PROBABILITY THAT THE K-GCD OF PRODUCTS OF POSITIVE INTEGERS IS B-SMOOTH

JUNG HEE CHEON, DUHYEONG KIM

ABSTRACT. In 1849, Dirichlet [5] proved that the probability that two positive integers are relatively prime is $1/\zeta(2)$. Later, it was generalized into the case that positive integers has no nontrivial kth power common divisor. In this paper, we further generalize this result: the probability that the gcd of m products of n positive integers is B-smooth is $\prod_{p>B} \left[1 - \left\{1 - \left(1 - \frac{1}{p}\right)^n\right\}^m\right]$ for $m \ge 2$. We show that it is lower bounded by $\frac{1}{\zeta(s)}$ for some s > 1 if $B > n^{\frac{m}{m-1}}$, which completes the heuristic proof in the cryptanalysis of cryptographic multilinear maps by Cheon et al. [2]. We extend this result to the case of k-gcd: the probability is $\prod_{p>B} \left[1 - \left\{1 - \left(1 - \frac{1}{p}\right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}}\right)\right\}^m\right]$, where $_nH_i = \binom{n+i-1}{i}$.

1. INTRODUCTION

In 1849, Dirichlet [5] proved that the probability that two positive integers are relatively prime is $1/\zeta(2)$. To be precise,

$$\lim_{N \to \infty} \frac{\left|\left\{(x_1, x_2) \in \{1, 2, \dots, N\}^2 : \gcd(x_1, x_2) = 1\right\}\right|}{N^2} = \frac{1}{\zeta(2)}.$$

Lehmer [7] and more recently Nymann [10] extended this result that the probability that the r positive integers are relatively prime is $1/\zeta(r)$.

Meanwhile, in 1885, Gegenbauer [6] proved that the probability that a positive integer is not divisible by rth power for an integer $r \ge 2$ is $1/\zeta(r)$. In 1976, Benkoski [1] combined Gegenbauer and Lehmer's results and obtain that the probability that r positive integers are relatively k-prime is $1/\zeta(rk)$. For positive integers $x_1, ..., x_r$ and k, we denote by $\gcd_k(x_1, ..., x_r)$ or k-gcd of $x_1, ..., x_r$ the largest kth power that divides $x_1, ..., x_r$. If $\gcd_k(x_1, ..., x_r) = 1$, we call $x_1, ..., x_r$ are relatively k-prime.

Later, study on the probability of gcd was extended by changing domain from \mathbb{Z} to other Principal Ideal Domains. One extension is the result of Collins and Johnson [3] in 1989 that the probability that two Gaussian integers are relatively prime is $1/\zeta_{\mathbb{Q}(i)}(2)$. In 2004, Morrison and Dong [8] extended Benkoski's result to the ring $\mathbb{F}_q[x]$ for a finite field \mathbb{F}_q . More recently, in 2010, Sittinger [11] extended Benkoski's result to the algebraic integers over the algebraic number field K: the probability that k algebraic integers are relative r-prime is $1/\zeta_{O_K}(rk)$ while O_K is the ring of algebraic integers in K, and $\zeta_O(rk)$ denotes the Dedekind zeta function over O_K .

Key words and phrases. gcd of products of positive integers, B-smooth, k-gcd.

In this paper, we move our question to the probability that the gcd of products of positive integers is *B*-smooth. We investigate the probability that the gcd of *products* of positive integers is *B*-smooth. Given positive integers $m \ge 2$ and *n*, assume that r_{ij} 's are positive integers chosen randomly and independently in [1, N] for $1 \le i \le m$ and $1 \le j \le n$. Our theorem states that the probability that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is *B*-smooth converges to $\prod_{p>B} \left[1 - \left\{1 - \left(1 - \frac{1}{p}\right)^n\right\}^m\right]$ as $N \to \infty$. This is proved by using Lebesgue Dominated Convergence Theorem and the inclusion and exclusion principle.

We show that the value of $\prod_{p>B} \left[1 - \left\{1 - \left(1 - \frac{1}{p}\right)^n\right\}^m\right]$ is lower bounded by $\prod_{B for <math>\hat{n} = \max\{n, B\}$, $r = \lfloor n^{\frac{m}{m-1}} + 1 \rfloor$, $\hat{r} = \max\{\hat{n}, r\}$ and $s = m(1 - \log_{\hat{r}} n) > 1$. Note that the first product term is equal to 1 if $B = \hat{n}$, and the second product term is equal to 1 if $\hat{n} = \hat{r}$. Thus our theorem proves the heuristic argument in the lemma in [2, page 10] to tell that this probability is lower bounded by $1/\zeta(s)$ in case of B = 2n and $\frac{m}{\log_2 2n} > 1$. The lemma is used to guarantee the success probability of the cryptanalysis of cryptographic multilinear maps proposed by Coron et al. [4].

Finally, we extend the theorem to the case of k-gcd. When r_{ij} 's are chosen randomly and independently from $\{1, \dots, N\}$, we show that the probability that $gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is B-smooth converges to

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p}\right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}}\right) \right\}^m \right]$$

as $N \to \infty$, where ${}_{n}H_{i} = {\binom{n+i-1}{i}}$. This result is another generalized form of Benkoski's.

Notations. For an integer x, if x has no prime divisor larger than B, we say that x is B-smooth. For a finite set X, the number of elements of X is denoted by |X|. All of the error terms in this paper are only about the positive integer N, *i.e.* O is actually O_N . For positive integers $x_1, ..., x_r$, and k, we denote by $gcd_k(x_1, ..., x_r)$ or the k-gcd of $x_1, ..., x_r$ the largest kth power that divides $x_1, ..., x_r$. Note that the usual gcd is 1-gcd. From now on, alphabet p always denotes a prime number, and $\lfloor \rfloor$ is a disjoint union.

2. Probability that the GCD of products of positive integers is B-smooth

2.1. The gcd of products of positive integers. In this section, we fix the positive integers $m \ge 2$ and n. For a positive integer N, r_{ij} 's are integers uniformly and independently chosen in [1, N] for $1 \le i \le m$ and $1 \le j \le n$. The aim of this section is to compute the probability that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is *B*-smooth when $N \to \infty$. Denote by $p_1, p_2, p_3...$ the prime numbers larger than *B* in increasing order, and define $T(\ell, N)$ be the number of ordered pairs (r_{ij}) such that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is coprime to $p_1, ..., p_\ell$ for $1 \le r_{ij} \le N$. Note that $\lim_{\ell\to\infty} T(\ell, N)/N^{mn}$ is the probability that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is

B-smooth where r_{ij} are chosen randomly and independently in $\{1, 2, ..., N\}$. By following two steps, we obtain the value of $\lim_{N\to\infty} \lim_{\ell\to\infty} T(\ell, N)/N^{mn}$.

Theorem 2.1. Let $p_1, p_2, ...$ be the prime numbers larger than B in increasing order. Then,

(2.1)
$$\lim_{N \to \infty} \frac{T(\ell, N)}{N^{mn}} = \prod_{i=1}^{\ell} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p_i} \right)^n \right\}^m \right].$$

Proof. Let $X_{\ell} = \{p_1, p_2, ..., p_{\ell}\}$ and $1 \leq r_{ij} \leq N$ for a positive integer N. By the inclusion and exclusion principle,

$$\left| \left\{ (r_{ij}) : \gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj}) \text{ is coprime to } p_{1}, ..., p_{\ell} \right\} \\ = \sum_{P \subset X_{\ell}} (-1)^{|P|} \left| \left\{ (r_{ij}) : \prod_{p \in P} p \mid \gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj}) \right\} \right| \\ = \sum_{P \subset X_{\ell}} (-1)^{|P|} \left| \left\{ (r_{1j}) : \prod_{p \in P} p \mid \prod_{j=1}^{n} r_{1j} \right\} \right|^{m}.$$

where $\prod_{p \in P} p = 1$ for $P = \phi$. Applying the inclusion and exclusion principle again, we obtain

$$\left| \left\{ (r_{1j}) : \prod_{p \in P} p \mid \prod_{j=1}^{n} r_{1j} \right\} \right| = \sum_{Q \subset P} (-1)^{|Q|} \left| \left\{ (r_{1j}) : p \nmid \prod_{j=1}^{n} r_{1j}, \forall p \in Q \right\} \right|$$
$$= \sum_{Q \subset P} (-1)^{|Q|} \left(\sum_{R \subset Q} (-1)^{|R|} \left\lfloor \frac{N}{\prod_{p \in R} p} \right\rfloor \right)^{n}.$$

Consequently, we have

$$T(\ell, N) = \sum_{P \subset X_{\ell}} (-1)^{|P|} \left\{ \sum_{Q \subset P} (-1)^{|Q|} \left(\sum_{R \subset Q} (-1)^{|R|} \left\lfloor \frac{N}{\prod_{p \in R} p} \right\rfloor \right)^n \right\}^m$$

Finally, using $|N/\Pi| = n^{|P|} = 1/\Pi$, $n \in Q(1/N)$, we have

Finally, using $\lfloor N/\prod_{p\in R}p\rfloor/N = 1/\prod_{p\in R}p + O(1/N)$, we have

$$\frac{T(\ell, N)}{N^{mn}} = \sum_{P \subset X_{\ell}} (-1)^{|P|} \left\{ \sum_{Q \subset P} (-1)^{|Q|} \left(\sum_{R \subset Q} (-1)^{|R|} \frac{1}{\prod_{p \in R} p} \right)^n \right\}^m + O\left(\frac{1}{N}\right)$$
$$= \prod_{i=1}^{\ell} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p_i} \right)^n \right\}^m \right] + O\left(\frac{1}{N}\right),$$

which gives the theorem as $N \to \infty$.

Theorem 2.1 gives the probability that the gcd of products of positive integers is not divisible by the first ℓ primes greater than B. To obtain the probability that this gcd is B-smooth, we need to take $\ell \to \infty$ before taking $N \to \infty$ in Theorem 2.1. To swap the orders of limits, we use the Lebesgue Dominated Convergence Theorem for counting measure on set of natural numbers, which states:

Let $\{f_n : \mathbb{N} \to \mathbb{R}\}$ be a sequence of functions. Suppose that $\lim_{n\to\infty} f_n$ exists pointwisely and there exists a function $g: \mathbb{N} \to \mathbb{R}$ s.t $|f_n| \leq g$, and $\sum_{x=1}^{\infty} g(x) < \infty$. Then we have

$$\lim_{n \to \infty} \sum_{x=1}^{\infty} f_n(x) = \sum_{x=1}^{\infty} \lim_{n \to \infty} f_n(x).$$

Theorem 2.2. When r_{ij} 's are chosen randomly and independently from $\{1, 2, ..., N\}$, the probability that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is *B*-smooth converges to

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \right\}^m \right]$$

as $N \to \infty$.

Proof. Define $g_N(\ell) = (T(\ell-1, N) - T(\ell, N))/N^{mn}$ and $T(0, N) = N^{mn}$. Note that $g_N(\ell)$ is the probability that $gcd(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is coprime to $p_1, ..., p_{\ell-1}$ and divisible by p_ℓ for randomly and independently chosen r_{ij} 's from $\{1, ..., N\}$, and so is non-negative.

We claim that

(2.2)
$$\lim_{N \to \infty} \sum_{\ell=1}^{\infty} g_N(\ell) = \sum_{\ell=1}^{\infty} \lim_{N \to \infty} g_N(\ell).$$

Since $\sum_{1 \le s \le \ell} g_N(s) = 1 - T(\ell, N) / N^{mn}$, this claim gives the proof of the theorem. To prove the claim, we show that $g_N(\ell)$ is bounded by the function $g(\ell) = \frac{n^m}{p_\ell^m}$ and $\sum_{\ell=1}^{\infty} g(\ell) \le n^m \zeta(m) < \infty$. As the final step, we have

$$g_{N}(\ell) = \Pr\left[\gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj}) \text{ coprime to } p_{1}, ..., p_{\ell-1} \text{ and divisible by } p_{\ell}\right]$$

$$\leq \Pr\left[p_{\ell} \mid \gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})\right]$$

$$= \frac{\left|\left\{(r_{1j}) : p_{\ell} \mid \prod_{j=1}^{n} r_{1j}\right\}\right|^{m}}{N^{mn}} = \frac{\left(N^{n} - \left|\left\{(r_{1j}) : p_{\ell} \nmid \prod_{j=1}^{n} r_{1j}\right\}\right|\right)^{m}}{N^{mn}}$$

$$= \frac{\left(N^{n} - \left|\left\{r_{11} : p_{\ell} \nmid r_{11}\right\}\right|^{n}\right)^{m}}{N^{mn}} = \left\{1 - \left(1 - \frac{1}{N} \left\lfloor \frac{N}{p_{\ell}} \right\rfloor\right)^{n}\right\}^{m}$$

$$\leq \left\{1 - \left(1 - \frac{1}{p_{\ell}}\right)^{n}\right\}^{m} \leq \frac{n^{m}}{p_{\ell}^{m}},$$

where the last inequality is from Bernoulli's inequality.

Corollary 2.3. Let $\hat{n} = \max\{n, B\}$, $r = \lfloor n^{\frac{m}{m-1}} + 1 \rfloor$ and $\hat{r} = \max\{\hat{n}, r\}$. Then the probability that $gcd(\prod_{j=1}^{n} r_{1j}, ..., \prod_{j=1}^{n} r_{mj})$ is B-smooth is upper bounded by

$$\frac{1}{\zeta(m)} \cdot \prod_{p > B} \left(1 - \frac{1}{p^m} \right)^{-1},$$

and lower bounded by

$$\prod_{B$$

for $s = m(1 - \log_{\hat{r}} n) > 1$. The first product term is equal to 1 if $B = \hat{n}$, and the second product term is equal to 1 if $\hat{n} = \hat{r}$.

Proof. Since $\prod_{p>B} [1 - \{1 - (1 - 1/p)^n\}^m]$ decreases as n increases, we can obtain an inequality

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \right\}^m \right] \le \prod_{p>B} \left(1 - \frac{1}{p^m} \right) = \frac{1}{\zeta(m)} \prod_{p\le B} \left(1 - \frac{1}{p^m} \right)^{-1}.$$

Using Bernoulli's inequality, we can also obtain

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \right\}^m \right] \ge \prod_{B \hat{n}} \left\{ 1 - \left(\frac{n}{p} \right)^m \right\}$$

We can easily check that $n^m/p^m \leq 1/p^s$ for prime p larger than \hat{r} . Therefore, we obtain

$$\begin{split} &\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \right\}^m \right] \\ &\geq \prod_{B \hat{r}} \left(1 - \frac{1}{p^s} \right) \\ &\geq \prod_{B$$

Finally, $s = m(1 - \log_{\hat{r}} n) > 1$ since $\hat{r} \ge r > n^{\frac{m}{m-1}}$, and the proof is completed.

Remark 2.4. Suppose B = 2n, and $\frac{m}{\log_2 2n}$ is a positive integer larger than 1. Then we can check that $B > n^{\frac{m}{m-1}}$, so $\hat{r} = B \ge r \ge n$. Applying Corollary 2.3, we have

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \right\}^m \right] \ge \frac{1}{\zeta(s)},$$

for $s = m(1 - \log_{\hat{r}} n) = m(1 - \log_{2n} n) = \frac{m}{\log_2 2n}$. This is exactly same lower bound suggested in the lemma of [2, page 10].

2.2. Generalization to k-gcd. Now, we extend Theorem 2.1 and 2.2 to the case of k-gcd. For a positive integer N, r_{ij} 's are chosen randomly and independently in $\{1, 2, ..., N\}$. We compute the probability that $gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is B-smooth when $N \to \infty$. Define $T_k(\ell, N)$ be the number of ordered pairs (r_{ij}) such that $gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is coprime to $p_1, ..., p_\ell$ for $1 \le r_{ij} \le N$. Note that $\lim_{\ell \to \infty} T_k(\ell, N)/N^{mn}$ is the probability that $gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is B-smooth where r_{ij} 's are chosen randomly and independently in $\{1, 2, ..., N\}$. Similarly to Theorem 2.1 and 2.2, we obtain the value of $\lim_{N\to\infty} \lim_{\ell\to\infty} T_k(\ell, N)/N^{mn}$ by following two steps.

Theorem 2.5. Let $p_1, p_2, ...$ be the prime numbers larger than B in increasing order. Then,

$$\lim_{N \to \infty} \frac{T_k(\ell, N)}{N^{mn}} = \prod_{i=1}^{\ell} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p_i} \right)^n \left(1 + \frac{nH_1}{p_i} + \dots + \frac{nH_{k-1}}{p_i^{k-1}} \right) \right\}^m \right].$$

Proof. Similarly to Theorem 2.1, we apply the inclusion and exclusion principle. Note that $\prod_{p \in P} p \mid \gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ if and only if $\prod_{p \in P} p^k \mid \prod_j r_{ij}$ for any *i*. For $X_\ell = \{p_1, ..., p_\ell\}$ and $1 \leq r_{ij} \leq N$, we can get

$$\left| \left\{ (r_{ij}) : \gcd_k(\prod_{j=1}^n r_{1j}, \dots, \prod_{j=1}^n r_{mj}) \text{ is coprime to } p_1, \dots, p_\ell \right\} \right|$$
$$= \sum_{P \subset X_\ell} (-1)^{|P|} \left(\sum_{Q \subset P} (-1)^{|Q|} \left| \left\{ (r_{1j}) : p^k \nmid \prod_{j=1}^n r_{1j}, \forall p \in Q \right\} \right| \right)^m$$

Since the summation is finite, after dividing by N^{mn} and $N \to \infty$,

$$\lim_{N \to \infty} \frac{T_k(\ell, N)}{N^{mn}} = \sum_{P \subset X_\ell} (-1)^{|P|} \left(\sum_{Q \subset P} (-1)^{|Q|} \Pr\left[p^k \nmid \prod_{j=1}^n r_{1j}, \forall p \in Q \right] \right)^m.$$

Let $p^a \parallel x$ denotes that $p^a \mid x$ and $p^{a+1} \nmid x$, and $a_{p,j}$'s be the non-negative integers for $p \in Q$ and $1 \leq j \leq n$. Note that the number of *n*-tuples of non-negative integers $(a_{p,1}, ..., a_{p,n})$ satisfying $a_{p,1} + \cdots + a_{p,n} = i$ is ${}_{n}H_i = \binom{n+i-1}{i}$. Then we have

$$\begin{aligned} \Pr\left[p^{k} \nmid \prod_{j=1}^{n} r_{1j} \text{ for all } p \in Q\right] &= \sum_{a_{p,1}+\dots+a_{p,n} < k} \Pr\left[p^{a_{p,j}} \parallel r_{1j} \text{ for all } p, j\right] \\ &= \sum_{a_{p,1}+\dots+a_{p,n} < k} \prod_{p \in Q_{j}} \Pr\left[p^{a_{p,j}} \parallel r_{1j}\right] \\ &= \prod_{p \in Q} \left(\sum_{a_{p,1}+\dots+a_{p,n} < k} \prod_{j=1}^{n} \Pr\left[p^{a_{p,j}} \parallel r_{1j}\right]\right) \\ &= \prod_{p \in Q} \left(\sum_{a_{p,1}+\dots+a_{p,n} < k} \prod_{j=1}^{n} \frac{p-1}{p^{a_{p,j}+1}}\right) \\ &= \prod_{p \in Q} \left\{ \left(1 - \frac{1}{p}\right)^{n} \sum_{a_{p,1}+\dots+a_{p,n} < k} \frac{1}{p^{a_{p,1}+\dots+a_{p,n}}} \right\} \\ &= \prod_{p \in Q} \left(1 - \frac{1}{p}\right)^{n} \left(1 + \frac{nH_{1}}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}}\right), \end{aligned}$$

which gives the theorem when substituting in above equation.

Theorem 2.6. When r_{ij} 's are chosen randomly and independently from $\{1, 2, ..., N\}$, the probability that $gcd_k(\prod_{j=1}^n r_{1j}, ..., \prod_{j=1}^n r_{mj})$ is B-smooth converges to

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}} \right) \right\}^m \right]$$

as $N \to \infty$.

Proof. The statement is proved by exactly the same way with Theorem 2.2. Since

$$\frac{T_k(\ell-1,N) - T_k(\ell,N)}{N^{mn}} \leq \Pr\left[p_\ell \mid \gcd_k(\prod_{j=1}^n r_{1j},...,\prod_{j=1}^n r_{mj})\right] \\
= \Pr\left[p_\ell^k \mid \gcd(\prod_{j=1}^n r_{1j},...,\prod_{j=1}^n r_{mj})\right] \\
\leq \Pr\left[p_\ell \mid \gcd(\prod_{j=1}^n r_{1j},...,\prod_{j=1}^n r_{mj})\right] \\
\leq \frac{n^m}{p_\ell^m},$$

we can apply Lebesgue Dominated Convergence Theorem in the same way to Theorem 2.2 to obtain the theorem. $\hfill\square$

Theorem 2.6 is a generalized form of Benkoski's theorem [1] and Theorem 2.2. As we mentioned in Introduction, Benkoski's theorem is that the probability that r positive integers are relatively k-prime is $1/\zeta(rk)$. When k = 1, $1 + \frac{nH_1}{p} + \cdots + \frac{nH_{k-1}}{p^{k-1}} = 1$, so the result is same with Theorem 2.2. Also when B = n = 1, the same condition with Benkoski's theorem, $\left(1 - \frac{1}{p}\right)^n \left(1 + \frac{nH_1}{p} + \cdots + \frac{nH_{k-1}}{p^{k-1}}\right) = 1 - \frac{1}{p^k}$. Therefore,

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}} \right) \right\}^m \right] = \prod_p \left(1 - \frac{1}{p^{mk}} \right) = \frac{1}{\zeta(mk)}.$$

This is exactly the same result of Benkoski.

The value of $\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}} \right) \right\}^m \right]$ can be lower bounded by the case of k = 1. Therefore, we can conclude

$$\prod_{p>B} \left[1 - \left\{ 1 - \left(1 - \frac{1}{p} \right)^n \left(1 + \frac{nH_1}{p} + \dots + \frac{nH_{k-1}}{p^{k-1}} \right) \right\}^m \right]$$

$$\geq \prod_{B$$

for $\hat{n} = \max\{n, B\}$, $r = \lfloor n^{\frac{m}{m-1}} + 1 \rfloor$, $\hat{r} = \max\{\hat{n}, r\}$, and $s = m(1 - \log_{\hat{r}} n)$.

References

1. S.J. Benkoski, The probability that k integers are relatively r-prime, Journal of Number Theory. vol. 8, 218-223, 1973.

- J. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle, Cryptanalysis of the multilinear map over the integers, Available at https://eprint.iacr.org/2014/906.pdf, 2014.
- 3. G. E. Collins and J. R. Johnson, The probability of relative primality of Gaussian integers, International Symposium Symbolic and Algebraic Computation, Springer-Vrlag, 252-258, 1989.
- J. Coron, T. Lepoint, and M. Tibouchi, Practical Multilinear Maps over the Integers. CRYPTO (1) 2013: 476-493
- G. Dirichlet, Über die Bestimmung der mittleren Werte in der Zahlentheorie, Abhandlungen Koniglich Preuss, Akad. Wiss., 1849.
- L. Gegenbauer, Asymptotische Gesetze der Zahlentheorie, Denkshcriften Akad. Wien 49, 37-80, 1885.
- 7. D. N. Lehmer, Asymptotic evaluation of certain totient sums, Amer. J. Math. vol. 22, 293-355, 1900.
- 8. K. Morrison and Z. Dong, The probability that random polynomials are relatively *r*-prime, 2004. Available at http://www.calpoly.edu/~kmorriso/Research/RPFF04-2.pdf.
- 9. I. Niven, H. Zuckerman and H. Montgomery, Introduction to the theory of numbers, the fifth edition, John Wiley and Sons, 1991.
- J. E. Nymann, On the probability that k positive integers are relatively prime, Journal of Number Theory. vol. 4, 469-473, 1970.
- 11. Brain D. Sittinger, The probability that random algebraic integers are relatively *r*-prime, Journal of Number Theory. vol. 130, 164-171, 2009.

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea

E-mail address: jhcheon@snu.ac.kr, doodoo1204@snu.ac.kr