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Abstract

We present a multi-key fully homomorphic encryption scheme that supports an unbounded
number of homomorphic operations for an unbounded number of parties. Namely, it allows to
perform arbitrarily many computational steps on inputs encrypted by an a-priori unbounded
(polynomial) number of parties. Inputs from new parties can be introduced into the computation
dynamically, so the final set of parties needs not be known ahead of time. Furthermore, the
length of the ciphertexts, as well as the space complexity of an atomic homomorphic operation,
grow only linearly with the current number of parties.

Prior works either supported only an a-priori bounded number of parties (López-Alt, Tromer
and Vaikuntanthan, STOC ’12), or only supported single-hop evaluation where all inputs need
to be known before the computation starts (Clear and McGoldrick, Crypto ’15, Mukherjee
and Wichs, Eurocrypt ’16). In all aforementioned works, the ciphertext length grew at least
quadratically with the number of parties.

Technically, our starting point is the LWE-based approach of previous works. Our result is
achieved via a careful use of Gentry’s bootstrapping technique, tailored to the specific scheme.
Our hardness assumption is that the scheme of Mukherjee and Wichs is circular secure (and
thus bootstrappable). A leveled scheme can be achieved under standard LWE.

1 Introduction

In 1978, Rivest, Adleman and Dertouzos [RAD78] envisioned an encryption scheme where it is
possible to publicly convert an encryption of a message x into an encryption of f(x) for any f ,
thus enabling private outsourcing of computation. It took over 30 years for the first realization
of this so called fully homomoprhic encryption (FHE) to materialize in Gentry’s breakthrough
work [Gen09b,Gen09a], but since then progress has been consistent and rapid. López-Alt, Tromer
and Vaikuntanthan [LTV12] considered an extension of this vision into the multi-key setting, where
it is possible to compute on encrypted messages even if they were not encrypted using the same
key. In multi-key FHE, a public evaluator takes ciphertexts encrypted under different keys, and
evaluates arbitrary functions on them. The resulting ciphertext can then be decrypted using the
collection of keys of all parties involved in the computation. Note that the security of the encryption
scheme compels that all keys need to be used for decryption.
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In the dream version of multi-key FHE, each user generates keys for itself and encrypts messages
at will. Any third party can then perform an arbitrary computation on any set of encryptions by
any set of users. The resulting ciphertext is attributed to the set of users whose ciphertexts were
used to create it, and the collection of all of their secret keys is required in order to decrypt it.
Most desirable is a fully dynamic setting where nothing at all about the parties needs to be known
ahead of time: not their identities, not their number and not the order in which they will join
the computation. In particular, outputs of previous evaluations can be used as inputs to new
evaluations regardless of whether they correspond to the same set of users, intersecting sets or
disjoint sets. In short, any operation can be performed on any ciphertext at any point in time,
and of course while maintaining ciphertext compactness. However, as we explain below, existing
solutions fall short of achieving this functionality.

Multi-key FHE can be useful in various situations involving multiple parties that do not co-
ordinate ahead of time, but only after the fact. In [LTV12], the main motivation is performing
on-the-fly multiparty computation (MPC) where various parties wish to use a cloud server (or some
other untrusted third party) to perform some computation without revealing their private inputs
and while having minimal interaction with the server. In this setting, the parties first send their
encrypted input to the cloud, which performs the homomorphic operation and sends the output to
the parties. The parties then execute a multiparty computation protocol for joint decryption. A
similar approach was used by Mukherjee and Wichs [MW15] to construct a 2-round MPC protocol
in the common random string setting. We note that one could also consider using this primitive in
simpler situations, such as ones where the respective secret keys are being sold after the fact, and
the owner of subset of keys can decrypt the output of the respective computation by himself.

As we mentioned, multi-key FHE was introduced by [LTV12] who also introduced the first
candidate scheme, building upon the NTRU encryption scheme. Their candidate was almost fully
dynamic, except an upper bound on the maximal number of participants in a computation had to
be known at the time a key is generated. In particular, to support computation amongst N parties,
the bit-length of a ciphertext in their scheme grew with N1+1/ε, where ε < 1 is a parameter related
to the security of the scheme. They were able to support arbitrarily complex computation through
use of bootstrapping, but this required a circular security assumption.

The next step forward was by Clear and McGoldrick [CM15] who were motivated by the question
of constructing identity based FHE. As a stepping stone, they were able to construct a multi-key
FHE scheme based on the hardness of the learning with errors (LWE) problem, which is related
to the hardness of certain short vector problems (such as GapSVP, SIVP) in worst case lattices.
Their scheme was simplified by Mukherjee and Wichs [MW15] who used it to introduce low-round
MPC protocols. In their schemes, they focused on the single-hop setting, where the collection of
input ciphertexts and the function to be computed are known ahead of time. The dynamic setting
where users can join the computation and the function is determined on the fly was not considered.
Furthermore, their solution produced ciphertexts whose bit-length grew with N2, where N is the
number of users in the computation. Lastly, their construction requires that all users share common
public parameters (a common random string).

1.1 Our Results

As described above, great progress had been made in the study of multi-key FHE, but still much
was left to be desired. In particular, coping with the fully dynamic setting where no information
about the participating parties needs to be known at key generation. This will allow maximum
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versatility in use of the scheme. The second issue is the ciphertext length and more broadly the space
complexity of homomorphic evaluation. Previous works all hit the same barrier of N2 growth in the
ciphertext. Implementations of (single key) FHE already mention the space complexity as a major
bottleneck in the usability of the scheme [HS14,HS15], and therefore reducing the overhead in this
context is important for making multi-key FHE applicable in the future. Another interesting open
problem is removing the requirement for common parameters from the [CM15,MW15] solution.

We address two of the three aforementioned problems by presenting a fully dynamic multi-
key FHE scheme, with O(N) ciphertext expansion, and O(N) space complexity for an atomic
homomorphic operation (e.g. evaluating a single gate), where N is the number of parties whose
ciphertexts have been introduced into the computation so far (since we are fully dynamic, we allow
inputs from more parties to join later). This, in turn, can be used to improve the space complexity
of the parties in the MPC protocols of [LTV12, MW15]. Our construction still requires common
public parameters as in [CM15,MW15].

In terms of hardness assumption, we are comparable with previous works. We can rely on
the hardness of the learning with errors (LWE) problem with a slightly super-polynomial modulus
to achieve a leveled solution, where only a-priori depth bounded circuits can be evaluated. This
restriction can be lifted towards achieving a fully dynamic scheme by making an additional circular
security assumption.

We stress that our scheme is not by itself practical. We use the bootstrapping machinery in a
way that introduces fair amounts of overhead into the evaluation process. The goal of this work,
rather, is to indicate that the theoretical boundaries of multi-key FHE, and open the door for
further optimizations bringing solutions closer to the implementable world.

1.2 Our Techniques

Gentry, Sahai and Waters [GSW13] proposed an FHE scheme (“the GSW scheme”) with the
following properties (we use notation due to Alperin-Sheriff and Peikert [AP14]). A ciphertext is
represented as a matrix C over Zq, and the secret key is a (row) vector t such that tC = e + µtG,
where µ ∈ {0, 1} is the encrypted message, e is a low-norm noise vector and G is a special gadget
matrix. So long as the norm of e is small enough, µ can be retrieved from the ciphertext matrix
using the secret key t. In order to homomorphically multiply two ciphertexts C1,C2, compute
C1 ·G−1(C2), where G−1(·) is an efficiently computable function that operates column-by-column,
and whose output is always low-norm. It had been shown by [CM15, MW15] that GSW can be
augmented with multi-key features if all parties use common public parameters (which are just
a random string) and if the encryption procedure changes as follows. In [CM15, MW15], after
encrypting the message with GSW, the randomness that had been used for the encryption is itself
encrypted using fresh randomness. The new ciphertext thus contains the matrix C along with its

encrypted randomness
−→
R. They show that given a set of N public keys, and a ciphertext of this

form under one of these keys, it is possible to obtain a new ciphertext Ĉ, which is essentially an
N×N block matrix, with each block having the size of a single-key ciphertext. This new Ĉ encrypts
the same message µ as the original C, but under the secret key t̂ which is the concatenation of all
N secret keys. In other words, t̂Ĉ = ê + µt̂Ĝ, where Ĝ is an expanded gadget matrix (a block
matrix with the old G on its diagonal). This means that given a collection of N ciphertexts, one
can expand all of them to correspond to the same t̂ and perform homomorphic operations.

It is clear from the above description that there is an inherent obstacle in adapting this approach
to the fully dynamic setting. Indeed, when the expand operation creates the new Ĉ, it does not
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create the respective encrypted randomness
−→
R, and therefore one cannot continue to perform

homomorphic operations with newly introduced parties. Our first contribution is noticing that
this can be resolved by using Gentry’s bootstrapping technique [Gen09b]. Indeed, previous works
[LTV12, MW15] used bootstrapping in order to go from limited amount of homomorphism to full
homomorphism. The bootstrapping principle is that so long as a scheme can homomorphically
evaluate (a little more than) its own decryption circuit, it can be made to evaluate any circuit. To
get the strongest version of the theorem, one needs to further assume that the scheme is circular
secure (can securely encrypt its own secret key). The idea is to use the encrypted secret key as an
input to the function that decrypts a ciphertext and performs an atomic operation on it. Let c1, c2

be some ciphertexts and consider the function hc1,c2(x) = (Decx(c1) NAND Decx(c1)). This function
takes an input, interprets this input as a secret key, uses it to decrypt c1, c2 and performs the NAND
operation on the messages. Computing this function on a non-encrypted secret key would output
h(sk) = (µ1 NAND µ2). Therefore, performing it homomorphically on the encrypted secret key
will result in an encryption of (µ1 NAND µ2). This allows to continue to evaluate the circuit gate
by gate. In the context of multi-key FHE, each party only needs to encrypt its own secret key.
Then, the multi-key functionality will allow to compute the joint key out of the individual keys and
proceed as above.

We therefore consider a new scheme by modifying the MW scheme [MW15] as follows. We
append to the public key an encryption of the secret key (using MW encryption which consists
of a GSW encryption of the secret key, and an encryption of the respective randomness). Our
encryption algorithm is plain GSW encryption - no need to encrypt the randomness. We show that
ciphertext expansion can still be achieved here. This is because in bootstrapping, the ciphertexts
storing the messages are not the ones upon which homomorphic evaluation is performed. Rather,
the input to the homomorphic evaluation is always the encryption of the secret key. We take this
approach another step forward and consider ciphertexts c1, c2 s.t. c1 is encrypted under some set
of public keys T1 corresponding to concatenated secret key t̂1, and c2 is encrypted under a set
T2 corresponding to t̂2. The public keys in T1, T2 contain an encryption of the individual secret
keys, which in turn can be expanded to an encryption of t̂1, t̂2 under a key t̂ which corresponds
to the union of the sets T1 ∪ T2. This will allow us to perform homomorphic evaluation of the
bootstrapping function h(x1, x2) = (Decx1(c1) NAND Decx2(c1)) and obtain an encrypted output
respective to T1∪T2. This process can be repeated as many times as we want (we make sure that we
have sufficient homomorphic capacity to evaluate the function h(·) for any polynomial number of
parties N). We note that in order for this solution to be secure, encrypting the secret key under the
public key in MW needs to be secure (which translates to a circular security assumption on MW).
We need to make this hardness assumption explicitly, in addition to the hardness of LWE. However,
as in the single-key setting, one can generate a chain of secret keys encrypting one another and
obtain a leveled scheme that only supports evaluation of circuits up to a predefined depth bound.
This can be done while relying on the hardness of LWE alone, which translates to the hardness of
approximation of GapSVP,SIVP in worst-case lattices.

We thus explained how to achieve a fully dynamic multi-key FHE scheme, but so far the length
of the ciphertexts was inherited from the MW scheme, and grew quadratically with N . Examining
the bootstrapping solution carefully, it seems that the ciphertext length problem might have a
simple solution. We notice that the decryption procedure of the GSW scheme (and thus also of the
MW scheme), only computes the inner product of the secret key with a single column derived from
the ciphertext matrix. In fact, the rightmost column of the ciphertext matrix will do. In a way, the
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rest of the ciphertext matrix is only there to allow for the homomorphic evaluation. Therefore, we
can amend the previous approach, and after performing each atomic operation, we can just toss out
the resulting matrix, except the last column. The length of this last column only grows with N and
not N2, and it is sufficient for the subsequent bootstrapping steps. However, we view this as a very
minor victory, since in order to perform homomorphic operations via bootstrapping, we will actually
need to expand the encryptions of the secret key to size N × N and evaluate the bootstrapping
procedure with these mammoth matrices. Our goal is to save not only on the communication
complexity but also on the memory requirement of the homomorphic evaluation process. As we
mentioned above, memory requirement is the main bottleneck in current implementations of FHE.

To reduce the space complexity, we first observe that in some cases, the N ×N block matrices
are actually quite sparse. In fact, the expand operation from [CM15,MW15] generates very sparse
matrices, where only (2N − 1) of the N2 blocks are non-zero. Thus the output of expand can
be represented using only O(N) space. However, this neat property disappears very quickly as
homomorphic operations are performed and ciphertexts are multiplied by one another. It seems
hard to shrink a matrix in mid-computation back into O(N) size. The next idea is to incorporate
into the scheme the sequentialization method of Brakerski and Vaikuntanathan [BV14]. Their
motivation was to reduce the noise accumulation in the (single-key) bootstrapping procedure, and
they did this by converting the decryption circuit into a branching program. A branching program
contains a sequence of steps (polynomially many, in our case), where in each step a local state is
being updated through interaction with one of the input bits. We recall that in our case, the input
bits are the (expanded) encryptions of the bits of the secret keys. The newly expanded ciphertexts
have length O(N), so we only need to worry about the encryption of the running state. However,
since homomorphic evaluation is of the form C1 ·G−1(C2), it is sufficient to hold the last column
of C2 (and thus of G−1(C2)) in order to obtain the last column of the product. Therefore, so long
as we make sure that the encrypted state of the computation is always the right-hand operand in
the multiplication (which can be done in branching program evaluation), we can perform the entire
computation with O(N) space in total. A subtle point in this use of branching programs is that
the representation of the program itself could have size poly(N), so just writing it would require
more space than we could save anyway. To address this issue, we notice that the construction of
the branching program in Barrington’s theorem can be performed “on the fly”. We can hold a
state of size proportional to the depth of the circuit we wish to evaluate and produce the layers of
the branching program one by one. Thus we can produce a layer, evaluate it, proceed to the next
one etc., all without exceeding our space limit.

2 Preliminaries

Matrices are denoted by bold-face capital letters, and vectors are denoted by bold-face small letters.
For vectors v = (vi)i∈[n], we let v[i] be the i’th element of the vector, for every i ∈ [n]. Similarly,
for a matrix M = (mi,j)i∈[n],j∈[m], we let M[i, j] be the i’th element of the j’th column, for every

i ∈ [n] and j ∈ [m]. Sequences of matrices M1, . . . ,M` are denoted by
−→
M. We let

−→
M[k] be the k’th

matrix, for every k ∈ [`]. To avoid cluttering of notation, we regard to vectors in the same way as
we do to matrices and do not denote row vectors with the transposed symbol. The standard rules
of matrix arithmetics should be applied to vectors the same as they do for matrices. The vectors
of the standard basis are denoted by {ui}i, the dimension will be clear from the context.

All logarithms are taken to base 2, unless otherwise specified. We let Zq be the ring of integers
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modulo q. Normally we associate x ∈ Zq with the value y ∈ (−q/2, q/2] ∩ Z s.t. y = x (mod q).
We denote `q = dlog qe and recall that an element in Zq can be represented by a string in {0, 1}`q ,
by default x will be represented using two’s complement representation of the aforementioned
representative y. For a distribution ensemble χ = χ(λ) over Z, and integer bounds Bχ = Bχ(λ) we
say that χ is B-bounded if Prx←χ [|x| > B] = 0.

For x ∈ Zq we define |x| = arg miny=x (mod q) |y| (this function does not have all properties of
standard absolute value, but the triangle inequality still holds). Further, we will denote ‖v‖∞ =
maxi |v[i]|.

We let λ denote a security parameter. When we speak of a negligible function negl(λ), we mean
a function that decays faster than 1/λc for any constant c > 0 and sufficiently large values of λ.
When we say that an event happens with overwhelming probability, we mean that it happens with
probability at least 1− negl(λ) for some negligible function negl(λ).

2.1 Homomorphic Encryption and Bootstrapping

We now define fully homomorphic encryption and introduce Gentry’s bootstrapping theorem. Our
definitions are mostly taken from [BV11,BGV12], and adapted to the setting where multiple users
can share the same public parameters.

A homomorphic (public-key) encryption scheme HE = (HE.Setup,HE.Keygen,HE.Enc,HE.Dec,
HE.Eval) is a 5-tuple of ppt algorithms as follows (λ is the security parameter):

• Setup params←HE.Setup(1λ): Outputs the public parametrization params of the system.

• Key generation (pk, sk)←HE.Keygen(params): Outputs a public encryption key pk and a
secret decryption key sk.

• Encryption c←HE.Enc(pk, µ): Using the public key pk, encrypts a single bit message µ ∈
{0, 1} into a ciphertext c.

• Decryption µ←HE.Dec(sk, c): Using the secret key sk, decrypts a ciphertext c to recover
the message µ ∈ {0, 1}.

• Homomorphic evaluation ĉ←HE.Eval(C, (c1, . . . , c`), pk): Using the public key pk, applies
a circuit C : {0, 1}` → {0, 1} to c1, . . . , c`, and outputs a ciphertext ĉ.

A homomorphic encryption scheme is said to be secure if it is semantically secure.
Full homomorphism is defined next. We distinguish between single-hop and multi-hop homo-

morphism as per [GHV10].

Definition 2.1 (compactness and full homomorphism). A scheme HE is single-hop fully ho-
momorphic, if for any efficiently computable circuit C and any set of inputs µ1, . . . , µ`, letting
params←HE.Setup(1λ), (pk, sk)←HE.Keygen(params) and ci←HE.Enc(pk, µi), it holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c`), pk)) 6= C(µ1, . . . , µ`)] = negl(λ) ,

The scheme is multi-hop fully homomorphic if for any circuit C and any set of ciphertexts
c1, . . . , c`, letting params←HE.Setup(1λ), (pk, sk)←HE.Keygen(params) and µi←HE.Dec(sk, ci), it
holds that

Pr [HE.Dec(sk,HE.Eval(C, (c1, . . . , c`), pk)) 6= C(µ1, . . . , µ`)] = negl(λ) .

6



A fully homomorphic encryption scheme is compact if its decryption circuit is independent of the
evaluated function. The scheme is leveled fully homomorphic if it takes 1L as additional input in
key generation, and can only evaluate depth L Boolean circuits (this notion usually only refers to
single-hop schemes).

Gentry’s bootstrapping theorem shows how to go from limited amount of homomorphism to
full homomorphism. This method has to do with the augmented decryption circuit.

Definition 2.2. Consider a homomorphic encryption scheme HE. Let (sk, pk) be properly generated
keys and let C be the set of properly decryptable ciphertexts. Then the set of augmented decryption
functions, {fc1,c2}c1,c2∈C is defined by fc1,c2(x) = HE.Decx(c1) ∧ HE.Decx(c2). Namely, the function
that uses its input as secret key, decrypts c1, c2 and returns the NAND of the results.

The bootstrapping theorem is thus as follows.

Theorem 2.1 (bootstrapping [Gen09b, Gen09a]). A scheme that can homomorphically evaluate
its family of augmented decryption circuits can be transformed into a leveled fully homomorphic
encryption scheme with the same decryption circuit, ciphertext space and public key.

Furthermore, if the aforementioned scheme is also weak circular secure (remains secure even
against an adversary who gets encryptions of the bits of the secret key), then it can be made into a
pure fully homomorphic encryption scheme.

2.2 Multi-Key Homomorphic Encryption

A homomorphic encryption scheme is multi-key if it can evaluate circuits on ciphertexts encrypted
under different public keys. To decrypt an evaluated ciphertext, the algorithm uses the secret keys
of all parties whose ciphertexts took part in the computation.

A multi-key homomorphic encryption scheme MKHE = (MKHE.Setup,MKHE.Keygen,MKHE.Enc,
MKHE.Dec,MKHE.Eval) is a 5-tuple of ppt algorithms as follows:

• Setup params←MKHE.Setup(1λ): Outputs the public parametrization params of the system.

• Key generation (pk, sk)←MKHE.Keygen(params): Outputs a public encryption key pk and
a secret decryption key sk.

• Encryption c←MKHE.Enc(pk, µ): Using the public key pk, encrypts a single bit message
µ ∈ {0, 1} into a ciphertext c.

• Decryption µ←MKHE.Dec((sk1, . . . , skN ), c): Using the sequence of secret keys (sk1, . . . , skN ),
decrypts a ciphertext c to recover the message µ ∈ {0, 1}.

• Homomorphic evaluation ĉ←MKHE.Eval(C, (c1, . . . , c`), (pk1, . . . , pkN )): Using the sequence
of public keys (pk1, . . . , pkN ), applies a circuit
C : {0, 1}` → {0, 1} to c1, . . . , c`, where each ciphertext cj is evaluated under a sequence of
public keys Tj ⊂ {pk1, . . . , pkN} (we assume that Tj is implicit in ci). Upon termination,
outputs a ciphertext ĉ.

In the multi-key setting we define the notion of fully dynamic scheme as a generalization of
multi-hop homomorphism in the single-key setting. A formal definition follows.
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Definition 2.3 (fully dynamic multi-key FHE). A scheme MKHE is fully dynamic multi-key FHE,
if the following holds. Let N = Nλ be any polynomial in the security parameter, let C = Cλ
be a sequence of circuits, set params←MKHE.Setup(1λ) and (pki, ski)←MKHE.Keygen(params) for
every i ∈ [N ], and let ĉj be such that MKHE.Dec((skj,1, . . . , skj,s), ĉj) = µj, where {skj,i}j,i ⊆
{sk1, . . . , skN}. Then

Pr [HE.Dec(sk1, . . . , skN ,HE.Eval(C, (ĉ1, . . . , ĉ`), pk)) 6= C(µ1, . . . , µ`)] = negl(λ)

The scheme is compact if its decryption circuit is independent of the evaluated function and its size
is poly(λ,N) for some fixed polynomial.

2.3 Barrington’s Theorem and An On-The-Fly Variant

We define the computational model of permutation branching programs, and cite the fundamental
theorem of Barrington connecting them to depth bounded computation. Finally, we note a corollary
from Barrington’s construction, which allows to compute the branching program “on-the-fly”, layer
by layer, keeping only small state.

Definition 2.4. A permutation branching program Π with ` variables, width k and length L is a
collection of L tuples (p0,t, p1,t)t∈[L] called the instructions and a function var : [L] → [`]. Each
tuple is composed of a pair of permutations p0,t, p1,t : [k]→ [k]. The program takes as input a binary
vector x = (x1, . . . , x`) ∈ {0, 1}`, and outputs a bit b ∈ {0, 1}. The execution of the Π is as follows:
the program keeps a state integer s ∈ {1, . . . , k}, initially s0 = 1. On every step t = 1, . . . , L, the
next state is determent recursively using the t’th instruction:

st := pxvar(t),t(st−1)

In other words, st := p0,t(st−1) if xvar(t) = 0, and otherwise st := p1,t(st−1). Finally, after the L’th
iteration, the branching programs outputs 1 if and only if sL = 1.

Theorem 2.2 (Barrington’s Theorem [Bar89]). Every Boolean NAND circuit Ψ that acts on `
inputs and has depth d can be computed by a width-5 permutation branching program Π of length
4d. Given the description of the circuit Ψ, the description of the branching program Π can be
computed in poly(`, 4d) time.

In order to state our corollary for on-the-fly branching programs, we will require the following
definition.

Definition 2.5 (Predecessor Function for Circuit). Let Ψ be a circuit as in Theorem 2.2. The
predecessor function of Ψ, denoted PredΨ(i), is defined with respect to some arbitrary labeling of
the gates of Ψ, where the label of the output gate is always 0, and input gates are labeled by the
index of the variable. Given a label i for a gate, PredΨ(i) returns (j1, j2) which are the labels of the
wires feeding this gate.

We can now define the on-the-fly variant of Barrington’s Theorem.

Corollary 2.3 (Barrington On-The-Fly). There exists a uniform machine BPOTF that, given
access to a predecessor function PredΨ of a depth d circuit, outputs the layers (p0,t, p1,t) of the
branching program from Theorem 2.2 in order for t = 1, . . . , L. Each layer takes time O(d) to
produce, and the total space used by BPOTF is O(d).
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Proof. This corollary is implicit in the proof of Barrington’s Theorem. It will be convenient to refer
to the proof as it appears in [Vio09]. Essentially, the branching program in Barrington’s theorem
is produced recursively, where every node in the circuit, starting with the output gate, applies the
branching program generation procedure recursively on its left hand predecessor, right hand, left
hand again, right hand again. Each recursive call is parameterized by an element in the group S5

which is passed on as a recursive parameter. Once an input node is reached, the respective layer in
the branching program can be produced based on the S5 element and the identity of the variable.

We conclude that the computation of the branching program is a traversal of the DAG repre-
senting the circuit, and at each point in time there is one path in the graph that is active, and each
nodes on that path need to maintain a state of size O(1). Thus the total space required is O(d)
and the time to produce the next layer is at most O(d).

2.4 Learning With Errors and the Gadget Matrix

The Learning with Errors (LWE) problem was introduced by Regev [Reg05] as a generalization of
“learning parity with noise” [BFKL93,Ale03]. We now define the decisional version of LWE.

Definition 2.6 (Decisional LWE (DLWE) [Reg05]). Let λ be the security parameter, n = n(λ),
m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability distribution over Z bounded by
Bχ = Bχ(λ). The DLWEn,q,χ problem states that for all m = poly(n), letting A← Zn×mq , s← Znq ,
e← χm, and u← Zmq , the following distributions are computationally indistinguishable:(

A, sA + e
) c
≈
(
A,u

)
There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between

DLWEn,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We write DLWEn,q,α to indicate
this instantiation. We now state a corollary of the results of [Reg05, Pei09, MM11, MP12]. These
results also extend to additional forms of q (see [MM11,MP12]).

Corollary 2.4 ( [Reg05, Pei09, MM11, MP12]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any
n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. The best known algorithms for GapSVPγ ( [Sch87]) require at least 2Ω̃(n/ log γ)

time. We refer the reader to [Reg05,Pei09] for more information.
Lastly, we derive the following corollary which will allow us to choose the LWE parameters

for our scheme. It follows immediately by taking χ to be a discrete Gaussian with parameter
B/ω(

√
log n) with rejection sampling rejecting all samples bigger than B (which only happens with

negligible probability).
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Corollary 2.5. For any function B = B(n) there exists a B-bounded distribution χ = χ(n) such
that for all q it holds that DLWEn,q,χ is at least as hard as the quantum hardness of GapSVPγ,

SIVPγ for γ = Õ(nq/B), and also the classical hardness of GapSVPγ if q ≥ Õ(2n/2).

We now define the gadget matrix [MP12,AP14] that plays an important role in our construction.
Our definition is a slight variant on definitions from previous works.

Definition 2.7. Let m = n · (`q + c) for some c ∈ N, and define the “gadget matrix”

Gn,m = (0c | g)⊗ In ∈ Zn×mq ,

where g = (1, 2, 4, . . . , 2`q−1) ∈ Z`qq . We will also refer to this gadget matrix as the “powers-of-
two” matrix. We define the inverse function G−1

n,m : Zn×m′q → {0, 1}m×m′ which expands each
entry a ∈ Zq of the input matrix into a column of size c + `q consisting of the bits of the binary
representation of a with leading zeros. We have the property that for any matrix A ∈ Zn×m′q , it
holds that Gn,m ·G−1

n,m(A) = A. We note that we sometimes omit the subscripts when they are
clear from the context.

3 Building Blocks from Previous Works

3.1 Noise Level of Matrices and Vectors

Let n, q be natural numbers and let m ≥ n · `q be s.t. G = Gn,m ∈ Zn×mq (where G is the gadget
matrix from Definition 2.7). Throughout this section we consider matrices C ∈ Zn×mq (to be
interpreted as ciphertexts), vectors t ∈ Znq (secret keys), and bits µ ∈ {0, 1} (plaintexts). Starting
with [GSW13], a number of recent homomorphic encryption schemes, and in particular the ones
we will consider as a basis for our construction, have the property that C encrypts µ if and only if

tC = µtG + e , (1)

for a sufficiently low-norm noise vector e. We would like to keep track of the noise level in the
ciphertext throughout homomorphic evaluation. We therefore define the noise level as follows.
(Recall that we defined absolute value and norm of elements in Zq in the beginning of Section 2.)

Definition 3.1. The noise level of C with respect to (t, µ) is the infinity norm of the noise vector:

noise(t,µ)(C) = ‖tC− µtG‖∞ .

For a vector c ∈ Znq , we define:

noise(t,µ)(c) =
∣∣∣〈t, c〉 − 2`q−1µ

∣∣∣ .
One or both subscripts are sometimes omitted when they are clear from the context.

We note that since G−1(2`q−1un) = um (where ui is the ith unit vector), then c = C ·
G−1(2`q−1un) is simply the last (mth) column of C and furthermore for such c it holds that

noise(t,µ)(c) = noise(t,µ)(C ·G−1(2`q−1un)) ≤ noise(t,µ)(C) .

The following are basic properties of the noise vector that had been established in previous
works. These are used to establish the homomorphic properties of the respective encryption scheme.
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Lemma 3.1 ( [GSW13,AP14]). The noise in negation, addition and multiplication is bounded as
follows. Negation: For all µ ∈ {0, 1} it holds that

noise(t,1−µ)(G−C) = noise(t,µ)(C) .

Addition: If µ1, µ2 ∈ {0, 1} are such that µ1 · µ2 = 0 (i.e. not both are 1) then

noise(t,µ1+µ2)(C1 + C2) ≤ noise(t,µ1)(C1) + noise(t,µ2)(C2) .

Multiplication: For all µ1, µ2 ∈ {0, 1} it holds that

noise(t,µ1µ2)(C1G
−1(C2)) ≤ m · noise(t,µ1)(C1) + µ1 · noise(t,µ2)(C2) .

We will also require an almost identical variant about the noise content in vectors. We add a
proof for the sake of completeness.

Lemma 3.2. Let n, q be integers, let t ∈ Znq be such that t[n] = 1 and c1, c2 ∈ Znq , further let
C1 ∈ Zn×m. Recall the definition of noise content (Definition 3.1). Then:
Negation: For all µ ∈ {0, 1} it holds that

noise(t,1−µ)(2
`q−1un − c) = noise(t,µ)(c) .

Addition: If µ1, µ2 ∈ {0, 1} are such that µ1 · µ2 = 0 (i.e. not both are 1) then

noise(t,µ1+µ2)(c1 + c2) ≤ noise(t,µ1)(c1) + noise(t,µ2)(c2) .

Multiplication: For all µ1, µ2 ∈ {0, 1} it holds that

noise(t,µ1µ2)(C1G
−1
n,m(c2)) ≤ m · noise(t,µ1)(C1) + µ1 · noise(t,µ2)(c2) .

Proof. We simply compute:
Negation:

noise(t,1−µ)(2
`q−1un − c)

=
∣∣∣〈t, 2`q−1un − c〉 − 2`q−1(1− µ)

∣∣∣
=
∣∣∣2`q − 〈t, c〉 − 2`q−1(1− µ)

∣∣∣
=
∣∣∣〈t, c〉 − 2`q−1µ

∣∣∣
= noise(t,µ)(c)

Addition:

noise(t,µ1+µ2)(c1 + c2)

=
∣∣∣〈t, c1 + c2〉 − 2`q−1(µ1 + µ2)

∣∣∣
≤
∣∣∣〈t, c1〉 − 2`q−1µ1

∣∣∣+
∣∣∣〈t, c2〉 − 2`q−1µ2

∣∣∣
= noise(t,µ1)(c1) + noise(t,µ2)(c2)
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Multiplication: Define e1 = tC1 − µ1tG.

noise(t,µ1µ2)(C1G
−1
n,m(c2))

=
∣∣∣〈t,C1G

−1
n,m(c2)〉 − 2`q−1(µ1µ2)

∣∣∣
=
∣∣∣〈µ1tGn,m + e1,G

−1
n,m(c2)〉 − 2`q−1(µ1µ2)

∣∣∣
=
∣∣∣µ1〈t, c2〉+ 〈e1,G

−1
n,m(c2)〉 − 2`q−1(µ1µ2)

∣∣∣
≤ µ1

∣∣∣〈t, c2〉 − 2`q−1µ2

∣∣∣+m ‖e1‖∞
= m · noise(t,µ1)(C1) + µ1 · noise(t,µ2)(c2)

The following corollary, which follows from an analysis performed in [BV11], states that if a
vector has sufficiently small noise, then µ can be recovered using a shallow boolean circuit. We also
observe that the predecessor function of this circuit (Definition 2.5) is succinctly computable.

Corollary 3.3 ( [BV11]). Define Threshold(t, c) = arg minµ∈{0,1} noiset,µ(c). Then if noise(t,µ)(c) <
q/8 for some µ, then Threshold(t, c) = µ. Furthermore, there exists a depth O(log(n log(q))) boolean
circuit that computes Threshold, and there exists a size polylog(n log q) circuit that computes the
predecessor function PredThreshold as per Definition 2.5.

Proof. Since 2`q−1 > q/4, it follows that if noise(t,µ)(c) < q/8 then it must me that noise(t,1−µ)(c) >
q/8 and the first part follows.

The boolean circuit that computes Threshold is essentially the same as the decryption circuit
described in [BV11, Lemma 4.5]. This is a circuit that first performs an addition, then computes
modulo q and finally a threshold function. Specifically we do the following. For an integer a ∈ Zq
we let Biti(a) denote the ith bit of a. Note that:

〈t, c〉 − 2`q−1µ =
n∑
i=1

`q∑
j=1

(t[i] · 2j) · Bitj(c[i])− 2`q−1µ .

Therefore, 〈t, c〉−2`q−1µ is a summation of n`q+1 integers. This can be done in depthO(log(n`q)) =
O(log(n log(q))), using a 3-to-2 addition tree. In order to take modulo q, we subtract, in parallel,
all possible multiples of q and check if the result is in Zq. Since there are at most O(n`q) possible
multiplies, this can be done, using a selection tree, in depth O(log(n log(q))) again. Finally, to
compute the threshold function, we compare the values of noise(t,0)(c) and noise(t,1)(c). This can
be done in depth O(log(n log(q))) as well, leading to a total depth of O(log(n log(q))), as desired.

Note that the circuit of addition of two `q-bits integers can be computed using a uniform machine
with logarithmic space, taking `q as input. Therefore, the circuit of summation of n`q + 1 integers
can also be computed by such a machine, taking `q, n as input. Similarly, each of the components
of the circuit of Threshold can be computed in such manner. Since there is a constant number
of components, wired sequentially, we can compute each component using logarithmic space, and
reuse that space to compute the following component. Therefore, we can compute the circuit of
Threshold using a uniform machine with logarithmic space, taking n, `q as input. In particular,
such a machine can also compute the PredThreshold function.
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3.2 A Single-Hop Multi-Key Homomorphic Encryption Scheme

The scheme below is essentially a restatement of the scheme of [MW15], which in turns relies
on [GSW13,CM15].

• SHMK.Setup(1λ): Generate the parameters (n, q, χ,Bχ) such that DLWEn−1,q,χ holds (note
that there is freedom in the choice of parameters here, so the scheme can be instantiated
in various parameter ranges), recall that we denote `q = dlog qe, and choose m s.t. n|m and

m ≥ n`q+ω(log λ). Finally, choose a matrix uniformly at random B
$← Z(n−1)×m

q and output:

params := (q, n,m, χ,Bχ,B)

• SHMK.Keygen(params): Sample uniformly at random s
$← Zn−1

q , set the secret key as follows:

sk := t = (−s, 1) ∈ Znq

Sample a noise vector e
$← χm and compute:

b := sB + e ∈ Zmq A :=

(
B
b

)
∈ Zn×mq

Finally, set and output:
pk := A

• SHMK.PreEnc(pk, µ): This is a “pre-encryption” algorithm that will be used as an auxiliary

procedure in the actual encryption algorithm. Sample uniformly at random R
$← {0, 1}m×m.

Set and output the encryption:

C := AR + µGn,m ∈ Zn×mq

• SHMK.Enc(pk, µ): Sample uniformly at random R
$← {0, 1}m×m. Compute:

C := AR + µG ∈ Zn×mq

−→
R[j, k]← SHMK.PreEnc(pk,R[j, k]) ∈ Zn×mq

Set the ciphertext to be the encrypted massage along with the vector of encryptions and

output it (C,
−→
R) ∈ Zn×mq ×

(
Zn×mq

)m×m
. We note that for the most part, the internal

structure of
−→
R will not be too important for our purposes.

• SHMK.Dec((sk1, . . . , skN ), Ĉ): Let ĉ = Ĉ · G−1
nN,mN (2`q−1unN ) be the last column of Ĉ.

Denote ti = ski for every i ∈ [N ] and t̂ = (t1, . . . , tN ). Compute and output:

µ′ := Threshold(t̂, ĉ) ,

where Threshold(·, ·) is as defined in Corollary 3.3.

• SHMK.Extend(c, (pk1, . . . , pkN )): Takes as input a ciphertext c = (C,
−→
R) and a tuple of public

keys pk1, . . . , pkN . It outputs a new ciphertext Ĉ ∈ ZnN×mNq , however Ĉ is represented as
an N ×N block matrix containing blocks of size Zn×mq , and only 2N − 1 of these blocks are
non-zero. See Lemma 3.4 below for the properties of the extension procedure.
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Lemma 3.4 ( [MW15]). Let N ∈ N, µ ∈ {0, 1}, (skj , pkj) = SHMK.Keygen(1λ) for all j ∈ [N ].
Let c = SHMK.Enc(pki, µ) for some i ∈ [N ] (we assume that i is given implicitly).
Then SHMK.Extend(c, (pk1, . . . , pkN )) runs in N · poly(λ) time and outputs a succinct description
of the block matrix Ĉ containing all but (2N − 1) nonzero blocks. Furthermore, denoting tj = skj
and t̂ = (t1, . . . , tN ), it holds that noiset̂,µ(Ĉ) ≤ (m4 +m)Bχ, with probability 1.

Since the extended ciphertexts satisfy Eq. (1) with respect to the concatenated secret keys, and
since the noise of a fresh extended ciphertext is small, we can preform homomorphic operations, as
described in Section 3.1.

The following lemma asserts the security of the scheme (we note that security-wise, this scheme
is an immediate extension of Regev’s encryption scheme [Reg05]).

Lemma 3.5 ( [MW15]). The scheme SHMK is semantically secure under the DLWEn−1,q,χ as-
sumption.

4 Our Fully Dynamic Multi-Key FHE Scheme

We now describe our fully dynamic multi-key FHE scheme FDMK. We start by presenting the setup,
key generation, encryption and decryption (without evaluation), which will be a slight variation on
the bootstrappable version of the single-hop scheme SHMK from Section 3.2. The only difference
is that a ciphertext here is only a small fragment of a ciphertext in SHMK, and the public keys are
augmented with encryptions of the secret key as required for bootstrapping. Then, in Section 4.1
we describe our evaluation procedure using branching programs.

We note that the security of our scheme requires making a circular security assumption on
SHMK. We describe a leveled version of our scheme that only requires the hardness of learning
with errors in Appendix A.

• FDMK.Setup(1λ): Generate the parameters such that DLWEn−1,q,χ holds, where n := n(λ)
is the lattice dimension parameter; χ := χ(λ) is a Bχ := Bχ(λ) bounded error distribution;
and a modulus q := Bχ2ω(log λ). Denote `q = dlog qe, set m := n`q + ω(log λ) such that n|m,

and sample uniformly at random B
$← Z(n−1)×m

q . Set and output:

params := (q, n,m, χ,Bχ,B)

• FDMK.Keygen(params): Generate a secret key as in the scheme SHMK - sample uniformly at

random s
$← Zn−1

q , set and output:

sk := t = (−s, 1) ∈ Znq

Then, to generate the public key - sample a noise vector e
$← χm and compute:

b := sB + e ∈ Zmq A :=

(
B
b

)
∈ Zn×mq

Next, encrypt the secret key bit-by-bit according to the SHMK scheme. Let Biti(sk) denote
the ith bit of sk. For every i ∈ [n · `q] compute:
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−→
S [i]← SHMK.Enc(A,Biti(sk))

Set the public key to:

pk:=(A,
−→
S ) .

We note that the
−→
S part is only used for homomorphic evaluation and not for encryption.

• FDMK.Enc(pk, µ): Sample uniformly at random r
$← {0, 1}m. Set and output the encryption:

c := Ar + µ2`q−1un ∈ Znq

where ui is the ith standard basis vector.

• FDMK.Dec((sk1, . . . , skN ), c) : Parse each secret key as ti := ski for every i ∈ [N ]. Concatenate
the secret keys and set t̂ := (t1, . . . , tN ) ∈ ZnNq . Compute and output

µ′ := Threshold(t̂, c) ,

where Threshold(·, ·) is as defined in Corollary 3.3.

The following lemma states the security of our scheme, which follows immediately from that of
SHMK.

Lemma 4.1. The scheme FDMK is semantically secure if SHMK with the same DLWE parameters
is weakly circular secure.

Proof. Note that the ciphertexts in the FDMK scheme are the last column of the ciphertexts in the
SHMK scheme. In particular it could be computed deterministically out of the ciphertexts in the
SHMK scheme. Since the public key in the FDMK is generated as in the SHMK scheme, along with
encryption of the secret keys, the semantic security follows from the weak circular security of the
SHMK scheme.

The choice of DLWE parameters and the lattice approximation factors they induce is discussed
when we present our leveled scheme that does not require circular security. See Appendix A and
in particular Lemma A.1 and the discussion thereafter.

4.1 Homomorphic Evaluation

Following [BV14], we evaluate the augmented NAND circuits needed for bootstrapping by convert-
ing them into branching programs. We recall the definition of a branching program, Barrington’s
Theorem and our on-the-fly variant of the theorem from Section 2.3.

We would like to evaluate a branching program homomrphically. Since the message space of
our scheme is binary, it would be more convenient to keep a binary state vector v ∈ {0, 1}5, rather
than an integer state s ∈ {1, . . . , 5}. We keep the following invariant: vt[i] = 1⇔ st = i. To do so
we initialize v0[1] = 1 and v0[i] = 0 for i ∈ {2, . . . , 5}. In the iterative stage we evaluate using the
recursive formula:

vt[i] = 1⇔ pt,xvar(t)(st−1) = i
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We can rewrite it to get an iterative formula: for every 1 ≤ i ≤ 5, vt[i] = 1 if and only if

vt−1

[
p−1
t,0 (i)

]
= 1 and xvar(t) = 0 or vt−1

[
p−1
t,1 (i)

]
= 1 and xvar(t) = 1

Equivalently:

vt[i] :=vt−1

[
p−1
t,0 (i)

]
·
(
1− xvar(t)

)
+ vt−1

[
p−1
t,1 (i)

]
· xvar(t)

=vt−1 [αt,i] ·
(
1− xvar(t)

)
+ vt−1 [βt,i] · xvar(t)

(2)

where αt,i = p−1
t,0 (i), βt,i = p−1

t,1 (i) are constant parameters derived from the description of the
circuit. After the L’th iteration, we accept if and only if sL = 1, that is we output vL[1], following
from the kept invariant.

The main idea of [BV14] is to convert the circuit into a branching program, and compute
it homomrphically by evaluating the above formula (Eq. (2)). We adapt the use of branching
programs to reduce the space complexity of evaluation. Specifically, we show that our scheme is
bootstrapable using space linear in the number of the participating parties as follows.

• FDMK.NAND((c1, c2), (pk1, . . . , pkN )): Let T1, T2 ⊂ {pk1, . . . , pkN} be the sequences of public
keys under which c1 and c2 are encrypted, respectively. Let S1, S2 ⊂ {sk1, . . . , skN} be the
respective secret keys, and let µj = FDMK.Dec(Sj , cj) for j = 1, 2. Set C to be the description
of the circuit

C(x, y) = NAND(FDMK.Decx(c1),FDMK.Decy(c2)) .

We would like to construct an on-the-fly branching program for C using the algorithm
BPOTF from Corollary 2.3. To this end we observe that due to the properties of Threshold
(see Corollary 3.3), the predecessor function PredC can be computed by a circuit of size
polylog(nN log q). Given access to PredC , we have that BPOTFPredC uses spaceO(log(nN log q))
and generates the branching program Π = (var, (pt,0, pt,1)i∈[L]) that corresponds to C, layer
by layer.

We will execute BPOTFPredC lazily, every time we will produce a layer of the branching
program and evaluate it homomrphically, so that BPOTFPredC should not require more than

O(log(Nn log q)) space at any point in time. We execute Π on (
−→
S i,
−→
S j)i∈S1,j∈S2 as follows:

– Initialization:

∗ Set the state vector:
−→w0 := (2`q−1unN ,0,0,0,0)

∗ Initialize BPOTFPredC .

– Iterative Step: For every step t = 1, . . . , L do:

∗ Compute the constants αt,i,βt,i by running BPOTFPredC to obtain the next layer of
the branching program

((αt,1, . . . , αt,5), (βt,1, . . . , βt,5), var(t))

∗ For every i = 1, . . . , 5 homomrphically compute the encryption of the next state:

wt,i := Xc
var(t) ·G

−1
nN,mN

(
wt−1,αt,i

)
+ Xvar(t) ·G−1

nN,mN

(
wt−1,βt,i

)
where Xvar(t):=SHMK.Extend(

−→
S var(t), (pk1, . . . , pkN )) is the extended encryption of

the secret key
−→
S var(t) and Xc

var(t) := GnN,mN −Xvar(t) is its complement.
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– Finally output the ciphertext wL,1.

Lemma 4.2. For every N ∈ poly(λ), and every messages µ1, µ2 ∈ {0, 1}, let params←FDMK.Setup(1λ)
and (pki, ski)←FDMK.Keygen(params) for every i ∈ [N ]. Let c1, c2 be ciphertexts such that for some
sequence of secret keys S1, S2 ⊂ {sk1, . . . , skN} it holds that FDMK.Dec(cj , Sj) = µj for j = 1, 2.
Then the following holds:

FDMK.Dec(FDMK.NAND((c1, c2), (pk1, . . . , pkN )), (sk1, . . . , skN )) = NAND(µ1, µ2)

for every large enough value of λ.

To prove the correctness we first prove the following lemma:

Lemma 4.3. For every t = 0, . . . , L and every i = 1, . . . , 5 the following holds:

noise
ŝk,vt[i]

(wt,i) ≤ 2t(m5 +m2)NBχ

where ŝk := (sk1, . . . , skN ) is the concatenation of the secret keys.

Proof. Denote x = (S1, S2), recall that the input for the branching program Π is the encryption of

the secret keys (
−→
S i,
−→
S j)i∈S1,j∈S2 .

We proof by induction on t:
The claim clearly holds for the case t = 0, by the way we defined w0. Assume that the hypothesis
holds for t′ < t. Note that by definition of wt it follows that

noise
ŝk,vt[i]

(wt,i) = noise
ŝk,vt[i]

(
Xc

var(t) ·G
−1
nN,mN

(
wt−1,αt,i

)
+ Xvar(t) ·G−1

nN,mN

(
wt−1,βt,i

))
Following from Lemma 3.2, and the definition of vt[i] in equation (2) we get:

noise
ŝk,vt[i]

(wt,i) =(1− xvar(t)) · noiseŝk,vt−1[αi,t]

(
wt−1,αt,i

)
+mN · noise

ŝk,ŝkvar(t)
(Xvar(t))

+ xvar(t) · noiseŝk,vt−1[βi,t]

(
wt−1,βt,i

)
+mN · noise

ŝk,ŝkvar(t)
(Xvar(t))

Note that either xvar(t) = 0 or 1− xvar(t) = 0, thus, using the induction’s hypothesis:

(1− xvar(t)) · noiseŝk,vt−1[αi,t]

(
wt−1,αt,i

)
+ xvar(t) · noiseŝk,vt−1[βi,t]

(
wt−1,βt,i

)
≤ max

(
noise

ŝk,vt−1[αi,t]

(
wt−1,αt,i

)
, noise

ŝk,vt−1[βi,t]

(
wt−1,βt,i

))
≤ 2(t− 1)(m5 +m2)NBχ

Following Lemma 3.4, noise
ŝk,ŝkvar(t)

(Xvar(t)) = (m4 +m). Putting it all together:

noise
ŝk,vt[i]

(wt,i) ≤ 2(t− 1)(m5 +m2)NBχ + 2(m4 +m)mN

= 2t(m5 +m2)NBχ
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Proof of Lemma 4.2. Using the correctness of Barrington’s Theorem (Theorem 2.2), we only need
to prove that noise

ŝk,NAND(µ1,µ2)
(wL,1) = noise

ŝk,vL[1]
(wL,1) < q/8. Indeed, using the previous

lemma, noise
ŝk,vL[1]

(wL,1) ≤ 2L(m5+m2)NBχ. Using lemma 3.3, bounding the depth of decryption

d = dThreshold = O(log(nN log(q))) = O(log λ + logN) = O(log λ), since n,N, log q = poly(λ).
Therefore, L = 4d+1 = poly(λ). And so, noise

ŝk,vL[1]
(wL,1) = poly(λ) ·Bχ which is less than q/8 by

our choice of parameters.

We note that if a bound on N was known a priori, then we could choose a polynomial modulus
q = poly(N,λ) = poly(λ).

Lemma 4.4. The algorithm FDMK.NAND can be computed using Npoly(n log q) space, where N
is the number of parties involved in the computation.

Proof. As we saw above, the computation of PredC takes space polylog(Nn log q) and BPOTF
requires space log(Nn log q). At every point in the evaluation of the branching program we only
hold 5 ciphertexts, each of which is a vector of dimension nN over Zq. At each step in the
computation we apply SHMK.Extend to blow up an encryption of a secret-key bit into a sparse
N ×N block matrix that can be represented by (2N − 1) matrices in Zn×mq . We perform matrix-
vector multiplication and vector-vector addition between this matrix and vectors, which can all be
performed in N · poly(n log q) space. The lemma follows.
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A Leveled Multi-Key Fully Homomorphic Encryption

In this section we give a leveled multi-key homomorphic scheme LMK. The scheme is leveled with
respect to the total depth of computation. Namely, the summation over all hops of the depth
of the evaluated circuit. The scheme is a modified version of the FDMK construction described
in section 4. Moreover, it relies only on the hardness of LWE and not on any circular security
assumption. We achieve this, as in [Gen09b] and followup works, by generating a sequence of
secret keys and encrypting each of them under the next. To evaluate each gate, we bootstrap using
the next secret key.

• LMK.Setup(1λ, 1D): Generate the parameters such that DLWEn−1,q,χ holds, where n := n(λ)
is the lattice dimension parameter; χ := χ(λ) is a Bχ := Bχ(λ) bounded error distribution;
and a modulus q := Bχ2ω(log λ). Denote `q = dlog qe, set m := n`q + ω(log λ) such that n|m
and sample uniformly at random B

$← Z(n−1)×m
q . Set and output:

params := (D, q, n,m, χ,Bχ,B)
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• LMK.Keygen(params): Generate a sequence of (D + 1) pairs of keys as in the SHMK scheme:

for every d ∈ [D + 1] sample uniformly at random s(d) $← Zn−1
q and set:

sk(d):=t(d) = (−s(d), 1)

Also sample a noise vector e(d) $← χm and compute:

pk(d):=A(d) =

(
B

s(d)B + e(d)

)
∈ Zn×mq

Next, encrypt bit-by-bit each secret key sk(d) using the sequentially following public key
pk(d+1). Let Bitj(sk

(d)) denote the jth bit of sk(d). For every for every d ∈ [D] and j ∈ [n · `q]
compute: −→

S (d)[j]← SHMK.Enc(pk(d+1),Bitj(sk
(d)))

Finally, let the secret key be the last secret key of the sequence:

sk := sk(D+1)

And let the public key be the first public key of the sequence, along with the encryptions:

pk :=
(
pk(1),

−→
S (1), . . . ,

−→
S (D)

)
• LMK.Enc(pk, µ): Sample uniformly at random r

$← {0, 1}m. Set and output the encryption:

c := Ar + µ2`−1un ∈ Znq

• LMK.Dec((sk1, . . . , skN ), c): Assume w.l.o.g that c is the product of evaluating a depth D
circuit on newly encrypted ciphertexts (otherwise apply additional “dummy” homomorphic

operations). Parse each secret key as ti = t
(D+1)
i := ski for every i ∈ [N ]. Concatenate the

secret keys and set t̂ := (t1, . . . , tN ) ∈ ZnNq . Compute and output

µ′ := Threshold(t̂, c)

Evaluation is done similar to as described in section 4.1. Consider evaluating a depth D circuit,
and assume that the circuit is leveled, i.e. the gates of the circuit can be divided into D sets (levels)
such that the first set is only fed by input gates, and set d + 1 is only fed by the outputs of
gates in level d. Clearly every circuit can be made leveled by adding dummy gates. Homomorphic
evaluation maintains the invariant that an encryption w.r.t some set of users T at the input of level
d is encrypted under their set of sk(d) keys. The computation of the gate is therefore performed

w.r.t the set of sk
(d)
i keys. Then for bootstrapping, we use the ~S(d)

i key switching parameters,

which allow us to produce an encryption of the bits of the sk(d) keys under the sk(d+1) keys, so the
invariant is preserved. The noise growth is the same as analyzed in Lemma 4.3.

Security follows from LWE by a standard hybrid argument.

Lemma A.1. The scheme described above is secure under the DLWEn−1,q,χ assumption.
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Following corollary 2.5, we can assume DLWEn−1,q,χ by assuming the quantum hardness of
either GapSVPγ or SIVPγ for γ = Õ(nq/Bχ). For bootstrapping to go through, we require that

q/Bχ = 2ω(logn) (in fact, it is sufficient to have q/Bχ = poly(n,N), but we do not want to assume
an upper bound on N , except that it’s some polynomial). As usual, we can scale q,Bχ so long
as their ratio remains large enough. This allows us to achieve better efficiency by scaling Bχ, q
to be smallest possible, or achieving classical security by scaling q to be exponential in n, and Bχ
appropriately.
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