
Semantically Secure Anonymity:
Foundations of Re-Encryption

Adam L. Young
Cryptovirology Labs

Moti Yung
Snapchat and Dept. of Computer Science,

Columbia University

ABSTRACT
The notion of universal re-encryption is an established prim-
itive used in the design of many anonymity protocols. It
allows anyone to randomize a ciphertext without changing
its size, without decrypting it, and without knowing the re-
ceiver’s public key. By design it prevents the randomized ci-
phertext from being correlated with the original ciphertext.
We revisit and analyze the security foundation of universal
re-encryption and show that to date it has not had a satis-
factory definition of security, in spite of its numerous uses.
We then analyze the anonymity arguments for the ElGamal-
based universal cryptosystem and show that it has not been
proven to be anonymous under DDH (and does not meet the
standards of modern cryptography), and that such a proof is
non-trivial given existing reduction techniques. This anal-
ysis is a type of cryptanalysis of provably secure systems,
where reductions and exact assumptions have certain gaps
in them that need to be detected and corrected. The no-
tion of an incomparable public key cryptosystem is closely
related to universal re-encryption; we similarly cryptanalyze
the security foundation of the ElGamal-based incomparable
public key cryptosystem as well and show that it was not
proven to be secure. To correct the lack of foundation, we
introduce a definition of what properties are needed for a re-
encryption cryptosystem that needs to provide anonymity.
We then introduce a new generalization of the well-known
Decision Diffie-Hellman (DDH) random self-reduction and
use it, in turn, to prove that the ElGamal-based univer-
sal cryptosystem is secure under DDH. We apply our new
DDH reduction technique to incomparable public key cryp-
tosystems as well and prove that it is secure, and, as a new
application, we present a novel secure Forward-Anonymous
Batch Mix.

Keywords
probabilistic re-encryption, end-to-end security, key anonymity,
anonymous communication, semantic security, message in-
distinguishability, batch mix, DDH groups, cryptanalysis of

provably secure cryptosystems.

1. INTRODUCTION
Privacy and anonymity tools have become increasingly im-

portant for maintaining basic civil liberties. For example, as
a result of the whistle-blowing by Edward Snowden, Ameri-
cans and others have a better understanding of surveillance
states and the privacy risks they pose. This is a reminder
of the importance of anonymity of communication, which,
in fact, has been an active area of cryptographic research
since the 1980’s. Having a sound theoretical foundation
for anonymity systems is a critical component in achieving
privacy of users in the same way that message security is
achieved by having a sound theoretical foundation for en-
cryption. Camenisch and Lysyanskaya, for example, pre-
sented a formal treatment of onion routing [3], where prior
work was comparatively informal with ad-hoc security jus-
tifications. Onion routing falls into a class of anonymity
systems known as “decryption mixes”, since layers of cipher-
text are shed as the onion makes its way to the receiver.

In this work we present a formal treatment of a different
fundamental class of anonymous communication protocols,
namely, those based on universal re-encryption. This con-
cept forms the basis of what has been called “re-encryption
mixes”. Golle, Jakobsson, Juels, and Syverson introduced
the notion of universal re-encryption and presented a cryp-
tosystem that implements it called UCS [9]. A ciphertext in a
re-encryption mix has the property that it can be efficiently
re-encrypted by anyone without knowledge of the receiver’s
public key. This is accomplished without ever exposing the
underlying plaintext and without changing the size of the
ciphertext. Using re-encryption randomness, the mapping
is “lost” between the ciphertext that is supplied to the re-
encryption operation and the resulting output ciphertext.
Therefore, the notion of universal re-encryption propelled
anonymity into the important area of “end-to-end encryp-
tion” systems that do not rely on servers for maintaining se-
crecy and that have the forward-secrecy property. Forward-
secrecy and end-to-end encryption are becoming increasingly
important in industrial systems in the post-Snowden era.

A number of anonymity protocols have been constructed
that utilize universal re-encryption. Here, we show by way of
cryptanalyzing the associated security definitions and proofs
(i.e., a cryptanalysis methodology applied to provably secure
systems) that the required level of security of this crypto-
graphic primitive has not been shown. We show by way
of examples that the previous security definitions failed to
properly capture the anonymity property. We go on to show

that the previous security proofs have not been tied to the
hardness of Decision Diffie-Hellman (DDH) contrary to what
has been claimed in the literature.

To show the message semantic security of re-encryption
the usual approach of exploiting random self-reducibility of
exponentiation, say, suffices (a requirement is to maintain
the ability to decrypt correctly). For this property it is
easy to show that semantic security is retained. However,
in the case of anonymity where there is a complex goal that
includes semantic security [7], key-privacy [1] (essential to
hiding the receiver in an end-to-end fashion), and indistin-
guishability between pre and post re-encryption (essential
for sender-receiver unlinkability), the needed properties and
formal notions of security for this setting were neglected and
were, in fact, never done.

As a result of this missing foundational step, all claims for
use of re-encryption in anonymity systems have been based
on heuristics. Indeed, there are no properties required, nor
proofs that they are achieved, in the papers exploiting re-
encryption for anonymity.

What is needed is a formal foundation of the field (as was
done in other areas, e.g. message encryption). To this end,
we put forth a model of what is required for re-encryption in
the context of anonymity systems and show that the exist-
ing constructions do not lead to proofs of these properties.
Therefore, a new procedure for re-encryption in anonymity
systems is needed as well. The hope is that the model, def-
initions, and construction will initiate a more foundational
approach to using cryptography within anonymity systems
in the tradition of modern cryptography (building on the
early works, indeed). We point out that our investigation, in
fact, follows the traditional methodology of modern cryptog-
raphy where similar corrections of definitions, constructions,
proofs, and reductions have been a central theme aimed at
establishing proper primitives to build security and privacy
applications and protocols thereupon.

Our analysis shows an unjustified trend towards claiming
security with respect to DDH but not formally proving it.
Note that maintaining message semantic security under re-
encryption is relatively trivial. But, this is misleading since
it does not hold for the entire set of properties needed for
anonymity applications. These definitions have never been
given before. In particular, “anonymity” of the probabilistic
encryption and re-encryption algorithms were not properly
defined in any prior work. As we know from other areas of
cryptography, without foundations following a model, defi-
nitions, constructions and careful proofs, issues will surely
arise.

We summarize our contributions as follows:

1. Modeling: We cryptanalyze the definition of a uni-
versal cryptosystem and show that it is not sufficient.
We define what we call semantically secure anonymity
that defines the (complete set of) security properties
that assure anonymity, that existing protocols take for
granted.

2. Cryptanalysis and criticism: We cryptanalyze the se-
curity proofs given for the ElGamal-based universal
cryptosystem and show that it has not been proven
secure under DDH. We show that proving that key
anonymity [1] holds is non-trivial.

3. Construction: We generalize the well-known DDH ran-
dom self-reduction and then use this generalization to

prove that the ElGamal-based universal cryptosystem
is secure under DDH as modeled. This is a new re-
duction technique that may have independent applica-
tions.

4. A notion very closely related to universal re-encryption
is that of incomparable public keys. We cryptanalyze
the proof of security for the ElGamal-based incompa-
rable public key cryptosystem from ACM CCS 2003
[21] and show that it has not been proven secure un-
der DDH, contrary to what was claimed. We then
apply our reduction technique to give the first proof
that incomparability holds under DDH.

5. Application to New Protocols: As an application we
present a forward-anonymous batch mix that is secure
(as modeled in here) under DDH.

We anticipate that our new reduction technique will aid
in future concrete and workable designs that use number
theoretic and elliptic curve groups where DDH holds, since
anonymity of channels is a central issue in cryptography and
privacy applications and since sound foundations and correct
proofs are needed. Finally, our new application of a forward-
anonymous batch mix that we prove secure is an example of
such an application that gives an end-to-end secure anony-
mous communication system.

Organization: In Section 2 we present related work. No-
tation and definitions are covered in Section 3. We review
universal re-encryption (UCS) in Section 4 and cryptanalyze
it. The new DDH reduction technique is covered in Section 5
and it is used to prove the security of universal re-encryption
in Section 6. We cryptanalyze the ElGamal-based incompa-
rable public key cryptosystem in Section 7 and then repair
its security foundation. Our forward-secure batch mix is
covered in Section 8 and we prove that it is secure in Sec-
tion 9. We present our conclusions in section 10.

2. RELATED WORK
Let us first review the literature that leverages universal

re-encryption as a primitive.
Jakobsson et al presented a universal re-encryption cryp-

tosystem that they referred to as UCS [9]. UCS is a 4-
tuple of algorithms: a key generator, encryption algorithm,
re-encryption algorithm, and a decryption algorithm. It is
an extension of the ElGamal public key cryptosystem [5].
A ciphertext produced using this cryptosystem can be re-
encrypted by anyone without first deciphering it. They
present two applications that leverage a universal cryptosys-
tem. In the first application an RFID tag is set to be a
universal ciphertext that contains an underlying ID as the
plaintext. The ciphertext is re-randomized periodically to
prevent the tag from being tracked over time, e.g., as the ob-
ject that contains the tag moves from place to place. With
the private decryption key the ID can be obtained. Without
the private key the ID in the ever changing RFID ciphertext
cannot be obtained, making it difficult to track the object.
They also apply universal re-encryption to construct a hy-
brid universal mix that leverages a public bulletin board.
The mix is based on uploading and downloading ciphertexts
to/from a bulletin board as opposed to leveraging a cascade
of mix servers.

Fairbrother sought a more efficient hybrid universal cryp-
tosystem based on UCS [6]. Universal re-encryption was used
in a protocol to control anonymous information flow, e.g.,
to prevent spam from being injected into the anonymiza-
tion network [13]. Onion-based routing and universal re-
encryption were leveraged to form hybrid anonymous com-
munication protocols [10, 14]. A circuit-based anonymity
protocol was presented based on universal re-encryption [15]:
in the first stage a channel is established through the net-
work between Alice and Bob along with the keys needed for
re-encryption and in the second stage Alice and Bob com-
municate with one another. Weakness in [13, 14, 10, 15]
were presented in [4]. Golle presented a reputable mix net-
work construction based on universal re-encryption [8]. A
reputable mix has the property that the mix operator can
prove that he or she did not author the content output by
the mix.

A concept that is closely related to a universal cryptosys-
tem is an incomparable public key cryptosystem [21]. An in-
comparable public key cryptosystem has the property that
senders are not able to determine who the receivers are. An
incomparable public key is an encryption of unity under a
traditional ElGamal public key. The incomparable public
key can be used to re-randomize itself to form equivalent
public keys. A universal ciphertext is equivalent to a cipher-
text from the incomparable public key cryptosystem along
with the incomparable public key of the receiver.

Groth presented a re-randomizable and replayable adap-
tive chosen ciphertext attack secure cryptosystem based on
DDH [11]. The construction and security arguments do not
address key-anonymity.

Prabhakaran and Rosulek presented a construction for
a rerandomizable encryption scheme [18] that aims to be
CCA-secure under DDH. It extends the Cramer-Shoup pub-
lic key cryptosystem. They define RCCA receiver-anonymity
in detail but state that their scheme does not achieve it and
that it is an open problem. The approach was later extended
to combine computability features with non-malleability of
ciphertexts. The construction enables anyone to change an
encryption of an unknown message m into an encryption
of T (m) (a feature), for a set of specific allowed functions
T , but is non-malleable with respect to all other opera-
tions [19]. They indicate that their construction does not
achieve HCCA-anonymity and leave the anonymity problem
as open.

There has been recent work on proxy encryption [12]. In
proxy encryption a ciphertext of a message m encrypted
under Alice’s public key is transformed (re-encrypted) into
a ciphertext of m under Bob’s public key. Note that our
setting is different since the receiver’s public key does not
change in our re-encryption operation.

Having surveyed the literature it became apparent to us
that numerous works have utilized universal re-encryption
as a basic building block. This forms the motivation for a
clean and correct foundation for this area. While we fully
appreciate the pioneering work on this concept (a trailblaz-
ing step which is necessary), we believe that the time has
come to treat anonymity with the same formal care and level
of provability as, say, message security in public key cryp-
tosystems. We believe that our work shows that identify-
ing subtleties and producing necessary revisions is relevant,
even for works that are older than 10 years, especially in ar-
eas that are becoming increasingly important to real-world

applications.
The notion of key privacy (also called key anonymity)

was introduced by Boldyreva et al [1]. They formally de-
fined public key cryptosystems that produce ciphertexts that
do not reveal the receiver and showed that ElGamal and
Cramer-Shoup achieve key privacy.

3. NOTATION AND DEFINITIONS
If T is a finite set then x ∈U T denotes sampling x uni-

formly at random from T . Define Zp to be {0, 1, 2, ..., p−1}.
Let Z∗n be the set of integers from Zn that are relatively
prime to n. [1, t] denotes the set of integers {1, 2, ..., t}. |G|
denotes the size of the group G, i.e., number of elements in
G. We may omit writing “mod p” when reduction modulo
p is clear from the context. Pr[A] denotes the probability
that A is true. Let a ← b denote the assignment of b to
a. For example, a←M(x) denotes the execution of Turing
machine M on input x resulting in output a.

The following definition of DDH is directly from [2]. A
group family G is a set of finite cyclic groups G = {Gp}
where p ranges over an infinite index set. We denote by
|p| the size of the binary representation of p. We assume
that there is a polynomial time (in |p|) algorithm that given
p and two elements in Gp outputs their sum. An instance
generator, IG, for G is a randomized algorithm that given
an integer n (in unary), runs in time polynomial in n and
outputs some random index p and a generator g of Gp. In
particular, (p, g) ← IG(n). Note that for each n, the in-
stance generator induces a distribution on the set of indices
p. The index p encodes the group parameters.

A DDH algorithm A for G is a probabilistic polynomial
time Turing machine satisfying, for some fixed α > 0 and
sufficiently large n:

|Pr[A(p, g, ga, gb, gab) = “true”] − Pr[A(p, g, ga, gb, gc) =
“true”]| > 1

nα

where g is a generator of Gp. The probability is over the
random choice of 〈p, g〉 according to the distribution induced
by IG(n), the random choice of a, b, and c in the range
[1, |Gp|] and the random bits used by A. The group family G
satisfies the DDH assumption if there is no DDH algorithm
for G.

We now review the well-known random-self reduction for
DDH [2, 20, 17]. DDHRerand((p, q), g, x, y, z) randomizes a
DDH problem instance by choosing u1, u2, v ∈U [1, q] and
computing,

(x′, y′, z′)← (xvgu1 , ygu2 , zvyu1xvu2gu1u2)

When (x, y, z) is a valid Diffie-Hellman 3-tuple then the out-
put is a random Diffie-Hellman 3-tuple. When (x, y, z) is not
a valid Diffie-Hellman 3-tuple then the output is a random
3-tuple.

4. CRYPTANALYSIS OF UCS

4.1 Review of universal re-encryption
Let k be a security parameter and let p = (p, q) be a group

family where p is prime and p − 1 is divisible by a large
prime q. The group Gp is the subgroup of Z∗p having order
q. For anonymity, the single group ((p, q), g) is generated
once using IG(k) and is then used by all users.

Key Generation: Key generation is denoted by (y, x) ←
UGEN((p, q), g). Here y ← gx mod p where x ∈U [1, q]. The
public key is (y, g, (p, q)) and the private key is x.

Encryption: The following encryption operation is denoted
by,

UENCR(m, (k0, k1), (y, g, p))

It encrypts message m ∈ Gp using y. (k0, k1) ∈U [1, q]×[1, q]
are random encryption nonces. The operation outputs the
ciphertext c ← ((a0, b0), (a1, b1)) ← ((gk0 mod p, yk0 mod
p), (gk1 mod p, yk1m mod p)).

Universal Re-encryption: The following is the universal
re-encryption operation,

URENC(((a0, b0), (a1, b1)), (`0, `1), p)

The pair ((a0, b0), (a1, b1)) is a universal ciphertext produced
using UENCR and the value (`0, `1) ∈U [1, q]× [1, q] is a pair of

re-encryption nonces. Compute (α0, β0) ← (a`00 mod p, b`00
mod p) and compute (α1, β1)← (a1a

`1
0 mod p, b1b

`1
0 mod p).

Output the ciphertext c ← ((α0, β0), (α1, β1)). We supply
p as an argument whereas Golle et al do not (an extremely
minor oversight).

Decryption: The following decryption operation is denoted
by UDECR(c, x, p). Here c is the ciphertext ((a0, b0), (a1, b1)).
Compute m0 ← b0/a

x
0 mod p. If m0 = 1 then set s = true

else set s = false. If s = true set m1 = b1/a
x
1 mod p else

set m1 to be the empty string. s = true indicates successful
decryption. Return (m1, s).

The encryption nonces are parameterized to facilitate our
proofs of security. The UCS cryptosystem is the 4-tuple
(UGEN, UENCR, URENC, UDECR).

4.2 The Need for Anonymity Definitions
Key anonymity needs to be defined and proven for the

universal encryption operation. We show this by way of
example. Suppose that Alice and Bob generate key pairs
where Alice’s modulus is one byte larger than Bob’s. Then
it will frequently be the case that the values in a ciphertext
under Alice’s public key will be too large to be a ciphertext
for Bob, revealing Alice as the recipient.

Key anonymity also needs to be defined and proven for the
universal re-encryption operation. We show this by way of
example. Let Alice and Bob be two users that use the same
group. Suppose that the universal re-encryption operation
uses the encryption of unity to re-encrypt the encryption of
the message. But, suppose that the re-encryption operation
does not use the encryption of unity to re-encrypt itself. It
follows that the re-encryption operation would never change
the encryption of unity. The distinguishing adversary is per-
mitted to choose the ciphertext for the re-encryption oper-
ation. The challenger randomly selects Alice or Bob as the
receiver and re-encrypts the ciphertext. The adversary is
then able to trivially associate the output ciphertext to the
receiver by observing the encryption of unity.

Note that both algorithms easily achieve message indistin-
guishability. However, both the encryption algorithm and
the re-encryption algorithm fail to achieve anonymity for
different reasons.

4.3 Cryptanalysis of UCS security definitions
Below is the verbatim definition of Golle et al of universal

semantic security under re-encryption. UKG corresponds to
UGEN, UE corresponds to UENCR, and URe corresponds
to URENC.

Experiment EXPuss
A (UCS, k):

1. PK0 ← UKG;PK1 ← UKG;
2. (m0,m1, r0, r1)← A(PK0, PK1,“specify ciphertexts”)
3. if m0,m1 /∈M or r0, r1 /∈ R then output ‘0’;
4. C0 ← UE(m0, r0, PK0);C1 ← UE(m1, r1, PK1);
5. r′0, r

′
1 ∈U R

6. C′0 ← URe(C0, r
′
0);C′1 ← URe(C1, r

′
1);

7. b ∈U{0, 1};
8. b′ ← A(C′b, C

′
1−b,“guess”);

9. if b = b′ then output ‘1’ else output ‘0’;

Why this definition is insufficient: Observe that be-
tween the two invocations of the adversary, UE is called
immediately followed by URe. The definition therefore does
not account for the situation in which an adversary chooses
the message to be encrypted with UE under either Alice or
Bob’s public key and gets to inspect the ciphertext output
by UE. Consequently, an algorithm that satisfies this defi-
nition will provide no assurance that key anonymity holds
for the ciphertexts output by UE. The definition does not
reflect the typical use-case of the adversary being able to
inspect the ciphertexts output by UE. Furthermore, this is
the only definition of security spelled out for the universal
re-encryption cryptosystem in [9].

Message indistinguishability of encryption and re-
encryption: Golle et al do not define semantic security
for the encryption operation nor for the re-encryption op-
eration. Section 3 reads “the properties of standard se-
mantic security and also universal semantic security un-
der re-encryption (as characterized by experiment uss) may
be shown straightforwardly to be reducible to the Decision
Diffie-Hellman (DDH) assumption over the group G, in much
the same way as the semantic security of ElGamal”. Section
5 indicates that UCS “inherits the semantic security property
of the underlying ElGamal cipher under the DDH assump-
tion”.

4.4 Cryptanalysis of UCS proofs
No proofs were given for UCS. It was claimed that stan-

dard semantic security and also universal semantic security
under re-encryption may be shown straightforwardly to be
reducible to the Decision Diffie-Hellman (DDH) assumption.
The scope of this is incomplete and the claim is not ac-
curate. The scope is incomplete since it does not address
key anonymity for the encryption operation. Regarding the
“straightforwardly” argument, we are unaware of any prior
DDH reduction technique that can be used to prove that key
anonymity holds for the encryption operation. The same ap-
plies for the re-encryption operation. We give details on this
below.

Consequently, proving that anonymity holds for encryp-
tion and re-encryption in UCS has been left open. There are
additional definitions and security arguments in Golle et al
centered around their mix applications. We analyze these
security arguments in Section 8.

In hindsight, we believe that the work of Golle et al was
an extremely insightful step in the right direction of laying

the foundation for universal re-encryption. In particular,
we commend their approach of having the adversary fully
specify the ciphertexts (messages and nonces) that are used
in forming the re-encryption challenge ciphertexts.

4.5 Post-mortem: the non-triviality of prov-
ing key anonymity

In light of this analysis it is natural to ask how non-trivial
it is to prove that key anonymity holds for a universal cryp-
tosystem. We address this in this subsection. Before we
start we need to define precisely what we mean by key
anonymity for UENCR. We remark that we use stateful ad-
versaries A in our definitions of security.

Definition 1. If ∀ probabilistic polytime adversaries A,
∀ α > 0, and ∀ sufficiently large κ, after the following,

1. generate ((p, q), g)← IG(κ)
2. generate (yj , xj)← UGEN((p, q), g) for j = 0, 1
3. m← A((p, q), g, y0, y1,“specify message”)
4. if m /∈ Gp then output “false” and halt
5. generate r ∈U [1, q]× [1, q] and u ∈U {0, 1}
6. c← UENCR(m, r, (yu, g, p))
7. u′ ← A(c,“guess”)
8. if u = u′ then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then UENCR is key-anonymous.

The adversary is said to succeed if his u = u′. Consider
the following fatally flawed proof that key anonymity holds
for UENCR.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ, such
that A succeeds with probability greater than or equal to
1
2

+ 1
κα

. Consider algorithm AlgA that takes as input a DDH
problem instance ((p, q), g, a0, b0, c0).

AlgA((p, q), g, a0, b0, c0):
1. set (αj , yj , µj)← DDHRerand((p, q), g, a0, b0, c0)

for j = 0, 1
2. m← A((p, q), g, y0, y1,“specify message”)
3. if m /∈ Gp then output “false” and halt
4. generate u ∈U {0, 1} and r ∈U [1, q]
5. set c← ((A0, B0), (A1, B1))← ((gr, yru), (αu, µum))
6. u′ ← A(c,“guess”)
7. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerand that c is an encryp-
tion of m using yu as the public key in accordance with
UENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Def-
inition 1. It follows that u = u′ with probability greater
than or equal to 1

2
+ 1

κα
. So, for random exponents a and

b in [1, q], Pr[AlgA((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

.

Define ψ = Pr[AlgA((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-

tuple. It follows from the definition of DDHRerand that the
3-tuple (αu, yu, µu) is uniformly distributed in G3

p. There-
fore, (A1, B1) is uniformly distributed in G2

p. Since r is

randomly chosen, (A0, B0) is a proper ElGamal encryption
of unity under yu. Let p1 be the probability that A re-
sponds with u′ = 0. Then the probability that u = u′ is
1
2
p1 + 1

2
(1 − p1) = 1

2
. So, for randomly chosen exponents

a, b, and c in [1, q], Pr[AlgA((p, q), g, ga, gb, gc) = “true”]

= q2

q3
ψ + (1− q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

Observe that if the input is a DH 3-tuple then the reduc-
tion algorithm passes a proper universal encryption to the
adversary. But if the input is not a DH 3-tuple then an
ElGamal encryption of unity and an unconditionally secure
encryption of m is passed to the adversary. This 4-tuple is
in fact an unconditionally secure encryption of m. The ad-
versary already “knows” that (A0, B0) encrypts unity. The
problem is that this unconditionally secure encryption of m
does not appear to be sufficient to prove that key anonymity
holds. The ElGamal encryption of unity could potentially
reveal the underlying public key to the adversary. More
concretely, the following probabilistic polynomial time ad-
versary could exist:

1. A computes the base g discrete logarithm of A0 to get r

2. A computes yu = Br
−1

0 mod p
3. A outputs u “with non-negligible advantage”

The argument therefore cannot be made that“A can do no
better than guess u”. With this adversary there is no poly-
time observable difference in behavior with which to solve
DDH.

Alternatively, suppose that the reduction algorithm in-
vokes DDHRerand twice on the input problem instance in an
effort to unconditionally hide the whole universal cipher-
text. The problem here is that the common “public key” y
no longer exists1 between the two output 3-tuples.

The same challenge arises in proving that key anonymity
holds for the re-encryption operation. So, we believe that
this demonstrates that proving that key anonymity holds for
encryption and re-encryption is non-trivial. We solve this
problem by generalizing the DDH random self-reduction.

5. NEW CONSTRUCTION: EXPANDED
DDH SELF-REDUCTION

We now generalize the DDH random self-reduction to out-
put five values instead of three. This allows us to trans-
form a DDH problem instance into either two DH 3-tuples
with a common “public key” or a random 5-tuple, depend-
ing on the input problem instance. We utilize this feature
in our proofs of security in Sections 6 and 7. We define al-
gorithm DDHRerand5 as follows. DDHRerand5((p, q), g, x, y, z)
randomizes a DDH problem instance by choosing the values
u1, u2, v, v

′, u′1 ∈U [1, q] and computing,

(x′′, x′, y′, z′, z′′)←
(xv
′
gu
′
1 , xvgu1 , ygu2 , zvyu1xvu2gu1u2 , zv

′
yu
′
1xv
′u2gu

′
1u2)

Case 1. Suppose (x, y, z) is a valid Diffie-Hellman (DH) 3-
tuple. Then x = ga, y = gb, z = gab for some a, b. It follows
that (x′, y′, z′) is also a valid DH 3-tuple. It is straightfor-
ward to show that (x′′, y′, z′′) is a valid DH 3-tuple as well.

1With overwhelming probability.

Case 2. Suppose (x, y, z) is not a valid DH 3-tuple. Then
x = ga, y = gb, z = gab+c for some c 6= 0. In this case,

x′ = ga
′
, y′ = gb

′
, z′ = ga

′b′gcv. Since c 6= 0 it follows

that gc is a generator of Gp. Also, x′′ = ga
′′

, y′ = gb
′
,

z′′ = ga
′′b′gcv

′
.

So, when (x, y, z) is a valid DH 3-tuple then (x′, y′, z′) and
(x′′, y′, z′′) are random DH 3-tuples with y′ in common and
when (x, y, z) is not a valid DH 3-tuple then the output is a
random 5-tuple.

6. PROVABLY SECURE UNIVERSAL RE-
ENCRYPTION

6.1 Our re-encryption algorithm
We now present our modification to UCS that we call URE.

It is equivalent to UCS with the exception of how the re-
randomization operation is performed.

Universal Re-encryption: The following is the universal
re-encryption operation,

URENCR(((a0, b0), (a1, b1)), (`0, `1), p)

The pair ((a0, b0), (a1, b1)) is a universal ciphertext produced
using UENCR and the value (`0, `1) ∈U [1, q]× [1, q] is a pair

of re-encryption nonces. Compute (α0, β0) ← (a0a
`0
0 mod

p, b0b
`0
0 mod p) and compute (α1, β1)← (a1a

`1
0 mod p, b1b

`1
0

mod p). Output the ciphertext c← ((α0, β0), (α1, β1)).

The encryption nonces are parameterized to facilitate our
proofs of security. The URE cryptosystem is the 4-tuple
(UGEN, UENCR, URENCR, UDECR).

Note the difference between URENC and URENCR. In URENCR

we perform an additional pairwise multiplication by (a0, b0).
We do so since we believe it makes our reduction proofs more
straightforward than had we used URENC.

6.2 Security proof of universal re-encryption
In this section we prove that URE achieves semantically

secure anonymity that we define as follows.

Definition 2. If a universal public key cryptosystem URE

consisting of algorithms UGEN, UENCR, URENCR, and UDECR has
the following properties:

1. UENCR satisfies message indistinguishability.
2. UENCR satisfies key anonymity.
3. URENCR satisfies message indistinguishability.
4. URENCR satisfies key anonymity.

then URE is secure in the sense of semantically secure
anonymity.

The below message indistinguishability definition has been
adapted from [7, 16].

Definition 3. If ∀ probabilistic polytime adversaries A,
∀ α > 0, and ∀ sufficiently large κ, after the following,

1. generate ((p, q), g)← IG(κ)
2. compute (y, x)← UGEN((p, q), g)
3. (m0,m1)← A((p, q), g, y,“specify messages”)
4. if (m0 /∈ Gp or m1 /∈ Gp or m0 = m1)

then output “false” and halt
5. (k0, k1) ∈U [1, q]× [1, q]
6. b ∈U {0, 1}, compute c← UENCR(mb, (k0, k1), (y, g, p))
7. b′ ← A(c,“guess”)
8. if b = b′ then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then UENCR is secure in the sense of message

indistinguishability.

Theorem 1. If DDH is hard then UENCR is secure in the
sense of message indistinguishability.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ, such
that A succeeds with probability greater than or equal to
1
2

+ 1
κα

. Consider algorithm AlgR1 that takes as input a
DDH problem instance ((p, q), g, a0, b0, c0).

AlgR1((p, q), g, a0, b0, c0):
1. set (A′, A, y,R,R′)← DDHRerand5((p, q), g, a0, b0, c0)
2. (m0,m1)← A((p, q), g, y,“specify messages”)
3. if (m0 /∈ Gp or m1 /∈ Gp or m0 = m1) then

output “false” and halt
4. b ∈U {0, 1}
5. c← ((A0, B0), (A1, B1))← ((A′, R′), (A,Rmb))
6. b′ ← A(c,“guess”)
7. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerand5 that c is an encryp-
tion of mb according to UENCR using y as the public key.
Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 3. It
follows that b = b′ with probability greater than or equal
to 1

2
+ 1

κα
. So, for random exponents a and b in [1, q],

Pr[AlgR1((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. Define

ψ = Pr[AlgR1((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-

tuple. It follows from the definition of DDHRerand5 that
(A′, A, y,R,R′) is uniformly distributed in G5

p. Therefore, c
is uniformly distributed in G2

p × G2
p. Let p1 be the prob-

ability that A responds with b′ = 0. Then the proba-
bility that b = b′ is 1

2
p1 + 1

2
(1 − p1) = 1

2
. So, for ran-

domly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR1((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

We now prove that URENCR is secure in the sense of message
indistinguishability.

Definition 4. If ∀ probabilistic poly-time adversaries A,
∀ α > 0, and ∀ sufficiently large κ, after the following,

1. generate ((p, q), g)← IG(κ), (y, x)← UGEN((p, q), g)
2. (m0,m1, r0, r1)← A((p, q), g, y,“specify ciphertexts”)
3. if ((m0,m1) /∈ Gp ×Gp or m0 = m1) then

output “false” and halt
4. if (r0 /∈ [1, q]× [1, q] or r1 /∈ [1, q]× [1, q]) then

output “false” and halt
5. b ∈U {0, 1}
6. c← UENCR(mb, rb, (y, g, p))
7. r ∈U [1, q]× [1, q]
8. c′ ← URENCR(c, r, p)
9. b′ ← A(c′,“guess”)
10. if b = b′ then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then URENCR is secure in the sense of message

indistinguishability.

Theorem 2. If DDH is hard then URENCR is secure in the
sense of message indistinguishability.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ, such
that A succeeds with probability greater than or equal to
1
2

+ 1
κα

. Consider algorithm AlgR2 that takes as input a
DDH problem instance ((p, q), g, a0, b0, c0).

AlgR2((p, q), g, a0, b0, c0):
1. set (α′, α, y, µ, µ′)← DDHRerand5((p, q), g, a0, b0, c0)
2. (m0,m1, r0, r1)← A((p, q), g, y,“specify ciphertexts”)
3. if ((m0,m1) /∈ Gp ×Gp or m0 = m1) then

output “false” and halt
4. if (r0 /∈ [1, q]× [1, q] or r1 /∈ [1, q]× [1, q]) then

output “false” and halt
5. b ∈U {0, 1}
6. ((A0, B0), (A1, B1))← UENCR(mb, rb, (y, g, p))
7. c′ ← ((A0α

′, B0µ
′), (A1α,B1µ))

8. b′ ← A(c′,“guess”)
9. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly
((A0, B0), (A1, B1)) is the ciphertext of mb as specified by
adversary A. It follows from the definition of DDHRerand5

that c′ is a re-encryption of ((A0, B0), (A1, B1)) according to
URENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Defini-
tion 4. It follows that b = b′ with probability greater than or
equal to 1

2
+ 1

κα
. So, for random exponents a and b in [1, q],

Pr[AlgR2((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. Define the

value ψ to be Pr[AlgR2((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-

tuple. It follows from the definition of DDHRerand5 that
(α′, α, y, µ, µ′) is uniformly distributed in the set G5

p. There-
fore, c′ is uniformly distributed in G2

p × G2
p. Let p1 be the

probability that A responds with b′ = 0. Then the prob-
ability that b = b′ is 1

2
p1 + 1

2
(1 − p1) = 1

2
. So, for ran-

domly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR2((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

We now prove that UENCR is key-anonymous.

Theorem 3. If DDH is hard then algorithm UENCR is key-
anonymous.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ, such
that A succeeds with probability greater than or equal to
1
2

+ 1
κα

. Consider algorithm AlgR3 that takes as input a
DDH problem instance ((p, q), g, a0, b0, c0).

AlgR3((p, q), g, a0, b0, c0):
1. set (α′j , αj , yj , µj , µ

′
j)←

DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1
2. m← A((p, q), g, y0, y1,“specify message”)
3. if m /∈ Gp then output “false” and halt
4. generate u ∈U {0, 1}
5. set c← ((A0, B0), (A1, B1))← ((α′u, µ

′
u), (αu, µum))

6. u′ ← A(c,“guess”)
7. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerand5 that c is an encryp-
tion of m in accordance with UENCR using yu as the public

key. Therefore, the input to A is drawn from the same set
and probability distribution as the input to A in Definition
1. It follows that u = u′ with probability greater than or
equal to 1

2
+ 1

κα
. So, for random exponents a and b in [1, q],

Pr[AlgR3((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. Define ψ

= Pr[AlgR3((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple.

It follows from the definition of DDHRerand5 that the 5-tuple
(α′u, αu, yu, µu, µ

′
u) is uniformly distributed in G5

p. There-
fore, c is uniformly distributed in G2

p × G2
p. Let p1 be the

probability that A responds with u′ = 0. Then the prob-
ability that u = u′ is 1

2
p1 + 1

2
(1 − p1) = 1

2
. So, for ran-

domly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR3((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

We now prove that URENCR is key-anonymous.

Definition 5. If ∀ probabilistic polytime adversaries A,
∀ α > 0, and ∀ sufficiently large κ, after the following,

1. generate ((p, q), g)← IG(κ)
2. (yj , xj)← UGEN((p, q), g) for j = 0, 1
3. (m, (k0, k1))← A((p, q), g, y0, y1,“specify ciphertext”)
4. if (m /∈ Gp or (k0, k1) /∈ [1, q]× [1, q]) then

output “false” and halt
5. u ∈U {0, 1}
6. c← ((a0, b0), (a1, b1))← UENCR(m, (k0, k1), (yu, g, p))
7. generate r ∈U [1, q]× [1, q]
8. set c′ ← URENCR(c, r, p)
9. u′ ← A(c′,“guess”)
10. if u = u′ then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then URENCR is key-anonymous.

Theorem 4. If DDH is hard then the algorithm URENCR

is key-anonymous.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ such
thatA succeeds with probability greater than or equal to 1

2
+

1
κα

. Consider algorithm AlgR4 that takes as input a Decision
Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgR4((p, q), g, a0, b0, c0):
1. (α′j , αj , yj , µj , µ

′
j)←

DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1
2. (m, (k0, k1))← A((p, q), g, y0, y1,“specify ciphertext”)
3. if (m /∈ Gp or (k0, k1) /∈ [1, q]× [1, q]) then

output “false” and halt
4. u ∈U {0, 1}
5. ((A0, B0), (A1, B1))← UENCR(m, (k0, k1), (yu, g, p))
6. c′ ← ((A′0, B

′
0), (A′1, B

′
1))←

((A0α
′
u, B0µ

′
u), (A1αu, B1µu))

7. u′ ← A(c′,“guess”)
8. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly
((A0, B0), (A1, B1)) is the ciphertext under public key yu as
specified by A. It follows from the definition of DDHRerand5
that c′ is a re-encryption of ((A0, B0), (A1, B1)) in accor-
dance with URENCR. Therefore, the input to A is drawn from
the same set and probability distribution as the input toA in

Definition 5. It follows that u = u′ with probability greater
than or equal to 1

2
+ 1
κα

. So, for random exponents a and b in

[1, q], Pr[AlgR4((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. De-

fine the value ψ to be Pr[AlgR4((p, q), g, ga, gb, gab) =“true”].
Now consider the case that the input is not a DH 3-tuple.

It follows from definition of DDHRerand5 that the 5-tuple
(α′u, αu, yu, µu, µ

′
u) is uniformly distributed in G5

p. There-
fore, c′ is uniformly distributed in G2

p × G2
p. Let p1 be the

probability that A responds with u′ = 0. Then the prob-
ability that u = u′ is 1

2
p1 + 1

2
(1 − p1) = 1

2
. So, for ran-

domly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR4((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

Theorems 1, 2, 3, and 4 show the following.

Theorem 5. If DDH is hard then URE is secure in the
sense of semantically secure anonymity.

7. CRYPTANALYSIS OF INCOMPARABLE
PUBLIC KEYS

An incomparable public key has the property that it can
be changed over time to conceal the owner of the key. This
can be used to hide the identity of receivers from message
senders. In this section we review the security foundation of
the ElGamal-based incomparable public key cryptosystem,
cryptanalyze it, and then present the first proof that it is
secure under DDH.

Define IGEN((p, q), g) to be an algorithm that outputs the
tuple ((gk, yk), x) where y = gx mod p and k, x ∈U [1, q]. Let
(a, b) denote the incomparable public key (gk, yk). The cor-
responding private key is x. Let IRR((p, q), (a, b)) denote the
incomparable public key re-randomization function. This
function outputs (ar mod p, br mod p) where r ∈U [1, q].

Waters et al claim in the introduction of [21] that they
prove that the cryptographic properties of their cryptosys-
tem hold under the assumption that DDH is hard. The ap-
pendices present the definition and proofs of incomparability
and key-privacy. The reduction proofs define experiments
that take as input algorithms and a “common key” (which
in the case of ElGamal is the global ElGamal modulus p).
Nowhere in their reduction algorithms do they take a DDH
problem instance as input. Consequently, the security of the
incomparable public key cryptosystem was not tied to DDH
in any meaningful way. Therefore, security was not shown
to hold under DDH. We now prove that the incomparability
property holds under DDH.

Definition 6. If ∀ probabilistic polytime adversaries A,
∀ α > 0, and ∀ sufficiently large κ, after the following,

1. generate ((p, q), g)← IG(κ)
2. ((ai, bi), xi)← IGEN((p, q), g) for i = 0, 1
3. t ∈U {0, 1}, y0 = gx0mod p, y1 = gx1mod p
4. (a2, b2)← IRR((p, q), (at, bt))
5. t′ ← A((p, q), g, (a0, b0, y0), (a1, b1, y1), (a2, b2))
6. if t = t′ then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then (IGEN, IRR) is secure in the sense of in-

comparability.

Note that we give the adversary y0 and y1. This is in-
formation that adversaries in practice might not have. But
it is perfectly okay to give it to the adversary as auxiliary
information.

Theorem 6. If DDH is hard then (IGEN, IRR) is secure
in the sense of incomparability.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, and a sufficiently large κ, such
that A succeeds with probability greater than or equal to
1
2

+ 1
κα

. Consider algorithm AlgB that takes as input a DDH
problem instance ((p, q), g, a0, b0, c0).

AlgB((p, q), g, a0, b0, c0):
1. (A′0, A0, y0, R0, R

′
0)← DDHRerand5((p, q), g, a0, b0, c0)

2. (A′1, A1, y1, R1, R
′
1)← DDHRerand5((p, q), g, a0, b0, c0)

3. t ∈U {0, 1}
4. t′ ← A((p, q), g, (A0, R0, y0), (A1, R1, y1), (A′t, R

′
t))

5. if t = t′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerand5 that (Ai, Ri) is a
proper incomparable public key with underlying trapdoor
value yi under IGEN for i = 0, 1. It also follows that (A′t, R

′
t)

is a proper re-randomization of (At, Rt) under IRR. There-
fore, the input to A is drawn from the same set and prob-
ability distribution as the input to A in Definition 6. It
follows that t = t′ with probability greater than or equal
to 1

2
+ 1

κα
. So, for random exponents a and b in [1, q],

Pr[AlgB((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. Define ψ =

Pr[AlgB((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-

tuple. It follows from the definition of DDHRerand5 that
(A0, R0, y0, A1, R1, y1, A

′
t, R
′
t) is uniformly distributed inG8

p.
Let p1 be the probability that A responds with t′ = 0. Then
the probability that t = t′ is 1

2
p1 + 1

2
(1 − p1) = 1

2
. So, for

randomly chosen exponents a, b, and c in [1, q], the probabil-

ity Pr[AlgB((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1− q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

Collectively, the security arguments for UCS and incompa-
rable cryptosystems point towards a trend of claiming secu-
rity with respect to DDH but not proving it. We hope that
this observation and the reduction techniques we presented
will help improve future work.

We point out that both UCS and incomparable public keys
exhibit the same challenge in proving that they achieve the
anonymity property. In the case of UCS the reduction algo-
rithm presents to the adversary an encryption of unity and
an encryption of a message under a common public key. For
the incomparable public key proof the reduction algorithm
presents to the adversary two encryptions of unity under a
common public key. DDHRerand5 allows the 4-tuple to be:
two ElGamal encryptions under a common key, or a ran-
dom 4-tuple depending on the DDH problem instance. It
does not appear that the classic DDH self-reduction allows
for this.

8. FORWARD-ANONYMOUS BATCH MIX
Golle et al used the universal cryptosystem to construct

a forward anonymous mix protocol centered around the use

of a bulletin board. The number of ciphertexts on the board
can vary over time. Servers download the ciphertexts from
the board, re-randomize them, and then upload them in
permuted order. We instead chose to analyze a batch mix
that mixes a fixed number of ciphertexts. We consider this
case since: (1) it is concrete in the sense that a fixed size
vector of ciphertexts needs to be anonymized and this gives a
precise level of anonymity (fixed-size random permutation),
and (2) we achieve low-latency since once the batch forms at
the first mix the ciphertexts are pushed through the cascade
of mixes rapidly.

We point out that the security arguments of Golle et al
for their proposed mixes are flawed:

1. Not tied to DDH: None of the proofs in the paper
take a DDH problem instance as input. It follows that
they did not prove that security holds under DDH.

2. Not randomized reductions: None of the input
problem instances in the paper are randomized. It
is well-known that randomized reductions are stronger
than non-randomized ones.

Consequently the security of their mixes were not tied to
the DDH problem as claimed. This left as open the prob-
lem of proving the security of universal re-encryption batch
mixing. We solve this problem in this section.

Informally, the problem we consider is to establish an ex-
ternally anonymous communication channel. A set of w
senders s1, s2, ..., sw want to send messages m1,m2, ...,mw

respectively, to a target set of w receivers r1, r2, ..., rw. Con-
sider the case that si sends a message to sj where i, j ∈
{1, 2, ..., w}. We want an eavesdropper to have negligible
advantage in correlating the initial ciphertext that si sends
out with the public key of rj . In other words, the eavesdrop-
per has negligible advantage over guessing the receiver.

The solution must be forward-anonymous: an adversary
that compromises a mix server cannot break the anonymity
of previously transmitted ciphertexts. The solution must be
robust in that anonymity holds as long as there is at least
one mix server not compromised by the adversary.

Note that a receiver of a message can determine who the
sender of the message is. The receiver is able to decipher
the ciphertext right when the sender transmits it to the first
mix. Anonymity is against external adversaries.

Definition 7. A forward-anonymous batch mix proto-
col, denoted by FBMIX, is a 4-tuple of algorithms FBGEN,
FBENCR, FBMIXER, and FBDECR where FBGEN generates a key
pair for each receiver, where FBENCR encrypts the messages
of the senders, where the FBMIXER servers are connected in
series and they mix received ciphertexts and forward them
on, that satisfies the following properties for all probabilistic
polynomial-time passive adversaries A:

1. FBENCR Confidentiality: The ciphertexts output by al-
gorithm FBENCR satisfy the message indistinguishabil-
ity property with respect to A (Definition 10).

2. FBMIXER Confidentiality: The ciphertexts output by
FBMIXER satisfy message indistinguishability with re-
spect to A (Definition 11)

3. FBENCR Anonymity: The ciphertexts output by FBENCR

satisfy key anonymity with respect to A (Definition 8).

4. FBMIXER Anonymity: The ciphertexts output by algo-
rithm FBMIXER satisfy anonymity with respect to A
(Definition 9).

5. Forward-Anonymity: The FBMIXER servers have no se-
cret key material.

6. Robustness: Anonymity of FBMIX holds provided at
least one FBMIXER server is not compromised by A.

7. Completeness: ∀ i ∈ {1, 2, ..., w}, when sender si sends
mi to rj where j ∈ {1, 2, ..., w} then rj receives mi.

8. Low-Latency: Once w ciphertexts arrive at the first
FBMIXER server, the batch moves through the mix at a
speed limited only by the time to re-encrypt, permute,
and forward.

We instantiate the mix as follows.

FBGEN((p, q), g):
1. (yi, xi)← UGEN((p, q), g) for i = 1, 2, ..., w
2. output ((y1, x1), (y2, x2), ..., (yw, xw))

Let σi be the index of the receiver of the message of sender
i. For example, if s1 sends to s3 then σ1 = 3.

FBENCR(p, g,(m1, (k1,0, k1,1), σ1), ...,
(mw, (kw,0, kw,1), σw), y1, y2, ..., yw):

1. ci ← UENCR(mi, (ki,0, ki,1), (yσi , g, p)) for i = 1, 2, ..., w
2. output (c1, c2, ..., cw)

Define set S to be {1, 2, ..., w}. Let π be a permutation
from S onto S. Define fp(π, c1, c2, ..., cw) to be a func-
tion that outputs (cπ(1), cπ(2), ..., cπ(w)). Let the algorithm

fpinv(π, cπ(1), cπ(2), ..., cπ(w)) be a function that uses π−1 to
output the tuple (c1, c2, ..., cw).

FBMIXER(p, π, (c1,(`1,0, `1,1)), (c2, (`2,0, `2,1)), ...,
(cw, (`w,0, `w,1))):

1. c′i ← URE(ci, (`i,0, `i,1), p) for i = 1, 2, ..., w
2. output fp(π, c′1, c

′
2, ..., c

′
w)

The break statement terminates the execution of the near-
est enclosing for loop in which break appears.

FBDECR(p, c1, c2, ..., cw, x1, x2, ..., xw):
1. let L be the empty list
2. for i in 1 to w:
3. for j in 1 to w:
4. (m, s)← UDECR(ci, xj , p)
5. if s = true
6. append (m, j) to L
7. break

8. output L

There are four stages in the mix protocol. The mix proto-
col leverages N mix servers labeled 1, 2, ..., N and they are
connected in series.

Stage 1: rj generates a key pair (yj , xj) using UGEN and
publishes yj for j = 1, 2, ..., w. This stage is effectively
FBGEN.

Stage 2: Sender si formulates a message mi to send to re-
ceiver rj . si generates (ki,0, ki,1) ∈U [1, q]× [1, q] and com-
putes ci ← UENCR(mi, (ki,0, ki,1), (yσi , g, p)). si sends ci to
Mix 1 for i = 1, 2, ..., w. This stage is effectively FBENCR.

Stage 3: Mix k where 1 ≤ k ≤ N operates as follows. It
waits until a full batch of w ciphertexts c1, c2, ..., cw arrive. It
then generates (`i,0, `i,1) ∈U [1, q] × [1, q] for i = 1, 2, ..., w.
It generates a permutation π from S onto S uniformly at
random. It then computes,

(c′π(1), c
′
π(2), ..., c

′
π(w))← FBMIXER(p, π,

(c1, (`1,0, `1,1)), (c2, (`2,0, `2,1)), ..., (cw, (`w,0, `w,1)))

If k < N then (c′π(1), c
′
π(2), ..., c

′
π(w)) is sent to mix k + 1.

If k = N then (c′π(1), c
′
π(2), ..., c

′
π(w)) is posted to a public

bulletin board. Each of these mixes is effectively FBMIXER.

Stage 4: rj for j = 1, 2, ..., w downloads all w ciphertexts
from the bulletin board. rj attempts decryption of every
single one of the ciphertexts using xj . In so doing, rj receives
zero or more messages. If there is no i for which σi = j then
rj receives no messages. This stage is effectively FBDECR.

We can improve the performance of Stage 4 in the case
that every receiver gets only one message from a sender. In
this scenario, a receiver can pull down the ciphertexts from
the bulletin board one by one and then stop when a cipher-
text is received that properly decrypts. The batch mix pro-
vides external anonymity thereby breaking the link between
senders and receivers. This use case would fail completely
were the senders to post their key anonymous ciphertexts
directly to the bulletin board. To see this, note that a pas-
sive eavesdropper would know the sender of each ciphertext
on the bulletin board. The eavesdropper would then know
who the receiver is of a given ciphertext based on when the
receiver stops pulling down ciphertexts.

9. SECURITY OF FBMIX
Where possible we allow the adversary to choose the re-

ceivers of messages in FBMIX. For example, the adversary
can have Alice and Bob send messages to the same receiver,
Carol. Consequently, many senders can send messages to the
same receiver. As a result we need to generalize DDHRerand5

from Section 5. It generalizes to produce more DH 3-tuples
with a common “public key” in the same way that the DDH
random self-reduction generalized to form DDHRerand5.

To make the pattern clear we define DDHRerand7 as fol-
lows. The algorithm DDHRerand7((p, q), g, x, y, z) random-
izes a DDH problem instance by choosing the exponents
u1, u2, v, v

′, v′′, u′1, u
′′
1 ∈U [1, q] and computing,

(x′′′, x′′, x′, y′, z′, z′′, z′′′)← (xv
′′
gu
′′
1 , xv

′
gu
′
1 , xvgu1 , ygu2 ,

zvyu1xvu2gu1u2 , zv
′
yu
′
1xv

′u2gu
′
1u2 , zv

′′
yu
′′
1 xv

′′u2gu
′′
1 u2)

and so on for ever more “v primes” and “u1 primes”.
For ease of use we parameterize this DDH generalization

as follows. Let DDHRerandN((p, q), g, x, y, z, t) be a DDH
self-reduction algorithm that outputs a set T containing t
3-tuples. Define, the set T = {(A1, B1, R1),(A2, B2, R2),
...,(At, Bt, Rt)}.

The algorithm has these properties: (1) when the input
(x, y, z) is a DH 3-tuple then all t output 3-tuples are ran-
dom DH 3-tuples but with the middle term in common,
and (2) when the input (x, y, z) is not a DH 3-tuple then
A1,A2,...,At,B1,R1,R2,...,Rt ∈U Gp and B1 = B2 = ... = Bt.
DDHRerandN((p, q), g, x, y, z, 2) is logically equivalent to al-

gorithm DDHRerand5. To see this, note that the algorithm

DDHRerandN((p, q), g, x, y, z, 2) outputs the set of tuples T =
{(A1, B1, R1), (A2, B2, R2)} which, rearranging and drop-
ping the B2 yields the 5-tuple (A1, A2, B1, R2, R1). Observe
that B1 = B2.

Let GetMiddle(T) to be a function that on input a set
T that is output by DDHRerandN, selects a tuple in T and
returns the middle value in it. All middle values are the
same so it doesn’t matter which tuple is selected. We now
address key anonymity for FBENCR.

Definition 8. If ∀ probabilistic polytime adversaries A,
∀ α > 0, ∀ i ∈ {1, 2, ..., w}, and ∀ sufficiently large κ, af-
ter the following,

1. generate ((p, q), g)← IG(κ)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN((p, q), g)
3. (m1,m2, ...,mw)← A((p, q), g, y1, y2, ..., yw,

“specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then

output “false” and halt
5. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
6. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
7. (c1, c2, ..., cw)← FBENCR(p, g, (m1, (k1,0, k1,1), σ1), ...,

(mw, (kw,0, kw,1), σw), y1, y2, ..., yw)
8. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

9. if σi = σ′i then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

w
+ 1

κα
then FBENCR is secure in the sense of key

anonymity.

Theorem 7. If DDH is hard then algorithm FBENCR is
secure in the sense of key anonymity.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, an i ∈ {1, 2, ..., w}, and a suffi-
ciently large κ, such thatA succeeds with probability greater
than or equal to 1

w
+ 1

κα
. Consider algorithm AlgR9 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR9((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w)

for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. (m1,m2, ...,mw)← A((p, q), g, y1, y2, ..., yw,

“specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then

output “false” and halt
5. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
6. for j in 1..w do:
7. extract a tuple (A0, B0, R0) without replacement

from Tσj
8. extract a tuple (A1, B1, R1) without replacement

from Tσj
9. cj ← ((A0, R0), (A1, R1mj))
10. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

11. if σi = σ′i then output “true” else output “false”’

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerandN that cj is a proper
encryption of mj using public key yσj for j = 1, 2, ..., w un-
der FBENCR. Therefore, the input to A is drawn from the
same set and probability distribution as the input to A in
Definition 8. It follows that σi = σ′i with probability greater
than or equal to 1

w
+ 1

κα
. So, for random exponents a and

b in [1, q], Pr[AlgR9((p, q), g, ga, gb, gab) = “true”] ≥ 1
w

+ 1
κα

.

Define ψ = Pr[AlgR9((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-

tuple. It follows from the definition of DDHRerandN that cj
is uniformly distributed in G2

p ×G2
p and yj is uniformly dis-

tributed in Gp for j = 1, 2, ..., w. Let pj be the probability
that A responds with σ′i = j for j = 1, 2, ..., w. Then the
probability that σi = σ′i is 1

w
p1 + 1

w
p2 + ... + 1

w
pw = 1

w
.

So, for randomly chosen exponents a, b, and c in [1, q],

Pr[AlgR9((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
w

which is overwhelmingly close to 1
w

.

We now address key anonymity for FBMIXER.

Definition 9. If ∀ probabilistic polytime adversaries A,
∀ α > 0, ∀ i ∈ {1, 2, ..., w}, and ∀ sufficiently large κ, af-
ter the following,

1. generate ((p, q), g)← IG(κ)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN((p, q), g)
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))← A((p, q), g,

y1, y2, ..., yw,“specify ciphertexts and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then

output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then

output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then

output “false” and halt
7. (c1, c2, ..., cw)← FBENCR(p, g, (m1, r1, σ1), ...,

(mw, rw, σw), y1, y2, ..., yw)
8. µj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
9. select a permutation π from S onto S

uniformly at random
10. (c′π(1), c

′
π(2), ..., c

′
π(w))←

FBMIXER(p, π, (c1, µ1), (c2, µ2), ..., (cw, µw))
11. π′ ← A(c′π(1), c

′
π(2), ..., c

′
π(w),“guess”)

12. if π′(i) = π(i) then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

w
+ 1
κα

then FBMIXER is secure in the sense of anonymity.

Theorem 8. If DDH is hard then FBMIXER is secure in
the sense of anonymity.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, an i ∈ {1, 2, ..., w}, and a suffi-
ciently large κ, such thatA succeeds with probability greater
than or equal to 1

w
+ 1

κα
. Consider algorithm AlgR10 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR10((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w)

for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))←

A((p, q), g, y1, y2, ..., yw,
“specify ciphertexts and receivers”)

4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then
output “false” and halt

5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then
output “false” and halt

6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then
output “false” and halt

7. (c1, c2, ..., cw)← FBENCR(p, g, (m1, r1, σ1), ...,

(mw, rw, σw), y1, y2, ..., yw)
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement

from Tσj
10. extract a tuple (A1, B1, R1) without replacement

from Tσj
11. ((α0, β0), (α1, β1))← cj
12. c′j ← ((α0A0, β0R0), (α1A1, β1R1))
13. select a permutation π from S onto S

uniformly at random
14. (c′π(1), c

′
π(2), ..., c

′
π(w))← fp(π, c′1, c

′
2, ..., c

′
w)

15. π′ ← A(c′π(1), c
′
π(2), ..., c

′
π(w),“guess”)

16. if π′(i) = π(i) then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly
the ciphertexts c1, c2, ..., cw are as specified by A. It fol-
lows from the definition of DDHRerandN that c′j is a proper
re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to A is drawn from the same set and prob-
ability distribution as the input to A in Definition 9. It
follows that π′(i) = π(i) with probability greater than or
equal to 1

w
+ 1
κα

. So, for random exponents a and b in [1, q],

Pr[AlgR10((p, q), g, ga, gb, gab) = “true”] ≥ 1
w

+ 1
κα

. Define

the value ψ = Pr[AlgR10((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple.

It follows from the definition of DDHRerandN that yj is uni-
formly distributed in Gp for j = 1, 2, ..., w and that c′j is

uniformly distributed in G2
p × G2

p for j = 1, 2, ..., w. Let
pj be the probability that A responds with π′(i) = j for
j = 1, 2, ..., w. Then the probability that π′(i) = π(i) is
1
w
p1 + 1

w
p2 + ... + 1

w
pw = 1

w
. So, for randomly chosen ex-

ponents a, b, and c in [1, q], Pr[AlgR10((p, q), g, ga, gb, gc) =

“true”] = q2

q3
ψ+ (1− q2

q3
) 1
w

which is overwhelmingly close to
1
w

.

We now address message indistinguishability.

Definition 10. If ∀ probabilistic polytime adversaries A,
∀ α > 0, ∀ i ∈ {1, 2, ..., w}, and ∀ sufficiently large κ, after
the following,

1. generate ((p, q), g)← IG(κ)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN((p, q), g)
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))
← A((p, q), g, y1, y2, ..., yw,

“specify messages and receivers”)
4. if ∃j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
5. if ∃j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then

output “false” and halt
6. if ∃j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then

output “false” and halt
7. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
8. bj ∈U {0, 1} for j = 1, 2, ..., w
9. (c1, c2, ..., cw)← FBENCR(p, g, (m1,b1 , (k1,0, k1,1), σ1), ...,

(mw,bw , (kw,0, kw,1), σw), y1, y2, ..., yw)
10. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

11. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then FBENCR is secure in the sense of message

indistinguishability.

Theorem 9. If DDH is hard then FBENCR is secure in the
sense of message indistinguishability.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, an i ∈ {1, 2, ..., w}, and a suffi-
ciently large κ, such thatA succeeds with probability greater
than or equal to 1

2
+ 1
κα

. Consider algorithm AlgR7 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR7((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w)

for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))

← A((p, q), g, y1, y2, ..., yw,
“specify messages and receivers”)

4. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or
mj,1 /∈ Gp) then output “false” and halt

5. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then
output “false” and halt

6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then
output “false” and halt

7. bj ∈U {0, 1} for j = 1, 2, ..., w
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement

from Tσj
10. extract a tuple (A1, B1, R1) without replacement

from Tσj
11. cj ← ((A0, R0), (A1, R1mj,bj))
12. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

13. if bi = b′i then output “true” else output “false”’

Consider the case that the input is a DH 3-tuple. It fol-
lows from the definition of DDHRerandN that cj is a proper
encryption of mj,bj using public key yσj for j = 1, 2, ..., w
under FBENCR. Therefore, the input to A is drawn from the
same set and probability distribution as the input to A in
Definition 10. It follows that bi = b′i with probability greater
than or equal to 1

2
+ 1

κα
. So, for random exponents a and

b in [1, q], Pr[AlgR7((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

.

Define ψ = Pr[AlgR7((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple.

It follows from the definition of DDHRerandN that cj is uni-
formly distributed in G2

p×G2
p and yj is uniformly distributed

in Gp for j = 1, 2, ..., w. Let p1 be the probability that A
responds with b′i = 0. Then the probability that bi = b′i is
1
2
p1+ 1

2
(1−p1) = 1

2
. So, for randomly chosen exponents a, b,

and c in [1, q], the probability Pr[AlgR7((p, q), g, ga, gb, gc) =

“true”] = q2

q3
ψ + (1− q2

q3
) 1
2

which is overwhelmingly close to
1
2
.

Definition 11. If ∀ probabilistic polytime adversaries A,
∀ α > 0, ∀ i ∈ {1, 2, ..., w}, and ∀ sufficiently large κ, after
the following,

1. generate ((p, q), g)← IG(κ)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN((p, q), g)
3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),

..., (mw,0,mw,1, rw,0, rw,1, σw))← A((p, q), g, y1, y2,
..., yw,“specify ciphertexts, receivers, and π”)

4. if π is not a permutation from S onto S then

output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then

output “false” and halt
7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or

rj,1 /∈ [1, q]× [1, q]) then output “false” and halt
8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then

output “false” and halt
9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR(p, g, (m1,b1 , r1,b1 , σ1), ...,

(mw,bw , rw,bw , σw), y1, y2, ..., yw)
11. rj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
12. (c′π(1), c

′
π(2), ..., c

′
π(w))←

FBMIXER(p, π, (c1, r1), (c2, r2), ..., (cw, rw))
13. (c′1, c

′
2, ..., c

′
w)← fpinv(π, c′π(1), c

′
π(2), ..., c

′
π(w))

14. (b′1, b
′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

15. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less
than 1

2
+ 1

κα
then FBMIXER is secure in the sense of message

indistinguishability.

Theorem 10. If DDH is hard then FBMIXER is secure in
the sense of message indistinguishability.

Proof. Suppose there exists a probabilistic polynomial
time adversary A, an α > 0, an i ∈ {1, 2, ..., w}, and a suffi-
ciently large κ, such thatA succeeds with probability greater
than or equal to 1

2
+ 1
κα

. Consider algorithm AlgR8 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR8((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w)

for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),

..., (mw,0,mw,1, rw,0, rw,1, σw))← A((p, q), g, y1, y2,
..., yw,“specify ciphertexts, receivers, and π”)

4. if π is not a permutation from S onto S then
output “false” and halt

5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or
mj,1 /∈ Gp) then output “false” and halt

6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then
output “false” and halt

7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or
rj,1 /∈ [1, q]× [1, q]) then output “false” and halt

8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then
output “false” and halt

9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR(p, g, (m1,b1 , r1,b1 , σ1), ...,

(mw,bw , rw,bw , σw), y1, y2, ..., yw)
11. for j in 1..w do:
12. extract a tuple (A0, B0, R0) without replacement

from Tσj
13. extract a tuple (A1, B1, R1) without replacement

from Tσj
14. ((α0, β0), (α1, β1))← cj
15. c′j ← ((α0A0, β0R0), (α1A1, β1R1))
16. (b′1, b

′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

17. if bi = b′i then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly
the ciphertexts c1, c2, ..., cw are as specified by A. It fol-
lows from the definition of DDHRerandN that c′j is a proper

re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to adversary A is drawn from the same set
and probability distribution as the input to A in Definition
11. It follows that bi = b′i with probability greater than or
equal to 1

2
+ 1

κα
. So, for random exponents a and b in [1, q],

Pr[AlgR8((p, q), g, ga, gb, gab) = “true”] ≥ 1
2

+ 1
κα

. Define the

value ψ = Pr[AlgR8((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple.

It follows from the definition of DDHRerandN that yj is uni-
formly distributed in Gp for j = 1, 2, ..., w and that c′j is

uniformly distributed in G2
p × G2

p for j = 1, 2, ..., w. Let p1
be the probability that A responds with b′i = 0. Then the
probability that bi = b′i is 1

2
p1 + 1

2
(1− p1) = 1

2
. So, for ran-

domly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR8((p, q), g, ga, gb, gc) = “true”] = q2

q3
ψ + (1 − q2

q3
) 1
2

which is overwhelmingly close to 1
2
.

Theorems 7, 8, 9, and 10 show that properties 1, 2, 3,
and 4 of a forward-anonymous batch mix hold, respectively.
The FBMIXER servers store no keys at all so the forward-
anonymity property holds (property 5). Theorem 8 proves
that anonymity holds from a single honest mix. Therefore,
the robustness property holds (property 6). Completeness
and low-latency are straightforward to show (properties 7
and 8). Theorem 11 therefore holds.

Theorem 11. If DDH is hard then FBMIX is a forward-
anonymous batch mix.

10. CONCLUSION
We cryptanalyzed the security foundation of universal re-

encryption and showed that the definition of security for it
was insufficient. We presented a new definition of security
for it that carefully handles message indistinguishability and
key anonymity for both encryption and re-encryption. We
also showed that the ElGamal based universal cryptosys-
tem and incomparable cryptosystem were not proven secure
under DDH as claimed. To address this we introduced a
new DDH proof technique and used it to prove that they
are secure under DDH. Finally, we presented a forward-
anonymous batch mix secure under DDH.

11. REFERENCES
[1] M. Bellare, A. Boldyreva, A. Desai, and

D. Pointcheval. Key-Privacy in Public-Key
Encryption. In Asiacrypt ’01, pages 566–582, 2001.

[2] D. Boneh. The Decision Diffie-Hellman Problem. In
Proceedings of the Third Algorithmic Number Theory
Symposium, pages 48–63, 1998.

[3] J. Camenisch and A. Lysyanskaya. A Formal
Treatment of Onion Routing. In Advances in
Cryptology—Crypto ’05, pages 169–187, 2005.

[4] G. Danezis. Breaking Four Mix-related Schemes Based
on Universal Re-encryption. Int. J. Inf. Sec.,
6(6):393–402, 2007.

[5] T. ElGamal. A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms. In
Advances in Cryptology—Crypto ’84, pages 10–18,
1985.

[6] P. Fairbrother. An Improved Construction for
Universal Re-encryption. In Privacy Enhancing
Technologies, pages 79–87, 2004.

[7] S. Goldwasser and S. Micali. Probabilistic Encryption.
Journal of Computer and System Sciences,
28(2):270–299, 1984.

[8] P. Golle. Reputable Mix Networks. In Privacy
Enhancing Technologies, pages 51–62, 2004.

[9] P. Golle, M. Jakobsson, A. Juels, and P. Syverson.
Universal Re-encryption for Mixnets. In CT-RSA
2004, pages 163–178, 2004.

[10] M. Gomu lkiewicz, M. Klonowski, and M. Kuty lowski.
Onions Based on Universal
Re-encryption—Anonymous Communication Immune
Against Repetitive Attack. In WISA, pages 400–410,
2004.

[11] J. Groth. Rerandomizable and Replayable Adaptive
Chosen Ciphertext Attack Secure Cryptosystems. In
Theory of Cryptography—TCC ’04, pages 152–170,
2004.

[12] S. Hohenberger, G. N. Rothblum, A. Shelat, and
V. Vaikuntanathan. Securely Obfuscating
Re-encryption. Journal of Cryptology, 24(4):694–719,
2011.

[13] M. Klonowski, M. Kuty lowski, A. Lauks, and
F. Zagórski. Universal Re-encryption of Signatures
and Controlling Anonymous Information Flow. In
WARTACRYPT, pages 179–188, 2004.

[14] M. Klonowski, M. Kuty lowski, and F. Zagórski.
Anonymous Communication with On-line and Off-line
Onion Encoding. In SOFSEM, pages 229–238, 2005.

[15] T. Lu, B. Fang, Y. Sun, and L. Guo. Some Remarks
on Universal Re-encryption and a Novel Practical
Anonymous Tunnel. In ICCNMC, pages 853–862,
2005.

[16] S. Micali, C. Rackoff, and B. Sloan. The Notion of
Security for Probabilistic Cryptosystems. SIAM
Journal on Computing, 17(2):412–426, 1988.

[17] M. Naor and O. Reingold. Number-Theoretic
Constructions of Efficient Pseudo-Random Functions.
In IEEE FOCS ’97, pages 458–467, 1997.

[18] M. Prabhakaran and M. Rosulek. Rerandomizable
RCCA Encryption. In Advances in
Cryptology—Crypto ’07, pages 517–534, 2007.

[19] M. Prabhakaran and M. Rosulek. Homomorphic
Encryption with CCA Security. In Automata,
Languages and Programming, pages 667–678, 2008.

[20] M. Stadler. Publicly Verifiable Secret Sharing. In
Advances in Cryptology—Eurocrypt ’96, pages
190–199, 1996.

[21] B. R. Waters, E. W. Felten, and A. Sahai. Receiver
Anonymity via Incomparable Public Keys. In ACM
CCS, pages 112–121, 2003.

