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Abstract. Proxy re-encryption (PRE) is a cryptographic primitive in which a proxy can transform Alice’s cipher-
texts into ones decryptable by Bob. Key-private PRE specifies an additional level of security, requiring that proxy
keys leak no information on the identities of Alice and Bob. In this paper, we build two key-private PRE schemes:
(1) we propose a CPA-secure key-private PRE scheme in the standard model, and (2) we then transform it into a
CCA-secure scheme in the random oracle model. Both schemes enjoy following properties: both are uni-directional
and the CPA-secure one is a multi-hop scheme. In addition, the security of our schemes is based on the hardness
of the standard Learning-With-Errors (LWE) problem, itself reducible from worst-case lattice hard problems that
are conjectured immune to quantum cryptanalysis, or “post-quantum”. We implement the CPA-secure scheme and
point out that, among many applications, it can be sufficiently used for the practical task of key rotation over en-
crypted data.
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1 Introduction

Proxy re-encryption (PRE), introduced in [11], is a type of public key encryption, featuring a kind of del-
egation via “proxy re-encryption keys”: Alice and Bob can set up a proxy key rkA→B transforming Alice’s
ciphertexts to those Bob can decrypt. The proxy key rkA→B is usually put in a semi-trusted server whose
task is to do the ciphertext transformation, and not being able to decrypt.

Key-private PRE. When anonymity is a concern, it is required that neither the delegator (Alice) nor the
delegatee (Bob) be identifiable from the proxy re-encryption key rkA→B that they set up. We speak of key-
private PRE — which, informally, requires that the key rkA→B looks random from the viewpoint of the proxy
server.

Key-private PRE (a.k.a., anonymous PRE), as summarized in [6], can be useful in various applications
as PRE, while additionally providing anonymity, such as distributed file systems, digital rights management,
credential system, and forwarding encrypted emails. Later in this section, we will point out that key-private
PRE can also be useful for the task of asymmetric key rotation in encrypted data storage.

LWE. “Learning With Errors” or LWE [30] is rapidly emerging as a hardness assumption of choice when
long-term security is an issue, both classical and quantum. As shown in [30, 13], the LWE assumption the-
oretically has strong connection to lattice hardness assumptions, which are conjectured very safe in many
respects. In practice, however, there are certain efficient “attacks” on LWE, such as those illustrated in [26,
29, 24, 25, 3]. Although none of those attacks comes anywhere close to breaking the LWE assumption in a
theoretical sense, they force us to be careful in our choice of LWE parameters especially in the implementa-
tion of LWE-based schemes.

? Abridged parts of this paper was presented in [3]. L. T. Phong, L. Wang, and Y. Aono are with NICT, Japan. M. H.
Nguyen was at Tokyo Institute of Technology. X. Boyen is with Queensland Institute of Technology. Emails: {phong, wlh,
aono}@nict.go.jp.



1.1 Our Contributions

We first construct key-private PRE schemes secure under the LWE assumption. We then propose concrete
parameters for the schemes, and then make a testing implementation to demonstrate the efficiency. Finally,
we show how to use our schemes for the task of key rotation. Details are as follows.

• (CPA-secure scheme) We design a key-private PRE against chosen plaintext attacks (CPA). This is
achieved by transforming the public key encryption scheme of [24] in ways that are reminiscent of certain
techniques developed in the context of fully homomorphic encryption schemes such as [12], notwithstand-
ing certain impossibility results shown in [6]. At a very high level, we exploit two (new) facts about (our
variant of) the encryption scheme of [24]: recipient anonymity, and additive homomorphism. We use those
facts to show that our PRE scheme is CPA-secure under the LWE assumption, in the standard model. See
Section 3.

• (CCA-secure scheme) We then show that our scheme is eligible for conversion into a CCA-secure en-
cryption scheme, using the well-known Fujisaki-Okamoto method [18, 19], without losing the key-private
PRE functionality. Consequently, this scheme is CCA-secure under the LWE assumption, in the random
oracle model [10]. See Section 4.

• (Implementation) The CPA-secure scheme is implemented in Section 3.5. While requiring some storage
for keys and ciphertexts, the scheme has extremely high speed in encryption and decryption. The CCA-
secure scheme is only a little slower.

• (Key rotation using key-private PRE) Key rotation is the process of re-keying encrypted data from
an old key to a new one. Formally, on the federal side, it is recommended by NIST [27] via the concept
of cryptoperiods of keys, namely the time spans during which they are used. As suggested in [27, Table 1],
cryptoperiods are on the order of 1-2 years. On the industrial side, it is required by the Payment Card Industry
Data Security Standard (PCI DSS) [1], and is recommended by the Open Web Application Security Project
(OWASP) [2], specifying that “key rotation is a must as all good keys do come to an end either through
expiration or revocation. So a developer will have to deal with rotating keys at some point – better to have
a system in place now rather than scrambling later.”

We find that key-private PRE can be useful for the purpose of asymmetric key rotation. More precisely,
let C be the encryption of a plaintext M under a public key pkold, namely Cold = Enc(pkold,M). We want to
obtain an encryption of the same M under another public key pknew, namely we want to compute Cnew =

Enc(pknew,M). Using a key-private PRE scheme, the task can be accomplished by an outsourced server
holding the re-encryption key rkold→new. The key privacy of rkold→new will ensure that the key is psuedo-
random, so that the outsourced server will not obtain any useful information.

More specifically, consider an encrypted file system using key-private PRE. Whenever key rotation is
necessary, a data holder generates (pknew, sknew). He then uses (pknew, sknew) and his previously generated
(pkold, skold) to create the re-encryption key rkold→new, which is sent to the file system server. Using re-
encryption, all data encrypted under pkold can be transformed into those under pknew. Finally, the data
holder discards (pkold, skold), and the file system erases ciphertexts under pkold.

With our proposed schemes, the task of asymmetric key rotation can be accomplished efficiently. Specif-
ically, by the implementation in Section 3.5, one thousand ciphertexts can be rotated in a few seconds, using
even a laptop.

1.2 Discussion on two intuitions of key privacy

We realize that there are two intuitions on key privacy existing in the literature, categorized below.
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Table 1. Classifications of used notions of key privacy.

Intuition 1 Intuition 2
(no identity revelation from rk) (no public key revelation from rk)

this work, [6] [35, 28]

• (Intuition 1) The proxy key rkA→B is required to leak no information on the identities of parties A and
B.

• (Intuition 2) The proxy key rkA→B is required to leak no information on the public keys of parties A and
B.

In any setting where the link (e.g., via signatures as in PKI) between public key and identity are ensured,
then the above intuitions are identical. However, when there is no such link, they are different.

In Table 1, we classify papers using the two intuitions. Our work uses Intuition 1.
In the literature, the paper [6] has used Intuition 1. Indeed, quoting from the abstract of [6], “... use the

proxy to help re-encrypt sensitive information without revealing to the proxy the identity of the recipients.”
Formally, [6, full version, Definition 2.5], the challenge oracle gets the challenge input as identities (i, j),
not public keys (pki, pk j).

On the other hand, in the literature, the paper [35] has used Intuition 2, which is clear from their security
definitions, since the challenge oracle takes public keys as the challenge input. We classify [28] as using
Intuition 2 because that paper makes an effort to hide the delegatee’s public key by re-randomization.

Choosing which intuition depends on concrete applications. Some examples supporting Intuition 1 are
as follows.
• Example 1: In the application of key rotation in Section 1.1, Intuition 1 is enough, as it sufficiently ensures
that the proxy server is harmless.
• Example 2: In email forwarding [6], “Alice can hide the fact that Bob is a delegatee by instructing
the server to convert her encrypted emails via a key-private PRE scheme and to forward the results to
an anonymous (or group) email address (i.e., an address reachable by Bob but that does not contain any
identifiable information on Bob, like a P.O. Box address indeed).”

Therefore, Intuition 1 makes sense because it is assumed above that there is no link between the anony-
mous e-mail address (of the delegatee) and his/her identity.
• Example 3: In distributed file system [6], “Alice may want Bob to read some of her encrypted files, thus
she instructs the file system to convert those files using a proxy re-encryption key from Alice to Bob. In
a distributed file system, anyone can access those files but only Bob can read them. If the PRE scheme
employed is key-private, nobody can even tell who can access and read any file in the system.”

Intuition 1 applies because of the word “who”. To be complete, in this application, the IP address of Bob
must also be anonymous (e.g., via anonymous routing) when accessing the distributed file system, regardless
of concrete schemes employing Intuition 1 or Intuition 2.

1.3 Related works

Achieving key-private PRE has been acknowledged as a difficult task. In fact, many PRE schemes including
[11, 7, 14, 20, 23] are not key-private, as shown in [6]. There exist a few secure schemes with key privacy up
to now: (1) the CPA-secure schemes in [6, 28]; and (2) the CCA-secure in the random oracle model in [35]
under the decisional Diffie-Hellman assumption (and hence different from ours). Another PRE scheme had
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been claimed CCA-secure and key-private, in [36], but unfortunately its CCA security was recently broken
as shown in [21].

There have also been a lot of works trying to achieve CCA security for PRE: we mention [23] achieving
the weaker notion of Replayable CCA from LWE per the corrected proof in [31], as well as [38, 33, 34, 21]
and [16] achieving full CCA respectively in bilinear groups and in groups where decisional Diffie-Hellman
assumption holds. None of the schemes is key-private.

Additionally, some works have looked at identity-based PRE: see for instance [32] for a key-private
scheme using pairings in the random oracle model, and [37] for a construction focused on collusion safeness,
to list just some recent ones.

Nishimaki and Xagawa [28] consider notions of key privacy of Intuition 2 (see Table 1), and hence
different from this work. The paper [28] do not consider CCA security.

Also differing from ours, Watanabe and Yoshino [39] tackle the task of key rotation by constructing a
system using all-or-nothing transform.

1.4 Differences with the conference version [3]

Abridged parts of this paper have been presented in [3]. This paper improves those parts in several ways:

• We implement one scheme in Section 3.5 to demonstrate its efficiency, which is in orders of magnitude
faster than proxy re-encryption schemes based on pairings. This shows that our scheme is very suitable
for applications requiring high speed such as asymmetric key rotations discussed in Section 1.1.

• We clarify and correct many technical points, most significantly in Section 4 concerning CCA security.
As a byproduct, we also provide in A a public key encryption scheme CCA-secure under the LWE
assumption in the random oracle model.

We also realize that our schemes solve an open problem posted in previous work [6]. See the discussion in
Section 2.3.

This paper does not contain results on the practical hardness of LWE assumption presented in [3]. Those
results (with refined analysis) are treated independently in a separate paper [4].

2 Preliminaries and definitions

We use
c
≈ for computational indistinguishability.

LWE assumption. Succinctly, the assumption LWE(n, α, q) asserts that

(A, Ax + e)
c
≈ (A, r)

in which

– A ∈ Zm×n
q and r ∈ Zm×1

q are randomly chosen.
– x ∈ ψn×1

αq , e ∈ ψ
m×1
αq , and Ax + e is computed over Zq. Moreover ψαq is the Gaussian distribution over the

integers Z, with mean 0 and deviation αq. (Originally, x is chosen randomly from Zn×1
q in [30]. However,

as showed in [5, 26], one can take x ∈ ψn×1
αq as we do here.)

More precisely, the LWE(n, α, q) assumption for n, α, q depending on security parameter λ asserts that
the advantage

AdvLWE(n,α,q)
D

(λ) = |Pr[D(A, Ax + e)→ 1] − Pr[D(A, r)→ 1]|
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is negligible in λ for all poly-time distinguisherD.
By a standard hybrid argument over columns of X ∈ ψn×l

αq , we have under the LWE assumption

(A, AX + E)
c
≈ (A,R)

for random R ∈ Zm×l
q and Gaussian noise E ∈ ψm×l

s . This fact will be used in our security proofs.

Syntax of “interactive” PRE. The scheme consists of algorithms (ParamsGen, KeyGen, ReKeyGen, Enc,
ReEnc, Dec), described as follows.

ParamsGen(λ) returns public parameters pp according
to security parameter λ.

KeyGen(pp, λ) returns public-secret key pairs (pk, sk).
ReKeyGen(pp, ski, sk j) returns the re-encryption key rki→ j.
Enc(pp, pk,m) returns a ciphertext CT .
ReEnc(pp, rki→ j, CTi) transforms ciphertext CTi of party i

into a ciphertext that party j can de-
crypt.

Dec(pp, sk, CT ) recovers a message m.

Above, “interactive” means both secrets ski and sk j are needed in creating the re-encryption key rki→ j. For
readability, we omit some inputs that are publicly available in the above description, e.g., ReKeyGen and
ReEnc may get additional inputs pki and pk j.

2.1 CPA definitions

In following definitions, entities are indexed by integers. Namely, if there are N entities in the system, they
are represented by the set {1, . . . ,N} for their identities. In the real usage of our PRE scheme, one user can
have many identities.

Definition 1 (CPA security of PRE, [6]). Consider following interactions between an adversary A and a
challenger C.
Phase 1:

– C generates public parameters pp← ParamsGen(λ) and gives them toA.
– Uncorrupted key generation: C generates (pk, sk) ← KeyGen(pp, λ) and gives A public key pk upon

request.A can request many pk, and let ΓH be the set of uncorrupted (honest) indexes.
– Corrupted key generation: In this process, C generates key pair (pk, sk) ← KeyGen(pp, λ) and A is

given (pk, sk).A can request many times, and let ΓC be the set of corrupted indexes.

Phase 2:

– Re-encryption key generation:A submits a pair (i, j) to get the re-encryption key rki→ j ← ReKeyGen(pp,
ski, sk j). All requests where i ∈ ΓH , j ∈ ΓC are ignored.

– Re-encryption:A submits (i, j,Ci). The challenger generates the re-encryption key rki→ j ← ReKeyGen
(pp, ski, sk j) if it is not yet created, and returns the re-encrypted ciphertext C j← ReEnc(pp, rki→ j,Ci).
All requests where i ∈ ΓH , j ∈ ΓC are ignored.

– Challenge: A submits (i∗,m0,m1). The challenger then chooses random bit b ∈ {0, 1}, and then returns
Ci∗ = Enc(pp, pki∗ ,mb). This is done only once, and it is required that i∗ ∈ ΓH .
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A finally outputs b′ ∈ {0, 1} as a guess of b. DefineA’s advantage as

Advcpa
A

(λ) =

∣∣∣∣∣Pr[b′ = b] −
1
2

∣∣∣∣∣ .
The PRE scheme is CPA-secure if this advantage is negligible for all poly-time adversaryA.

Definition 2 (Re-encryption key privacy). Consider following interactions of an adversaryA. Phase 1 is
the same as in Definition 1.
Phase 2:

– Re-encryption key generation: On input (i, j) where i ∈ ΓH ∪ ΓC , j ∈ ΓH ∪ ΓC , return the key rki→ j.
– Re-encryption queries (i, j,Ci): The challenger returns C j = ReEnc(pp, rki→ j,Ci) as the re-encrypted

ciphertext. If the re-encryption key rki→ j was not generated yet, the challenger creates it.
– Challenge: This can only be queried once. On input (i∗, j∗), the challenger takes a bit b randomly, returns

rk∗ = rki∗→ j∗ = ReKeyGen(pp, ski∗ , sk j∗) if b = 1 or returns a random key rk∗ in the key space if b = 0.
The constraints are: (1) rki∗→ j∗ was not given out before, (2) there is no chain of re-encryption keys from
j∗ to any k ∈ ΓC , (3) j∗ ∈ ΓH . Note there is no limitation on i∗, namely i∗ ∈ ΓH ∪ ΓC .

Eventually,A outputs a bit b′, and its advantage is defined as

Advkp−cpa
A

(λ) =

∣∣∣∣∣Pr[b′ = b] −
1
2

∣∣∣∣∣ .
The PRE scheme is key-private if this advantage is negligible for all poly-time adversaryA.

The above definition differs from its counterpart in [6] in some ways. The condition (3) with j∗ ∈ ΓH while
i∗ is free in ΓH ∪ ΓC means that, regardless delegators, honest delegatees are enough to provide key privacy.
This is stronger than [6] which requires both i∗, j∗ ∈ ΓH .

Our definition also removes a “collusion-safe” condition implicitly incorporated in that of [6] by requir-
ing condition (2). This is for good because we think that collusion-safeness and key privacy are separate
issues in applications.

2.2 CCA definitions

We will consider CCA-secure PRE schemes with one hop, namely each ciphertext is re-encrypted only once.
The syntax is different from that of the CPA-secure schemes in having two separate decryption algorithms:

Dec(pp, sk,CT ) decrypting ciphertexts CT outputted by Enc
DecR(pp, sk,CT ′, pi) decrypting ciphertexts CT ′ outputted by

ReEnc, where pi is some previously
published information

The auxiliary published information pi will be the used public and re-encryption keys in our construction in
Section 4.

Definition 3 (CCA security of ciphertexts outputted by Enc). This is the same as Definition 1, with
following additional decryption queries by adversaryA in Phase 2:

– A repeatedly submits (pki,C) to the challenger, who in turn returns the decryption Dec(pp, ski,C). The
trivial constraints here are: i ∈ ΓH and (pki,C) , (pki∗ ,Ci∗).
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– A repeatedly submits (pi,C) where pi = (pki, pk j, rki→ j) to the challenger, who returns the decryption
DecR(pp, sk j,C, pi). The necessary constraints in this case are: j ∈ ΓH and

(pi,C) ,
(
(pki∗ , pk j, rki∗→ j),ReEnc(pp, rki∗→ j,Ci∗)

)
where rki∗→ j is some re-encryption key from i∗ to j. In more details,
• If pi = (pki∗ , pk j, rki∗→ j), then C , ReEnc(pp, rki∗→ j,Ci∗), namely C is not a ciphertext returned by

ReEnc with inputs pp, rki∗→ j,Ci∗ . Also, rki∗→ j in pi tells us thatA holds the re-encryption key.
• If pi , (pki∗ , pk j, rki∗→ j), then C can be ReEnc(pp, rki∗→ j,Ci∗) obtained byA via the re-encryption

oracle.

DefineA’s advantage as

AdvEnc,cca
A

(λ) =

∣∣∣∣∣Pr[b′ = b] −
1
2

∣∣∣∣∣ .
The PRE scheme is CCA-secure with respect to Enc if this advantage is negligible for all poly-time adversary
A.

Definition 4 (CCA security of ciphertexts outputted by ReEnc). This security notion is the same as
Definition 1, with following change in challenge in Phase 2:

– Challenge:A submits pki∗ and pkiA for i∗ ∈ ΓH , iA ∈ ΓH∪ΓC , and two messages m0,m1. The challenger
takes a random bit b ∈ {0, 1} and returns the challenge ciphertext Ci∗ = ReEnc(pp, rkiA→i∗ ,CTb) to A,
where CTb = Enc(pp, pkiA ,mb). It is worth noting that rkiA→i∗ may be known to A via a query for
re-encryption key.

Also, the decryption queries are added in Phase 2 as follows:

– A repeatedly submits (pki,C) to the challenger, who in turn returns the decryption Dec(pp, ski,C). The
trivial constraints here is i ∈ ΓH .

– A repeatedly submits (pi,C) where pi = (pki, pk j, rki→ j) to the challenger, who returns the decryption
DecR(pp, sk j,C, pi). The necessary constraints in this case are: i ∈ ΓH and (pi,C) , (pkiA , pki∗ , rkiA→i∗ ,Ci∗).

DefineA’s advantage as

AdvReEnc,cca
A

(λ) =

∣∣∣∣∣Pr[b′ = b] −
1
2

∣∣∣∣∣ .
The PRE scheme is CCA-secure with respect to ReEnc if this advantage is negligible for all poly-time
adversaryA.

Definition 5 (Re-encryption key privacy, CCA setting). Phase 1, Phase 2 are the same as in Definition
2, except that in Phase 2,A can access to additional oracles for decryption:

– A submits query of form (pki,C) for i ∈ ΓH . The challenger returns the decryption Dec(pp, ski,C).
– A submits query of form (pi,C) where pi = (pki, pk j, rki→ j). The challenger returns the decryption of

re-encrypted ciphertext DecR(pp, sk j,C, pi). The query cannot simultaneously satisfy: (1) pk j = pk j∗

(the challenge index), and (2) C is a re-encrypted ciphertext computed via the challenge rk∗, which is
honest rki∗→ j∗ or random, formed as in Definition 2, namely C = ReEnc(pp, pki∗ , pk j∗ , rk∗, C′) for some
adversarial C′.

DefineA’s advantage as

Advkp−cca
A

(λ) =

∣∣∣∣∣Pr[b′ = b] −
1
2

∣∣∣∣∣ .
The PRE scheme is key-private in CCA sense if this advantage is negligible for all poly-time adversaryA.
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2.3 Discussion: possible multiple keys per entity pair

The definition of key privacy in [6] allows only one re-encryption key per pair of entities. Moreover, the
PRE scheme given in [6] is insecure in case two (or more) re-encryption keys exist per pair, as discussed
in [6, Remark 3.5, Eprint version]. The authors of [6] asked for definitions where multiple re-encryption
keys are permitted per pair, and that is exactly captured by our Definitions 2 (CPA case) and 5 (CCA case).
Our PRE schemes meet these notions, and hence are still secure when many re-encryption keys are shared
between two entities.

3 Our key-private, CPA-secure PRE

3.1 Description

Let us first recall some notions, originally used in fully homomorphic encryption.

Functions Bits(·) and Power2(·). The functions Power2(·) and Bits(·) are described as follows. Let v ∈ Zn
q

and κ = dlg qewhere lg(·) is logarithm of base 2. Then there are bit vectors vi ∈ {0, 1}n such that v =
∑κ−1

i=0 2ivi.
Then

Bits(v) = [v0| · · · |vκ−1] ∈ {0, 1}1×nκ.

Let W = [W1| · · · |Wl] ∈ Zn×l
q where Wi are column vectors. Then

Power2(W) =


W1 · · · Wl

2W1 · · · 2Wl
...

...

2κ−1W1 · · · 2κ−1Wl

 ∈ Znκ×l
q .

It is easy to check that
Bits(v)Power2(W) = vW ∈ Z1×l

q .

This equality will be useful in checking the correctness of our schemes. Following PRE scheme is based on
the public key encryption scheme given in [24]. In particular, the first four algorithms are basically the same
as those in [24], while the last two are ours.

Parameters generation ParamsGencpa(λ): Choose positive integers q, n, and take matrix A ∈ Zn×n
q ran-

domly. Return pp = (q, n, A), which is the input to all algorithms below.
Key generation KeyGencpa(pp, λ): Let s = αq for 0 < α < 1. Take Gaussian noise matrices R, S ∈ ψn×l

s .
The public key is pk = P for P = R − AS ∈ Zn×l

q , and the secret key is sk = S . Here, l is the message
length in bits, while n is the key dimension. Return (pk, sk).

Encryption Enccpa
pk (m; randomness): To encrypt m ∈ {0, 1}l, use randomness to take Gaussian noise

vectors e1, e2 ∈ ψ
1×n
s , and e3 ∈ ψ

1×l
s , and return ciphertext c = (c1, c2) ∈ Z1×(n+l)

q where

c1 = e1A + e2 ∈ Z
1×n
q , c2 = e1P + e3 + m ·

⌊q
2

⌋
∈ Z1×l

q .

Decryption Deccpa
sk (c): To decrypt c = (c1, c2) ∈ Z1×(n+l)

q by secret key S , compute m = c1S + c2 ∈ Z
l
q. Let

m = (m1, . . . ,ml). If mi ∈ [−b q
4c, b

q
4c) ⊂ Zq, let mi = 0; otherwise mi = 1.
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Proxy key generation ReKeyGen(pkA, skA, pkB, skB): Alice with keys (pkA = PA, skA = S A) and Bob
with keys (pkB = PB, skB = S B) want to set up proxy key rkA→B. The proxy key consists of PB and

rkA→B =

[
X −XS B + E + Power2(S A)

0l×n Il×l

]
in which matrices X ∈ Znκ×n

q (κ = dlg qe) is chosen uniformly random and noise matrix E is chosen from
ψnκ×l

s .
Re-encryption ReEnccpa(pkB, rkA→B, (c1, c2)): Parse the proxy key as PB and rkA→B. To transform Alice’s

ciphertext (c1, c2) ∈ Z1×(n+l)
q into Bob’s ciphertext, return

f1[A|PB] + [ f2| f3]︸                ︷︷                ︸
re−randomization part

+[Bits(c1)|c2] · rkA→B ∈ Z
1×(n+l)
q

in which f1, f2 ∈ ψ1×n
s , and f3 ∈ ψ1×l

s are chosen by the proxy.

3.2 Intuition on key privacy

The re-encryption key contains following information on Bob’s secret skB = S B: (A, PB = RB − AS B) and
(X,−XS B + E). These together can be written in LWE form[

A
X

]
,−

[
A
X

]
S B +

[
RB

E

]
and thus rkA→B is pseudo-random if S B is kept secret, namely if Bob is not corrupted. This also implies that
public key PB is pseudo-random and unrelated to Bob, which is the recipient-anonymous property of [24].

However, the above is still insufficient! If re-encryption is deterministic, for example using the second-
half formula [Bits(c1)|c2] · rkA→B (and PB is unused), there is an attack on key privacy as follows:

1. AdversaryA creates ciphertext (c1, c2) using Alice’s public key pkA.
2. A asks for challenge rk∗ between Alice and Bob, which is either honestly generated rkA→B or random.
3. A asks for re-encryption (c′1, c

′
2) of (c1, c2) from Alice to Bob, namely (c′1, c

′
2) = [Bits(c1)|c2] · rkA→B.

4. A checks whether (c′1, c
′
2) = [Bits(c1)|c2] · rk∗.

If the comparison holds true, A decides that rk∗ is the re-encryption key between Alice and Bob. The
idea of this attack is originated in [6, Lemma 2.7], and works well under the condition that re-encryption
is deterministic.

To deal with the attack, we add the term f1[A|PB]+[ f2| f3] into the re-encryption. This is exactly an encryption
of zero vector under the public key of Bob, so that decryption by Bob will not be affected by this term. Thus
re-encryption is randomized, and we succeed in proving that the PRE scheme is key-private.

3.3 Some useful properties

Multi-hop property. A ciphertext (c1, c2) ∈ Z1×(n+l)
q , after re-encryption, is changed to a ciphertext in

Z1×(n+l)
q . Namely, re-encryption does not change the format of ciphertexts. Original ciphertexts and trans-

formed ciphertexts are decrypted by the same decryption algorithm (with different secret keys, of course).
Thus our scheme is multi-hop, namely a ciphertext can be re-encrypted many times as long as the incurred
noise is kept small enough.

Uni-directional property. This property ensures that Alice and proxy together cannot decrypted Bob’s
ciphertexts. This is intuitively true because Alice and proxy can only get (X,−XS B + E) where X and E are
chosen by Bob. The tuple is pseudo-random under the LWE assumption, so the information is useless.
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3.4 Correctness

First, we check that normal ciphertext c1 = e1A + e2, c2 = e1P + e3 + m · b q
2c can be decrypted by secret S

via the formula c1S + c2. Indeed,

c1S + c2 = [c1|c2]
[

S
Il×l

]
=

(
e1[A|P] + [e2|e3] + [0|m · b

q
2
c]
) [ S

Il×l

]
= e1(AS + P) + (e2S + e3) + m ·

⌊q
2

⌋
= e1R + e2S + e3 + m ·

⌊q
2

⌋
will yield m if the noise e1R + e2S + e3 is small enough. Second, we check a transformed ciphertext can be
decrypted by Bob. Namely, decryption of ciphertext f1[A|PB] + [ f2| f3] + [Bits(c1)|c2] ·Q by Bob’s secret S B

is the same as Alice’s decryption on (c1, c2) with S A. Indeed,

( f1[A|PB] + [ f2| f3] + [Bits(c1)|c2] · Q)
[

S B

Il×l

]
= f1(AS B + PB) + f2S B + f3

+[Bits(c1)|c2]
[

E + Power2(S A)
Il×l

]
= f1RB + f2S B + f3 + Bits(c1) (E + Power2(S A)) + c2

= f1RB + f2S B + f3 + Bits(c1)E︸                                 ︷︷                                 ︸
noise

+c1S A + c2

will yield Alice’s decryption on (c1, c2) since the incurred noise is sufficiently small. Technical details are
provided below.

We will use following lemmas, whose proofs can be derived from [8, 9]. Below | · | stands for either the
Euclidean norm of a vector or the absolute value; 〈·, ·〉 for inner product. Writing |ψn

s | is a short hand for
taking a vector from the distribution and computing its norm.

Lemma 1. Let c ≥ 1 and C = c · exp( 1−c2

2 ). Then for any real s > 0 and any integer n ≥ 1, we have

Pr
[
|ψn

s | ≥
c · s
√

n
√

2π

]
≤ Cn.

Lemma 2. For any real s > 0 and T > 0, and any x ∈ Rn, we have

Pr
[
|〈x, ψn

s〉| ≥ T s|x|
]
< 2 exp(−πT 2).

Theorem 1 (Correctness). Let q be the modulus as in the scheme. For correctness of our PRE, we need

s ≤
1
√

A


√

q
4

+

(
B

2
√

A

)2

−
B

2
√

A


in which A and B are given in equation (2) in the proof.
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Proof. It suffices to check correctness of the transformed ciphertexts, since the noise is bigger than that
in original ones. Continuing the text above, let us now check the decryption of transformed ciphertexts of
(c1, c2), which is

f1RB + f2S B + f3 + Bits(c1)E + c1S A + c2

= f1RB + f2S B + f3 + Bits(c1)E︸                                ︷︷                                ︸
noise in one re−encryption

+ e1R + e2S + e3︸            ︷︷            ︸
original noise

+m ·
⌊q

2

⌋
.

Generally, the noise after h hops is thus can be written as
h∑

i=1

(
f (i)
1 RB + f (i)

2 S B + f (i)
3 + Bits(c1)E(i)

)
+ e1R + e2S + e3 ∈ Z

1×l
q .

Suppose Bits(c1) contains all 1’s, namely Bits(c1) = 11×nκ. Each component in Zq of the above noise vector
can be written as the inner product of two vectors of form

e =
(

f (1)
1 , f (1)

2 , f (1)
3 , . . . , f (h)

1 , f (h)
2 , f (h)

3 , e(1), . . . , e(h), e1, e2, e3
)

x =
(
r(1)

B , s(1)
B , 0101×l, . . . , r

(h)
B , s(h)

B , 0101×l, 11×nκ︸             ︷︷             ︸
1≤i≤h

, r, r′, 0101×l
)

where, for all 1 ≤ i ≤ h, the notations are as follows.

– Vectors f (i)
1 , f (i)

2 ∈ ψ1×n
s , and f (i)

3 ∈ ψ1×l
s . Vectors e(i) ∈ ψ1×nκ

s represents one column in matrix E(i).
Vectors e1 ∈ ψ

1×n
s , e2 ∈ ψ

1×n
s , and e3 ∈ ψ

1×l
s are the noises in the original ciphertext.

– Vectors r(i)
B , s

(i)
B ∈ ψ

1×n
s , and 0101×l stands for a vector of length l with all 0’s except one 1; 11×nκ for a

vector of length nκ with all 1’s. Vectors r, r′ ∈ ψ1×n
s represent corresponding columns in matrices R, S .

We have

e ∈ Z
1×

(∑h
i=1(2n+l+nκ)+2n+l

)
s

||x|| ≤ ||(r(1)
2 , s(1)

2 , . . . , r(h)
2 , s(h)

2 , r, r′)|| +
√
κhn + h + 1

where (r(1)
2 , s(1)

2 , . . . , r(h)
2 , s(h)

2 , r, r′) ∈ ψ1×(2hn+2n)
s . Applying Lemma 1 for vector of length 2hn + 2n, with high

probability of
1 −C2hn+2n ≥ 1 − 2−40 (even if h = 1)

we have

||x|| ≤
c · s
√

2hn + 2n
√

2π
+
√
κhn + h + 1.

We now use Lemma 2 with vectors x and e. Let ρ be the error per message symbol in decryption, we set
2 exp(−πT 2) = ρ, so T =

√
ln(2/ρ)/

√
π. For correctness, we need T · s · ||x|| ≤ q/4, which holds true provided

that √
ln(2/ρ)
√
π

· s ·
(
cs
√

2n(h + 1)
√

2π
+

√
(κn + 1)h + 1

)
≤

q
4

which can be shortly written in form As2 + Bs − q
4 ≤ 0. Therefore,

s ≤
1
√

A


√

q
4

+

(
B

2
√

A

)2

−
B

2
√

A

 (1)
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in which

A =

√
ln(2/ρ) · c ·

√
n(h + 1)

π
, B =

√
ln(2/ρ)
π

·
√

(κn + 1)h + 1 (2)

which will be used in Section 3.5 below for testing implementations.

3.5 Testing implementations

We use parameters described in Table 2 in experiments in this section. When q = 16381, n = 450, s = 3, the
bit security of (search) LWE is about 135 due to the cryptanalysis in [3, 4].

Table 2. Parameters in experiments. The constant c is for the use of Lemma 1. The number of hop h in this table is theoretically
chosen in formula (2) to help fixing the noise deviation s given in formula (1), while ρ is the error per bit in decryption.

q κ = dlg qe n c
16381 14 450 1.13

ρ h in (2) s by (1) bit sec. (via [3, 4])
1/200 10 ≤ 5.08 ≈ 161
2−128 4 ≤ 3.05 ≈ 135

Experimental number of hops and ρ. Recall that ρ is the error per bit in decrypted message. We take two
choices of this parameter for experiment:

– ρ = 1
200 , namely there is a certain error per bit, so that some error correcting code (ECC) must be needed

to recover the message. The concrete ECC will be discussed below.
– ρ = 2−128, namely the error per bit is negligible, so that no ECC is necessary.

Fig. 1. Correctness of 128-bit message when the error per bit ρ = 2−128 or ρ = 1/200. The data is produced via 40 hops of re-
encryption, with decryption after each hop to count the correct bits. The whole process is independently repeated 50 times to take
the average reported in the graph.

The correctness of 128-bit decrypted messages is reported in Figure 1. As expected, correctly recovered
bits decrease when the number of hops increases due to the noises added in re-encryption. Nevertheless,
some notes are as follows.
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– When ρ = 1
200 , and we want h = 10, the we need an ECC being able to correct about 128 − 110 = 18

bits. Therefore, the 18-error-correcting-code BCH(255, 131, 18) can be used, in which 255 is the code
length in bit, 131 is the data length in bit. Since we just need to encode 128 bits, in fact 131 − 128 = 3
bits are redundant. In this case, the message length l is the code length, l = 255.

– When ρ = 2−128, one can see in Figure 1 that correctness over 128 bits are ensured until 10 hops, which
is larger than the theoretical value of h = 4 set in Table 2. This is due to the fact that the proof of
Theorem 1 deals with maximum noises which may not happen frequently. In this case, the message
length l = 128.

Speed. We implement the pairing-based scheme in [6] using the PBC 0.5.13 library, and our CPA-secure
scheme using the Eigen 3.1.4 library [17] for linear algebra to compare the performance. All experiments
are over a laptop (Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04 LTS. The C compiler is g++ 4.6.3
with compiling options -O3 -funroll-loops -ffast-math when running the code for our scheme and
additionally -lbpc -lgmp -lm for [6].

Neglecting time for key generation in Table 3, we remark that the running speeds of Enc, ReEnc, and
Dec in our proposal beats the corresponding algorithms of [6] at a margin of multiples or even hundred
times. Indeed, at approximately the same security level of 112-bit, ours are 280.75 times faster in Enc,
94.98 times faster in ReEnc, and at least 146.44 times faster in decryption. These speedups are due to the
fact that linear algebra operations are faster than exponentiations and pairings.

Table 3. Performance comparison between [6] and ours. Running times are given in milliseconds, averaged over 100 executions of
each algorithm. Type a and a1 parings are of around 80- and 112- bit security correspondingly, and type a is the fastest pairing in
the library. Dec1 and Dec2 in[6] are the decryption algorithms for first-level (not re-encryptable) and second-level (re-encryptable)
ciphertexts.

The CPA-secure scheme in [6]
Pairing One pairing KeyGen Enc ReKeyGen ReEnc Dec2 Dec1

type cost
a 5.99 6.24 7.55 11.73 16.44 7.38 0.47

a1 92.5 60 112.3 201.9 352.4 170.2 6.59

Our CPA-secure scheme, noise deviation s = 3.05, LWE’s bit security ≈ 135
N/A N/A 26 0.4 380 3.71 0.045 0.045

Key and ciphertext sizes. When s = 3.05, we can take l = 128 as no ECC is necessary as discussed above.
The public key is P ∈ Z450×128

16381 , so takes storage of about

450 · 128 · lg 16381
103 · 8

≈ 100.8 (kilobytes).

The secret key is also of the same size. A ciphertext is in Z450+128
16381 , so has size (450 + 128) lg 16381

(bits), which is around 1.01 kilobytes. The re-encryption matrix rkA→B contains matrices in Z450·14×450
16381 and

Z450·14×128
16381 , so requires storage of

(450 · 14 · 450 + 450 · 14 · 128) lg 16381
106 · 8

≈ 6.37 (megabytes).

The summary of these computations is in Table 4.
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Table 4. Sizes computed with parameters in Table 2. Message length |m| = l = 128.

pk = P sk = S CT |CT |/|m| rk
100.8 (kilobytes) 100.8 (kilobytes) 1.01 kilobytes 63.21 6.37 (megabytes)

3.6 Security theorems

Theorem 2 (CPA security). Under the LWE(n, α, q) assumption, the above PRE scheme is CPA-secure.
Specifically, for a poly-time adversaryA, there exists a poly-time distinguisherD such that

Advcpa
A

(λ) ≤ (NQrkl + NQre + 1) · AdvLWE(n,α,q)
D

(λ)

where Qrk and Qre are correspondingly the number of re-encryption key queries and re-encryption queries,
N is the number of honest entities, and l is the message length.

Proof. Consider an adversaryA against the PRE. Let Game0 be the interactions betweenA and a challenger
as in Definition 1. In this initial game, pp = (q, n, A), ΓH is the set of honest entities, ΓC is the set of corrupted
entities. A key pair (Pi, S i) satisfying Pi = Ri − AS i for Gaussian noise matrix Ri, S i. The re-encryption key
from party i to party j is (P j,Qi j) in which

Qi j =

[
Xi j −Xi jS j + Ei j + Power2(S i)
0l×n Il×l

]
in which Xi j, Ei j are generated by party j. The challenge ciphertext related to party i∗ is (c∗1, c

∗
2) where

c∗1 = e∗1A + e∗2 and c∗2 = e∗1P∗ + e∗3 + mb · b
q
2
c

in which b ∈ {0, 1} is the challenge bit, (e∗1, e
∗
2, e
∗
3) are Gaussian noise, and P∗ is the challenge public key.

For notational convenience, let ΓH = {1, . . . ,N}. Following Game1≤k≤N corresponds to honest party
k ∈ ΓH . Gamek is identical to Gamek−1, except the following changes:

– Pk (= Rk − AS k in Gamek−1) is changed into a random matrix P′k.
– Re-encryption key query (i, k): return rki→k = (P′k,Qik) in which

Qik =

[
Xik Rik

0l×n Il×l

]
where Rik is freshly random.

– Re-encryption query (i, k,Ci): return a random vector in Z1×(n+l)
q toA.

Gamefinal is identical to GameN except that challenge ciphertext is

c∗1 = r∗1 and c∗2 = r∗2 + mb ·

⌊q
2

⌋
in which r∗1, r

∗
2 are freshly random vectors over Zq of proper lengths. By this change, the challenge bit b is

information-theoretically hidden fromA, so Pr[b′ = b] = 1
2 , and henceA’s advantage in Game1 is 0.

We now need to prove that the games are indistinguishable from the view ofA, under the LWE assump-
tion. The change from Gamek−1 to Gamek involves turning

Pk = Rk − AS k,Rik = Eik − XikS k
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into random matrices. This is ensured by LWE with secret S k of the form
A
...

Xik
...


i

,−


A
...

Xik
...


i

S k +


Rk
...

Xik
...


i

where index i corresponds to all re-encryption key queries (i, k). Here we rely on the LWE(n, α, q) assump-
tion over l column vectors of S k, illustrating the loss factor Qrkl in reduction. The change also relies on the
fact that f1[A|P′k] + [ f2| f3] is pseudo-random under LWE(n, α, q) when dealing with re-encryption queries,
illustrating the loss factor Qre in reduction.

The change from GameN to Gamefinal involves turning e∗1A + e∗2 and c∗2 = e∗1P∗ + e∗3 into random vectors.
This is ensured by LWE with secret (e∗1)T (the transpose of e∗1) of the form

[A|P∗]T , (e∗1[A|P∗] + [e∗2|e
∗
3])T

where P∗ is random by one of previous games. The assumption parameter is also LWE(n, α, q), illustrating
the final loss factor 1 in the theorem statement.

Theorem 3 (Key privacy). Under the LWE(n, α, q) assumption, the above PRE scheme is key-private.
Specifically, for a poly-time adversaryA, there exists a poly-time distinguisherD such that

Advkp−cpa
A

(λ) ≤ N(Qrkl + Qre) · AdvLWE(n,α,q)
D

(λ)

where Qrk and Qre are correspondingly the number of re-encryption key queries and re-encryption queries,
N is the number of honest entities, and l is the message length.

Proof. Let Game0 be the attack game as in Definition 2. In the game, the challenge re-encryption key from
i∗ to j∗ is (P j∗ ,Qi∗ j∗) where

Qi∗ j∗ =

[
Xi∗ j∗ −Xi∗ j∗S j∗ + Ei∗ j∗ + Power2(S i∗)
0l×n Il×l

]
for j∗ ∈ ΓH . For notational convenience, let ΓH = {1, . . . ,N}. Following Game1≤k≤N corresponds to honest
party k ∈ ΓH . Gamek is identical to Gamek−1, except that re-encryption key from i to k for any i ∈ ΓH ∪ ΓC

is set to (
Pk,

[
Xik Rik

0l×n Il×l

])
where Pk,Rik are freshly random matrices over Zq of proper sizes. Since j∗ ∈ ΓH by the constraint in
definition, the challenge re-encryption key from i∗ to j∗ is changed in Game j∗ into(

P j∗ ,

[
Xi∗ j∗ Ri∗ j∗

0l×n Il×l

])
for random matrices P j∗ ,Ri∗ j∗ .
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Also, in each Game1≤k≤N , re-encryption queries (i, k,Ci) is answered by random vectors of length
Z1×(n+l)

q for all index i. Thus in GameN , the challenge that A gets is random in both cases b = 0 and
b = 1, and henceA’s advantage is 0.

We now show that all games are indistinguishable under the LWE assumption. Specifically, the games
Gamek and Gamek−1 are indistinguishable under LWE with secret S k of the form

A
...

Xik
...


i

,−


A
...

Xik
...


i

S k +


Rk
...

Eik
...


i

where i depends on the re-encryption key queries, and LWE of form f1[A|Pk] + [ f2| f3] for random matrix
Pk and secret Gaussian noise vectors f1, f2, f3. Thus all games above are indistinguishable to A under the
LWE(n, α, q) assumption.

In theorem statement, the loss factor N is due to N games in consideration, and in each game there
are Qrk re-encryption key queries and Qre re-encryption queries. The factor l comes from the LWE secrets
corresponding to l columns of S k above.

4 Our key-private, CCA-secure PRE

4.1 Bugs in the conference version

The scheme for CCA security in [3] unfortunately contains flaws in correctness and security: re-encrypted
ciphertexts cannot be decrypted rightly, and security of original ciphertexts can be violated. To recall, for
original ciphertexts of the form (c1, c2, cs), the re-encrypted ones is of the form (c′1, c

′
2, cs) with

(c′1, c
′
2) = ReEnccpa(pkB, rkA→B, c1, c2) (3)

where ReEnccpa was described in Section 3.

– Correctness flaw: in [3], the decryption algorithm for (c1, c2, cs) is also used to decrypt (c′1, c
′
2, cs). The

former returns ⊥ immediately if

(c1, c2) , Enccpa
pkA

(σ; H(σ, cs)) (4)

where σ = Deccpa
skA

(c1, c2). Since condition (4) won’t be satisfied when (c1, c2) is replaced by (c′1, c
′
2) due

to the re-randomization in ReEnccpa, (c′1, c
′
2, cs) will almost always get rejected.

– Potential security flaw: now suppose (c1, c2, cs) is the challenge ciphertext. The adversary then submits
query (c1, c2, 0|cs |) for re-encryption to obtain (c′1, c

′
2, 0
|cs |) where 0|cs | is a vector of all zeros of length

equal to cs, and (c′1, c
′
2) is as in (3). The adversary then submit query (c′1, c

′
2, cs) for decryption, and if

the decryption algorithm worked correctly, the adversary would obtain the challenge hidden bit.
The reason for the possible security bug is in the fact that cs is not glued together with (c′1, c

′
2), as in (3)

there is no role for cs.

In the below revised scheme, we fix the above bugs.
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4.2 The revised CCA-secure scheme

We utilize Fujisaki-Okamoto idea in [18, 19]: intuitively, Enccpa
pk (M; H(M)) for a hash function H provides

not only secrecy but also authenticity on message M, as any change on M will yield a “fresh randomness”
H(M). Moreover, one can put other inputs into H to get authenticity on those elements as well.

In more details, the encryption is as follows

Enccca
pk (m;σ) =

(
Enccpa

pk

(
σ; H(σ, cs)

)
,SEG(σ)(m)︸      ︷︷      ︸

cs

)
in which

– σ is random; H and G are hash functions modeled as random oracles.
– cs = SEG(σ)(m) is the symmetric encryption of m under the key G(σ).

Below is the detailed description of our CCA-secure scheme. Let (SE, SD) be a symmetric encryption
scheme, which is one-time secure. (One example of (SE, SD) is the one-time-pad.) Let G,H are random
oracles where G : {0, 1}l → {0, 1}lsym for lsym being the key length of the symmetric encryption scheme;
H : {0, 1}∗ → {0, 1}lgau for lgau being the bit-length of the seed used in generating Gaussian noises.

Algorithms for parameters generation, key generation, proxy key generation are identical to the CPA-
secure scheme in Section 3. The differences are in following algorithms.

Encryption Enccca
pk (m): Choose random σ ∈ {0, 1}l. Symmetrically encrypt message m ∈ {0, 1}∗ by letting

cs = SEG(σ)(m). Let h = H(σ, cs).
Encrypt σ: use randomness h, take Gaussian noise vectors e1, e2 ∈ ψ1×n

s , and e3 ∈ ψ1×l
s , and return

ciphertext c = (c1, c2) ∈ Z1×(n+l)
q where

c1 = e1A + e2 ∈ Z
1×n
q , c2 = e1P + e3 + σ ·

⌊q
2

⌋
∈ Z1×l

q . (5)

Return ct(0) = (c1, c2, cs).
Re-encryption ReEnccca(pkA, pkB, rkA→B, ct(0)): do the re-encryption on ct(0) = (c1, c2, cs) as follows.

Below, H1 : {0, 1}∗ → {0, 1}lseedEnc and G1 : {0, 1}l → {0, 1}lseedEnc for lseedEnc being the seed length in
encryption. Both G1 and H1 are modeled as random oracles.
1. Randomization: take random τ ∈ {0, 1}l and compute

(c′1, c
′
2) = Enccpa

pkB

(
0; H1(τ, pkA, pkB, ct(0), rkA→B︸                    ︷︷                    ︸

for integrity

)
)

+ [Bits(c1)|c2] · rkA→B. (6)

where Enccpa
pkB

is the encryption algorithm in the CPA-secure scheme in Section 3 used with public
key pkB.

2. Asymmetrically encrypting τ using pkB:

(d1, d2) = Enccpa
pkB

(τ; G1(τ)). (7)

Return ciphertext ct(1) = (c′1, c
′
2, d1, d2, cs).

Decryption of original ciphertexts Deccca
skA

(ct(0)): To decrypt c = (c1, c2, cs) by secret key skA = S , execute
following steps.
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1. (Reconstruction) Compute σ = c1S + c2 ∈ Z
l
q. Let σ = (σ1, . . . , σl). If σi ∈ [−bq

4c, b
q
4c) ⊂ Zq, let

σ′i = 0; otherwise σ′i = 1. Let σ′ = σ′1 · · ·σ
′
l and h′ = H(σ′, cs).

2. (Integrity check) Usingσ′, h′, check (c1, c2) = Enccpa
pkA

(σ′; h′). Namely compute (c′1, c
′
2) = Enccpa

pkA
(σ′; h′)

and if (c′1, c
′
2) , (c1, c2), return ⊥; otherwise return SDG(σ′)(cs) as the message.

Decryption DecRcca
skB

(ct(1), pi) with auxiliary public information pi = (pkA, pkB, rkA→B):
1. (Ensure τ is not malformed) Use skB to obtain τ. Check equation (7), by re-encrypting τ under pkB

with randomness G1(τ).
2. (Ensure σ is not malformed) Use skB to obtain σ from (c′1, c

′
2). Then check equation (6) in which on

the right hand side (c1, c2) is replaced by Enccpa
pkA

(σ; H(σ, cs))
3. If all checks go through, return SDG(σ)(cs) as the plaintext.

Bugs described in Section 4.1 solved. In equation (6), ct(0) = (c1, c2, cs) is authenticated by the hash
functions H1. This glues ct(0) and in particular cs with (c′1, c

′
2) of ct(1).

The randomness τ is for re-randomization process. To re-check (6) in decryption of re-encrypted cipher-
texts, τ is sent via (d1, d2) which has both secrecy and authenticity.

In particular, it is now clear that re-encrypted ciphertexts can be decrypted correctly. Moreover, suppose
(c1, c2, cs) is the challenge ciphertext, and (c1, c2, 0|cs |) is re-encrypted to ct(1) = (c′1, c

′
2, d1, d2, 0|cs |) via

pi = (pkA, pkB, rkA→B). Then query ct(1)
∗ = (c′1, c

′
2, d1, d2, cs) to DecRcca

skB
(·, pi) will get ⊥, as equation (6)

won’t be satisfied.

Theorem 4 (Security of Enc’s ciphertexts). Ciphertexts directly outputted by algorithm Enc is CCA-
secure under the LWE assumption, if G,H,G1,H1 are random oracles. Specifically, for a poly-time ad-
versaryA, there exists a poly-time distinguishersD,D′ such that

AdvEnc,cca
A

(λ) ≤ (NQrkl + NQre + 1) · AdvLWE(n,α,q)
D

(λ)

+(QDec + QDecR) · AdvLWE(n,α,q)
D′

(λ)

where Qrk and Qre are correspondingly the number of re-encryption key queries and re-encryption queries,
N is the number of honest entities, and l is the message length. QDec and QDecR are the number of decryption
queries to oracles using algorithms Dec and DecR correspondingly.

Proof. At a high level, in the following, Game0 is the original CCA game, in which secret keys of entities
are used in simulation for decryption oracles. We will transform that game into Game1 and Game2, in which
the simulation is done without the secret keys by utilizing random oracles H and G. We then show that
both games are indistinguishable. This shows decryption oracles are useless to the adversary, so that the
arguments after Game1 are essentially identical to the CPA security proof. More details are as follows.

Since Game0 is the original CCA game as in Definition 3, the decryption oracle using Dec(pp, ski

= S i, ·) works as follows:

1. Get input (pki,C) for C = (c1, c2, cs). Decrypt (c1, c2) using ski = S i to get σ′ ∈ {0, 1}l.
2. Return ⊥ if (c1, c2) , Enccpa(σ′; h′) for h′ = H(σ′, cs). Otherwise return SDG(σ′)(cs).

Moreover, let Hlist and Glist store hash queries and corresponding answers either from A or from the algo-
rithms called by the challenger. In particular, Hlist contains tuple of forms (σ, cs, h = H(σ, cs)).

Game1 is the same as Game0, except that the decryption oracle Dec(pp, ski = S i, ·) works, without using
ski, as follows:
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1. Get input (pki,C) for C = (i, c1, c2, cs). Using fixed cs, check Hlist to find tuple (σ, cs, h) satisfying
σ ∈ {0, 1}l and (c1, c2) = Enccpa

pki
(σ; h).

2. Return ⊥ if there is no such tuple. Otherwise return SDG(σ)(cs).

We now argue Game0 and Game1 are indistinguishable, by examining the behavior of the decryption oracle
in the games. If⊥ is returned by the oracles in both games, there is obviously no difference, so let us consider
the remaining cases on query (pki, c1, c2, cs):

• Case 1: the decryption in Game0 returns m′ = SDG(σ′)(cs) while in Game1 returns m = SDG(σ)(cs). Note
(c1, c2) = Enccpa

pki
(σ′; H(σ′, cs)) in Game0, and

(c1, c2) = Enccpa
pki

(σ; H(σ, cs)) in Game1,
so that σ′ = σ, and hence m′ = m. Thus there is no difference of the games in this case.

• Case 2: the decryption in Game0 returns ⊥ while in Game1 returns m = SDG(σ)(cs). This means
σ′ = Deccpa

S i
(c1, c2), and

(c1, c2) , Enccpa
pki

(σ′; h′) for h′ = H(σ′, cs),
and yet there is a tuple tuple (σ, cs, h) satisfying (c1, c2) = Enccpa

pki
(σ; h). By the correctness of the CPA-

secure PRE, σ′ = σ, and hence h = h′, leading to a contradiction since Enccpa
pki

(σ; h) , Enccpa
pki

(σ; h).
Thus this case cannot be happened.

• Case 3: the decryption in Game0 returns m′ = SDG(σ′)(cs) while in Game1 returns ⊥. The former means

σ′ = Deccpa
S i

(c1, c2), (c1, c2) = Enccpa
pki

(σ′; h′)

for h′ = H(σ′, cs).
The latter means there is no tuple (σ, cs, h) ∈ Hlist satisfying (c1, c2) = Enccpa

pki
(σ; h). This implies tuple

(σ′, cs, h′ = H(σ′, cs)) corresponding to m′ is not yet in Hlist. Therefore h′ = H(σ′, cs) is freshly random
from the viewpoint ofA. The condition (c1, c2) = Enccpa

pki
(σ′; h′) holds with negligible probability since,

as proved in Theorem 2, the right hand side Enccpa
pki

(σ′; h′) is unpredictable under the LWE assumption.

Thus Game0 and Game1 are indistinguishable under the LWE assumption.
In Game1, the decryption oracle for re-encrypted ciphertexts handles queries of form (pi,C) where C

can be parsed as (c′1, c
′
2, d1, d2, cs) and pi as (pki, pk j, rki→ j). This oracle works as follows.

1. Use sk j = S j to decrypt (d1, d2), namely compute τ = Deccpa
sk j

(d1, d2).

2. If (d1, d2) , Enccpa
pk j

(τ; G1(τ)), return ⊥ immediately.

3. Use sk j to decrypt (c′1, c
′
2), namely compute σ = Deccpa

sk j
(c′1, c

′
2).

4. Let (c1, c2) = Enccpa
pki

(σ; h) where h = H(σ, cs) and ct(0) = (c1, c2, cs).
5. Immediately return ⊥ if

(c′1, c
′
2) , Enccpa

pk j

(
0; H1(τ, ct(0), pi)

)
+ [Bits(c1)|c2] · rki→ j.

6. Return SDG(σ)(cs).

In Game2, the decryption oracle handles queries of form (pi,C) where C can be parsed as (c′1, c
′
2, d1, d2, cs)

and pi as (pki, pk j, rki→ j) as follows.

1. Check G1-list to find τ satisfying (d1, d2) = Enccpa
pk j

(τ; G1(τ)). If there is no such τ, return ⊥.
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2. Use fixed τ and pi and cs, check H1-list to find ct(0) = (c1, c2, cs) satisfying

(c′1, c
′
2) = Enccpa

pk j

(
0; H1(τ, ct(0), pi)

)
+ [Bits(c1)|c2] · rki→ j

and return ⊥ immediately if there is no such ct(0).
3. For fixed cs and given (c1, c2) above, check H-list to find σ satisfying

(c1, c2) = Enccpa
pki

(σ; H(σ, cs))

and if there is no such σ, return ⊥ immediately.
4. Having above σ, return SDG(σ)(cs).

We now consider following cases.

• Case 1: the decryption in Game1 returns m1 (, ⊥) while in Game2 returns m2 (, ⊥). Viewing steps 6
(Game1) and 4 (Game2), to prove m1 = m2, it suffices to show that σ is identical in the both games. Thus
we need Deccpa

sk j
(c′1, c

′
2) in Game1 is the same as Deccpa

ski
(c1, c2) in Game2, which holds true since in the

latter game

(c′1, c
′
2) =

Enccpa
pk j

(
0; H1(τ, (c1, c2, cs), pi)

)
+ [Bits(c1)|c2] · rki→ j

and

[Bits(c1)|c2] · rki→ j ·

[
sk j

Il×l

]
= smallnoise + c1ski + c2

so that Deccpa
sk j

(c′1, c
′
2) (in both Game1 and Game2) is the same as Deccpa

ski
(c1, c2) in Game2 as required.

• Case 2: the decryption in Game1 returns m (, ⊥) while in Game2 returns ⊥. We will show this case
happens with negligible probability. The former tells us that all integrity checks pass. The latter’s ⊥
occurs due to there is no τ or ct(0) or σ in G1 list, or H1-list, or H-list correspondingly. Therefore, in
Game1, following equations

(d1, d2) = Enccpa
pk j

(τ; G1(τ))

(c1, c2) = Enccpa
pki

(σ; H(σ, cs))

(c′1, c
′
2) = Enccpa

pk j

(
0; H1(τ, ct(0), pi)

)
+ [Bits(c1)|c2] · rki→ j

are met with negligible probability since the randomness values used in Enccpa
pk j

of the right side are
fresh. More precisely, this case happens with probability less than the probability of solving the LWE
problem.

• Case 3: the decryption in Game1 returns ⊥ while in Game2 returns m (, ⊥). The former means either

(d1, d2) , Enccpa
pk j

(τ; G1(τ))

or
(c′1, c

′
2) , Enccpa

pk j

(
0; H1(τ, ct(0), pi)

)
+ [Bits(c1)|c2] · rki→ j

and yet the latter ensures equality, yielding a contradiction. Thus this case cannot happen.
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Let us now look at the challenge ciphertext which hides a bit b

(c∗1, c
∗
2) = Enccpa

pki∗
(σ∗; h∗), c∗s = SEk∗(mb)

for random σ∗ ∈ {0, 1}l, and h∗ = H(σ∗, c∗s), k∗ = G(σ∗). Since H and G are random oracles, h∗ and k∗ are
random provided that σ∗ is not given out toA, which holds true since Enccpa

pki∗
is in CPA-secure PRE. (More

precisely, only onewayness is needed here.) By random k∗, c∗s = SE(mb) leaks no information on b due to
the security of the symmetric encryption scheme. We omit other details similar to the proof of Theorem 2
2.

Theorem 5 (Security of ReEnc’s ciphertexts). Ciphertexts directly outputted by algorithm ReEnc is CCA-
secure under the LWE assumption, if G,H,G1,H1 are random oracles. Specifically, for a poly-time adver-
saryA, there exists a poly-time distinguishersD,D′ such that

AdvReEnc,cca
A

(λ) ≤ (NQrkl + NQre + 1) · AdvLWE(n,α,q)
D

(λ)

+ (QDec + QDecR) · AdvLWE(n,α,q)
D′

(λ)

where Qrk and Qre are correspondingly the number of re-encryption key queries and re-encryption queries,
N is the number of honest entities, and l is the message length. QDec and QDecR are the number of decryption
queries to oracles using algorithms Dec and DecR correspondingly.

Proof. Simulation for re-encryption queries and re-encryption key queries is the same as in the the proof of
Theorem 2. Simulation for decryption oracles goes along the lines of the proof of Theorem 4. The challenge
ciphertext is Ci∗ = (c′1, c

′
2, d1, d2, cs) where, as in equation (6), (c′1, c

′
2) is computed using

Enccpa
pki∗

(
0; H1(τ∗, pkiA , pki∗ ,CTb, rkiA→i∗)

)︸                                                  ︷︷                                                  ︸
re−randomization part

+

[
Bits([CTb]1)

∣∣∣∣[CTb]2

]
· rkiA→i∗

and (d1, d2) = Enccpa
pki∗

(τ∗,G1(τ∗)) where τ∗ is randomly chosen by the challenger. Thus the bit b is hidden
thanks to the re-randomization part, which is indistinguishable from random under the LWE assumption.

Theorem 6 (Key privacy). The above PRE scheme is key-private in CCA setting under the LWE assump-
tion, if G,H,G1,H1 are random oracles. Specifically, for a poly-time adversary A, there exists a poly-time
distinguishersD,D′ such that

Advkp−cca
A

(λ) ≤ N(Qrkl + Qre) · AdvLWE(n,α,q)
D

(λ)

+ (QDec + QDecR) · AdvLWE(n,α,q)
D′

(λ)

where Qrk and Qre are correspondingly the number of re-encryption key queries and re-encryption queries,
N is the number of honest entities, and l is the message length. QDec and QDecR are the number of decryption
queries to oracles using algorithms Dec and DecR correspondingly.

Proof. Simulation for re-encryption queries and re-encryption key queries is the same as in the the proof of
Theorem 3, yielding the loss factor N(Qrkl + Qre) to LWE. Simulation for decryption oracles goes along the
lines of the proof of Theorem 4, making the loss factor (QDec + QDecR). The challenge re-encryption key is
changed to random matrices, as in Game j∗ of the proof of Theorem 3, and hence leaks no information on
the bit b under the LWE assumption.
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A A derived CCA-secure PKE scheme

Removing the re-encryption feature, the scheme in Section 4.2 is CCA-secure under the LWE assumption
as a public key encryption (PKE) scheme, whose description is as follows.

Parameters generation ParamsGencca
pke(λ): Choose positive integers q, n, l, and take matrix A ∈ Zn×n

q
randomly. Return pp = (q, n, l, A), which is the input to all algorithms below.

Key generation KeyGencca
pke(pp, λ): Fix deviation s ∈ R. Take Gaussian noise matrices R, S ∈ ψn×l

s . The
public key is pk = P for P = R − AS ∈ Zn×l

q , and the secret key is sk = S . Return (pk, sk).
Let (SE, SD) be a symmetric encryption scheme which is one-time secure, such as the one-time-pad.

Encryption Enccca
pke(m): symmetrically encrypt message m ∈ {0, 1}∗ by letting cs = SEG(σ)(m). Choose

random σ ∈ {0, 1}l. Let h = H(σ, cs).
Encrypt σ: use randomness h, take Gaussian noise vectors e1, e2 ∈ ψ1×n

s , and e3 ∈ ψ1×l
s , and return

ciphertext c = (c1, c2) = Enccpa
pk (σ; h), namely compute

c1 = e1A + e2 ∈ Z
1×n
q , c2 = e1P + e3 + σ ·

⌊q
2

⌋
∈ Z1×l

q .

Return ct = (c1, c2, cs).
Decryption Deccca

pke(sk, ct): To decrypt c = (c1, c2, cs) by secret key sk = S , execute following steps.
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1. (Reconstruction) Compute σ = c1S + c2 ∈ Z
l
q. Let σ = (σ1, . . . , σl). If σi ∈ [−bq

4c, b
q
4c) ⊂ Zq, let

σ′i = 0; otherwise σ′i = 1. Let σ′ = σ′1 · · ·σ
′
l and h′ = H(σ′, cs).

2. (Integrity check and output) Using σ′, h′, check

(c1, c2) = Enccpa
pk (σ′; h′),

namely compute (c′1, c
′
2) = Enccpa

pk (σ′; h′) and if (c′1, c
′
2) , (c1, c2), return ⊥; otherwise return

SDG(σ′)(cs) as the message.
The CCA security of the PKE scheme can be derived from [18, 19] and the CPA security of the base
scheme [24]. A direct proof is similar to the proof of Theorem 4.

24


