr[DecPKE(sk,EncPKE(pk,m)) = m] = 1.

Security : For security, we require PKE to be semantically secure, i.e. the adversary must not be able to
distinguish between encryptions of distinct messages of its own choosing even after receiving the public key.
The notion of semantical security for PKE schemes is defined below.

Definition 2.2. A PKE scheme PKE = (SetupPKE,EncPKE,DecPKE) is said to be semantically secure if
there exists λ0 ∈ N such that for every PPT attacker A there exists a negligible function negl(·) such that
for all λ ≥ λ0, AdvPKEA (λ) = |Pr[Exp-PKE(PKE, λ,A) = 1] − 1/2| ≤ negl(λ), where Exp-PKE is defined in
Figure 1.

2.3 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE = (SetupIBE, KeyGenIBE, EncIBE, DecIBE) with message
space M = {Mλ}λ and identity space I = {Iλ}λ consists of the following polynomial-time algorithms:

• SetupIBE(1λ)→ (pp,msk) : The setup algorithm is a randomized algorithm that takes security param-
eter λ as input and outputs (pp,msk), where pp are public parameters and msk is the master secret
key.

• KeyGenIBE(msk, ID ∈ Iλ)→ skID : The key generation algorithm is a randomized algorithm that takes
as inputs the master secret key msk, and an identity ID and outputs a secret key skID.

• EncIBE(pp,m ∈ Mλ, ID ∈ Iλ) → ct : The encryption algorithm is a randomized algorithm that takes
as inputs the public parameters pp, a message m, and an identity ID and outputs a ciphertext ct.

• DecIBE(skID, ct) → Mλ ∪ {⊥} : The decryption algorithm is a deterministic algorithm that takes as
inputs the secret key skID, and a ciphertext ct and outputs a message m or ⊥.

Correctness : For correctness, we require that for all λ ∈ N, m ∈ Mλ, ID ∈ Iλ, and (pp,msk) ←
SetupIBE(1λ),

Pr[DecIBE(KeyGenIBE(msk, ID),EncIBE(pp,m, ID)) = m] = 1.
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Exp-PKE(PKE, λ,A)

(pk, sk)← SetupPKE(1λ)

(m∗0,m
∗
1)← A(1λ, pk)

b← {0, 1}, ct∗ ← EncPKE(pk,m∗b)
b′ ← A(ct∗)

Output (b′
?
= b)

Exp-IBE(IBE, λ,A)

(mpk,msk)← SetupIBE(1λ)

(m∗0,m
∗
1, ID

∗)← AKeyGenIBE(msk,·)(1λ,mpk)
b← {0, 1}, ct∗ ← EncIBE(mpk,m∗b , ID

∗)

b′ ← AKeyGenIBE(msk,·)(ct∗)

Output (b′
?
= b)

Figure 1: The PKE and IBE security games. In both the games, we assume that the adversary A is stateful.
And in the IBE security game, we also require that ID∗ is not queried to the key generation oracle.

Security : For security, intuitively, we require that if an adversary has keys for identities {IDi}i, and ct is
a ciphertext for identity ID∗ 6= IDi for all i, then the adversary must not be able to recover the underlying
message. This is formally defined via the following security game between a challenger and an adversary.

Definition 2.3. An IBE scheme IBE = (SetupIBE,KeyGenIBE,EncIBE,DecIBE) is said to be fully secure if
there exists λ0 ∈ N such that for every PPT attacker A there exists a negligible function negl(·) such that
for all λ ≥ λ0, AdvIBEA (λ) = |Pr[Exp-IBE(IBE, λ,A) = 1]− 1/2| ≤ negl(λ), where Exp-IBE is defined in Figure
1.

3 Functional Encryption

The notion of functional encryption was formally defined in the works of Boneh, Sahai and Waters[14] and
O’Neill[30]. A functional encryption scheme consists of a setup algorithm, an encryption algorithm, a key
generation algorithm and a decryption algorithm. The setup algorithm takes the security parameter as
input and outputs a public key and a master secret key. The encryption algorithm uses the public key to
encrypt a message, while the key generation algorithm uses the master secret key to compute a secret key
corresponding to a function. The decryption algorithm takes as input a ciphertext and a secret key, and
outputs the function evaluation on the message.

The functionality index : Every functional encryption scheme is associated with a message space which
defines the set of messages that can be encrypted, and a function space which defines the set of functions
for which a secret key can be generated. In most schemes, the message space M and the function space
F consists of a sequence of message spaces {Mn}n∈N and function spaces {Fn}n, both parameterized by
the functionality index (the special case whereMn =M and Fn = F for all n ∈ N is discussed in Section 3.1).

The choice of functionality index : A minor definitional issue that arises is with respect to the choice of
functionality index. Some works use the security parameter itself to define a message spaceMλ and function
space Fλ. For example, in the inner product FE scheme of Katz et al. [26], the message space and function
space are set to be Zλq during setup, where λ is the security parameter and q is an appropriately chosen
modulus.

A more flexible approach is to decouple the security parameter and the functionality index, and allow
the setup algorithm to take two inputs - a security parameter λ and a functionality index n. This additional
parameter then defines the message space for the encryption algorithm and the function space for the key
generation algorithm. Some existing works implicitly assume that the setup algorithm also receives such a
parameter as input. For example, in the work of Goyal et al. [25], the universe U = {1, 2, . . . , n} is defined
as the universe of attributes for the ABE scheme. Other works, such as the inner product FE scheme of
Agrawal et al. [1] explicitly mention this as an input to the setup algorithm. We will also use this approach
in our formal definition of a functional encryption scheme.
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Formal definition : Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn} a family of
functions, where for all n ∈ N and f ∈ Fn, f :Mn → Rn. We will also assume that for all n ∈ N, the set Fn
contains an empty function εn : Mn → Rn. As in [14], the empty function is used to capture information
that intentionally leaks from the ciphertext. For instance, in a PKE scheme, the length of the message could
be revealed from the ciphertext. Similarly, in an attribute based encryption scheme, the ciphertext could
reveal the attribute for which the message was encrypted.

A functional encryption scheme FE for function space {Fn}n∈N and message space {Mn}n∈N consists of
four polynomial-time algorithms (Setup, Enc, KeyGen, Dec) with the following syntax.

• Setup(1λ, 1n) → (mpk,msk): The setup algorithm is a randomized algorithm that takes as input the
security parameter λ and the functionality index n, and outputs the master public/secret key pair
(mpk,msk).

• Enc(mpk,m ∈Mn)→ ct: The encryption algorithm is a randomized algorithm that takes as input the
public key mpk and a message m ∈Mn and outputs a ciphertext ct.

• KeyGen(msk, f ∈ Fn) → skf : The key generation algorithm is a randomized algorithm that takes as
input the master secret key msk and a function f ∈ Fn and outputs a secret key skf .

• Dec(skf , ct) → {0, 1,⊥}: The decryption algorithm is deterministic. It takes as input a ciphertext ct
and a secret key skf and outputs y ∈ {0, 1,⊥}.

More general definitions of functional encryption: It is possible to consider more general definitions for
functional encryption. For example, one could consider a definition where the setup algorithm takes as input
a security parameter λ, functionality index n and a depth-index d that bounds the circuit depth of Fn. For
simplicity of notation we avoid such extensions, although we believe that our results can be generalized for
all such extensions.

Correctness: A functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) is said to be correct if for
all security parameter λ and functionality index n, functions f ∈ Fn, messages m ∈ Mn such that (f,m)
are compatible, and (mpk,msk)← Setup(1λ, 1n),

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1.

Security: Informally, a functional encryption scheme is said to be secure if an adversary having secret keys
for functions {fi}i≤k and a ciphertext ct for message m learns only {fi(m)}i≤k, and nothing else about the
underlying message m. This can be formally captured via the following ‘indistinguishability based’ security
definition.

Definition 3.1. A functional encryption scheme FE is adaptively secure if there exists λ0 ∈ N such that
for all PPT adversaries A, there exists a negligible function negl(·) such that for all λ > λ0, n ∈ N,
|Pr[Exp-adaptive(FE, λ, n, A) = 1]− 1/2| ≤ negl(λ), where Exp-adaptive is defined in Figure 2.

A weaker notion of security is that of selective security, where the adversary must declare the challenge
inputs before receiving the public parameters.

Definition 3.2. A functional encryption scheme FE is selectively secure if there exists λ0 ∈ N such that
for all PPT adversaries A, there exists a negligible function negl(·) such that for all λ > λ0, n ∈ N,
|Pr[Exp-selective(FE, λ, n,A) = 1]− 1/2| ≤ negl(λ), where Exp-selective is defined in Figure 2.

Finally, we have an intermediate notion of security called semi-adaptive security, where the adversary
must declare the challenge inputs before receiving any key queries.

Definition 3.3. A functional encryption scheme FE is semi-adaptively secure if there exists λ0 ∈ N such
that for all PPT adversaries A, there exists a negligible function negl(·) such that for all λ > λ0, n ∈ N,
|Pr[Exp-semi-adp(FE, λ, n,A) = 1]− 1/2| ≤ negl(λ), where Exp-semi-adp is defined in Figure 2.
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Exp-adaptive(FE, λ, n,A)

(mpk,msk)← Setup(1λ, 1n)

(m∗0,m
∗
1)← AKeyGen(msk,·)(1λ,mpk)

b← {0, 1}, ct∗ ← Enc(mpk,m∗b)

b′ ← AKeyGen(msk,·)(ct∗)

Output (b′
?
= b)

Exp-selective(FE, λ, n,A)

(m∗0,m
∗
1)← A(1λ)

(mpk,msk)← Setup(1λ)
b← {0, 1}, ct∗ ← Enc(mpk,m∗b)

b′ ← AKeyGen(msk,·)(mpk, ct∗)

Output (b′
?
= b)

Exp-semi-adp(FE, λ, n,A)

(mpk,msk)← Setup(1λ, 1n)

(m∗0,m
∗
1)← A(1λ,mpk)

b← {0, 1}, ct∗ ← Enc(mpk,m∗b)

b′ ← AKeyGen(msk,·)(ct∗)

Output (b′
?
= b)

Figure 2: Experiments referred in Definitions 3.1, 3.2 and 3.3. We assume that the adversary A is stateful,
εn(m∗0) = εn(m∗1), and for all key queries f queried by A to KeyGen oracle, f ∈ Fn and f(m∗0) = f(m∗1).

3.1 Functional Encryption with Uniform Function and Message Space

In the previous section, we saw a definition for functional encryption schemes where the setup algorithm takes
the functionality index n as input, and outputs a master public/secret key pair specific to the functionality
index n. As a result, the encryption algorithm, when using this public key, can only encrypt messages in the
message spaceMn. Similarly, the key generation algorithm can only generate keys in the function space Fn.

However, if there is exactly one message space, and exactly one function space (that is Mn = M and
Fn = F for all n), then we can assume the setup algorithm takes only the security parameter as input. The
remaining syntax, correctness and security definitions are same as before.

4 Selective to Semi-Adaptive Security Generically

In this section, we show how to construct semi-adaptively secure functional encryption schemes from selec-
tively secure functional encryption schemes, semantically secure public key encryption schemes, and secure
garbled circuits. At a high-level, the idea is to delay the release of the base FE scheme’s public parameters
until the adversary makes first key query, and since in a semi-adaptive security game the adversary must
submit its challenge before requesting any secret keys, therefore we could hope to invoke the selective security
of the underlying FE scheme after receiving the challenge. However, the simulator needs to provide enough
information to the adversary so that it could still perform encryptions before sending the challenge. To get
around this problem, the encryption algorithm is modified to output a garbled circuit which takes as input
the FEsel public parameters and outputs the appropriate ciphertext. Essentially, the encryption algorithm
encrypts without knowing the ‘real’ public parameters. The encryption algorithm would still need to hide
the input wire keys such that a secret key reveals only half of them. Below we describe our approach in
detail.

4.1 Construction

Let FEsel = (Setupsel, KeyGensel, Encsel, Decsel) be a functional encryption scheme with function space {Fn}n
and message space {Mn}n. We use the polynomial `(λ, n) to denote the size of the public key output by the
FEsel setup algorithm, where λ is the security parameter and n is the functionality index. We will simply
write it as ` whenever clear from context.

Tools required for our transformation : Let GC = (Garble, Eval) be a garbling scheme for circuit
family C = {Cm}m, and PKE = (SetupPKE, EncPKE, DecPKE) be a public key encryption scheme.

Our transformation : We now describe our construction for semi-adaptively secure functional encryption
scheme FE = (Setup, Enc, Dec, KeyGen) with message space {Mn}n and function space {Fn}n.

• Setup(1λ, 1n)→ (mpk,msk): The setup algorithm first runs the PKE setup to compute 2` public/secret
key pairs

(
pki,b, ski,b

)
i≤`,b∈{0,1} ← SetupPKE(1λ), independently and uniformly. It also runs FEsel
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setup algorithm and generates master public/secret key pair (mpksel,msksel)← Setupsel(1
λ, 1n). It sets

mpk =
{
pki,b

}
i≤`,b∈{0,1} and msk =

(
mpksel,msksel, {ski,b}i≤`,b∈{0,1}

)
.

• Enc(mpk,m ∈Mn)→ ct: Let C-Enc-pk`m,r be the canonical circuit which has message m and random-
ness r hardwired, takes an ` bit input x and computes Encsel(x,m; r); that is, it uses the input as a
public key for the base FE scheme and encrypts message m using randomness r.

The encryption algorithm constructs the circuit C-Enc-pk`m,r using uniform randomness r, and it

computes the garbled circuit as (C, {wi,b}i≤`,b∈{0,1}) ← Garble(C-Enc-pk`m,r, 1λ). It then encrypts

the garbled wire keys by computing cti,b ← EncPKE(pki,b, wi,b) for i ≤ ` and b ∈ {0, 1}, where

mpk =
{
pki,b

}
i≤`,b∈{0,1}. Finally, it outputs a ciphertext ct which consists of the garbled circuit

C and the 2` ciphertexts {cti,b}i≤`,b∈{0,1}.

• KeyGen(msk, f ∈ Fn) → skf : Let msk =
(
mpksel,msksel, {ski,b}i≤`,b∈{0,1}

)
. The key generation algo-

rithm first generates selective FE secret key corresponding to the function f by computing skf,sel ←
KeyGensel(mpksel, f). It outputs skf =

(
mpksel, skf,sel,

{
ski,mpksel[i]

}
i≤`

)
as the key for function f .

• Dec(skf , ct) → {0, 1,⊥}: Let skf =
(
mpksel, skf,sel, {ski}i≤`

)
and ct =

(
C, {cti,b}i≤`,b∈{0,1}

)
. The

decryption algorithm first decrypts the appropriate garbled circuit wires. Concretely, for i ≤ `, it
computes wi = DecPKE(ski, cti,mpksel[i]

). It then uses these ` wire keys to evaluate the garbled circuit as

c̃t = Eval(C, {wi}i≤`). Finally, it uses the secret key skf,sel to decrypt the ciphertext c̃t, and outputs

Decsel(skf,sel, c̃t).

Correctness. For all λ, n ∈ N, message m ∈ Mn, base FE keys (mpksel,msksel) ← Setupsel(1
λ, 1n), and

2` PKE keys
(
pki,b, ski,b

)
← SetupPKE(1λ), the ciphertext corresponding to message m in our FE scheme is

(C, {cti,b}), where (C, {wi,b})← Garble(C-Enc-pk`m,r, 1λ) and cti,b ← EncPKE(pki,b, wi,b).

For any function f ∈ Fn, the corresponding secret key in our scheme consists of
(
mpksel, skf,sel,

{
ski,mpksel[i]

})
,

where skf,sel ← KeyGensel(msksel, f). The decryption algorithm first decrypts the encryptions of garbled cir-
cuit input wires corresponding to the public key mpksel as wi,mpksel[i]

= Decsel(ski,mpksel[i]
, cti,mpksel[i]

). This

follows from correctness of PKE scheme. Next, it computes c̃t = Eval(C, {wi,mpksel[i]
}) which is same as

Encsel(mpksel,m; r) due to correctness of garbling scheme. Finally, the decryption algorithm computes
Decsel(skf,sel, c̃t) which is equal to f(m) as the base FE scheme is also correct. Therefore, FE satisfies
the functional encryption correctness condition.

Security We will now show that the scheme described above is semi-adaptively secure.

Theorem 4.1. Assuming FEsel = (Setupsel, KeyGensel, Encsel, Decsel) is a selectively-secure functional
encryption scheme with {Fn}n and {Mn}n as function space and message space satisfying Definition 3.2,
GC = (Garble, Eval) is a secure garbling scheme for circuit family C = {Cm}m satisfying Definition 2.1,
and PKE = (SetupPKE, EncPKE, DecPKE) is a semantically secure public key encryption scheme satisfying
Definition 2.2, then FE forms a semi-adaptively secure functional encryption scheme satisfying Definition 3.3
for same function space and message space as the selective scheme.

To formally prove our theorem, we describe the following sequence of games.

Game 1: This is the semi-adaptive security game described in Figure 2.
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1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel setup algorithm to generate
public/secret key pairs as

(
pki,β , ski,β

)
i≤`,β∈{0,1}← SetupPKE(1λ) and (mpksel,msksel)← Setupsel(1

λ, 1n).

It sets mpk =
{
pki,β

}
i≤`,β∈{0,1} and msk =

(
mpksel,msksel, {ski,β}i≤`,β∈{0,1}

)
, and sends mpk to A.

2. (Challenge Phase)

(a) A sends two challenge messages (m∗0,m
∗
1) to the challenger such that εn(m∗0) = εn(m∗1), where

εn(·) is the empty function.

(b) Challenger chooses a random bit b← {0, 1}, and computes the garbled circuit as (C, {wi,β}i≤`,β∈{0,1})←
Garble(C-Enc-pk`m∗b ,r, 1

λ).

(c) It encrypts the wire keys wi,β as ct∗i,β ← EncPKE(pki,β , wi,β).

(d) It sets challenge ciphertext as ct∗ =

(
C,
{
ct∗i,β

}
i≤`,β∈{0,1}

)
, and sends ct∗ to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions f ∈ Fn such that f(m∗0) = f(m∗1).

(b) For each queried function f , challenger generates the selective FE secret key as skf,sel ← KeyGensel(msksel, f).

It sets the secret key as skf =
(
mpksel, skf,sel,

{
ski,mpksel[i]

}
i≤`

)
, and sends skf to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 2: It is same as Game 1, except the way challenge ciphertext is created. In this game, while creating
ct∗, challenger only encrypts garbled circuit wire keys corresponding to the bits of mpksel and encrypts 0 at
all other places.

1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel setup algorithm to generate
public/secret key pairs as

(
pki,β , ski,β

)
i≤`,β∈{0,1}← SetupPKE(1λ) and (mpksel,msksel)← Setupsel(1

λ, 1n).

It sets mpk =
{
pki,β

}
i≤`,β∈{0,1} and msk =

(
mpksel,msksel, {ski,β}i≤`,β∈{0,1}

)
, and sends mpk to A.

2. (Challenge Phase)

(a) A sends two challenge messages (m∗0,m
∗
1) to the challenger such that εn(m∗0) = εn(m∗1), where

εn(·) is the empty function.

(b) Challenger chooses a random bit b← {0, 1}, and computes the garbled circuit as (C, {wi,β}i≤`,β∈{0,1})←
Garble(C-Enc-pk`m∗b ,r, 1

λ).

(c) It then encrypts half of the 2` wire keys as ct∗i,β ← EncPKE(pki,β , wi,β) if β = mpksel[i], and ct∗i,β ←
EncPKE(pki,β ,0) otherwise.

(d) It sets challenge ciphertext as ct∗ =

(
C,
{
ct∗i,β

}
i≤`,β∈{0,1}

)
, and sends ct∗ to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions f ∈ Fn such that f(m∗0) = f(m∗1).

(b) For each queried function f , challenger generates the selective FE secret key as skf,sel ← KeyGensel(msksel, f).

It sets the secret key as skf =
(
mpksel, skf,sel,

{
ski,mpksel[i]

}
i≤`

)
, and sends skf to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.
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Game 3: It is same as Game 2, except the way challenge ciphertext is created. In this game, while creating
ct∗, challenger simulates the garbled circuit instead of garbling the actual circuit.

1. (Setup Phase) The challenger first runs the PKE setup algorithm and FEsel setup algorithm to generate
public/secret key pairs as

(
pki,β , ski,β

)
i≤`,β∈{0,1}← SetupPKE(1λ) and (mpksel,msksel)← Setupsel(1

λ, 1n).

It sets mpk =
{
pki,β

}
i≤`,β∈{0,1} and msk =

(
mpksel,msksel, {ski,β}i≤`,β∈{0,1}

)
, and sends mpk to A.

2. (Challenge Phase)

(a) A sends two challenge messages (m∗0,m
∗
1) to the challenger such that εn(m∗0) = εn(m∗1), where

εn(·) is the empty function.

(b) Challenger chooses a random bit b← {0, 1}, and computes base FE ciphertext as c̃t
∗ ← Encsel(mpksel,m

∗
b)

using uniform randomness. Next, it computes the garbled circuit as (C,
{
wi,mpksel[i]

}
) ← Sim

(
1λ, 1`, 1k, c̃t

∗
)

,

where k is the size of the canonical circuit C-Enc-pk`m,r.

(c) It then encrypts half of the 2` wire keys as ct∗i,β ← EncPKE(pki,β , wi,β) if β = mpksel[i], and
ct∗i,β ← EncPKE(pki,β ,0) otherwise.

(d) It sets challenge ciphertext as ct∗ =

(
C,
{
ct∗i,β

}
i≤`,β∈{0,1}

)
, and sends ct∗ to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions f ∈ Fn such that f(m∗0) = f(m∗1).

(b) For each queried function f , challenger generates the selective FE secret key as skf,sel ← KeyGensel(msksel, f).

It sets the secret key as skf =
(
mpksel, skf,sel,

{
ski,mpksel[i]

}
i≤`

)
, and sends skf to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

4.1.1 Analysis

We now establish via a sequence of lemmas that no PPT adversary can distinguish between any two adjacent
games with non-negligible advantage. To conclude, we also show that any PPT adversary that wins with
non-negligible probability in the last game breaks the selective security of FEsel scheme.

Let A be any successful PPT adversary against our construction in the semi-adaptive security game
(Figure 2). In Game i, advantage of A is defined as AdviA = |Pr[A wins] − 1/2|. We then show via a
sequence of claims that if A’s advantage is non-negligible in Game i, then it has non-negligible advantage
in Game i+ 1 as well. Finally, in last game, we directly use A to attack the selective security of underlying
FE scheme. Below we describe our hybrid games in more detail.

Lemma 4.1. If PKE is a semantically secure public key encryption scheme, then for all PPT A, |Adv1A −
Adv2A| ≤ negl(λ) for some negligible function negl(·).

Proof. For proving indistinguishability of Games 1 and 2, we need to sketch ` intermediate hyrbrid games
between these two, where ` is the length of master public key mpksel. Observe that in Game 1, ciphertexts
ct∗i,β are encryptions of garbled circuit input wire keys wi,β for both values of bit β; however, in Game
2, ciphertexts ct∗i,β are encryptions of wi,β if and only if β = mpksel[i], and they are encryptions of zeros
otherwise. The high-level proof idea is to switch cti,β from encryptions of wi,β to encryptions of 0 one-at-a-
time by using semantic security of PKE scheme. This could be done because the secret key ski,β is revealed
only if β = mpksel[i]. Concretely, ith intermediate hybrid between Game 1 and 2 proceeds same as Game
1 except that the first i ciphertexts ct∗j,β is computed as ct∗j,β ← EncPKE(pkj,β ,0) if β 6= mpksel[j], i.e. for
j ≤ i and β 6= mpksel[j], ct

∗
j,β are encryptions of zero, and for j > i or β = mpksel[j], ct

∗
j,β are encryptions
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of wire keys wi,β . For the analysis, Game 1 is regarded as 0th intermediate hybrid, and Game 2 is regarded
as `th intermediate hybrid. Below we show that A’s advantage in distinguishing any pair of consecutive
intermediate hybrid is negligibly small.

We describe a reduction algorithm B which breaks semantic security of the PKE scheme, ifA distinguishes
between intermediate hybrids i−1 and i with non-negligible advantage. First, B receives the challenge public
key pk∗ from the PKE challenger. Next, B runs the Step 1 as in Game 1, except instead of running PKE Setup
algorithm to compute public/secret key pair (pki,β , ski,β) when β 6= mpksel[i], it sets pki,1−mpksel[i]

= pk∗. After
A submits its challenge messages (m∗0,m

∗
1) to B, the reduction computes garbled circuit C and ciphertexts

ct∗i,β as in the (i − 1)th intermediate hybrid, except to compute ct∗i,1−mpksel[i]
, B sends wi,1−mpksel[i]

and 0 as

its challenge messages to the PKE challenger, and sets ct∗i,1−mpksel[i]
as the PKE challenge ciphertext. B runs

the remaining game as in Game 1.4 Finally, if A wins (b = b′), then B guesses 0 to indicate that ct∗i,1−mpksel[i]

was encryption of wi,1−mpksel[i]
, else it guesses 1 to indicate that it was encryption of zeros.

Note that when wi,1−mpksel[i]
is encrypted by the PKE challenger, then B exactly simulates the view of

intermediate hybrid i− 1 to A. Otherwise if 0 is encrypted the view is of intermediate hybrid i. Therefore,
A’s advantage in any two consecutive intermediate hybrids is negligibly close as otherwise PKE scheme
is not semantically secure. Hence, using ` intermediate hybrids we have proved that switching cti,β from
encryptions of wi,β to encryptions of 0 for β 6= mpksel[i] causes at most negligible dip in A’s advantage in
Game 1. Therefore if |Adv1A−Adv2A| is non-negligible, then the PKE scheme is not semantically secure.

Lemma 4.2. If GC is a secure garbling scheme, then for all PPT A, |Adv2A − Adv3A| ≤ negl(λ) for some
negligible function negl(·).

Proof. The proof of this lemma follows from the security of our garbling scheme. First, note that the
simulation based definition of garbling security can be viewed as a game based definition between a challenger
and an adversary. An adversary sends a circuit C ∈ Cm and input x ∈ {0, 1}m. The challenger then either
honestly garbles the circuit, and sends the wire keys corresponding to x, or runs the simulator to compute
the garbled circuit and the wire keys for x.

Suppose there exists an adversary A such that Adv2A − Adv3A is non-negligible in λ. We will construct a
reduction algorithm B that uses A to break the garbling security. B first chooses 2` public/secret key pairs
and sends {pki,β} to the A. B also chooses the base FE scheme’s master public/secret keys (mpksel,msksel).
Next, A sends challenge messages m∗0,m

∗
1. The reduction algorithm chooses b ← {0, 1}, randomness r

and computes the circuit ckt = C-Enc-pk`m∗b ,r. It then sends circuit ckt and input mpksel to the garbling

challenger, and receives a garbled circuit C and ` wire keys {wi}. The reduction algorithm then computes
cti,β ← EncPKE(pki,β , wi) if β = mpk[i], else cti,β ← EncPKE(pki,β ,0). Finally B sends (C, {cti,β}) to A as
the challenge ciphertext. The key queries are identical in both Game 2 and Game 3. Finally, the adversary
sends its guess b′, and if b = b′, the reduction algorithm guesses that ckt was honestly garbled, else it guesses
that ckt and wire keys were simulated.

Note that if the garbling challenger honestly garbled circuit ckt, then B exactly simulates the view of
Game 2 to A. Otherwise the view is of Game 3. As a result, if Adv2A − Adv3A is non-negligible in λ, then B
breaks the garbling scheme’s security with non-negligible advantage.

Lemma 4.3. If FEsel is a selectively-secure functional encryption scheme, then for all PPT A, Adv3A ≤
negl(λ) for some negligible function negl(·).

Proof. We describe a reduction algorithm B which plays the selective indistinguishability based game with
FEsel challenger, and simulates Game 3 for adversary A. B runs the Step 1 as in Game 3, except it does
not choose FEsel master public/secret key pair. It only generates 2` PKE public/secret key pairs, sets
mpk =

{
pki,β

}
,msk = {ski,β}, and sends mpk to A. Next, A chooses two challenge messages (m∗0,m

∗
1),

4It should be noted that B can still answer the secret key queries during the reduction because it only needs the secret keys
ski,β corresponding to the public key mpksel (i.e. β = mpksel[i]). Since B chooses all such secret keys, therefore it can answer
A’s secret key queries.
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and sends those to B. Reduction algorithm B forwards (m∗0,m
∗
1) to the FEsel challenger as its challenge

messages. Note that B is behaving as a selective adversary since it has not queried FEsel challenger for a
public key before sending its challenge messages. Now FEsel challenger chooses a bit b∗ ← {0, 1}, runs the
setup algorithm to compute key pair (mpksel,msksel), computes c̃t

∗ ← Encsel(mpksel,m
∗
b), and sends public

key mpksel and ciphertext c̃t
∗

to B. B receives mpksel and c̃t
∗

from the challenger, and it simulates the garbled

circuit (C, {wi}) ← Sim
(

1λ, 1`, 1k, c̃t
∗
)

. Next, it computes ciphertexts ct∗i,mpksel[i]
as encryptions of wi, and

remaining ciphertexts as encryptions of 0. B sends the final challenge ciphertext ct∗ as garbled circuit C

and ciphertexts
{
ct∗i,β

}
to A. After receiving the challenge ciphertext, A is allowed to make polynomially

many secret key queries skf for functions f , which B can answer by requesting corresponding secret keys
skf,sel from FEsel challenger, and releasing

{
ski,mpksel[i]

}
along with skf,sel. Finally, A sends its guess b′ to B,

and B sends b′ as its guess for FEsel challenger’s bit b∗.
Note that B exactly simulates the view of Game 3 to A. Therefore, A’s advantage in Game 3 is negligibly

small as otherwise the underlying FE scheme is not selectively-secure. Thus if Adv3A is non-negligible, then
the FEsel scheme is not selectively-secure.

Hence, using Lemmas 4.1, 4.2 and 4.3, we can conclude that for every PPT adversary A Adv3A ≤ negl(λ),
where negl(·) is a negligible function. This completes the proof of Theorem 4.1.

5 Bundling Functionalities

In this section, we show how to transform a (standard) FE scheme to one where the public parameters can
support the union of underlying message/function spaces. This transformation is similar to the one outlined
in Section 4. The only difference is that instead of public key encryption, we need to use identity based
encryption for encrypting the garbled circuit wire keys, and the underlying FE scheme’s master public/secret
keys are chosen pseudorandomly during the key generation phase.

5.1 Construction

Let FEsel = (Setupsel, KeyGensel, Encsel, Decsel) be a functional encryption scheme with message space {Mn}n
and function space {Fn}n, where for each n ∈ N, f ∈ Fn, the domain of f is Mn. Let `-pk(·, ·) denote the
polynomial representing the size of the public key output by the setup algorithm, `-rs(·, ·) the randomness
required by Setupsel and `-re(·, ·) the randomness used by Encsel. Here, all the above polynomials take the
security parameter as the first input and functionality index as the second input. For simplicity of notation,
we will drop the dependence of these polynomials on the security parameter.

Tools required for our transformation : Let GC = (Garble,Eval) be a garbling scheme for circuit family
C = {Cn}n such that the wire keys output by Garble have length `-w(λ), where λ is the security parameter.
Let F be a pseudorandom function family with key space {Kλ}λ, input space {{0, 1}2λ}λ and output space
{0, 1}. Finally, we also use an identity based encryption scheme IBE = (SetupIBE,EncIBE,KeyGenIBE,DecIBE)
with identity space {{0, 1}2λ+1}λ and message space {{0, 1}`-w(λ)}λ.

Our transformation : We will now describe our functional encryption scheme FE = (Setup, Enc, Dec,
KeyGen) with message space M = ∪n{(n,m) : m ∈ Mn} and function space F = ∪n{(n, f) : f ∈ Fn} ∪
{ε}. Hence, each message in M and function in F has two components - the first component reveals the
functionality index, and the second component is the actual message/function. For each func = (n, f) ∈ F
and msg = (n′,m) ∈M, we define func(msg) = f(m) if n = n′, ⊥ otherwise. The empty function ε is defined
as follows: for all messages msg = (n,m) ∈ M, ε(msg) = (n, εn(m)) (recall εn(·) is the empty function in
Fn).
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• Setup(1λ) → (mpk,msk): The setup algorithm first runs the IBE setup to compute (ppIBE,mskIBE) ←
SetupIBE(1λ). Next, it chooses a PRF key K ← Kλ. It sets mpk = ppIBE and msk = (mskIBE,K).

• Enc(mpk,msg ∈ M) → ct: Let msg = (n,m), t = `-pk(n), and C-Enc-pktm,r be the canonical circuit
which has message m, randomness r hardwired, takes a t bit input x and computes Encsel(x,m; r); that
is, it uses the input as a public key for the base FE scheme and encrypts message m using randomness
r.

The encryption algorithm first chooses randomness r ← {0, 1}`-re(n). Next, it garbles the circuit
C-Enc-pktm,r by computing (C, {wi,b}i≤t,b∈{0,1}) ← Garble(C-Enc-pktm,r, 1λ). It then encrypts the gar-
bled wire keys by computing cti,b ← EncIBE(mpk, wi,b, (n, i, b)). Note that both n and i can be repre-
sented as λ bit strings. The final ciphertext consists of the garbled circuit C and the 2t ciphertexts
{cti,b}i≤t,b∈{0,1}.

• KeyGen(msk, func ∈ F)→ skfunc: Let func = (n, f), msk = (mskIBE,K), s = `-rs(n) and t = `-pk(n).

The key generation algorithm computes an s bit pseudorandom string r = (F (K, (n, 1)), . . . , F (K, (n, s))).
Next, it uses r as the randomness to generate the base FE keys (mpkn,mskn) = Setupsel(1

λ, 1n; r).
Note that the functionality index used for generating these keys is n, and therefore the size of mpkn is
t = `-pk(n), and the amount of randomness required by Setupsel is s = `-rs(n).

Next, it generates IBE secret keys corresponding to the identities (n, i,mpkn[i]) for i ≤ t. It computes
t secret keys ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])). Finally, it generates an FE secret key corre-
sponding to function f by computing skf,sel ← KeyGensel(mskn, f). It outputs (skf,sel,mpkn, {ski}i≤t)
as the key for function f .

• Dec(skf , ct) → {0, 1,⊥}: Let skf = (skf,sel,mpkn, {ski}i≤t) and ct = (C, {cti,b}i≤t,b∈{0,1}). The
decryption algorithm first decrypts the appropriate garbled circuit wires. For i ≤ t, it computes
wi = DecIBE(ski, cti,mpkn[i]

). It then uses these t wire keys to evaluate the garbled circuit. It computes

c̃t = Eval(C, {wi}i≤t). Finally, it uses the secret key skf,sel to decrypt the ciphertext. The output is
Decsel(skf,sel, c̃t).

Correctness : Fix any λ, message msg = (n,m) ∈ M, function func = (n, f) ∈ F and IBE keys

(mpkIBE,mskIBE). Let (G, {wi,b}) ← Garble(C-Enc-pk`-pk(n)m,r , 1λ) and cti,b ← EncIBE(mpkIBE, wi,b, (n, i, b)).
The ciphertext corresponding to message msg in our FE scheme is (G, {cti,b}). Now, let us consider the key
for function func. Let (mpkn,mskn) be the base FE scheme’s keys as computed in the key generation phase.
The secret key for f in our scheme consists of IBE keys {ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i]))} and FEsel

key skf ← KeyGensel(mskn, f).
The decryption algorithm first decrypts the IBE ciphertexts to recover the garbled circuit’s wire keys

{wi,mpkn[i]
}. Next, using Eval(G, {wi,mpkn[i]

}), we can compute c̃t = Encsel(mpkn,m; r). Finally, the decryp-

tion algorithm computes Decsel(skf,sel, c̃t) = f(m).

5.2 Security Proof

We will now prove that the IBE scheme described above is semi-adaptive secure, as per Definition 3.3. Our
proof consists of a sequence of hybrids. Let n∗ denote the functionality index of the challenge inputs. The
first hybrid corresponds to the semi-adaptive security game. In the second hybrid, the challenger uses a
truly random function instead of a pseudorandom function. In the third hybrid, we use the security of the
IBE scheme to modify the ciphertexts output as part of the challenge ciphertext. Instead of encrypting all
the garbled circuit wire keys, the challenger encrypts 0 at positions that do not correspond to the base FE
scheme’s public key. Here, it is crucial that the challenger never outputs IBE keys corresponding to these
‘off’ positions. In the fourth hybrid, the garbled circuit is simulated using the challenge ciphertext of the
base FE scheme. At this point, we can use the security of the base FE scheme to complete our argument.
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Game 1: This is the semi-adaptive security game described in Figure 2.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing (mpkIBE,mskIBE)← SetupIBE(1λ)
and K ← Kλ. It sends mpkIBE to the adversary.

2. (Challenge Phase)

(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such that ε(msg0) = ε(msg1).

(b) The challenger chooses a random bit b ← {0, 1}, and computes the garbled circuit and its wire

keys as (C, {wi,β}i≤t∗,β∈{0,1})← Garble(C-Enc-pkt
∗

mb,r
, 1λ), where t∗ = |`-pk(n∗)|.

(c) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n
∗, i, β)).

(d) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈ F such that func(msg0) =
func(msg1). Let s = `-rs(n), t = `-pk(n).

(b) The challenger computes r = (F (K, (n, 1)), . . . , F (K, (n, s))) and (mpkn,mskn) = Setupsel(1
λ, 1n; r).

(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])) and base FE scheme’s
secret key skf,sel ← KeyGensel(mskn, f).

(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 2: This game is identical to the previous one, except that the challenger uses a truly random
function Frand instead of the pseudorandom function F .

1. (Setup Phase) The challenger first runs the setup algorithm by choosing (mpkIBE,mskIBE)← SetupIBE(1λ).
It sends mpkIBE to the adversary.

2. (Challenge Phase)

(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such that ε(msg0) = ε(msg1).

(b) The challenger chooses a random bit b ← {0, 1}, and computes the garbled circuit and its wire

keys as (C, {wi,β}i≤t∗,β∈{0,1})← Garble(C-Enc-pkt
∗

mb,r
, 1λ), where t∗ = |`-pk(n∗)|.

(c) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n
∗, i, β)).

(d) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈ F such that func(msg0) =
func(msg1). Let s = `-rs(n), t = `-pk(n).

(b) The challenger computes r = ( Frand(n, 1), . . . , Frand(n, s) ) and (mpkn,mskn) = Setupsel(1
λ, 1n; r).

(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])) and base FE scheme’s
secret key skf,sel ← KeyGensel(mskn, f).

(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.
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Game 3: This game is identical to the previous one. Here, we are introducing some syntactical changes.
In this game, the challenger chooses the base FE scheme’s keys mpkn∗ ,mskn∗ immediately after receiving
the challenge messages.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing (mpkIBE,mskIBE)← SetupIBE(1λ).
It sends mpkIBE to the adversary.

2. (Challenge Phase)

(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such that ε(msg0) = ε(msg1).

(b) The challenger chooses (mpkn∗ ,mskn∗)← Setupsel(1
λ, 1n

∗
).

(c) It chooses a random bit b ← {0, 1}, and computes the garbled circuit and its wire keys as

(C, {wi,β}i≤t∗,β∈{0,1})← Garble(C-Enc-pkt
∗

mb,r
, 1λ), where t∗ = |`-pk(n∗)|.

(d) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n
∗, i, β)).

(e) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈ F such that func(msg0) =
func(msg1). Let s = `-rs(n), t = `-pk(n).

(b) The challenger chooses (mpkn,mskn)← Setupsel(1
λ, 1n) (if mskn,mpkn have already been com-

puted before, then it simply reuses those keys).

(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])) and base FE scheme’s
secret key skf,sel ← KeyGensel(mskn, f).

(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 4: In this game, the challenger modifies the challenge ciphertext. Instead of encrypting the garbled
circuit wire keys for all i ≤ t, β ∈ {0, 1}, the challenger encrypts zeroes at positions (i, β) if β 6= mpkn∗ [i].

1. (Setup Phase) The challenger first runs the setup algorithm by choosing (mpkIBE,mskIBE)← SetupIBE(1λ).
It sends mpkIBE to the adversary.

2. (Challenge Phase)

(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such that ε(msg0) = ε(msg1).

(b) The challenger chooses (mpkn∗ ,mskn∗)← Setupsel(1
λ, 1n

∗
).

(c) It chooses a random bit b ← {0, 1}, and computes the garbled circuit and its wire keys as

(C, {wi,β}i≤t∗,β∈{0,1})← Garble(C-Enc-pkt
∗

mb,r
, 1λ), where t∗ = |`-pk(n∗)|.

(d) It then encrypts the wire keys at half the positions, and zeroes at the remaining positions.
For each i, if β = mpkn∗ [i], cti,β ← EncIBE(mpkIBE, wi,β , (n

∗, i, β)), else cti,β ← EncIBE(mpkIBE,0, (n
∗, i, β)).

(e) It then encrypts the wire keys as cti,β ← EncIBE(mpkIBE, wi,β , (n
∗, i, β)).

(f) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈ F such that func(msg0) =
func(msg1). Let s = `-rs(n), t = `-pk(n).

(b) The challenger chooses (mpkn,mskn) ← Setupsel(1
λ, 1n) (if mskn,mpkn have already been com-

puted before, then it simply reuses those keys).
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(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])) and base FE scheme’s
secret key skf,sel ← KeyGensel(mskn, f).

(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

Game 5: In this game, the challenger simulates the garbled circuit when computing the challenge cipher-
text.

1. (Setup Phase) The challenger first runs the setup algorithm by choosing (mpkIBE,mskIBE)← SetupIBE(1λ).
It sends mpkIBE to the adversary.

2. (Challenge Phase)

(a) A sends two challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1) such that ε(msg0) = ε(msg1).

(b) The challenger chooses (mpkn∗ ,mskn∗)← Setupsel(1
λ, 1n

∗
).

(c) It first chooses b← {0, 1}, computes c̃t← Encsel(mpkn∗ ,mb).

(d) It then uses c̃t to simulate the garbled circuit.

It computes (C̃, {wi})← Sim
(
1λ, 1t

∗
, 1k, c̃t

)
, where t∗ = |`-pk(n∗)| and k is the size of the circuit

C-Enc-pkt
∗

m,r.

(e) It then encrypts the wire keys at half the positions, and zeroes at the remaining positions.
For each i, if β = mpkn∗ [i], cti,β ← EncIBE(mpkIBE, wi, (n

∗, i, β)), else cti,β ← EncIBE(mpkIBE,0, (n
∗, i, β)).

(f) The challenger sets ct = (C, {cti,β}i≤t∗,β∈{0,1}) and sends ct to A.

3. (Key Query Phase)

(a) A queries the challenger on polynomially many functions func = (n, f) ∈ F such that func(msg0) =
func(msg1). Let s = `-rs(n), t = `-pk(n).

(b) The challenger chooses (mpkn,mskn) ← Setupsel(1
λ, 1n) (if mskn,mpkn have already been com-

puted before, then it simply reuses those keys).

(c) It generates the IBE secret keys as ski ← KeyGenIBE(mskIBE, (n, i,mpkn[i])) and base FE scheme’s
secret key skf,sel ← KeyGensel(mskn, f).

(d) The challenger sets skfunc = (skf,sel,mpkn, {ski}) and sends skfunc to A.

4. (Guess) Finally, A sends its guess b′ and wins if b = b′.

5.2.1 Analysis

Let A be any PPT adversary against our construction in the semi-adaptive security game (Figure 2) and
AdviA denote the advantage of A in Game i. We will show that AdviA − Advi+1

A is negligible in λ for all i.

Lemma 5.1. Assuming F is a secure pseudorandom function, for any PPT adversary A, |Adv1A − Adv2A| ≤
negl(λ).

Proof. The proof of this lemma follows from a simple reduction to the security of PRF F . Suppose there
exists an adversary A such that |Adv1A − Adv2A| is non-negligible. We will construct an algorithm B that
uses A to break the PRF security. The reduction algorithm chooses an IBE master public/secret key pair
(mpkIBE,mskIBE) and sends mpkIBE to the adversary. Next, it receives challenge messages msg0,msg1 with
the restriction that ε(msg0) = ε(msg1). It computes a challenge ciphertext and sends it to A (this step is
identical in both Game 1 and Game 2). Next, the adversary queries for secret keys. For each queried function
f , the reduction algorithm first computes the functionality index n and s = `-rs(n). It then queries the PRF
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challenger for PRF evaluations at inputs (n, i) for i ≤ s. It receives string r, which it uses as randomness to
compute FEsel master keys (mpksel,msksel). The remaining steps (computing IBE secret keys and skf,sel) are
identical in both Game 1 and Game 2. It sends skfunc to A, and A sends its guess b′. If b = b′, B outputs 1,
indicating that the oracle was a pseudorandom function, else it outputs 0, indicating that the oracle was a
truly random function. Clearly, if the PRF challenger used a pseudorandom function, then A participates
in Game 1, else it participates in Game 2. This concludes our proof.

Lemma 5.2. For any adversary A, Adv2A = Adv3A.

Proof. The advantage of any adversary A is identical in Game 2 and Game 3. The only difference between the
two games is that the challenger chooses (mpkn∗ ,mskn∗) immediately after receiving the challenge messages,
instead of waiting for the first key query where the function is in Fn∗ . This does not affect the adversary’s
advantage.

Lemma 5.3. Assuming IBE is a secure identity based encryption scheme (Definition 2.3), for any PPT
adversary A, |Adv3A − Adv4A| ≤ negl(λ).

Proof. Suppose there exists an adversary A such that |Adv3A − Adv4A| is non-negligible. We will construct a
reduction algorithm B that uses A to break the security of IBE. First, B receives the IBE public key mpkIBE,
which it forwards to A. The adversary then sends the challenge messages msg0 = (n∗,m0),msg1 = (n∗,m1).
Let t∗ = `-pk(n∗). B chooses (mpkn∗ ,mskn∗) ← Setupsel(1

λ, 1n
∗
). It then chooses b ← {0, 1} and computes

garbled circuit C together with wire keys {wi,β} for message mb. Next, it sends t∗ challenge messages
to the IBE challenger. For i = 0 to t, let β′i = 1 − mpkn∗ [i]. It sends challenge messages (wi,β′i ,0) and
challenge identity (n∗, i, β′i), and receives ciphertext cti,β′i . The reduction algorithm constructs the remaining
ciphertexts by itself and sends (C, {cti,β}) to A.

Next, A sends key queries for functions in F . Let func = (n, f) ∈ F be such a function. The reduction
algorithm needs to sends IBE secret keys as part of the secret key for func. If n 6= n∗, then B can simply query
the IBE challenger for secret keys. If n = n∗, then the reduction algorithm needs to query the IBE challenger
for keys corresponding to (n∗, i,mpkn∗ [i]) only. In particular, the reduction does not need to query IBE keys
for the challenge identities. After receiving the IBE secret keys {ski}, B computes skf,sel ← KeyGensel(mskn, f)
and sends skfunc = (skf,sel,mpkn, {ski}) to A. Finally, A sends its guess b′, and B forwards this guess to the
IBE challenger.

Lemma 5.4. Assuming GC is a secure garbling scheme (Definition 2.1), for any PPT adversary A, |Adv4A−
Adv5A| ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 4.2.

Lemma 5.5. Assuming FEsel is a selectively secure functional encryption scheme for function space {Fn}n
(Definition 3.2), for any PPT adversary A, Adv5A ≤ negl(λ).

The proof of this lemma is identical to the proof of Lemma 4.3.
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