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Abstract

By using a recently introduced framework for non-perfect secret sharing, several known
results on perfect secret sharing are generalized. Specifically, we discuss about ideal secret
sharing schemes, constructions of efficient linear secret sharing schemes, and the search for
lower bounds on the length of the shares. Similarly to perfect secret sharing, matroids and
polymatroids are very useful to analyze these questions.
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1 Introduction

By formalizing several ideas in previous works on non-perfect secret sharing [17, 20, 21, 23, 27, 28],
a new framework was introduced in [9, 10] (the latter is the full version of the former). It is
based on the concept of access function (Definitions 2.2 and 2.4), which measures the amount of
information on the secret value that is obtained from the shares of any set of players. Several
known results on perfect secret sharing were generalized in [9, 10]. Namely, the existence of a
secret sharing scheme for every access function, lower bounds on the information ratio derived
from polymatroids, duality in linear secret sharing schemes, and a new proof for the values of
the optimal information ratio of uniform access functions, which had been determined in [27, 28].
Moreover, that new framework made it possible to overcome some concerns, which were discussed
in [13], on the existing definitions for ideal non-perfect secret sharing scheme and to choose the
most satisfactory definition for that concept [10, Section 8]. Several results on ideal perfect
secret sharing schemes and their connections to matroids were extended to non-perfect secret
sharing in [17, 23] and recently in [10, 13].

As in recent preceding papers [9, 10, 13, 27, 28], we consider here several topics that have
attracted a lot of attention for perfect secret sharing and we present new extensions of known
results to the non-perfect case. Namely, we deal with ideal secret sharing schemes, constructions
of efficient linear secret sharing schemes, and the search for lower bounds on the optimal
information ratio. Our results are obtained by using access functions with constant increment
(Definition 2.9), a class that contains the access functions of ideal secret sharing schemes. More
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specifically, they are based on the two basic transformations of access functions that are presented
in Section 3.

2 Preliminaries

We present in this section the main definitions and basic facts about secret sharing, polymatroids,
and the connections between these topics.

We begin by introducing some notation. We use a compact notation for set unions, that
is, we write XY for X ∪ Y and Xy for X ∪ {y}. In addition, we write X r Y for the set
difference and X r x for X r {x}. For a set E, we notate P(E) for the power set of E, that
is, the set of all subsets of E. Only discrete random variables are considered in this paper.
Given a discrete random vector S = (Sx)x∈E and a set X ⊆ E, we notate SX = (Sx)x∈X .
The Shannon entropy of the random variable SX is denoted by H(SX). In addition, for such
random variables, one can consider the conditional entropy H(SX |SY ) = H(SXY )−H(SY ), the
mutual information I(SX :SY ) = H(SX)−H(SX |SY ), and the conditional mutual information
I(SX :SY |SZ) = H(SX |SZ) − H(SX |SY Z). Throughout the paper, P and Q stand for finite
sets with Q = Ppo for some po /∈ P . In addition, for every positive integer k, we use P k

o to
denote a set with |P k

o | = k such that po ∈ P k
o and P ∩ P k

o = ∅. Finally, we put Qk = PP k
o and

Pk = Qk r po.

2.1 Secret Sharing Schemes

Definition 2.1 (Access structure). If A,B ⊆ P(P ) are nonempty families of subsets of P
such that A is monotone decreasing, B is monotone increasing, and A ∩ B = ∅, then the pair
Γ = (A,B) is called an access structure on P . The sets in A and the sets in B are, respectively,
the forbidden and the qualified sets of the access structure Γ. In a perfect access structure, every
subset of P is either forbidden or qualified.

Definition 2.2 (Access function). An access function on a set P is a monotone increasing
function Φ : P(P )→ [0, 1] with Φ(∅) = 0 and Φ(P ) = 1. The forbidden and qualified sets of the
access structure associated to Φ are those with Φ(X) = 0 and, respectively, Φ(X) = 1. An access
function is said to be perfect if its only values are 0 and 1. An access function is called rational
if it only takes rational values.

Definition 2.3 (Secret sharing scheme). Let Q be a finite set of players, let po ∈ Q be a
distinguished player, which is called dealer, and take P = Q r po. A secret sharing scheme
Σ on the set of players P is a discrete random vector (Sx)x∈Q such that H(Spo) > 0 and
H(Spo |SP ) = 0. The random variable Spo corresponds to the secret value, while the random
variables (Sx)x∈P correspond to the shares of the secret that are distributed among the players
in P . Most of the times, we are going to write So instead of Spo .

Definition 2.4. The access function Φ of a secret sharing scheme Σ = (Si)i∈Q on P is defined
by

Φ(X) =
I(So :SX)

H(So)

for every X ⊆ P , while its access structure is the one associated to its access function. A secret
sharing scheme is perfect if its access function is so.

The access function of a secret sharing scheme measures the amount of information on the
secret value that is derived from any set of shares. In particular, if X ⊆ P is qualified, then
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I(So :SX) = H(So), which implies that the secret value is determined by the shares of the players
in X. The random variables So and SX are independent if X is a forbidden set, that is, the
shares of the players in X do not provide any information on the secret. From now on, we
consider only access functions without any redundant player. That is, we assume that, for every
y ∈ P , there exists X ⊆ P such that Φ(Xy) > Φ(X).

Definition 2.5 (Information ratio). The information ratio of a secret sharing scheme Σ =
(Sx)x∈Q is defined as maxx∈P H(Sx)/H(So). It approximates the ratio between the maximum
length of the shares and the length of the secret.

There exists a secret sharing scheme for every access function [9, 10]. Nevertheless, all known
general constructions are inefficient because the length of the shares is exponential in the number
of players. This is also the situation for perfect secret sharing schemes. Therefore, the search
for families of access functions that admit efficient secret sharing schemes is worth considering.
Most of the known efficient constructions involve linear secret sharing schemes. In addition,
the homomorphic properties of linear schemes make them suitable for the main applications of
secret sharing.

Definition 2.6 (Linear secret sharing scheme). Let K be a finite field and let ` be a positive
integer. In a (K, `)-linear secret sharing scheme, the random variables (Sx)x∈Q are given by
surjective K-linear maps Sx : V → Vx, where the uniform probability distribution is taken on V
and the dimension of Vpo = Vo over the field K is equal to `.

In a (K, `)-linear secret sharing scheme (Sx)x∈Q, for every X ⊆ Q, the random variable
SX , which is also determined by a linear map, is uniform on its support. Because of that,
H(SX) = rankSX · log |K|, and hence

I(So :SX) = (rankSo + rankSX − rankSXpo) log |K|.

Therefore, the access function of a (K, `)-linear secret sharing scheme is

Φ(X) =
rankSo + rankSX − rankSXpo

rankSo
= 1−

rankSXpo − rankSX
`

and its information ratio is

maxx∈P rankSx
rankSo

=
maxx∈P dimVx

`
.

Observe that all values of the access function are integer multiples of 1/`. In particular, it
is a rational access function. Every rational access function admits a linear secret sharing
scheme [9, 10].

Definition 2.7 (Optimal information ratio). The optimal information ratio σ(Φ) of an access
function Φ is the infimum of the information ratios of the secret sharing schemes for Φ. We
notate λ(Φ) for the infimum of the information ratios of the linear secret sharing schemes for Φ.
Obviously, σ(Φ) ≤ λ(Φ).

The optimal information ratio of the uniform access functions, which are the natural
generalization of threshold perfect access structures, was determined in [27, 28] and a new proof
for that result was given in [9, 10].
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Remark 2.8. A (K, `)-linear secret sharing scheme with information ratio σ is determined by
linear maps Sx : V → Vx with dimVx ≤ max{`, σ`} for every x ∈ Q and dimV ≤

∑
x∈Q dimVx.

Therefore, the overall complexity of the scheme, which comprises the required amount of
randomness and the computation time and space for both the distribution phase (computing
the shares from the secret value and some randomness) and the reconstruction phase (partially
or totally recovering the secret value from some shares) is polynomial in log |K|, `, σ, and the
number of players.

As a consequence of the previous discussion, the denominators of the values of rational
access functions are relevant in the search for families of efficient linear secret sharing schemes.
Restricting the search to access functions with constant increment is a way to avoid this problem.
In addition, it is enough to consider access functions of this kind to prove our extension results.

Definition 2.9 (Constant increment). An access function Φ has constant increment µ if
Φ(Xy)−Φ(X) ∈ {0, µ} for every X ⊆ P and y ∈ P . In this situation, µ = 1/k for some positive
integer k and the values of Φ are integer multiples of 1/k.

Let Φ be an access function with constant increment 1/k. By a well known result in non-
perfect secret sharing [20, 21, 23], H(Sx) ≥ H(So)/k for very x ∈ P if (Sx)x∈Q is a secret sharing
scheme for Φ. Therefore, σ(Φ) ≥ 1/k. A secret sharing scheme is ideal if its access function has
constant increment and this lower bound is attained.

Definition 2.10 (Ideal secret sharing scheme). A secret sharing scheme Σ = (Sx)x∈Q is ideal if
its access function has constant increment 1/k and H(Sx) = H(So)/k for every x ∈ P .

Example 2.11 (Ramp access functions). Given integers t, r, n with 0 ≤ t < r ≤ n, the
(t, r, n)-ramp access function on a set P with |P | = n is defined by: Φ(X) = 0 if |X| ≤ t, and
Φ(X) = (|X| − t)/(r − t) if t < |X| < r, and Φ(X) = 1 if |X| ≥ r. Clearly, this access function
has constant increment 1/(r − t). By the construction presented by Blakley and Meadows [5],
which is described in [10, Example 2.9], there is an ideal (K, r − t)-linear secret sharing scheme
for the (t, r, n)-ramp access function for every finite field K with |K| ≥ n+ r − t.

2.2 Polymatroids, Matroids, and Matroid Ports

The joint Shannon entropies of a collection of random variables define a polymatroid [15, 16].
Because of that, these combinatorial objects play a fundamental role in secret sharing.

Definition 2.12. A polymatroid is a pair S = (E, f) formed by a finite set E, the ground set ,
and a monotone increasing and submodular rank function f : P(E)→ R with f(∅) = 0. If f is
integer-valued and f(X) ≤ |X| for every X ⊆ E, then S is called a matroid.

For a function F : P(E)→ R and subsets X,Y, Z ⊆ E, we notate

∆F (Y :Z|X) = F (XY ) + F (XZ)− F (XY Z)− F (X) (1)

and ∆F (Y :Z) = ∆F (Y :Z|∅).
If (Sx)x∈E is a random vector, then the map h : P(E) → R defined by h(X) = H(SX)

is the rank function of a polymatroid with ground set E [15, 16]. This connection between
polymatroids and the Shannon entropy is a consequence of the conditional mutual information
being nonnegative. The notation introduced in (1) is motivated by this connection. Indeed, for
every X,Y, Z ⊆ E, the conditional mutual information I(SY :SZ |SX) is equal to ∆h(Y :Z|X).

Since secret sharing schemes are given by random vectors, a connection between secret
sharing and polymatroids arises naturally. Specifically, associated to every secret sharing scheme
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Σ = (Sx)x∈Q there is the polymatroid (Q, h) given by h(X) = H(SX) for every X ⊆ Q. The
access function Φ and the information ratio σ of Σ are determined by this polymatroid. Indeed,
Φ(X) = ∆h(po :X)/h(po) for every X ⊆ P and σ = maxx∈P h(x)/h(po). This motivates the
following definition.

Definition 2.13. For an access function Φ on P , every polymatroid (Q, f) such that Φ(X) =
∆f (po :X)/f(po) for every X ⊆ P is called a Φ-polymatroid.

For an access function Φ, the value κ(Φ) is defined as the infimum, over all Φ-polymatroids
(Q, f), of maxx∈P f(x)/f(po). Clearly, κ(Φ) ≤ σ(Φ). The reader is referred to [10] for additional
results on this lower bound on the optimal information ratio. Similarly to the perfect case,
κ(Φ) is the optimal value of a linear programming problem [19, 22], and hence the infimum is
a minimum and κ(Φ) is a rational number if Φ is a rational access function. If Φ is an access
function with constant increment 1/k, then κ(Φ) ≥ 1/k [10].

Remark 2.14. We discuss here some well known facts about linear representations of poly-
matroids and their associated linear random vectors. The reader is referred to [19] for a more
detailed explanation. An integer-valued polymatroid (E, f) is said to be K-linearly representable
or simply K-linear if there exists a vector space W over the field K and a collection (Wx)x∈E of
vector subspaces of E such that f(X) = dim

(∑
x∈X Wx

)
for every X ⊆ E. In this situation,

the collection (Wx)x∈E is called a K-linear representation of the polymatroid (E, f). Every
(K, `)-linear secret sharing scheme (Sx)x∈Q with access function Φ determines a K-linear repre-
sentation of the Φ-polymatroid (Q, f) defined by f(X) = rank(SX). Conversely, every K-linear
representation of an integer-valued Φ-polymatroid (Q, f) determines a (K, f(po))-linear secret
sharing scheme with access function Φ and information ratio maxx∈P f(x)/f(po).

Definition 2.15. LetM = (Q, f) be a matroid. The perfect access function Φ on P defined by
Φ(X) = ∆f (po :X) for every X ⊆ P is called the port of the matroid M at po.

Observe that M = (Q, f) is a Φ-polymatroid if Φ is the port of the matroid M at po. By
Brickell-Davenport theorem [7], the access function of every ideal perfect secret sharing scheme
is a matroid port. A generalization of matroid ports was introduced in [13] to extend that result
to non-perfect secret sharing. We use here the notation introduced at the beginning of Section 2.

Definition 2.16. A polymatroid (Qk, f) is called P k
o -normalized if f(P k

o ) = k and

f(XZ) = min{f(XP k
o ), f(X) + |Z|}

for every X ⊆ P and Z ⊆ P k
o .

Definition 2.17 (Generalized matroid port). Let N = (Qk, f) be a P k
o -normalized matroid.

Then the access function Φ on P defined by

Φ(X) =
∆f (P k

o :X)

k

for every X ⊆ P is the k-port of N at P k
o . In this situation, we say that Φ is a matroid k-port

or a generalized matroid port.

Definition 2.18 (Connected access function). An access function Φ on P is connected if, for
every player z ∈ P , there exist a forbidden set X ⊆ P and a qualified set Y ⊆ P with z ∈ Y
such that Φ(Xz) > 0 and Φ(Y r z) < 1.

Observe that matroid k-ports are access functions with constant increment 1/k. As a
consequence of [13, Theorem 3], the access function of every ideal secret sharing scheme is a
generalized matroid port. In addition, every connected matroid k-port is the k-port of a unique
P k
o -normalized matroid. Moreover, as a consequence of [13, Proposition 7], a connected access

function Φ with constant increment 1/k is a matroid k-port if and only if κ(Φ) = 1/k.
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3 Two Basic Transformations

We discuss in the following two transformations of access functions that will be used to generalize
several results from perfect to non-perfect secret sharing. The first one produces a perfect access
function associated to a given access function with constant increment, and the second one works
in the opposite direction.

Definition 3.1. For an access function Φ on P with constant increment 1/k, a set X ⊆ Pk is
qualified for the associated perfect access function Φ̂ on Pk if and only if kΦ(X∩P )+|XrP | ≥ k.

Definition 3.2. For a perfect access function Φ on P and a positive integer k, we define the
access function Φ̃k on Pk by Φ̃k(XZ) = (Φ(X) + |Z|)/k for every X ⊆ P and Z ⊆ Pk r P .
Clearly, the access function Φ̃k has constant increment 1/k.

Proposition 3.3. Let Φ be an access function on P with constant increment 1/k and Φ̂ the
associated perfect access function on Pk. Then κ(Φ̂) ≤ kκ(Φ) and λ(Φ̂) ≤ kλ(Φ)

Proof. For a Φ-polymatroid S = (Q, f) with f(po) = k, consider the only P k
o -normalized

polymatroid Ŝ = (Qk, g) with g(X) = f(X) and g(XP k
o ) = f(Xpo) for every X ⊆ P .

We affirm that Ŝ is a Φ̂-polymatroid. Indeed, take X ⊆ P and Z ⊆ PkrP . Then Φ̂(XZ) = 1
if and only if k−|Z| ≤ kΦ(X) = k+f(X)−f(Xpo), which is equivalent to |Z| ≥ f(Xpo)−f(X) =
g(XP k

o )− g(X), and hence equivalent to ∆g(po :XZ) = 1 + g(XZ)− g(XZpo) = 1. This proves

our affirmation, which clearly implies that κ(Φ̂) ≤ kκ(Φ).
For a positive integer α, consider the polymatroids (Q,αf) and (Qk, αg). As a consequence of

the results in [11], if (Q,αf) is K-linearly representable, then (Qk, αg) is L-linearly representable
for some finite extension L of K. Therefore, if there exists a (K, αk)-linear secret sharing scheme
for Φ with information ratio σ, then there exists, for some finite extension L of K, an (L, α)-linear
secret sharing scheme for Φ̂ with information ratio kσ. This proves that λ(Φ̂) ≤ kλ(Φ).

Proposition 3.4. Let Φ be a perfect access function on P and let Φ̃k be its associated access
function on Pk with constant increment 1/k. Then κ(Φ̃k) = κ(Φ)/k and λ(Φ̃k) = λ(Φ)/k

Proof. The result about the parameter κ was proved in [10, Lemma 5.8].
Let Σ be a (K, `)-linear secret sharing scheme with information ratio σ and access function

Φ. Observe that σ ≥ 1 because Φ is a perfect access function. We define next a (K, k`)-linear
secret sharing scheme Σ̃ on Pk. For a secret value (s0, s1, . . . , sk−1) ∈ (K`)k, the k− 1 players in
Pk r P receive the shares s1, . . . , sk−1, while the players in P receive shares for the secret value
s0 according to the scheme Σ. Clearly, the access function of Σ̃ is Φ̃k and its information ratio is
equal to σ/k. Therefore, λ(Φ̃k) ≤ λ(Φ)/k.

Consider now a (K, k`)-linear secret sharing scheme Σ̃ with access function Φ̃k. Recall that
Σ̃ is determined by a tuple (Sx)x∈Qk

of K-linear maps Sx : V → Vx. Take Z = Pk r P and
W = kerSZ , and consider the linear secret sharing scheme Σ = (S′x)x∈Q, where S′x : W → Sx(W )
is the restriction of Sx to the subspace W ⊆ V . Observe that

rankS′X = dimW − dim kerS′X = dimW − dim(W ∩ kerSX) = rankSXZ − rankSZ

for every X ⊆ Q. In particular, rankS′o = rankSZpo − rankSZ = k`(1− Φ̃k(Z)) = `, and hence
Σ is a (K, `)-linear secret sharing scheme. We affirm that Σ has access function Φ. Indeed, if Ψ
is the access function of Σ, then, for every X ⊆ P ,

Ψ(X) = 1−
rankS′Xpo

− rankS′X
`

= 1−
rankSXZpo − rankSXZ

`
.

6



On the other hand,

Φ(X) = k Φ̃k(XZ)− (k − 1) = k

(
1−

rankSXZpo − rankSXZ

k`

)
− k + 1 = Ψ(X)

and our affirmation is proved. Finally, since rankS′x ≤ rankSx for every x ∈ P , the information
ratio of Σ is at most k times the information ratio of Σ̃. Therefore, λ(Φ) ≤ kλ(Φ̃).

4 The Extensions

For an access function Φ with constant increment 1/k and for every i = 1, . . . , k, consider the
families Ai = {A ⊆ P : Φ(A) < i/k} and Bi = {B ⊆ P : Φ(B) ≥ i/k}. Clearly, for every
i = 1, . . . , k, the pair (Ai,Bi) is a perfect access structure, which determines a perfect access
function Φi. For a finite field K and a positive integer ` consider, for every i = 1, . . . , k, a
(K, `)-linear secret sharing scheme with access function Φi and information ratio at most σ.
The concatenation (as in [10, Section 7.1]) of these schemes produces a (K, k`)-linear secret
sharing scheme with information ratio at most σ for the access function Φ. Therefore, the search
for efficient linear secret sharing schemes for access functions with constant increment can be
reduced to the search for efficient perfect linear secret sharing schemes. Nevertheless, some
access functions can be realized by linear secret sharing schemes that are more efficient than the
concatenation of perfect schemes. For instance, the access functions of ideal linear secret sharing
schemes.

The problem of determining which perfect access functions can be realized by an ideal secret
sharing scheme has attracted a lot of attention. We argue in the following that no new difficulties
appear when extending this problem to non-perfect secret sharing.

Proposition 4.1. Let Φ be an access function with constant increment 1/k. Then Φ is a
matroid k-port if and only if Φ̂ is a matroid port. Moreover, Φ admits an ideal linear secret
sharing scheme if and only if Φ̂ does so.

Proof. If Φ is the k-port at P k
o of a P k

o -normalized matroid N = (Qk, f), then Φ̂ is the port of
N at po. Conversely, if Φ̂ is the port of a matroid N = (Qk, f) at po, then N is P k

o -normalized
and Φ is the k-port of N at P k

o . In that situation, these access functions admit ideal linear
secret sharing schemes if and only if there is a positive integer α such that the polymatroid
(Qk, αr) is linearly representable over some finite field.

Definition 4.2 (Minor of an access function). Let Φ be an access function on a set P and
let Z1, Z2 be disjoint subsets of P with Φ(P r Z1) = 1 and Φ(Z2) = 0. We define the access
function Ψ = (Φ \Z1)/Z2 on P r (Z1 ∪Z2) by Ψ(X) = Φ(XZ2). Every access function that can
be defined in this way is called a minor of Φ.

By the next proposition, Φi is a minor of Φ̂ for every i = 1, . . . , k. See [10, Section 6] for
more information about minors of access functions.

Proposition 4.3. Let Φ be an access function on P with constant increment 1/k and let Φ̂ be
its associated perfect access function on Pk. Consider a set Z ⊆ Pk r P with |Z| = k − i and
take Z ′ = (Pk r P ) r Z. Then Φi = (Φ̂ \ Z ′)/Z.

Proof. Straightforward from the definitions.
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Every minor of a matroid port is a matroid port [18, 24]. If Φ is a matroid k-port, then the
access functions Φi for i = 1, . . . , k are matroid ports because they are minors of the matroid
port Φ̂. Moreover, as a consequence of the results in [13], every connected matroid k-port Φ is
determined by Φ1 and Φk.

As a consequence of the forbidden minor characterization of matroid ports by Seymour [24],
κ(Φ) ≥ 3/2 if Φ is a perfect access function that is not a matroid port [18, Theorem 4.4].
Therefore, every perfect secret sharing scheme whose access function is not a matroid port has
information ratio at least 3/2. We discuss in the following the extension of these results to
non-perfect secret sharing.

Proposition 4.4. Let Φ be a perfect access function on P and let S = (Q, f) be a Φ-polymatroid
with f(po) = 1. If Φ is not a matroid port, then there exist x, y ∈ P such that f(xy) ≥ 3.

Proof. Immediate from [18, Theorems 3.4 and 4.4].

Theorem 4.5. Let Φ be an access function on P with constant increment 1/k that is not a
matroid k-port. Then κ(Φ) ≥ 3/(2k) and, as a consequence, the information ratio of every secret
sharing scheme for Φ is at least 3/(2k).

Proof. Let S = (Q, f) be a Φ-polymatroid with f(po) = k. Consider the associated perfect access
function Φ̂ on Pk and the the only P k

o -normalized polymatroid Ŝ = (Qk, g) with g(XP k
o ) =

f(Xpo) for every X ⊆ P . By the proof of Proposition 3.3, Ŝ is a Φ̂-polymatroid. Since Φ̂ is
not a matroid port by Proposition 4.4, there exist x, y ∈ Pk such that g(xy) ≥ 3. Then we can
assume that g(x) ≥ 3/2, and hence x ∈ P because g(z) = 1 for every z ∈ Pk r P . Therefore,
f(x) = g(x) ≥ 3/2, which concludes the proof.

By Theorem 4.5, there is no access function Φ with constant increment 1/k such that
1/k < κ(Φ) < 3/(2k). Moreover, Φ is a matroid k-port if σ(Φ) < 3/(2k). If Φ is a port of the
Vamos matroid, then 1 < σ(Φ) ≤ λ(Φ) < 3/2 [3], and hence 1/k < σ(Φ̃k) ≤ λ(Φ̃k) < 3/(2k) by
Proposition 3.4. Therefore, the gap in the values of κ does not apply to the optimal information
ratio.

One of the main open problems in secret sharing is to prove that, for general access functions,
the length of the shares must grow exponentially with the number of players [1, Conjecture 1].
This leads to the search for lower bounds on the length of the shares or, more restrictively,
on the information ratio. Several super-polynomial lower bounds on the length of the shares
in linear secret sharing schemes have been presented. See [1] for a survey on these topics. A
recent result is the existence of a family of perfect access functions requiring linear secret sharing
schemes with super-polynomial information ratio [2]. By using Proposition 3.4, this result is
easily extended to access functions with fixed constant increment.

One of the available techniques to find lower bounds on the length of the shares is using
linear programs with constraints derived from information inequalities. Several limitations of
this method when applied to perfect secret sharing have been found [4, 8, 19]. The negative
result in [8] was generalized to non-perfect secret sharing [10, Theorem 5.7], and we believe that
this is also possible for the ones in [4, 19].

Another line of research on perfect secret sharing is the search for families of access functions
that admit ideal perfect secret sharing schemes and have some practical interest [6, 11, 12, 14,
25, 26]. The results on ideal non-perfect secret sharing in this paper and in [10, 13] should make
it possible to extend some of the results from those works to the non-perfect case.
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