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Abstract. The notion of universal re-encryption is an established prim-
itive used in the design of many anonymity protocols. It allows anyone
to randomize a ciphertext without changing its size, without decrypting
it, and without knowing the receiver’s public key. By design it prevents
the randomized ciphertext from being correlated with the original ci-
phertext. We revisit and analyze the security foundation of universal
re-encryption and show that to date it has not had a satisfactory defini-
tion of security, in spite of its numerous uses. In modern times, a property
of a cryptosystem cannot be just a side effect of the specific tools used
in its first implementation; rather, a proper definition of correctness and
security are needed when a new cryptographic primitive is defined. We
demonstrate this by constructing a cryptosystem that satisfies the estab-
lished definition of a universal cryptosystem but that has an encryption
function that does not achieve anonymity; thereby forming a gap in the
definition of security of universal re-encryption. We then use this gap
to cryptanalyze and break the security definition of the mix applica-
tion of Golle et al. To correct this, we introduce a new definition that
includes the properties that are needed for a re-encryption cryptosys-
tem to achieve key anonymity for both the encryption function and the
re-encryption function building on “semantic security” and the original
notion of “key anonymity.” Our examples show that omitting any of our
requirements introduces a security weakness. We then introduce a new
(more flexible) generalization of the well-known Decision Diffie-Hellman
(DDH) random self-reduction and use it, in turn, to prove that the orig-
inal ElGamal-based universal cryptosystem of Golle et al is secure under
our revised security definition. As a new application, we present a novel
secure Forward-Anonymous Batch Mix.

1 Introduction

Nowadays, perhaps more then ever, anonymity tools are crucial for maintaining
basic civil liberties. For example, as a result of the whistle-blowing by Edward
Snowden, Americans and others have a better understanding of surveillance
states and the privacy risks they pose. This reinforces the need for anonymity
of communication, which, in fact, has been an active area of cryptographic re-
search since the 1980s with numerous propositions and tools, suitable for vari-
ous scenarios. Having a sound theoretical foundation for anonymity systems is



a critical component in achieving privacy of users in the same way that message
security is achieved by having a sound theoretical foundation for encryption. Ca-
menisch and Lysyanskaya, for example, presented a formal treatment of onion
routing [4] where prior work was comparatively informal with ad-hoc security
justifications. Onion routing falls into a class of anonymity systems known as
“decryption mixes”, since layers of ciphertext are shed as the onion makes its
way to the receiver.

In this work we present a formal treatment of a different fundamental class
of anonymous communication protocols, namely, those based on universal re-
encryption. This concept forms the basis of what has been called “re-encryption
mixes”. Golle, Jakobsson, Juels, and Syverson introduced the notion of univer-
sal re-encryption and presented a cryptosystem that implements it called UCS

[10]. A ciphertext in a re-encryption mix has the property that it can be effi-
ciently re-encrypted by anyone without knowledge of the receiver’s public key.
This is accomplished without ever exposing the underlying plaintext and with-
out changing the size of the ciphertext. Using re-encryption randomness, the
mapping is “lost” between the ciphertext that is supplied to the re-encryption
operation and the resulting output ciphertext. Therefore, the notion of universal
re-encryption propelled anonymity into the important area of “end-to-end en-
cryption” systems that do not rely on servers for maintaining secrecy and that
have the forward-secrecy property. Forward-secrecy and end-to-end encryption
are becoming increasingly important in industrial systems in the post-Snowden
era.

A number of anonymity protocols have been constructed that utilize uni-
versal re-encryption. Here, we show by way of analyzing the associated security
definitions (i.e., a cryptanalysis methodology applied to provably secure systems)
that the required level of security of this cryptographic primitive has not been
properly defined. Specifically, we first show by way of concrete examples that
the previous security definition of a universal cryptosystem does not sufficiently
capture the key anonymity property. The definition does capture semantic se-
curity of messages. However, in this key anonymity setting where there is a
complex goal that on top of semantic security requires additional properties,
these needed properties and formal notions of security were neglected and were,
in fact, never discussed. If we regard receiver anonymity, say, as having the same
level of seriousness as message content security then they must be discussed!

As a result of this missing foundational step, previous claims involving re-
encryption in anonymity systems have been based on heuristics. Indeed, there
are no properties required, nor proofs that they are achieved, in the papers
exploiting re-encryption for anonymity.

In contrast, what is needed is a formal foundation of the field (as was done
in other areas such as message encryption). To this end, we put forth a model
of what is required for re-encryption in the context systems that require key
anonymity. In particular we show that the definition of security of a re-encryption
mix from [10] does not require that the initial encryption function achieve key
anonymity, thereby forming a gap in the definition. We exploit this gap to use
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an encryption system with basic security as defined in [10] and yet break the
security definition of the mix application in [10], a break that results in the com-
promise of receiver anonymity. We re-emphasize that our investigation follows
the traditional methodology of modern cryptography where similar corrections
of definitions and proofs, and reductions have been a central theme aimed at
establishing proper trust in security and privacy applications and protocols.

Maintaining message semantic security under the publicly performed re-
encryption operation is relatively straightforward. But, this is misleading, since
this characteristic does not hold for the entire set of properties needed for ap-
plications that require user anonymity. In particular, key anonymity of both
the probabilistic encryption algorithm and the re-encryption algorithm were not
properly defined or required in any prior work. As we know from other areas of
cryptography, without foundations following a model, definitions, constructions
and careful proofs, issues will surely arise (if not in the original implementation,
perhaps in future ones).

We mention that aside from our analysis of the mix application in [10] and
our batch mix application, this paper does not address re-encryption applica-
tions. Our primary focus is on the security foundation of universal re-encryption
as a cryptographic primitive. We address the key anonymity of the encryption
function and the key anonymity of the re-encryption function in a universal
cryptosystem. Put another way, anonymous messaging, DC-nets, onion-routing,
and e-voting applications are outside the scope of this paper. We therefore make
no effort to frame our work on this cryptographic primitive relative to e-voting
or re-encryption networks. We summarize our contributions as follows:

1. We show a gap in the definition of a universal re-encryption cryptosystem,
namely, the missing requirement that the output of the encryption function
achieve key anonymity.3 Our cryptanalysis leverages this gap, breaking the
security definition of the mix application in [10], thereby causing receiver
anonymity to be compromised.

2. We present what we call semantically secure anonymity that defines the com-
plete set of security properties that assure key anonymity. Existing protocols
have taken the key anonymity of the encryption function for granted.

3. Construction: We generalize the well-known DDH random self-reduction and
then use this generalization to prove that the original ElGamal-based uni-
versal cryptosystem of [10] is secure under DDH under our new model.4 This
is a new reduction technique that may have independent applications.

4. Example applications: We re-examine the original universal re-encryption
protocol, present a new forward-anonymous batch mix, and show them to
be secure (as modeled here) under DDH.

3 Note we are talking about the “initial” encryption function, not the re-encryption
function.

4 i.e., that key-privacy holds for the encryption and re-encryption functions and that
message indistinguishability holds for the encryption and re-encryption functions.
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Due to its flexibility, we anticipate that our new reduction technique will aid
in future concrete and workable designs that use number theoretic and elliptic
curve groups where DDH holds, since anonymity of channels is a central issue in
cryptography and privacy applications and since sound foundations and correct
proofs are needed. In fact, our new application of a forward-anonymous batch
mix is an example of such an application, giving an end-to-end secure anony-
mous communication system. One may argue that DDH based systems are an
issue of the 1990s and are of no current interest. However, we claim that this
work is evidence to the contrary: in cryptography subtleties do not disappear by
themselves over time!

Organization: In Section 2 we present related work. Notation and definitions
are covered in Section 3. In Section 4 we review the security definition of univer-
sal re-encryption due to [10] and show a gap in it’s definition. We define seman-
tically secure anonymity in Section 5. We present the universal re-encryption
cryptosystem UCS of [10] in Section 6 with adjusted input/output specifications
to accommodate our proofs of security. The new DDH reduction technique is
covered in Section 7 and we use it to prove the security of UCS in Section 8
and Appendix A. The forward-secure batch mix is summarized in Section 9 and
proven secure in Appendix B. We conclude in section 10.

2 Related Work

We first review the literature that leverages universal re-encryption as a primi-
tive. Jakobsson et al presented a universal re-encryption cryptosystem that they
referred to as UCS [10]. UCS is a 4-tuple of algorithms: a key generator, an en-
cryption algorithm, a re-encryption algorithm, and a decryption algorithm. It is
an extension of the ElGamal public key cryptosystem [6]. A ciphertext produced
using this cryptosystem can be re-encrypted by anyone without first decrypting
it. They present two applications that leverage a universal cryptosystem. In the
first application an RFID tag is set to be a universal ciphertext that contains an
underlying ID as the plaintext. The ciphertext is re-randomized periodically to
prevent the tag from being tracked over time, e.g., as the object that contains
the tag moves from place to place. With the private decryption key the ID can
be obtained. Without the private key the ID in the ever changing RFID cipher-
text cannot be obtained, making it difficult to track the object. They also apply
universal re-encryption to construct a hybrid universal mix that leverages a pub-
lic bulletin board. The mix is based on uploading and downloading ciphertexts
to/from a bulletin board as opposed to leveraging a cascade of mix servers.

Fairbrother sought a more efficient hybrid universal cryptosystem based on
UCS [7]. Universal re-encryption was used in a protocol to control anonymous in-
formation flow, e.g., to prevent spam from being injected into the anonymization
network [14]. Onion-based routing and universal re-encryption were leveraged
to form hybrid anonymous communication protocols [11, 15]. A circuit-based
anonymity protocol was presented based on universal re-encryption [16]: in the
first stage a channel is established through the network between Alice and Bob
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along with the keys needed for re-encryption and in the second stage Alice and
Bob communicate with one another. Weakness in [14, 15, 11, 16] were presented
in [5]. Golle presented a reputable mix network construction based on universal
re-encryption [9]. A reputable mix has the property that the mix operator can
prove that he or she did not author the content output by the mix.

Groth presented a re-randomizable and replayable cryptosystem based on
DDH achieving adaptive chosen ciphertext security [12]. The construction and
security arguments do not address key anonymity.

Prabhakaran and Rosulek presented a construction for a rerandomizable en-
cryption scheme [19] that aims to be CCA-secure under DDH. It extends the
Cramer-Shoup public key cryptosystem. They define RCCA receiver-anonymity
in detail but state that their scheme does not achieve it and that it is an open
problem. The approach was later extended to combine computability features
with non-malleability of ciphertexts. The construction enables anyone to change
an encryption of an unknown message m into an encryption of T (m) (a feature),
for a set of specific allowed functions T , but is non-malleable with respect to
all other operations [20]. They indicate that their construction does not achieve
HCCA-anonymity and leave the anonymity problem as open.

There has been recent work on proxy encryption [13]. In proxy encryption a
ciphertext of a message m encrypted under Alice’s public key is transformed (re-
encrypted) into a ciphertext of m under Bob’s public key. Note that our setting
is different since the receiver’s public key does not change in our re-encryption
operation.

Re-encryption mix networks are utilized in electronic voting systems such as
Helios [1]. They are also used in GR.NET’s Zeus system.5

Having surveyed the literature it became apparent to us that numerous works
have utilized universal re-encryption as a basic building block. This forms the
motivation for a clean and correct foundation for this area. While we fully appre-
ciate the pioneering work on this concept (a trailblazing step which is necessary),
we believe that the time has come to treat anonymity with the same formal care
and level of provability as, say, message security in public key cryptosystems. We
believe that our work shows that identifying subtleties and producing necessary
revisions is relevant, even for works that are older than 10 years, especially in
areas that are becoming increasingly important to real-world applications.

The important notion of key privacy (also called key anonymity) was intro-
duced by Boldyreva et al [2]. They formally defined public key cryptosystems
that produce ciphertexts that do not reveal the receiver and showed that ElGa-
mal and Cramer-Shoup achieve key privacy.

3 Notation and Definitions

If T is a finite set then x ∈U T denotes sampling x uniformly at random from
T . Define Zp to be {0, 1, 2, ..., p− 1}. Let Z∗n be the set of integers from Zn that

5 github.com/grnet/zeus
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are relatively prime to n. [1, t] denotes the set of integers {1, 2, ..., t}. |G| denotes
the size of the group G, i.e., number of elements in G. We may omit writing
“mod p” when reduction modulo p is clear from the context. Pr[A] denotes the
probability that A is true. Let a ← b denote the assignment of b to a. For
example, a ← M(x) denotes the execution of Turing machine M on input x
resulting in output a.

A function negl is negligible if for all polynomials p(·) there exists an α such
that for all integers n > α it is the case that negl(n) < 1

p(n) . We use negl to

denote a negligible function.
The following definition of DDH is directly from [3]. A group family G is a

set of finite cyclic groups G = {Gp} where p ranges over an infinite index set. We
denote by |p| the size of the binary representation of p. We assume that there
is a polynomial time (in |p|) algorithm that given p and two elements in Gp

outputs their sum. An instance generator, IG, for G is a randomized algorithm
that given an integer n (in unary), runs in time polynomial in n and outputs
some random index p and a generator g of Gp. In particular, (p, g) ← IG(n).
Note that for each n, the instance generator induces a distribution on the set of
indices p. The index p encodes the group parameters.

A DDH algorithm A for G is a probabilistic polynomial time Turing machine
satisfying, for some fixed α > 0 and sufficiently large n:

|Pr[A(p, g, ga, gb, gab) = “true”] − Pr[A(p, g, ga, gb, gc) = “true”]| > 1
nα

where g is a generator of Gp. The probability is over the random choice of 〈p, g〉
according to the distribution induced by IG(n), the random choice of a, b, and
c in the range [1, |Gp|] and the random bits used by A. The group family G
satisfies the DDH assumption if there is no DDH algorithm for G.

We now review the well-known random-self reduction for DDH [3, 21, 18].
DDHRerand((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
u1, u2, v ∈U [1, q] and computing,

(x′, y′, z′)← (xvgu1 , ygu2 , zvyu1xvu2gu1u2)

When (x, y, z) is a valid Diffie-Hellman 3-tuple then the output is a random
Diffie-Hellman 3-tuple. When (x, y, z) is not a valid Diffie-Hellman 3-tuple then
the output is a random 3-tuple.

4 Gap in Universal Re-encryption Definition

4.1 Review of the foundation of universal re-encryption

We review the definition of a universal cryptosystem exactly as defined in [10].
A universal cryptosystem (UCS) is a 4-tuple of algorithms defined by UCS =
(UKG,UE,URe,UD), where UKG is the key generator, UE is the encryption algo-
rithm, URe is the re-encryption algorithm, and UD is the decryption algorithm.

UKG outputs a public key PK (Golle et al do not have it return a key pair
in the definition of their experiment). UE(m, r, PK) denotes the encryption of
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message m using public key PK and r is a re-encryption factor. It outputs a
universal ciphertext C. URe(C, r) denotes the re-encryption of C using a re-
encryption factor r. Golle et al assume an implicit parameterization of UCS
under security parameter k. The decryption algorithm UD(SK,C) takes as input
a private key SK and ciphertext C and returns the corresponding plaintext (or
an indicator for failure).

Let M be a message space and let R be a set of encryption factors. Let A
be a stateful adversarial algorithm. Below is the verbatim definition of universal
semantic security under re-encryption (USS) from [10].

Experiment Expuss
A (UCS, k)

PK0 ← UKG;PK1 ← UKG;
(m0,m1, r0, r1)← A(PK0, PK1,“specify ciphertexts”);
if m0,m1 /∈M or r0, r1 /∈ R then output ‘0’;
C0 ← UE(m0, r0, PK0);C1 ← UE(m1, r1, PK1);
r′0, r

′
1 ∈U R;

C ′0 ← URe(C0, r
′
0);C ′1 ← URe(C1, r

′
1);

b ∈U{0, 1};
b′ ← A(C ′b, C

′
1−b,“guess”);

if b = b′ then output ‘1’ else output ‘0’;

An instantiation UCS is said to be semantically secure under re-encryption
if for any adversary A with resources polynomial in K, the probability given by
pr[Expuss

A (UCS, k) = ‘1’]− 1/2 is negligible in k.

The UCS construction from [10] is as follows. let p = (p, q) be a group family
where p is prime and p− 1 is divisible by a large prime q. The group Gp is the
subgroup of Z∗p having order q. The key generator outputs (PK,SK) = (y, x)
where y is the public key and x ∈U Zq

The encryption operation is denoted by UE(m, (k0, k1), y). It encrypts mes-
sage m ∈ Gp using y. (k0, k1) ∈U Zq × Zq are random encryption nonces. The
encryption operation outputs the ciphertext c ← ((α0, β0), (α1, β1)) ← ((myk0

mod p, gk0 mod p), (yk1 mod p, gk1 mod p)).

The universal re-encryption algorithm URe(((α0, β0), (α1, β1)), (k′0, k
′
1)) out-

puts a re-randomized ciphertext C ′. (k′0, k
′
1) ∈U Zq×Zq is a random re-encryption

factor. Generate k′0, k
′
1 ∈U Zq. The output C ′ is defined as,

C ′ = ((α′0, β
′
0), (α′1, β

′
1)) = ((α0α

k′0
1 , β0β

k′0
1 ), (α

k′1
1 , β

k′1
1 ))

The decryption algorithm UD(x, ((α0, β0), (α1, β1))) takes as input the pri-
vate key x followed by a universal ciphertext under public key y. First it verifies
that all 4 values in the universal ciphertext are in Gp and if not the special
symbol ⊥ is output. Compute m0 = α0/β

x
0 and m1 = α1/β

x
1 . If m1 = 1 then

the output is m = m0. Otherwise, output ⊥ indicating decryption failure.
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4.2 Missing key anonymity requirement for UE in USS definition

We now prove that USS as defined before (for which the security requirement is
quoted above), accepts as valid cryptosystems that, in fact, contain encryption
algorithms UE that do not produce key anonymous ciphertexts.

Cryptosystem A: Let UE be a universal encryption algorithm that outputs the
ciphertext ((α0, β0), (α1, β1)) computed according to UE in UCS except that k0
is repeatedly generated until the least significant byte (lsb) of β0 matches that
of y. Suppose y0 and y1 have differing lsbs. When breaking the anonymity of
UE, the adversary extracts the lsb of β0 and correlates it with the public key
with matching lsb.

This is “secure” under [10] (as per the definition copied above). USS, however,
is devoid of a requirement that the output of UE be key anonymous. Put another
way, it has a test of anonymity of URe but there is no test of anonymity of UE.
Furthermore, this is the only definition of security spelled out for the universal
re-encryption cryptosystem in [10]. The definition “accepts” as secure encryption
algorithms UE that fail to achieve key anonymity as proven by the above example
cryptosystem. There may exist other constructions in which the failure of UE to
achieve key anonymity is subtle, yet like the above satisfy USS.

Practically, this means that cryptographers can construct universal cryp-
tosystems that satisfy the USS definition but that have encryption algorithms
that compromise the identity of the receiver without violating USS. This could
potentially place the users of a universal cryptosystem in harms way.

Breaking the definition of security of the mix application: Let U be a
universal cryptosystem that has an encryption algorithm UE that outputs ci-
phertexts that are not key anonymous. The universal mix network construction
in Section 4 of [10] has, in the first step called “submission of inputs”, users
post ciphertexts produced by UE to a public bulletin board. When U is used in
this universal mix network construction, the anonymity of receivers is compro-
mised. We have therefore broken the security definition of the Golle et al mix
application.

Consequently, defining security for universal re-encryption in a way that
achieves key anonymity for ciphertexts output by UE has been left open. In
addition, the properties of message indistinguishability for encryption and re-
encryption were claimed to hold under DDH but no proof for this was given.
In hindsight, we believe that the work in [10] was an extremely insightful step
in the right direction of laying the foundation for universal re-encryption. In
particular, we commend their approach of having the adversary fully specify the
ciphertexts (messages and nonces) that are used in forming the re-encryption
challenge ciphertexts. However, their definition is certainly insufficient as shown
above.
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5 Semantically Secure Anonymity

We now present the first definition of security for a universal cryptosystem that
requires that the encryption algorithm provide key anonymity. We made slight
adjustments to the input/output specifications of the algorithms in the universal
re-encryption cryptosystem presented in [10]. For example, their key generator
did not take a security parameter as input, ours does. We define the algorithms
in the cryptosystem to take auxiliary information such as group parameters as
input. We remark that the adjustments to the input/output specifications of the
algorithms are superficial. We made them to support the full proofs of security
that we provide.

Definition 1. A universal cryptosystem Π is a 4-tuple of probabilistic polyno-
mial time algorithms (UKG,UE,URe, UD) together with auxiliary information
λ (e.g., group parameters) such that:

1. The key generation algorithm UKG(n, λ) takes as input a security parameter
n (in unary) and λ and outputs (pk, sk) where pk is a public key and sk is
the corresponding private key.

2. The encryption algorithm UEpk(m, k, λ) is deterministic and it takes as in-
put a public key pk, a message m from the underlying plaintext space, an
encryption nonce k, and λ. It outputs a ciphertext c. The operation is ex-
pressed as c← UEpk(m, k, λ).

3. The re-encryption algorithm URe(c, k, λ) is deterministic and it takes as
input a ciphertext c, a re-encryption nonce k, and λ. It outputs a ciphertext
c′. The operation is expressed as c′ ← URe(c, k, λ).

4. The decryption algorithm UDsk(c, λ) takes as input a private key sk, a ci-
phertext c, and λ. It outputs a message m and a Boolean s. s is true if and
only if decryption succeeds. The operation is expressed as (m, s)← UDsk(c).

It is required that, for all m, the ordered execution of c0 ← UEpk(m, k0, λ),
ci+1 ← URe(ci, ki, λ) for i = 0, 1, 2, ..., t−1, (m′, s)← UDsk(ct, λ) with (m′, s) =
(m,true) except with possibly negligible probability over (pk, sk) that is output by
UKG(n, λ) and the randomness used by the nonces for UE and URe. Here t is
bounded from above by uα for some fixed α > 0 and sufficiently large u.

Definition 2 for message indistinguishability has been adapted from [8, 17].

Definition 2. The experiment for eavesdropping indistinguishability for the en-
cryption operation is PubKEnceavA,Π(n, λ):

1. UKG(n, λ) is executed to get (pk, sk).
2. Adversary A(n, λ, pk) outputs a pair of messages (m0,m1) where m0 and

m1 have the same length. These messages must be in the plaintext space
associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, k, λ) is computed and provided to A. This is the challenge
ciphertext.

9



4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 3. The experiment for eavesdropping indistinguishability for the re-
encryption operation is PubKReEnceavA,Π(n, λ):

1. UKG(n, λ) is executed to get (pk, sk).
2. Adversary A(n, λ, pk) outputs ((m0, k0), (m1, k1)) where (mi, ki) is a mes-

sage/nonce pair for i = 0, 1. The messages must be of the same length.
These messages must be in the plaintext space associated with pk.

3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext
c ← UEpk(mb, kb, λ) is computed. Then c′ ← URe(c, k, λ) is computed and
provided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 4 is key anonymity [2]. Definition 5 is key anonymity adapted for
re-encryption.

Definition 4. The experiment for key anonymity of the encryption operation is
denoted by AnonEnceavA,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Adversary A(n, λ, pk0, pk1) outputs a message m. This message must be in

the plaintext space associated with pk0 and pk1.
3. A random bit b ∈U{0, 1} and random nonce k are chosen. Then ciphertext

c ← UEpkb(m, k, λ) is computed and provided to A. This is the challenge
ciphertext.

4. A(c) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 5. The experiment for key anonymity of the re-encryption operation
is denoted by AnonReEnceavA,Π(n, λ) and is as follows:

1. UKG(n, λ) is executed twice to get (pk0, sk0) and (pk1, sk1).
2. Adversary A(n, λ, pk0, pk1) outputs (m, k) where m is a message and k is an

encryption nonce k. The message m must be in the plaintext space associated
with pk0 and pk1.

3. A random bit b ∈U{0, 1} and random nonce k′ are chosen. Then c ←
UEpkb(m, k, λ) is computed. Then c′ ← URe(c, k′, λ) is computed and pro-
vided to A. This is the challenge ciphertext.

4. A(c′) outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b and 0 otherwise.

Definition 6. A universal cryptosystem Π is secure in the sense of seman-
tically secure anonymity for security parameter n (in unary) and auxiliary
information λ if it satisfies the following:
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1. Pr[PubKEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

2. Pr[PubKReEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

3. Pr[AnonEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

4. Pr[AnonReEnceavA,Π(n, λ) = 1] ≤ 1
2 + negl(n)

We recap and say that correctness of decryption is obviously a must and we
have demonstrated that message security must be required for the encryption
and the re-encryption operations in order to maintain the security of the mes-
sage throughout the system. Further, as the examples above demonstrated, key
anonymity is required for these two operations as well. Intuitively, any viola-
tion of message security will render the encryption useless. Also, any tracing via
the re-encryption operation due to message or key linkability will violate strict
anonymity. Similarly, any tracing via the encryption operation due to message
or key linkability will violate strict anonymity.

6 Universal Re-Encryption Cryptosystem

Given that we adjusted the input/output specifications of the algorithms in the
universal re-encryption cryptosystem presented in [10] (see Section 5), we now
present the cryptosystem in full. We stress that we are using the universal re-
encryption cryptosystem in [10].

Let n be a security parameter (in unary) and let p = (p, q) be a group family
where p is prime and p− 1 is divisible by a large prime q. The group Gp is the
subgroup of Z∗p having order q. For key anonymity, the single group ((p, q), g)
is generated once using IG(n) and is then used by all users. The auxiliary in-
formation λ is defined to be ((p, q), g). We define the following to be universal
cryptosystem Ψ .

Key Generation: Key generation is denoted by (y, x) ← UKG(n, λ). Here y ←
gx mod p where x ∈U [1, q]. The public key is pk = y and the private key is
sk = x.

Encryption: Encryption is denoted by UEpk(m, (k0, k1), λ). It encrypts message
m ∈ Gp using y. (k0, k1) ∈U [1, q] × [1, q] is a random encryption nonce. The
operation outputs the ciphertext c← ((α0, β0), (α1, β1))← ((myk0 mod p),(gk0

mod p),((yk1 mod p), (gk1 mod p)).

Decryption: The following decryption operation is denoted by UDsk(c, λ). Here
c is the ciphertext ((α0, β0), (α1, β1)). Compute m1 ← α1/β

x
1 mod p. If m1 = 1

then set s = true else set s = false. If s = true set m0 = α0/β
x
0 mod p else set m0

to be the empty string. s = true indicates successful decryption. Return (m0, s).

Universal Re-encryption: The universal re-encryption operation is denoted
by URe(((α0, β0), (α1, β1)), (`0, `1), λ). The pair c = ((α0, β0), (α1, β1)) is a uni-
versal ciphertext and (k′0, k

′
1) ∈U [1, q]× [1, q] is a re-encryption nonce. Compute

(α′0, β
′
0)← (α0α

k′0
1 mod p, β0β

k′0
1 mod p) and compute (α′1, β

′
1)← (α

k′1
1 mod p, β

k′1
1

mod p). Output the ciphertext c′ ← ((α′0, β
′
0), (α′1, β

′
1)).
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7 The New Construction: Expanded DDH Self-Reduction

We now generalize the DDH random self-reduction to output five values instead
of three. This allows us to transform a DDH problem instance into either two DH
3-tuples with a common “public key” or a random 5-tuple, depending on the in-
put problem instance. We utilize this property in our proofs of security in Section
8. We define algorithm DDHRerand5 as follows. DDHRerand5((p, q), g, x, y, z) ran-
domizes a DDH problem instance by choosing the values u1, u2, v, v

′, u′1 ∈U [1, q]
and computing,

(x′′, x′, y′, z′, z′′)← (xv
′
gu

′
1 , xvgu1 , ygu2 , zvyu1xvu2gu1u2 , zv

′
yu

′
1xv

′u2gu
′
1u2)

Case 1. Suppose (x, y, z) is a valid Diffie-Hellman (DH) 3-tuple. Then x = ga,
y = gb, z = gab for some a, b. It follows that (x′, y′, z′) is also a valid DH 3-tuple.
It is straightforward to show that (x′′, y′, z′′) is a valid DH 3-tuple as well.

Case 2. Suppose (x, y, z) is not a valid DH 3-tuple. Then x = ga, y = gb,
z = gab+c for some c 6= 0. In this case, x′ = ga

′
, y′ = gb

′
, z′ = ga

′b′gcv.
Since c 6= 0 it follows that gc is a generator of Gp. Also, x′′ = ga

′′
, y′ = gb

′
,

z′′ = ga
′′b′gcv

′
.

So, when (x, y, z) is a valid DH 3-tuple then (x′, y′, z′) and (x′′, y′, z′′) are
random DH 3-tuples with y′ in common and when (x, y, z) is not a valid DH
3-tuple then the output is a random 5-tuple.

8 Security of Universal Cryptosystem Ψ

We now prove the security of our construction. These are the first proofs of
security for universal re-encryption that constitute direct reductions with respect
to DDH.

Theorem 1. If DDH is hard then Pr[AnonEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonEnceavA,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR3 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR3((p, q), g, a0, b0, c0):
1. set (θ′j , θj , yj , µj , µ

′
j)← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. m← A(n, λ, y0, y1)
3. generate u ∈U {0, 1}
4. set c← ((α0, β0), (α1, β1))← ((mµu, θu), (µ′u, θ

′
u))

5. u′ ← A(c)
6. if u = u′ then output “true” else output “false”

12



Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerand5 that c is an encryption of m in accordance with UE using yu
as the public key. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 4. It follows that u = u′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR3((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define ψ =

Pr[AlgR3((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

the definition of DDHRerand5 that the 5-tuple (θ′u, θu, yu, µu, µ
′
u) is uniformly

distributed in G5
p. Therefore, c is uniformly distributed in G2

p × G2
p. Let p1 be

the probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR3((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ+(1− q2

q3 ) 1
2 = 1

2 + 2ψ−1
2q

which is overwhelmingly close to 1
2 . ut

Theorem 2. If DDH is hard then Pr[AnonReEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Proof. Suppose there exists a probabilistic polynomial time adversary A for
AnonReEnceavA,Ψ , an α > 0, and a sufficiently large κ such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR4 that takes
as input a Decision Diffie-Hellman problem instance ((p, q), g, a0, b0, c0).

AlgR4((p, q), g, a0, b0, c0):
1. (θ′j , θj , yj , µj , µ

′
j)← DDHRerand5((p, q), g, a0, b0, c0) for j = 0, 1

2. (m, (k0, k1))← A(n, λ, y0, y1)
3. u ∈U {0, 1}
4. ((α0, β0), (α1, β1))← UEyu(m, (k0, k1), λ)
5. c′ ← ((α′0, β

′
0), (α′1, β

′
1))← ((α0µu, β0θu), (µ′u, θ

′
u))

6. u′ ← A(c′)
7. if u = u′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1))
is the ciphertext under public key yu as specified by A. It follows from the defini-
tion of DDHRerand5 that c′ is a re-encryption of ((α0, β0), (α1, β1)) in accordance
with URe. Therefore, the input to A is drawn from the same set and probabil-
ity distribution as the input to A in Definition 5. It follows that u = u′ with
probability greater than or equal to 1

2 + 1
κα . So, for random exponents a and b

in [1, q], Pr[AlgR4((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

κα . Define the value ψ to
be Pr[AlgR4((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
definition of DDHRerand5 that the 5-tuple (θ′u, θu, yu, µu, µ

′
u) is uniformly dis-

tributed in G5
p. Therefore, c′ is uniformly distributed in G2

p ×G2
p. Let p1 be the

probability that A responds with u′ = 0. Then the probability that u = u′ is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR4((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut

The proofs of the below are in Appendix A.
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Theorem 3. If DDH is hard then Pr[PubKEnceavA,Ψ (n, λ) = 1] ≤ 1
2 + negl(n).

Theorem 4. If DDH is hard then Pr[PubKReEnceavA,Ψ (n, λ) = 1] ≤ 1
2 +negl(n).

Theorems 1, and 2, 3, and 4 show the following.

Theorem 5. If DDH is hard then Ψ is secure in the sense of semantically secure
anonymity.

9 Batch Mixing

A forward-anonymous mix protocol was presented in [10]. The definition of secu-
rity for it is broken since it only requires that the universal cryptosystem satisfy
USS, thereby allowing the use of a universal cryptosystem with a UE algorithm
that does not produce key anonymous ciphertexts. When such an encryption
algorithm is used, the anonymity of the receiver is compromised in step 1. We
define a re-encryption batch mix protocol FBMIX in Appendix B together with a
definition of security for it that assures anonymity of receivers. We prove that it
is secure using direct reductions with respect to DDH. We claim the below. The
proof is in Appendix B.

Theorem 6. If DDH is hard then FBMIX is a forward-anonymous batch mix.

10 Conclusion

We addressed basic definitions, constructions, and proofs related to anonymous
end-to-end communication. We analyzed the security foundation of universal
re-encryption and showed that the definition of security for it is missing the
requirement that the encryption algorithm produce key anonymous ciphertexts,
thereby forming a gap. We leveraged the gap to break the security definition of
the mix application of Golle et al. We then presented a new definition of security
for universal re-encryption that requires that message indistinguishability and
key anonymity hold for both the encryption and re-encryption operations. We
then proved that the original ElGamal-based universal cryptosystem of Golle et
al is secure under our new definition of security. Finally, we presented a forward-
anonymous batch mix that is secure under DDH.
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A Proofs of message indistinguishability

Below is proof of Theorem 3.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKEnceavA,Ψ , an α > 0 and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR1 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).
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AlgR1((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, µ, µ′)← DDHRerand5((p, q), g, a0, b0, c0)
2. (m0,m1)← A(n, λ, y)
3. b ∈U {0, 1}
4. c← ((α0, β0), (α1, β1))← ((mbµ, θ), (µ

′, θ′))
5. b′ ← A(c)
6. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. It follows from the def-
inition of DDHRerand5 that c is an encryption of mb according to UE using y
as the public key. Therefore, the input to A is drawn from the same set and
probability distribution as the input to A in Definition 2. It follows that b = b′

with probability greater than or equal to 1
2 + 1

κα . So, for random exponents a
and b in [1, q], Pr[AlgR1((p, q), g, ga, gb, gab) = “true”] ≥ 1

2 + 1
κα . Define ψ =

Pr[AlgR1((p, q), g, ga, gb, gab) = “true”].
Now consider the case that the input is not a DH 3-tuple. It follows from

the definition of DDHRerand5 that (θ′, θ, y, µ, µ′) is uniformly distributed in G5
p.

Therefore, c is uniformly distributed in G2
p × G2

p. Let p1 be the probability

that A responds with b′ = 0. Then the probability that b = b′ is 1
2p1 + 1

2 (1 −
p1) = 1

2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR1((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut

Below is the proof of Theorem 4.

Proof. Suppose there exists a probabilistic polynomial time adversary A for
PubKReEnceavA,Ψ , an α > 0, and a sufficiently large κ, such that A succeeds with

probability greater than or equal to 1
2 + 1

κα . Consider algorithm AlgR2 that takes
as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR2((p, q), g, a0, b0, c0):
1. set (θ′, θ, y, µ, µ′)← DDHRerand5((p, q), g, a0, b0, c0)
2. ((m0, r0), (m1, r1))← A(n, λ, y)
3. b ∈U {0, 1}
4. ((α0, β0), (α1, β1))← UEy(mb, rb, λ)
5. c′ ← ((α0µ, β0θ), (µ

′, θ′))
6. b′ ← A(c′)
7. if b = b′ then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly ((α0, β0), (α1, β1))
is the ciphertext of mb as specified by adversary A. It follows from the defi-
nition of DDHRerand5 that c′ is a re-encryption of ((α0, β0), (α1, β1)) according
to URe. Therefore, the input to A is drawn from the same set and probability
distribution as the input to A in Definition 3. It follows that b = b′ with prob-
ability greater than or equal to 1

2 + 1
κα . So, for random exponents a and b in

[1, q], Pr[AlgR2((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

κα . Define the value ψ to
be Pr[AlgR2((p, q), g, ga, gb, gab) = “true”].
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Now consider the case that the input is not a DH 3-tuple. It follows from the
definition of DDHRerand5 that (θ′, θ, y, µ, µ′) is uniformly distributed in the set
G5

p. Therefore, c′ is uniformly distributed in G2
p ×G2

p. Let p1 be the probability

that A responds with b′ = 0. Then the probability that b = b′ is 1
2p1 + 1

2 (1 −
p1) = 1

2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR2((p, q), g, ga, gb, gc) = “true”] = 1
2 + 2ψ−1

2q . ut

B Forward-Anonymous Batch Mix

Golle et al used the universal cryptosystem to construct a forward anonymous
mix protocol centered around the use of a bulletin board. The number of cipher-
texts on the board can vary over time. Servers download the ciphertexts from
the board, re-randomize them, and then upload them in permuted order. We
instead chose to analyze a batch mix that mixes a fixed number of ciphertexts.
We consider this case since: (1) it is concrete in the sense that a fixed size vector
of ciphertexts needs to be anonymized and this gives a precise level of anonymity
(fixed-size random permutation), and (2) we achieve low-latency since once the
batch forms at the first mix the ciphertexts are pushed through the cascade of
mixes rapidly.

We point out that the security arguments of Golle et al for their proposed
mixes are flawed:

1. Not tied to DDH: None of the proofs in the paper take a DDH problem
instance as input. It follows that they did not prove that security holds under
DDH.

2. Not randomized reductions: None of the input problem instances in
the paper are randomized. It is well-known that randomized reductions are
stronger than non-randomized ones.

Consequently the security of their mixes were not tied to the DDH problem
as claimed. This left as open the problem of proving the security of universal
re-encryption batch mixing. We solve this problem in this section.

Informally, the problem we consider is to establish an externally anonymous
communication channel. A set of w senders s1, s2, ..., sw want to send messages
m1,m2, ...,mw respectively, to a target set of w receivers r1, r2, ..., rw. Consider
the case that si sends a message to sj where i, j ∈ {1, 2, ..., w}. We want an
eavesdropper to have negligible advantage in correlating the initial ciphertext
that si sends out with the public key of rj . In other words, the eavesdropper has
negligible advantage over guessing the receiver.

The solution must be forward-anonymous: an adversary that compromises a
mix server cannot break the anonymity of previously transmitted ciphertexts.
The solution must be robust in that anonymity holds as long as there is at least
one mix server not compromised by the adversary.

Note that a receiver of a message can determine who the sender of the message
is. The receiver is able to decipher the ciphertext right when the sender transmits
it to the first mix. Anonymity is against external adversaries.
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B.1 Definition of security

Definition 7. A forward-anonymous batch mix protocol, denoted by FBMIX,
is a 4-tuple of algorithms FBGEN, FBENCR, FBMIXER, and FBDECR where FBGEN

generates a key pair for each receiver, where FBENCR encrypts the messages of
the senders, where the FBMIXER servers are connected in series and they mix
received ciphertexts and forward them on, that satisfies the following properties
for all probabilistic polynomial-time passive adversaries A:

1. FBENCR Confidentiality: The ciphertexts output by algorithm FBENCR satisfy
the message indistinguishability property with respect to A (Definition 10).

2. FBMIXER Confidentiality: The ciphertexts output by FBMIXER satisfy message
indistinguishability with respect to A (Definition 11)

3. FBENCR Anonymity: The ciphertexts output by FBENCR satisfy key anonymity
with respect to A (Definition 8).

4. FBMIXER Anonymity: The ciphertexts output by algorithm FBMIXER satisfy
anonymity with respect to A (Definition 9).

5. Forward-Anonymity: The FBMIXER servers have no secret key material.
6. Robustness: Anonymity of FBMIX holds provided at least one FBMIXER server

is not compromised by A.
7. Completeness: ∀ i ∈ {1, 2, ..., w}, when sender si sends mi to rj where j ∈
{1, 2, ..., w} then rj receives mi.

8. Low-Latency: Once w ciphertexts arrive at the first FBMIXER server, the batch
moves through the mix at a speed limited only by the time to re-encrypt,
permute, and forward.

B.2 Forward-anonymous batch mix construction

We instantiate the mix using security parameter n as follows.

FBGEN(n, ((p, q), g)):
1. (yi, xi)← UKG(n, ((p, q), g)) for i = 1, 2, ..., w
2. output ((y1, x1), (y2, x2), ..., (yw, xw))

Let σi be the index of the receiver of the message of sender i. For example,
if s1 sends to s3 then σ1 = 3.

FBENCR((m1, (k1,0, k1,1), σ1), ..., (mw, (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g)):
1. ci ← UEyσi (mi, (ki,0, ki,1), ((p, q), g)) for i = 1, 2, ..., w

2. output (c1, c2, ..., cw)

Define set S to be {1, 2, ..., w}. Let π be a permutation from S onto S. Define
fp(π, c1, c2, ..., cw) to be a function that outputs (cπ(1), cπ(2), ..., cπ(w)). Let the
algorithm fpinv(π, cπ(1), cπ(2), ..., cπ(w)) be a function that uses π−1 to output
the tuple (c1, c2, ..., cw).

FBMIXER(π, (c1,(`1,0, `1,1)), (c2, (`2,0, `2,1)), ..., (cw, (`w,0, `w,1)), ((p, q), g)):
1. c′i ← URe(ci, (`i,0, `i,1), ((p, q), g)) for i = 1, 2, ..., w
2. output fp(π, c′1, c

′
2, ..., c

′
w)
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The break statement terminates the execution of the nearest enclosing for

loop in which break appears.

FBDECR(c1, c2, ..., cw, x1, x2, ..., xw, ((p, q), g)):
1. let L be the empty list
2. for i in 1 to w:
3. for j in 1 to w:
4. (m, s)← UDxj (ci, ((p, q), g))
5. if s = true
6. append (m, j) to L
7. break

8. output L

There are four stages in the mix protocol. The mix protocol leverages N mix
servers labeled 1, 2, ..., N and they are connected in series.

Stage 1: rj generates a key pair (yj , xj) using UKG and publishes yj for j =
1, 2, ..., w. This stage is effectively FBGEN.

Stage 2: Sender si formulates a message mi to send to receiver rj . si generates
(ki,0, ki,1) ∈U [1, q]× [1, q] and computes ci ← UEyσi (mi, (ki,0, ki,1), ((p, q), g)). si
sends ci to Mix 1 for i = 1, 2, ..., w. This stage is effectively FBENCR.

Stage 3: Mix k where 1 ≤ k ≤ N operates as follows. It waits until a full batch
of w ciphertexts c1, c2, ..., cw arrive. It then generates (`i,0, `i,1) ∈U [1, q]× [1, q]
for i = 1, 2, ..., w. It generates a permutation π from S onto S uniformly at
random. It then computes,

(c′π(1), c
′
π(2), ..., c

′
π(w))← FBMIXER(π,

(c1, (`1,0, `1,1)), (c2, (`2,0, `2,1)), ..., (cw, (`w,0, `w,1)), ((p, q), g))

If k < N then (c′π(1), c
′
π(2), ..., c

′
π(w)) is sent to mix k + 1. If k = N then

(c′π(1), c
′
π(2), ..., c

′
π(w)) is posted to a public bulletin board. Each of these mixes

is effectively FBMIXER.

Stage 4: rj for j = 1, 2, ..., w downloads all w ciphertexts from the bulletin
board. rj attempts decryption of every single one of the ciphertexts using xj .
In so doing, rj receives zero or more messages. If there is no i for which σi = j
then rj receives no messages. This stage is effectively FBDECR.

We can improve the performance of Stage 4 in the case that every receiver
gets only one message from a sender. In this scenario, a receiver can pull down the
ciphertexts from the bulletin board one by one and then stop when a ciphertext
is received that properly decrypts. The batch mix provides external anonymity
thereby breaking the link between senders and receivers. This use case would fail
completely were the senders to post their key anonymous ciphertexts directly to
the bulletin board. To see this, note that a passive eavesdropper would know the
sender of each ciphertext on the bulletin board. The eavesdropper would then
know who the receiver is of a given ciphertext based on when the receiver stops
pulling down ciphertexts.
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B.3 Security of FBMIX

Where possible we allow the adversary to choose the receivers of messages in
FBMIX. For example, the adversary can have Alice and Bob send messages to
the same receiver, Carol. Consequently, many senders can send messages to the
same receiver. As a result we need to generalize DDHRerand5 from Section 7. It
generalizes to produce more DH 3-tuples with a common “public key” in the
same way that the DDH random self-reduction generalized to form DDHRerand5.

To make the pattern clear we define DDHRerand7 as follows. The algorithm
DDHRerand7((p, q), g, x, y, z) randomizes a DDH problem instance by choosing
the exponents u1, u2, v, v

′, v′′, u′1, u
′′
1 ∈U [1, q] and computing,

(x′′′, x′′, x′, y′, z′, z′′, z′′′)← (xv
′′
gu

′′
1 , xv

′
gu

′
1 , xvgu1 , ygu2 ,

zvyu1xvu2gu1u2 , zv
′
yu

′
1xv

′u2gu
′
1u2 , zv

′′
yu

′′
1 xv

′′u2gu
′′
1 u2)

and so on for ever more “v primes” and “u1 primes”.
For ease of use we parameterize this DDH generalization as follows. Let

DDHRerandN((p, q), g, x, y, z, t) be a DDH self-reduction algorithm that outputs
a set T containing t 3-tuples. Define, the set T = {(A1, B1, R1),(A2, B2, R2),
...,(At, Bt, Rt)}.

The algorithm has these properties: (1) when the input (x, y, z) is a DH 3-
tuple then all t output 3-tuples are random DH 3-tuples but with the middle
term in common, and (2) when the input (x, y, z) is not a DH 3-tuple then
A1,A2,...,At,B1,R1,R2,...,Rt ∈U Gp and B1 = B2 = ... = Bt.

DDHRerandN((p, q), g, x, y, z, 2) is logically equivalent to DDHRerand5. To see
this, note that the algorithm DDHRerandN((p, q), g, x, y, z, 2) outputs the set of
tuples T = {(A1, B1, R1), (A2, B2, R2)} which, rearranging and dropping the B2

yields the 5-tuple (A1, A2, B1, R2, R1). Observe that B1 = B2.
Let GetMiddle(T ) to be a function that on input a set T that is output by

DDHRerandN, selects a tuple in T and returns the middle value in it. All middle
values are the same so it doesn’t matter which tuple is selected. We now address
key anonymity for FBENCR.

Definition 8. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. (m1,m2, ...,mw)← A(((p, q), g), y1, y2, ..., yw, “specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
6. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
7. (c1, c2, ..., cw)← FBENCR((m1, (k1,0, k1,1), σ1), ...,

(mw, (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g))
8. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

9. if σi = σ′i then output “true” else output “false”
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the output of the experiment is “true” with probability less than 1
w + 1

nα then
FBENCR is secure in the sense of key anonymity.

Theorem 7. If DDH is hard then algorithm FBENCR is secure in the sense of
key anonymity.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

w + 1
nα . Consider algorithm AlgR9 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR9((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. (m1,m2, ...,mw)← A(((p, q), g), y1, y2, ..., yw, “specify messages”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. σj ∈U {1, 2, ..., w} for j = 1, 2, ..., w
6. for j in 1..w do:
7. extract a tuple (A0, B0, R0) without replacement from Tσj
8. extract a tuple (A1, B1, R1) without replacement from Tσj
9. cj ← ((mjR0, A0), (R1, A1))
10. (σ′1, σ

′
2, ..., σ

′
w)← A(c1, c2, ..., cw,“guess”)

11. if σi = σ′i then output “true” else output “false”’

Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerandN that cj is a proper encryption of mj using public key yσj for
j = 1, 2, ..., w under FBENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 8. It follows
that σi = σ′i with probability greater than or equal to 1

w + 1
nα . So, for random

exponents a and b in [1, q], Pr[AlgR9((p, q), g, ga, gb, gab) = “true”] ≥ 1
w + 1

nα .
Define ψ = Pr[AlgR9((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerandN that cj is uniformly distributed in G2

p ×G2
p and yj

is uniformly distributed in Gp for j = 1, 2, ..., w. Let pj be the probability that
A responds with σ′i = j for j = 1, 2, ..., w. Then the probability that σi = σ′i
is 1

wp1 + 1
wp2 + ... + 1

wpw = 1
w . So, for randomly chosen exponents a, b, and

c in [1, q], Pr[AlgR9((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ + (1 − q2

q3 ) 1
w which is

overwhelmingly close to 1
w . ut

We now address key anonymity for FBMIXER.

Definition 9. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))← A(((p, q), g),
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y1, y2, ..., yw,“specify ciphertexts and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then output “false” and halt
7. (c1, c2, ..., cw)← FBENCR((m1, r1, σ1), ..., (mw, rw, σw), y1, y2, ..., yw, ((p, q), g))
8. µj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
9. select a permutation π from S onto S uniformly at random
10. (c′π(1), c

′
π(2), ..., c

′
π(w))← FBMIXER(π, (c1, µ1), (c2, µ2), ..., (cw, µw), ((p, q), g))

11. π′ ← A(c′π(1), c
′
π(2), ..., c

′
π(w),“guess”)

12. if π′(i) = π(i) then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
w + 1

nα then
FBMIXER is secure in the sense of anonymity.

Theorem 8. If DDH is hard then FBMIXER is secure in the sense of anonymity.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

w + 1
nα . Consider algorithm AlgR10 that

takes as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR10((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1, r1, σ1), (m2, r2, σ2), ..., (mw, rw, σw))← A(((p, q), g), y1, y2, ..., yw,

“specify ciphertexts and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that mj /∈ Gp then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that rj /∈ [1, q]× [1, q] then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ S then output “false” and halt
7. (c1, c2, ..., cw)← FBENCR((m1, r1, σ1), ..., (mw, rw, σw), y1, y2, ..., yw, ((p, q), g))
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement from Tσj
10. extract a tuple (A1, B1, R1) without replacement from Tσj
11. ((α0, β0), (α1, β1))← cj
12. c′j ← ((α0R0, β0A0), (α1R1, β1A1))
13. select a permutation π from S onto S uniformly at random
14. (c′π(1), c

′
π(2), ..., c

′
π(w))← fp(π, c′1, c

′
2, ..., c

′
w)

15. π′ ← A(c′π(1), c
′
π(2), ..., c

′
π(w),“guess”)

16. if π′(i) = π(i) then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly the ciphertexts
c1, c2, ..., cw are as specified by A. It follows from the definition of DDHRerandN
that c′j is a proper re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to A is drawn from the same set and probability distribution
as the input to A in Definition 9. It follows that π′(i) = π(i) with probabil-
ity greater than or equal to 1

w + 1
nα . So, for random exponents a and b in
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[1, q], Pr[AlgR10((p, q), g, ga, gb, gab) = “true”] ≥ 1
w + 1

nα . Define the value ψ =
Pr[AlgR10((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from the
definition of DDHRerandN that yj is uniformly distributed in Gp for j = 1, 2, ..., w
and that c′j is uniformly distributed in G2

p × G2
p for j = 1, 2, ..., w. Let pj be

the probability that A responds with π′(i) = j for j = 1, 2, ..., w. Then the
probability that π′(i) = π(i) is 1

wp1 + 1
wp2 + ... + 1

wpw = 1
w . So, for randomly

chosen exponents a, b, and c in [1, q], Pr[AlgR10((p, q), g, ga, gb, gc) = “true”]

= q2

q3ψ + (1− q2

q3 ) 1
w which is overwhelmingly close to 1

w . ut

We now address message indistinguishability.

Definition 10. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))

← A(((p, q), g), y1, y2, ..., yw, “specify messages and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
7. (kj,0, kj,1) ∈U [1, q]× [1, q] for j = 1, 2, ..., w
8. bj ∈U {0, 1} for j = 1, 2, ..., w
9. (c1, c2, ..., cw)← FBENCR((m1,b1 , (k1,0, k1,1), σ1), ...,

(mw,bw , (kw,0, kw,1), σw), y1, y2, ..., yw, ((p, q), g))
10. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

11. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
2 + 1

nα then
FBENCR is secure in the sense of message indistinguishability.

Theorem 9. If DDH is hard then FBENCR is secure in the sense of message
indistinguishability.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

2 + 1
nα . Consider algorithm AlgR7 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR7((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. ((m1,0,m1,1, σ1), (m2,0,m2,1, σ2), ..., (mw,0,mw,1, σw))
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← A(((p, q), g), y1, y2, ..., yw, “specify messages and receivers”)
4. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or

mj,1 /∈ Gp) then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
7. bj ∈U {0, 1} for j = 1, 2, ..., w
8. for j in 1..w do:
9. extract a tuple (A0, B0, R0) without replacement from Tσj
10. extract a tuple (A1, B1, R1) without replacement from Tσj
11. cj ← ((mj,bjR0, A0), (R1, A1))
12. (b′1, b

′
2, ..., b

′
w)← A(c1, c2, ..., cw,“guess”)

13. if bi = b′i then output “true” else output “false”’

Consider the case that the input is a DH 3-tuple. It follows from the definition
of DDHRerandN that cj is a proper encryption of mj,bj using public key yσj for
j = 1, 2, ..., w under FBENCR. Therefore, the input to A is drawn from the same
set and probability distribution as the input to A in Definition 10. It follows
that bi = b′i with probability greater than or equal to 1

2 + 1
nα . So, for random

exponents a and b in [1, q], Pr[AlgR7((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

nα .
Define ψ = Pr[AlgR7((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from
the definition of DDHRerandN that cj is uniformly distributed in G2

p × G2
p and

yj is uniformly distributed in Gp for j = 1, 2, ..., w. Let p1 be the probability
that A responds with b′i = 0. Then the probability that bi = b′i is 1

2p1 + 1
2 (1 −

p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the probability

Pr[AlgR7((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ+(1− q2

q3 ) 1
2 which is overwhelmingly

close to 1
2 . ut

Definition 11. If ∀ probabilistic polynomial time adversaries A, ∀ α > 0, ∀ i ∈
{1, 2, ..., w}, and ∀ sufficiently large n, after the following,

1. generate ((p, q), g)← IG(n)
2. ((y1, x1), (y2, x2), ..., (yw, xw))← FBGEN(n, ((p, q), g))
3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),

..., (mw,0,mw,1, rw,0, rw,1, σw))← A(((p, q), g), y1, y2,
..., yw,“specify ciphertexts, receivers, and π”)

4. if π is not a permutation from S onto S then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or mj,1 /∈ Gp)

then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or

rj,1 /∈ [1, q]× [1, q]) then output “false” and halt
8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then output “false” and halt
9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR((m1,b1 , r1,b1 , σ1), ...,
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(mw,bw , rw,bw , σw), y1, y2, ..., yw, ((p, q), g))
11. rj ∈U [1, q]× [1, q] for j = 1, 2, ..., w
12. (c′π(1), c

′
π(2), ..., c

′
π(w))← FBMIXER(π, (c1, r1), (c2, r2), ..., (cw, rw), ((p, q), g))

13. (c′1, c
′
2, ..., c

′
w)← fpinv(π, c′π(1), c

′
π(2), ..., c

′
π(w))

14. (b′1, b
′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

15. if bi = b′i then output “true” else output “false”

the output of the experiment is “true” with probability less than 1
2 + 1

nα then
FBMIXER is secure in the sense of message indistinguishability.

Theorem 10. If DDH is hard then FBMIXER is secure in the sense of message
indistinguishability.

Proof. Suppose there exists a probabilistic polynomial time adversary A, an
α > 0, an i ∈ {1, 2, ..., w}, and a sufficiently large n, such that A succeeds with
probability greater than or equal to 1

2 + 1
nα . Consider algorithm AlgR8 that takes

as input a DDH problem instance ((p, q), g, a0, b0, c0).

AlgR8((p, q), g, a0, b0, c0):
1. Tj ← DDHRerandN((p, q), g, a0, b0, c0, 2w) for j = 1, 2, ..., w
2. set yj = GetMiddle(Tj) for j = 1, 2, ..., w
3. (π, (m1,0,m1,1, r1,0, r1,1, σ1), (m2,0,m2,1, r2,0, r2,1, σ2),

..., (mw,0,mw,1, rw,0, rw,1, σw))← A(((p, q), g), y1, y2,
..., yw,“specify ciphertexts, receivers, and π”)

4. if π is not a permutation from S onto S then output “false” and halt
5. if ∃ j ∈ {1, 2, ..., w} such that (mj,0 /∈ Gp or

mj,1 /∈ Gp) then output “false” and halt
6. if ∃ j ∈ {1, 2, ..., w} such that mj,0 = mj,1 then output “false” and halt
7. if ∃ j ∈ {1, 2, ..., w} such that (rj,0 /∈ [1, q]× [1, q] or

rj,1 /∈ [1, q]× [1, q]) then output “false” and halt
8. if ∃ j ∈ {1, 2, ..., w} such that σj /∈ {1, 2, ..., w} then

output “false” and halt
9. bj ∈U {0, 1} for j = 1, 2, ..., w
10. (c1, c2, ..., cw)← FBENCR((m1,b1 , r1,b1 , σ1), ...,

(mw,bw , rw,bw , σw), y1, y2, ..., yw, ((p, q), g))
11. for j in 1..w do:
12. extract a tuple (A0, B0, R0) without replacement from Tσj
13. extract a tuple (A1, B1, R1) without replacement from Tσj
14. ((α0, β0), (α1, β1))← cj
15. c′j ← ((α0R0, β0A0), (α1R1, β1A1))
16. (b′1, b

′
2, ..., b

′
w)← A(c′1, c

′
2, ..., c

′
w,“guess”)

17. if bi = b′i then output “true” else output “false”

Consider the case that the input is a DH 3-tuple. Clearly the ciphertexts
c1, c2, ..., cw are as specified by A. It follows from the definition of DDHRerandN
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that c′j is a proper re-encryption of cj under FBMIXER for j = 1, 2, ..., w. There-
fore, the input to adversary A is drawn from the same set and probability dis-
tribution as the input to A in Definition 11. It follows that bi = b′i with prob-
ability greater than or equal to 1

2 + 1
nα . So, for random exponents a and b in

[1, q], Pr[AlgR8((p, q), g, ga, gb, gab) = “true”] ≥ 1
2 + 1

nα . Define the value ψ =
Pr[AlgR8((p, q), g, ga, gb, gab) = “true”].

Now consider the case that the input is not a DH 3-tuple. It follows from the
definition of DDHRerandN that yj is uniformly distributed in Gp for j = 1, 2, ..., w
and that c′j is uniformly distributed in G2

p ×G2
p for j = 1, 2, ..., w. Let p1 be the

probability that A responds with b′i = 0. Then the probability that bi = b′i is
1
2p1 + 1

2 (1− p1) = 1
2 . So, for randomly chosen exponents a, b, and c in [1, q], the

probability Pr[AlgR8((p, q), g, ga, gb, gc) = “true”] = q2

q3ψ + (1 − q2

q3 ) 1
2 which is

overwhelmingly close to 1
2 . ut

Theorems 7, 8, 9, and 10 show that properties 1, 2, 3, and 4 of a forward-
anonymous batch mix hold, respectively. The FBMIXER servers store no keys at
all so the forward-anonymity property holds (property 5). Theorem 8 proves that
anonymity holds from a single honest mix. Therefore, the robustness property
holds (property 6). Completeness and low-latency are straightforward to show
(properties 7 and 8). Theorem 6 therefore holds.
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