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Abstract: Recently, a new framework, called secure server-designation public key en-
cryption with keyword search (SPEKS), was introduced to improve the security of dPEKS
(which suffers from the on-line keyword guessing attack) by defining a new security mod-
el ‘original ciphertext indistinguishability’. In this paper, we note that off-line keyword
guessing attack can be launched by a malicious server to find the keyword used for gen-
erating the trapdoor, which was not considered in the related work. SPEKS can suffer
from this kind of attack. Moreover, the security model defined for TD-IND in SPEKS is
incomplete. Owing to the shown weaknesses, the existing security models are enhanced for
trapdoor indistinguishability by defining two new security models. Finally, we propose a
new framework.

Key words: Computer Networks; Information Security; Distributed Systems

1 Introduction

Nowadays, cloud storage is an important technique for sharing data, especially large
media data, between senders and receivers. More and more users enjoy the services provided
by cloud storage systems, such as iCloud, SkyDrive and Dropbox. Encryption is an effective
and practical approach to protect the sensitive data stored in the servers.

Public key encryption with keyword search(PEKS) [1, 3, 8–13, 17, 18, 20] is a notion
of dealing with obtaining encrypted data from the servers with regard to cloud storages.
PEKS enables a sender stores encrypted sensitive data with searchable ciphertexts into a
server. A receiver who wants to obtain the sender’s sensitive data should provide a keyword
trapdoor to the server. After testing the validness of the keyword trapdoor with searchable
ciphertexts, the server will send the encrypted sensitive data to the receiver.

The notion of PKES was first introduced by Boneh et al. [3] They proposed the first
PEKS scheme, and the notion of searchable ciphertext indistinguishability (SC-IND) for the
security of PKES. However, secure channel is required in their scheme.

Baek et al. [2] pointed out that PEKS suffers from an attack that without a secure
channel an attacker has the ability to link the matching trapdoor and ciphertext. Hence,
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they redefined the notion of SC-IND. The refined SC-IND guarantees that a malicious
server that has not obtained the trapdoors for given keywords cannot tell which searchable
ciphertext encrypts which keyword, and the outsider (without the server’s private key)
cannot make any decisions about the searchable ciphertexts even though the outsider gets
all the trapdoors for the keywords that it holds.

Byun et al. [5] pointed out that PEKS can suffer from off-line keyword guessing attack:
An attacker can find the keyword used for generating the trapdoor, since keywords have
much lower entropy than passwords.

The notion of trapdoor indistinguishability (TD-IND) was defined by Rhee et al. [14]
to address off-line keyword guessing attack. TD-IND guarantees that without the server’s
private key the trapdoor does not reveal any information with respect to the keyword.
Rhee et al. also proposed a new PEKS scheme which is an approach to withstand off-line
keyword guessing attack. However, their dPEKS can suffer from online keyword guessing
attack, which was pointed out by Yau et al. [19].

Recently, Chen [6] defined the security model for original ciphertext indistinguishability
(OC-IND), which guarantees that the original ciphertext is indistinguishable for an outsider.
They also proposed a new framework, called secure server-designation public key encryption
with keyword search (SPEKS), for withstanding online keyword guessing attack.

Our Contribution

We note that although some solutions for realizing secure PEKS are elegant, there re-
mains an important issue which was not addressed in the related work. In fact, the existing
security model for trapdoor indistinguishability [6, 14] only guarantees that without the
server’s private key the trapdoor does not reveal any information with respect to the key-
word. That is, only outsider was considered. However, the off-line keyword guessing attack
can be launched by a malicious server 1 to find the keyword used for generating the trap-
door, which was not considered in the related work. Hence, the existing security model for
TD-IND is incomplete.

Motivated by this, our contribution in this paper is three folds:

• We first point out that the SPEKS has the weakness mentioned above. Moreover, the
security model defined for TD-IND in SPEKS is incomplete. That is, the trapdoor in
fact is distinguishable.

• We enhance the existing security model for trapdoor indistinguishability to remedy
this weakness by defining two new security models (see Section 4.2.3). In our en-
hanced security models, the security guarantees that the trapdoor does not reveal any
information on any keyword for an outsider (including the sender) or the malicious
server.

• Finally, we define a new framework for addressing this weakness, which followed by a
concrete scheme.

1We stress here that a malicious server means an honest-but-curious server in the related work and this
paper.
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2 Preliminaries

2.1 Bilinear Pairings

Let G1, G2 and GT be multiplicative cyclic groups of prime order p with the security
parameter λ. Let g1, g2 be generators of G1, G2 respectively. The bilinear map e : G1×G2 →
GT is defined as follows:

1. Bilinearity: ∀u ∈ G1, ∀v ∈ G2 and ∀a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

2. Non-degeneracy: ∃g1, g2 such that e(g1, g2) has order p, that is, e(g1, g2) is a generator
of GT .

Note that the group operations in G1, G2, GT and e are all efficiently computable, while
no efficiently computable isomorphism can be found between G1 and G2 [12, 15].

2.2 Decisional Bilinear Diffie-Hellman (BDH) Assumption

Let (p,G1, G2, GT , e) be that defined in Section 2.1. Let g1, g2 be generators of G1, G2

respectively. The assumption is that e(g1, g2)
abc and T ∈ GT are indistinguishable for any

probabilistic polynomial time algorithm A if the challenge instances D = ((p,G1, G2, GT , e),
g1, g

a
1 , g

c
1, g2, g

b
2) and T are given. The advantage of A is defined as

AdvDBDH
A (λ) = |Pr[A(D, e(g1, g2)

abc) = 1]− Pr[A(D,T ) = 1]|.

Note that the probability is taken over the random choice of T ∈ GT and a, b, c ∈ Zp.

2.3 Symmetric eXternal Diffie-Hellman (SXDH) Assumption

Let (p,G1, G2, GT , e) be that defined in Section 2.1. Let g1, g2 be generators of G1, G2 re-
spectively. The assumption is that gab1 from η ∈ G1 are indistinguishable for any probabilis-
tic polynomial time algorithmA if the challenge instancesD = ((p,G1, G2, GT , e), g1, g2, g

a
1 , g

b
1)

and η are given. The advantage of A is defined as

AdvA(λ) = |Pr[A(D, gab1 ) = 1]− Pr[B(D, η) = 1]|

where the probability is taken over the random choice of η ∈ G1 and a, b ∈ Zp.

2.4 Definition of Traditional Public Key Encryption

In traditional public key encryption (TE), there are two participants, a receiver and a
sender. The definition of the TE scheme is as follows.

• TE.Setup(k): This algorithm takes a security parameter k as input, and outputs the
system parameter SP.

• TE.KeyGen(SP): This algorithm takes the system parameter SP as input, and out-
puts the public/private key pair Rpub, Rpriv.

• TE.Encrypt(SP,M,Rpub): This algorithm takes the system parameter SP, a message
M and the public key Rpub as inputs, and outputs C as the ciphertext to the receiver.
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• TE.Decrypt(SP, Rpriv, C): This algorithm takes the system parameter SP, the pri-
vate key Rpriv and a ciphertext C as inputs, and retrieves the message M .

Ciphertext indistinguishability against adaptive chosen ciphertext attack (IND-CCA2).
Let C be a challenger and A be a probabilistic polynomial time adversary. The security
game for IND-CCA2 works between A and C as follows.

1. Setup: TE.Setup and TE.KeyGen are run by C, and then the system parameters SP
and a public key Rpub are returned to A. Note that Rpriv is kept secretly.

2. Phase 1: A queries Decrypt oracle to C. A message M which is retrieved from a
ciphertext C for A’s queries will be returned.

3. Challenge: A selects two messages M∗
0 ,M

∗
1 for challenge. C picks b ∈ {0, 1} randomly

and outputs a challenge ciphertext C∗ = TE.Encrypt(SP,M∗
b , Rpub) to A.

4. Phase 2: A can make Decrypt oracle as long as C ̸= C∗.

5. Guess: A outputs b′ ∈ {0, 1}. If b = b′, then A wins the game.

The advantage of A to break a TE scheme is denoted by AdvIND−CCA2
A,TE (k) = |Pr[b =

b′]− 1
2 |.

Definition 1 If AdvIND−CCA2
A,TE (k) is negligible for any probabilistic polynomial time adver-

sary A, we say that the TE scheme meets IND-CCA2.

3 SPEKS and Its Weaknesses

SPEKS [6] is based on identity-based encryption (IBE) and TE. Now, we first recall the
definition of IBE.

Definition of IBE. In IBE, there is a trust agency (TA) which takes its master private
key and a user’s identity ID to generate the user’s private key. The formal definition of
IBE scheme is as follows.

• IBE.Setup(k): This algorithm is run by the TA. It takes a security parameter k as
input, the master public/private key pair Ppub, Ppriv and the system parameter SP
are outputted. Note that the master public key Ppub and an identity space ID are
included in SP.

• IBE.Extract(SP, ID, Ppriv): This algorithm takes the system parameter SP, an iden-
tity ID and the master private key Ppriv as inputs, generates the user’s private key
Upriv.

• IBE.Encrypt(SP,M, ID): This algorithm takes the system parameter SP, a message
M and the receiver’s ID as inputs, outputs C as the ciphertext.

• IBE.Decrypt(SP, Upriv, C): This algorithm takes the system parameter SP, the re-
ceiver’s private key Upriv and a ciphertext C as inputs, retrieves the message M .
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3.1 SPEKS

The SPEKS scheme proposed in [6] is recalled as follows.

• GlobalSetup(k): This algorithm runs TE.Setup and IBE.Setup to return SP as the
system parameter, where the identity space ID = W.

• dKeyGen(SP): This algorithm takes the system parameter SP to run TE.KeyGen to
generate Rpub, Rpriv. Finally, it outputs the server’s public/private key pair Spub =
Rpub, Spriv = Rpriv.

• rKeyGen(SP): This algorithm takes the system parameter SP as input. It runs
IBE.Setup to output the master key pair Ppub, Ppriv of IBE. Finally, it outputs the
receiver’s public/private key pair Apub = Ppub, Apriv = Ppriv.

• dPEKS(SP,Wi, Apub, Spub): It takes the system parameter SP, a keyword Wi, the
receiver’s public key Apub and the server’s public key Spub as inputs, and then outputs
the searchable ciphertext Ci = TE.Encrypt(SP, C ′, Spub), where C ′ = IBE.Encrypt
(SP, Apub, 1,Wi).

Finally, M̃ ||C1, · · · , Cn will be sent to the server by the sender. Note that M̃ is the
ciphertext of the real message M by using the receiver’s public key.

• Trapdoor(SP,W ′, Apriv, Spub): The receiver runs this algorithm, which takes the sys-
tem parameter SP, a keyword W ′, the receiver’s private key Apriv and the server’s
public key Spub as inputs, to output the keyword trapdoor T = TE.Encrypt (SP,
IBE.Extract(SP,W ′, Apriv), Spub).

• Test(SP, Ci, T, Spriv): The server runs this algorithm, which takes the system param-
eter SP, a searchable ciphertext Ci, a keyword trapdoor T and the server’s private
key as inputs, to generate T ′ = TE.Decrypt (SP, Spriv, T ) and C ′

i = TE.Decrypt
(SP, Spriv, Ci). Finally, it checks whether or not 1 = IBE.Decrypt(SP, T ′, C ′

i) holds
or not. If it is the case, it outputs 1, otherwise 0.

• Encrypt(SP, M̃ , Apub): The server computes and sends C̃ =TE.Encrypt(SP, M̃ , Apub)
to the receiver, where M̃ is the matching message.

• Decrypt(SP, C̃, Apriv): Upon receiving C̃, the receiver retrieves M̃ by computing M̃ =
TE.Decrypt (SP, Apriv, C̃). Then, the receiver recover the real message M by using
his private key.

3.2 The Weaknesses in SPEKS

Here, we point out two weaknesses in SPEKS: (1) Given a trapdoor a malicious server can
find the keyword used for generating the trapdoor. That is, the trapdoor is distinguishable
when the server is malicious, which is not considered in the related work. (2) The security
model for TD-IND defined in SPEKS is incomplete, the trapdoor in fact is distinguishable 2.

Note that SPEKS is a generic transformation from IBE and TE. Hence, we assume that
without loss of generality Boneh-Franklin’s IBE [4] is used in SPEKS.

2the details of the security model is referred to the original paper [6]
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Definition of Boneh-Franklin’s IBE. Boneh-Franklin’s IBE consists of following algo-
rithms:

• Setup(k): This algorithm takes a security parameter k as input, and performs as
follows:

– Generate a large random prime p and two cyclic groups G1,G2 of order p.

– Let bilinear pairing e : G1 ×G1 → G2.

– Pick a generator P ∈ G1 randomly.

– Pick a random number s ∈ Zp and compute Ppub = sP .

– Pick two secure hash functions H1 : {0, 1}∗ → G1,H2 : G2 → {0, 1}n.

The system parameter SP is (p, P,G1,G2, e,H1,H2). The master public key Ppub is
also published. The master private key is Ppriv = s.

• Extract(SP, ID, Ppriv): This algorithm outputs the user’s private key Upriv = sH1(ID).

• Encrypt(SP, Ppub,M, ID): This algorithm picks r ∈R Z∗
p and computes C1 = rP,C2 =

M ⊕ H2(e(H1(ID), rPpub)), where M ∈ {0, 1}n is the plaintext. The ciphertext is
C = (C1, C2).

• Decrypt(SP, Upriv, C): Let C = (U, V ). This algorithm outputs the plaintext M =
V ⊕H2(Upriv, U).

In the case of Boneh-Franklin’s IBE is used, we show the weaknesses as follows:

• Weakness 1: The trapdoor T outputted from Trapdoor algorithm is T = TE.Encrypt(SP,
T ′, Spub), where T ′ = sH1(W

′).

After receiving T from the receiver, the malicious server first decrypts T with its
private key Spriv to recover T ′, and then performs the following steps to guess the
keyword W ′:

– Step 1: Guess an appropriate keyword W , and computes H1(W ).

– Step 2: Check whether or not e(P, T ′) = e(Ppub,H1(W )). If it is the case, W is
a valid keyword. Otherwise, go to Step 1.

• Weakness 2: In the security model for TD-IND defined in [6]. The adversary can
perform as follows.

– Submit two keywordsW ∗
0 ,W

∗
1 in the Challenge phase. As the result, C returns the

challenge trapdoor T ∗ = TE.Encrypt (SP, Spub, IBE.Extract (SP, Apriv,W
∗
b )).

– Compute C = TE.Encrypt (SP, Spub, IBE.Encrypt (SP, Apub,W
∗
1 , 1)). And send

(C, T ∗) to C for Test-query in Phase 2. As a result, C will return 1 or 0.

– If 1 is returned, output b′ = 1 as the answer for the challenge; otherwise, output
b′ = 0.

Clearly, if W ∗
b = W ∗

1 , Test oracle will return 1; otherwise, return 0.
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4 Our Proposed New Framework

In this section, we present our new framework. In this new framework, three entities are
involved: the sender, the receiver and the server.

It should be noted that the ciphertext is generated with the receiver’s public key in
SPEKS. That is, the sender generates the ciphertext for the specific receiver. In this case,
it is practical to consider that the receiver should be aware of the identity of the sender.
On the other hand, for considering the receiver’s privacy in some scenarios, only the autho-
rized senders having the ability to generate the ciphertexts for the specific receiver is more
practical in real life.

From above, the idea behind our framework is as follows: The receiver authorizes a sender
by sending him a secret token, only with which the sender can generate valid searchable
ciphertexts for the receiver. We stress here that the communication of token is once for
all. Moreover, the receiver’s private key establishes a link between his trapdoors and all
authorized senders’ searchable ciphertexts. As a result, the receiver can search all authorized
senders’ searchable ciphertexts with only one trapdoor. 3

Compared with SPEKS, there is an additional algorithm: Token. The receiver generates
the token with his private key by running algorithm Token, and then sends it to the sender
secretly. More in details, the workflow of our proposal is presented as follows.

1. To authorize a sender to generate valid encrypted data for him, the receiver should
generate a token with his private key, and then send it to the sender secretly.

2. With the token and the keywords, the sender generates the searchable ciphertexts for
the receiver.

3. To search for a specific keyword, the receiver issues the server a trapdoor, generated
based on his private key and the keyword.

4. With the trapdoor from the receiver, the server searches encrypted data of all autho-
rized senders (by the receiver) to decide whether there exist searchable ciphertexts
which contain the same keyword as that in the trapdoor.

4.1 The Definition

Our framework consists of the following algorithms. Here, Let U be the sender and V
be the receiver.

• GlobalSetup(λ): This algorithm takes λ (the security parameter) as input, outputs
the system parameter SP, where a keyword space W is included.

• dKeyGen(SP): The server runs this algorithm, which takes SP as input, to output
the server’s public/private key pair, (Spub, Spriv).

• rKeyGen(SP): The receiver V runs this algorithm, which takes SP as input, to output
his public/private key pair, (Vpub, Vpriv).

• Token(SP, Vpriv): This algorithm takes SP and the receiver V ’s private key Vpriv as
inputs, run by the receiver V , generates a token TK.

3The similar approach was used in [16].
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• dPEKS(SP,Wi, TK, Spub): The sender U runs this algorithm, which takes SP, a
keyword Wi ∈ W, a token TK and the server’s public key Spub as inputs, to generate
Ci as the searchable ciphertext.

Finally, U will send {EVpub
[M ]||C1, · · · , Cn} to the server 4, and C1, · · · , Cn are search-

able ciphertexts for keywords W1, · · · ,Wn.

• Trapdoor(SP,W ′, Vpriv, Spub): This algorithm takes the system parameter SP, a key-
word W ′ ∈ W, the receiver V ’s private key Vpriv and the server’s public key Spub as
inputs, run by the receiver V , outputs the trapdoor T .

• Test(SP, Ci, T, Spriv): The server runs this algorithm, which takes SP, the searchable
ciphertext Ci, the keyword trapdoor T and the server’s private key Spriv as inputs,
to output 1 if W ′ = Wi, or 0 otherwise. If 1 is outputted, algorithm Encrypt will be
performed by the server.

• Encrypt(SP, Vpub, M̃): The server runs this algorithm, which takes SP, the receiver
V ’s public key Vpub and M̃ = EVpub

[M ] as inputs, to generate C̃ as the ciphertext of

M̃ .

• Decrypt(SP, Vpriv, C̃): The receiver V runs this algorithm, which takes SP, the re-
ceiver V ’s private key Vpriv and the ciphertext C̃ as inputs, to retrieve the real message
M .

4.2 Security Models

Before presenting the security models, we first give the following queries can be made by
the adversary A.

• Trapdoor-query: A submits a keyword for this query. A trapdoor with respect to this
keyword will be returned.

• Test-query: A submits a trapdoor with a searchable ciphertext for this query. 1 or 0
will be returned.

• Decrypt-query: A submits a ciphertext for this query. The corresponding message will
be returned.

• dPEKS-query: A submits a keyword for this query. A searchable ciphertext of this
keyword with respect to the token will be returned.

4.2.1 Security Models for SC-IND

In these security models, the adversary A acts as a malicious server or a receiver. SC-
IND guarantees that the adversary cannot distinguish a searchable ciphertext generated
from one of two keywords W ∗

0 ,W
∗
1 which are chosen by the adversary. The security model

for SC-IND is the following games between A1 (or A2) and a challenger C.

Game 1 (SC-IND1) Let A1 be the malicious server. The game is performed as follows.

4M is the message, E is a secure standard public key encryption
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1. Setup: A1 personally computes (Spub, Spriv) as the server’s public/private key, and
then sends Spub to C. C computes V ’s public/private key pair (Vpub, Vpriv), and then
sends Vpub to A1.

2. Phase 1: A1 can make Trapdoor-query and dPEKS-query.

3. Challenge: A1 selects two keywords W ∗
0 ,W

∗
1 for challenge. C picks β ∈R {0, 1}

and outputs C∗ = dPEKS(SP,W ∗
β , TK, Spub) as the challenge searchable ciphertext,

which will be given to A1.

4. Phase 2: A1 can keep making queries as done in Phase 1.

5. Guess: A1 outputs β′ ∈ {0, 1}. If β = β′, A1 wins this game.

The restriction is that Trapdoor-query has never been queried for W ∗
0 ,W

∗
1 .

Game 2 (SC-IND2) Let A2 be the receiver. The game is performed as follows.

1. Setup: A2 personally outputs (Vpub, Vpriv) as the receiver’s public/private key, and
sends Vpub to C. C computes the server’s public/private key (Spub, Spriv), and then
sends Spub to A2. TK is sent to C by A2.

2. Phase 1: A2 can make (Ci, T ) for Test-query.

3. Challenge: A2 selects two keywords W ∗
0 ,W

∗
1 for challenge. C picks β ∈R {0, 1}

and outputs C∗ = dPEKS(SP,W ∗
β , TK, Spub) as the challenge searchable ciphertext,

which will be given to A2.

4. Phase 2: A2 can keep making queries as done in Phase 1.

5. Guess: A2 outputs β′ ∈ {0, 1}. If β = β′, A2 wins this game.

The restrictions are as follows:

• In Phase 1, A2 is not allowed to submit (Ci, T
∗) for Test-query, where T ∗ is a trapdoor

on W ∗
0 ,W

∗
1 .

• In Phase 2, A2 is not allowed to submit (Ci, T ) for Test-query, where T is a trapdoor
on W ∗

0 ,W
∗
1 or Ci = C∗.

The advantage ofA1 orA2 to break a scheme in our framework is denoted byAdvSC−IND
A1orA2

(k) =

|Pr[b = b′]− 1
2 |.

Definition 2 A scheme in our framework is said to meet SC-IND against the adaptive
chosen keyword attack if AdvSC−IND

A1orA2
(k) is negligible for any probabilistic polynomial time

adversary Ai(i = 1, 2).
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4.2.2 Security Model for OC-IND

In this security model, the adversary A3 acts as an outsider. OC-IND guarantees that
the adversary cannot distinguish an original ciphertext generated from one of two messages
M̃∗

0 , M̃
∗
1 which are chosen by the adversary. The security model for OC-IND is the following

game between A3 and C.

Game 3 (OC-IND) : Let A3 be an outsider. The game is performed as follows.

1. Setup: C computes (Spub, Spriv) as the server’s public/private key and the receiver V ’s
public/private key pair (Vpub, Vpriv), and then sends Spub, Vpub to A3.

2. Phase 1: A3 can query C̃ for Decrypt-query. A message M̃ will be returned to A3.

3. Challenge: A3 selects two messages M̃∗
0 , M̃

∗
1 for challenge. Finally, C picks β ∈R

{0, 1}, and then computes and outputs C̃∗ = Encrypt(SP, Vpub, M̃
∗
β) to A3 as the

challenge ciphertext.

4. Phase 2: A3 can keep making queries as done in Phase 1.

5. Guess: A3 outputs β′ ∈ {0, 1}. If β = β′, A3 wins this game.

The restriction is that C̃∗ is not allowed for Decrypt-query in Phase 2.

The advantage of A3 to break a scheme in our framework is defined by AdvOC−IND
A3

(k) =

|Pr[b = b′]− 1
2 |.

Definition 3 A scheme in our framework is said to meet OC-IND against the adaptive
chosen message attack if AdvOC−IND

A3
(k) is negligible for any PPT adversary A3.

4.2.3 Security Models for TD-IND

Here, we enhance the existing security model for TD-IND by considering not only an
outside attacker (including the sender) but also the malicious server. In the enhanced
security model of TD-IND, the adversary A acts as the sender or the malicious server. It
guarantees that the adversary cannot distinguish a trapdoor generated from one of two
keywords W ∗

0 ,W
∗
1 which are chosen by the adversary. The enhanced security models for

TD-IND is the following games between A4 (or A5) and a challenger C.

Game 4 (TD-IND1) : Let A4 be the sender. The game is performed as follows.

1. Setup: C computes (Spub, Spriv) as the server’s public/private key and the receiver V ’s
public/private key pair (Vpub, Vpriv), and then sends Spub, Vpub to A4.

2. Phase 1: A4 can submit for Trapdoor-query and Test-query.

3. Challenge: A4 chooses two keywords W ∗
0 ,W

∗
1 for challenge. C picks β ∈R {0, 1} and

computes T ∗ = Trapdoor(SP,W ∗
β , Vpriv, Spub) as the challenge trapdoor, which will be

given to A4.

4. Phase 2: A4 can keep making queries as done in Phase 1.
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5. Guess: A4 outputs β′ ∈ {0, 1}. If β = β′, A4 wins this game.

The restrictions are as follows:

• W ∗
0 ,W

∗
1 are not allowed for Trapdoor-query.

• (Ci, T
∗) is not allowed for Test-query, where T ∗ is a trapdoor from W ∗

0 ,W
∗
1 .

Game 5 (TD-IND2) : Let A5 be the malicious server. The game is performed as follows.

1. Setup: A5 personally computes (Spub, Spriv) as the server’s public/private key, and
then sends Spub to C. C computes (Vpub, Vpriv) as the receiver V ’s public/private key,
and then sends Vpub to A5.

2. Phase 1: A5 can make Trapdoor-query and dPEKS-query.

3. Challenge: A5 chooses two keywords W ∗
0 ,W

∗
1 for challenge. C picks β ∈R {0, 1} and

computes T ∗ = Trapdoor(SP,W ∗
β , Vpriv, Spub) as the challenge trapdoor, which will be

given to A5.

4. Phase 2: A5 can keep making queries as done in Phase 1.

5. Guess: A5 outputs β′ ∈ {0, 1}. If β = β′, A5 wins this game.

The restriction is that W ∗
0 ,W

∗
1 are not allowed for Trapdoor-query.

The advantage ofA4 orA5 to break a scheme in our framework is defined byAdvTD−IND
A4orA5

(k) =

|Pr[b = b′]− 1
2 |.

Definition 4 A scheme in our framework is said to meet TD-IND against the adaptive
chosen keyword attack if AdvTD−IND

A4orA5
(k) is negligible for any probabilistic polynomial time

adversary Ai(i = 4, 5).

5 The Concrete Scheme

5.1 The Construction

Here, we propose a concrete scheme as follows.

• GlobalSetup(λ): This algorithm first picks a large prime p randomly, and then gener-
ates the groups G1, G2, GT and the bilinear pairing e : G1 ×G2 → GT . Then, secure
hash functions H1 : W → G1 and H2 : {0, 1}∗ → G2 are selected. Finally, it outputs
SP as the system parameter. Note that (e, p,G1, G2, GT ,H1,H2) ∈ SP.

• dKeyGen(SP): This algorithm takes SP as input, and runs TE.KeyGen to com-
pute (Rpub, Rpriv). Finally, it outputs the server’s public/private key pair Spub =
Rpub, Spriv = Rpriv.

• rKeyGen(SP): This algorithm takes SP as input, and runs TE.KeyGen to compute
(Ppub, Ppriv). Moreover, it picks z ∈R Z∗

p. Finally, it outputs the receiver V ’s pub-
lic/private key pair Vpub = Ppub, Vpriv = (Ppriv, z).
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• Token(SP, Vpriv): This algorithm takes SP and the receiver V ’s private key Vpriv,
where z ∈ Vpriv. Then, it outputs TK = H2(V )z as the token. 5

• dPEKS(SP,Wi, TK, Spub): This algorithm takes SP, a keyword Wi, the token TK
and the server’s public key Spub. Then, it performs as follows:

1. Pick k ∈R Z∗
p.

2. Compute C = (c1, c2) = (e(H1(Wi), TK)k,H2(V )k).

3. Output the searchable ciphertext Ci = TE.Encrypt (SP, C, Spub).

Eventually, the sender sends M̃ with n searchable ciphertexts C1, · · · , Cn to the server,
where M̃ = TE.Encrypt (SP,M, Ppub) for the real message M .

• Trapdoor(SP,W ′, Vpriv, Spub): This algorithm takes SP, a keyword W ′, the receiver
V ’s private key Vpriv and the server’s public key Spub, where z ∈ Vpriv. Then, it
performs as follows:

1. Compute Θ = H1(W
′)z.

2. Output the trapdoor T = TE.Encrypt(SP,Θ, Spub).

• Test(SP, Ci, T, Spriv): This algorithm takes SP, a searchable ciphertext Ci, a keyword
trapdoor T and the server’s private key Spriv as inputs, performs the following steps:

1. Compute Θ = TE.Decrypt (SP, Spriv, T )

2. Compute C = (c1, c2) = TE.Decrypt(SP, Spriv, Ci)

3. Check whether the equation c1 = e(Θ, c2) holds or not. If it is the case, 1 is
outputted, otherwise 0.

• Encrypt(SP, Vpub, M̃): This algorithm takes SP, the receiver V ’s public key Vpub and
a message M̃ as inputs, outputs C̃ = TE.Encrypt(SP, M̃ , Ppub), where Ppub ∈ Vpub

(note that M̃ = TE.Encrypt(SP,M, Ppub)).

• Decrypt(SP, Vpriv, C̃): This algorithm takes SP, the receiver V ’s private key Vpriv

and a ciphertext C̃ as inputs, retrieves M by computing M = TE.Decrypt (SP, Ppriv,
TE.Decrypt (SP, Ppriv, C̃)), where Ppriv ∈ Vpriv.

5.2 Correctness

Here, we show the correctness of our proposal.

First, we know c1 = e(H1(Wi), TK)k and c2 = H2(V )k, where TK = H2(V )z. Given
a trapdoor, we have that T = TE.Encrypt(SP,Θ, Spub), where Θ = H1(W

′)z. Clearly, if
Wi = W ′, then Θ = H1(Wi)

z and c1 = e(Θ, c2), which will make Test algorithm output 1
with probability 1. On the other hand, if Wi ̸= W ′, then Θ ̸= H1(Wi)

z with overwhelming
probability. Hence, c1 ̸= e(Θ, c2) with overwhelming probability, which will make Test
algorithm output 0.

Moreover, we have that C̃ =TE.Encrypt(SP, M̃ , Ppub) and M̃ = TE.Encrypt(SP,M, Ppub).
From the consistency of TE, we have thatM =TE.Decrypt (SP, Ppriv, TE.Decrypt (SP, Ppriv, C̃))
in Decrypt holds.

5To send the token to the sender via public channel, the receiver can encrypt the token with the sender’s
public key, and then the sender recovers it with his private key. For simplicity, we omit the details of this
step.
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5.3 Security

Here, we prove the security of our proposal. We stress here that the restriction in each
proof should adhere to that in the corresponding game defined in Section 4.2.

Theorem 1 Given a proposed scheme. Suppose that TE is IND-CCA secure and H1,H2

are random oracles. If A1 can break SC-IND1 with non-negligible probability, then there
exists an algorithm B solving the BDH problem with non-negligible probability.

Proof. To prove this theorem, we constructs an algorithm B by running A1 as a subrou-
tine to solve the BDH problem.

1. Setup: B receives a challenge instance (p,G1, G2, GT , e, g1, g
a
1 , g

c
1, g2, g

b
2, T ) of BDH

problem from C (B’s task is to decide whether or not e(g1, g2)
abc = T ). B generates

the receiver V ’s public/private key pairs (Vpub, Vpriv).

Lists H1-list and H2-list, which are initial empty, are maintained by B to answer
random oracle queries.

B sends the parameters SP with Vpub to A1, where (p,G1, G2, GT , e) ∈ SP. A1

personally generates the server’s public/private key pair (Spub, Spriv), and then sends
Spub to B.
B picks a random number j as the challenge keyword index candidate.

2. Phase 1: A1 is allowed to make the following queries to B.

• H1-query: A1 submits Wi ∈ W to B. B responds as follows:

(a) If i = j, return gc1 as the answer.

(b) If Wi has been queried previously, B searches the H1-list to find r1 and then
returns gr11 as the answer; otherwise, r1 ∈ Z∗

p is picked randomly and a new
item [Wi, r1] is stored into H1-list.

• H2-query: A1 submits α to B. B responds with a random number gr22 to A1: If α
has been queried previously, B searches the H2-list to find r2; otherwise, r2 ∈ Z∗

p

is picked randomly and a new item [α, r2] is stored into H2-list.

• Trapdoor-query: A1 submits Wi ∈ W for this query. B performs as follows:

(a) If i = j, abort with failure.

(b) Compute Θ = gar11 and output T = TE.Encrypt(SP,Θ, Spub) as the answer,
where r1 is from H1-list such that gr11 = H1(Wi).

• dPEKS-query: A1 submits Wi ∈ W for this query. B performs as follows:

(a) If i = j, abort with failure.

(b) Set c1 = e(gar11 , gr22 )k and c2 = gkr22 , where k ∈ Z∗
p is picked randomly, r1

(resp. r2) is from H1-list (resp. H2-list) such that gr11 = H1(Wi) (resp.
gr22 = H2(V )).

(c) Outputs Ci = TE.Encrypt(SP, C, Spub) as the answer, where C = (c1, c2).

3. Challenge: A1 chooses two keywords W ∗
0 ,W

∗
1 for challenge. B picks β ∈R {0, 1} and

performs as follows:
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(a) If W ∗
β has been queried for H1-query but it is not the j-th different keyword,

then abort with failure.

(b) Compute C∗ = (c1, c2) = (T r2 , gbr22 ), where r2 is from H2-list such that gr22 =
H2(V ).

(c) Output a searchable ciphertext C∗
β = TE.Encrypt (SP, C∗, Spub) as challenge.

4. Phase 2: A1 can keep making queries as done in Phase 1.

5. Guess: A1 outputs β′ ∈ {0, 1}. If β = β′, B outputs yes to C for the challenge;
otherwise, B outputs no.

Clearly, since H1,H2 are random oracles, A1 wins the game implies that B can decide
whether or not T = e(g1, g2)

abc correctly with non-negligible probability. 2

Theorem 2 Given a proposed scheme. Suppose that H1 and H2 are random oracles. If A2

can break SC-IND2 with non-negligible probability, then there is an algorithm B which can
break the IND-CCA2 security of TE with non-negligible probability.

Proof. To prove this theorem, we constructs an algorithm B by running A2 as a subrou-
tine to break the IND-CCA2 security of TE. B receives pk∗ from C as challenge.

1. Setup: Let pk∗ be the server’s public key Spub (note that B does not know the server’s
private key Spriv). B generates the system parameter SP. Spub and SP are sent to
A2.

Lists H1-list and H2-list, which are initial empty, are maintained by B to answer
random oracle queries.

A2 personally generates the receiver V ’s public/private key pair (Vpub, Vpriv) and the
token TK. Vpub and TK are sent to B.

2. Phase 1: A2 is allowed to make the following queries to B.

• H1-query: A2 submits W ∈ W for this query. B responds with h1 as follows:
If W has been queried previously, B searches the H1-list to find h1; otherwise,
h1 ∈ G1 is picked randomly and a new item [W,h1] is stored into H1-list.

• H2-query: A2 submits α for this query. B responds with h2 as follows: If α has
been queried previously, B searches the H2-list to find h2; otherwise, h2 ∈ G2 is
picked randomly and a new item [α, h2] is stored into H2-list.

• Test-query: A2 submits (Ci, T ) for this query. B performs the following steps:

(a) Send T to C for Decrypt oracle, and then C returns Θ as the answer, where
Θ = TE.Decrypt (SP, Spriv, T ).

(b) Send Ci to C for Decrypt oracle, and then C returns C = (c1, c2) as the
answer, where C = TE.Decrypt(SP, Spriv, Ci).

(c) Check whether the equation c1 = e(Θ, c2) holds or not. If it is the case, 1 is
outputted; otherwise 0.

3. Challenge: A2 picks two keywords W ∗
0 ,W

∗
1 for challenge. For each b ∈ {0, 1}, B

computes C∗
b since it knows TK.
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Then, B sends C∗
0 , C

∗
1 to C as the challenge messages. C picks β ∈R {0, 1} and

responds with C∗ = TE.Encrypt(SP, C∗
β, Spub) as the challenge ciphertext. As a

result, B outputs C∗ to A2 as the challenge searchable ciphertext.

4. Phase 2: A2 can keep making queries as done in Phase 1.

5. Guess: A2 outputs β′ ∈ {0, 1}. B directly sends β′ to C for the challenge.

Note that C∗ is the ciphertext of C∗
β. Moreover, C∗

β is computed from W ∗
β . Clearly, if

β′ = β, then B can answer C’s challenge correctly with non-negligible probability. 2

Theorem 3 Given a proposed scheme. Suppose that H1 and H2 are random oracles. If A3

can break OC-IND with non-negligible probability, then there is an algorithm B which can
break the IND-CCA2 security of TE with non-negligible probability.

Proof. To prove this theorem, we constructs an algorithm B by running A3 as a subrou-
tine to break the IND-CCA2 security of TE. B receives the challenge public key pk∗ from
C.

1. Setup: B generates SP, the server’s public/private key (Spub, Spriv) and the receiver
V ’s public key Vpub, where Ppub ∈ Vpub and Ppub = pk∗ (note that B does not know
the receiver V ’s partial private key Ppriv). B sends Vpub, Spub to A3.

Lists H1-list and H2-list, which are initial empty, are maintained by B to answer
random oracle queries.

2. Phase 1: A3 is allowed to make the following queries to B.

• As for H1-query and H2-query, B performs as in the proof of Theorem 2.

• Decrypt-query: A3 submits C̃ for Decrypt-query. B directly submits C̃ to C
for Decrypt oracle. C returns the corresponding message M̃ to B, and then B
directly returns M̃ to A3 as the answer.

3. Challenge: A3 chooses two challenge messages M̃∗
0 , M̃

∗
1 for challenge. B sends M̃∗

0 , M̃
∗
1

to C as the challenge messages. As a response, C picks β ∈R {0, 1} and computes the
corresponding ciphertext C̃∗ to B. B directly returns C̃∗ to A3 as the challenge
ciphertext.

4. Phase 2: A3 can keep making queries as done in Phase 1.

5. Guess: A3 outputs β′ ∈ {0, 1}. B directly sends β′ to C for the challenge.

Clearly, if β′ = β, then B can break the IND-CCA2 security of TE with non-negligible
probability. 2

Theorem 4 Given a proposed scheme. Suppose that H1 and H2 are random oracles. If A4

can break TD-IND1 with non-negligible probability, then there is an algorithm B which can
break the IND-CCA2 security of TE with non-negligible probability.

Proof. To prove this theorem, we constructs an algorithm B by running A4 as a subrou-
tine to break the IND-CCA2 security of TE. B receives the challenge public key pk∗ from
C.
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1. Setup: Let the server’s public key Spub = pk∗ (note that the server’s private key Spriv is
unknown to B). B generates the system parameter SP, the receiver V ’s public/private
key pair (Vpub, Vpriv) and the token TK.

Lists H1-list and H2-list, which are initial empty, are maintained by B to answer
random oracle queries.

B sends SP, TK, Vpub, Spub to A4.

2. Phase 1: A4 is allowed to make the following queries to B.

• As for H1-query and H2-query, B performs as in the proof of Theorem 2.

• Trapdoor-query: A4 submits W ∈ W for Trapdoor-query. B performs as follows:

(a) Compute Θ = Trapdoor(SP,W, Vpriv, Spub).

(b) Output T = TE.Encrypt (SP,Θ, Spub) to A4 as the answer.

• Test-query: A4 submits (Ci, T ) for Test-query. B performs the following steps:

(a) Send T to C for Decrypt oracle, and then C returns Θ as the answer, where
Θ = TE.Decrypt (SP, Spriv, T ).

(b) Send Ci to C for Decrypt oracle, and then C returns C = (c1, c2) as the
answer, where C = TE.Decrypt(SP, Spriv, Ci).

(c) Check whether the equation c1 = e(Θ, c2) holds or not. If it is the case, 1 is
outputted, otherwise 0.

3. Challenge: A4 picks two keywords W ∗
0 ,W

∗
1 for challenge. For each b ∈ {0, 1}, B

computes Θ∗
b = Trapdoor(SP,W ∗

b , Vpriv, Spub). Then, B sends Θ∗
0,Θ

∗
1 to C as the

challenge messages. C picks β ∈R {0, 1} and generates C∗ by encrypting Θ∗
β. C

returns C∗ to B as the challenge ciphertext. As a result, B outputs the challenge
trapdoor T ∗ = C∗ to A4.

4. Phase 2: A4 can keep making queries as done in Phase 1.

5. Guess: A4 outputs β′ ∈ {0, 1}. B directly sends β′ to C for the challenge.

Clearly, if β′ = β, then B can break the IND-CCA2 security of TE with non-negligible
probability. 2

Theorem 5 Given a proposed scheme. Suppose that TE is IND-CCA2 secure and H1,H2

are random oracles. If A5 can break TD-IND2 with non-negligible probability, then there
exists an algorithm B solving the SXDH problem with non-negligible probability.

Proof. To prove this theorem, we constructs an algorithm B by running A5 as a sub-
routine to solve the SXDH problem. B receives a challenge instance D = (p, e,G1, G2, GT ,
g1, g2, g

a
1 , g

b
1, η) of SXDH problem from the challenger C. B’s task is to decide whether or

not gab1 = η.

1. Setup: B generates SP, where D ∈ SP. Then, B computes (Vpub, Vpriv) as the re-
ceiver V ’s public/private key. Lists H1-list and H2-list, which are initial empty, are
maintained by B to answer random oracle queries.

B sends Vpub toA5. A5 personally computes the server’s public/private key (Spub, Spriv),
and then sends Spub to B.
B picks a random number j as the challenge keyword index candidate.
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2. Phase 1: A5 is allowed to make the following queries to B.

• H1-query: A5 submits Wi ∈ W to B. B responds as follows:

(a) If i = j, return gb1 as the answer.

(b) If Wi has been queried previously, B searches the H1-list to find r1 and then
returns gr11 as the answer; otherwise, r1 ∈ Z∗

p is picked randomly and a new
item [Wi, r1] is stored into H1-list.

• H2-query: A5 submits α to B. B responds with a random number gr22 to A5: If α
has been queried previously, B searches the H2-list to find r2; otherwise, r2 ∈ Z∗

p

is picked randomly and a new item [α, r2] is stored into H2-list.

• Trapdoor-query: A5 submits Wi ∈ W for this query. B responds as follows:

(a) If i = j, abort with failure.

(b) Compute Θ = gar11 , where r1 is from H1-list such that gr11 = H1(Wi). Then,
it outputs T = TE.Encrypt(SP,Θ, Spub) as the answer.

• dPEKS-query: Upon receiving Wi for this query. B performs as follows:

(a) Pick k ∈R Z∗
p.

(b) If i = j, set c1 = e(η, gr22 )k; otherwise, set c1 = e(gar11 , gr22 )k, where r1
(resp. r2) is from H1-list (resp. H2-list) such that gr11 = H1(Wi) (resp.
gr22 = H2(V )).

(c) Compute c2 = gkr22 and let C = (c1, c2).

(d) Output TE.Encrypt(SP, C, Spub) as the searchable ciphertext.

3. Challenge: A5 chooses two keywords W ∗
0 ,W

∗
1 for challenge. B picks β ∈R {0, 1} and

performs as follows:

(a) If W ∗
β has been queried for H1-query but it is not the j-th different keyword,

then abort with failure.

(b) Set Θ∗ = η.

(c) Compute T ∗ = TE.Encrypt (SP,Θ∗, Spub).

(d) Output T ∗ as the challenge trapdoor.

4. Phase 2: A5 can keep making queries as done in Phase 1.

5. Guess: A5 outputs β′ ∈ {0, 1}. If β = β′, then B outputs yes to C as the answer to
the challenge; otherwise, B outputs no.

Clearly, if η = gab, then Θ∗ = H1(W
∗
β )

a is a valid trapdoor; otherwise, it is only a random
number since H1 is a random oracle. Hence, A5 wins the game implies that B can decide
whether or not η = gab correctly with non-negligible probability. 2

5.4 Comparisons

Tab. 1 shows the security comparisons among literature schemes.

Compared with SPEKS, our proposal requires one more algorithm Token. However, it is
trade-off between efficiency and security. On the other hand, SPEKS is builded from IBE
and TE, while ours is more simpler since only TE is required.
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Table 1: Security comparisons among literature schemes
Scheme Secure Channel SC-IND1 SC-IND2 OC-IND TD-IND1 TD-IND2

BCOP [3] Required Secure Insecure Insecure Insecure Insecure
BSS [2] Required Secure Secure Insecure Insecure Insecure
RPSL [14] Required Secure Secure Insecure Secure Insecure
SPEKS [6] Free Secure Secure Secure Secure Insecure
Ours Free Secure Secure Secure Secure Secure

6 Conclusion

In this paper, we note that off-line keyword guessing attack can be launched by a mali-
cious server to find the keyword used for generating the trapdoor, which was not considered
in the related work. SPEKS can suffer from this kind of attack. Moreover, the security
model defined for TD-IND in SPEKS is incomplete. Owing to the shown weaknesses, we
enhanced the existing security models for trapdoor indistinguishability by defining two new
security models. We also proposed a new framework.
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