
Probabilistic Termination and Composability

of Cryptographic Protocols∗

Ran Cohen† Sandro Coretti‡ Juan Garay§¶ Vassilis Zikas‖¶

June 15, 2016

Abstract

When analyzing the round complexity of multi-party protocols, one often overlooks the
fact that underlying resources, such as a broadcast channel, can by themselves be expensive to
implement. For example, it is well known that it is impossible to implement a broadcast channel
by a (deterministic) protocol in a sub-linear (in the number of corrupted parties) number of
rounds.

The seminal works of Rabin and Ben-Or from the early 80’s demonstrated that limitations
as the above can be overcome by using randomization and allowing parties to terminate at
different rounds, igniting the study of protocols over point-to-point channels with probabilistic
termination and expected constant round complexity. However, absent a rigorous simulation-
based definition, the suggested protocols are proven secure in a property-based manner or via
ad hoc simulation-based frameworks, therefore guaranteeing limited, if any, composability.

In this work, we put forth the first simulation-based treatment of multi-party cryptographic
protocols with probabilistic termination. We define secure multi-party computation (MPC)
with probabilistic termination in the UC framework and prove a universal composition theo-
rem for probabilistic-termination protocols. Our theorem allows to compile a protocol using
deterministic-termination hybrids into a protocol that uses expected-constant-round protocols
for emulating these hybrids, preserving the expected round complexity of the calling protocol.

We showcase our definitions and compiler by providing the first composable protocols (with
simulation-based security proofs) for the following primitives, relying on point-to-point channels:
(1) expected-constant-round perfect Byzantine agreement, (2) expected-constant-round perfect
parallel broadcast, and (3) perfectly secure MPC with round complexity independent of the
number of parties.

∗An extended abstract of this work appeared at CRYPTO 2016.
†Department of Computer Science, Bar-Ilan University. E-mail: cohenrb@cs.biu.ac.il. Work supported by a

grant from the Israel Ministry of Science, Technology and Space (grant 3-10883) and by the National Cyber Bureau
of Israel.
‡Department of Computer Science, ETH Zurich. E-mail: corettis@inf.ethz.ch. This author was supported in

part by the Swiss NSF project no. 200020-132794.
§Yahoo Research. E-mail: garay@yahoo-inc.com.
¶Work done in part while the author was visiting the Simons Institute for the Theory of Computing, supported

by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-
1523467.
‖Department of Computer Science, RPI. E-mail: vzikas@cs.rpi.edu. This author was supported in part by the

Swiss NSF Ambizione grant PZ00P2 142549.

Contents

1 Introduction 1

2 The Model 6

3 Secure Computation with Probabilistic Termination 7
3.1 Canonical Synchronous Functionalities . 8
3.2 Probabilistic Termination in UC . 9

4 (Fast) Composition of Probabilistic-Termination Protocols 13
4.1 Composition with Deterministic Termination . 14
4.2 Composition with Probabilistic Termination . 15
4.3 Wrapping Secure Channels . 18

5 Applications of Our Fast Composition Theorem 20
5.1 Fast and Perfectly Secure Byzantine Agreement . 20
5.2 Fast and Perfectly Secure Parallel Broadcast . 23
5.3 Fast and Perfectly Secure SFE . 25

A On Parallel (In)Composability of Protocols with Probabilistic Termination 28

B The Model (Cont’d) 29

C Composition of Probabilistic-Termination Protocols (Cont’d) 31
C.1 Composition with Deterministic Termination (Cont’d) 31
C.2 Composition with Probabilistic Termination (Cont’d) 33

D Applications of Our Fast Composition Theorem (Cont’d) 36
D.1 Fast and Perfectly Secure Byzantine Agreement (Cont’d) 36
D.2 Fast and Perfectly Secure Parallel Broadcast (Cont’d) 40

1 Introduction

In secure multi-party computation (MPC) [50, 28] n parties P1, . . . , Pn wish to jointly perform a
computation on their private inputs in a secure way, so that no coalition of cheating parties can
learn more information than their outputs (privacy) or affect the outputs of the computation any
more than by choosing their own inputs (correctness).

While the original security definitions had the above property-based flavor (i.e., the protocols
were required to satisfy correctness and privacy—potentially along with other security properties,
such as fairness and input independence), it is by now widely accepted that security of multi-
party cryptographic protocols should be argued in a simulation-based manner. Informally, in the
simulation paradigm for security, the protocol execution is compared to an ideal world where the
parties have access to a trusted third party (TTP, aka the “ideal functionality”) that captures the
security properties the protocol is required to achieve. The TTP takes the parties’ inputs and
performs the computation on their behalf. A protocol is regarded as secure if for any adversary
attacking it, there exists an ideal adversary (the simulator) attacking the execution in the ideal
world, such that no external distinguisher (environment) can tell the real and the ideal executions
apart.

There are several advantages in proving a protocol secure in this way. For starters, the definition
of the functionality captures all security properties the protocol is supposed to have, and therefore
its design process along with the security proof often exposes potential design flaws or issues that
have been overlooked in the protocol design. A very important feature of many simulation-based
security definitions is composability, which ensures that a protocol can be composed with other
protocols without compromising its security. Intuitively, composability ensures that if a protocol
πG which uses a “hybrid” G (a broadcast channel, for example) securely realizes functionality F, and
protocol ρ securely realizes the functionality G, then the protocol πρ/G , which results by replacing
in π calls to G by invocations of ρ, securely realizes F. In fact, simulation-based security is the one
and only way known to ensure that a protocol can be generically used to implement its specification
within an arbitrary environment.

Round complexity. The prevalent model for the design of MPC protocols is the synchronous
model, where the protocol proceeds in rounds and all messages sent in any given round rounds
are received by the beginning of the next round. In fact, most if not all implemented and highly
optimized MPC protocols (e.g., [18, 20, 38, 16, 44]) are in this model. When executing such
synchronous protocols over large networks, one needs to impose a long round duration in order to
account for potential delay at the network level, since if the duration of the rounds is too short,
then it is likely that some of the messages that arrive late will be ignored or, worse, assigned to
a later round. Thus, the round complexity, i.e., the number of rounds it takes for a protocol to
deliver outputs, is an important efficiency metric for such protocols and, depending on the network
parameters, can play a dominant role in the protocol’s running time.

An issue often overlooked in the analysis of the round complexity of protocols is that the relation
between a protocol’s round complexity and its actual running time is sensitive to the “hybrids”
(e.g., network primitives) that the protocol is assumed to have access to. For example, starting with
the seminal MPC works [50, 28, 6, 15, 48], a common assumption is that the parties have access to a
broadcast channel, which they invoke in every round. In reality, however, such a broadcast channel
might not be available and would have to be implemented by a broadcast protocol designed for a
point-to-point network. Using a standard (deterministic) broadcast protocol for this purpose incurs

1

a linear (in n, the number of parties1) blow-up on the round complexity of the MPC protocol, as
no deterministic broadcast protocol can tolerate a linear number of corruptions and terminate in a
sublinear number of rounds [25, 22]. Thus, even though the round complexity of these protocols is
usually considered to be linear in the multiplicative depth d of the computed circuit, in reality their
running time could become linear in nd (which can be improved to O(n + d) [35]) when executed
over point-to-point channels.2

In fact, all so-called constant-round multi-party protocols (e.g., [39, 3, 17, 33, 1, 26, 31, 45]) rely
on broadcast rounds—rounds in which parties make calls to a broadcast channel—and therefore
their running time when broadcast is implemented by a standard protocol would explode to be
linear in n instead of constant.3 As the results from [25, 22] imply, this is not a consequence of
the specific choice of protocol but a limitation of any protocol in which there is a round such that
all parties are guaranteed to have received their outputs; consistently with the literature on fault-
tolerant distributed computing, we shall refer to protocols satisfying this property as deterministic-
termination protocols. In fact, to the best of our knowledge, even if we allow a negligible chance for
the broadcast to fail, the fastest known solutions tolerating a constant fraction of corruptions follow
the paradigm from [24] (see below), which requires a poly-logarithmic (in n) number of rounds.4

Protocols with probabilistic termination. A major breakthrough in fault-tolerant dis-
tributed algorithms (recently honored with the 2015 Dijkstra Prize in Distributed Computing),
was the introduction of randomization to the field by Ben-Or [4] and Rabin [47], which, effectively,
showed how to circumvent the above limitation by using randomization. Most relevant to this
submission, Rabin [47] showed that linearly resilient Byzantine agreement protocols [46, 41] (BA,
related to broadcast, possibility- and impossibility-wise) in expected constant rounds were possible,
provided that all parties have access to a “common coin” (i.e., a common source of randomness).5

This line of research culminated with the work of Feldman and Micali [24], who showed how to
obtain a shared random coin with constant probability from “scratch,” yielding a probabilistic BA
protocol tolerating the maximum number of misbehaving parties (t < n/3) that runs in expected
constant number of rounds. The randomized BA protocol in [24] works in the information-theoretic
setting; these results were later extended to the computational setting by Katz and Koo [34], who
showed that assuming digital signatures there exists an (expected-)constant-round protocol for BA
tolerating t < n/2 corruptions. The speed-up on the running time in all these protocols, however,
comes at the cost of uncertainty, as now they need to give up on guaranteed (eventual) termination
(no fixed upper bound on their running time6) as well as on simultaneous termination (a party
that terminates cannot be sure that other parties have also terminated7) [21]. These issues make
the simulation-based proof of these protocols a very delicate task, which is the motivation for the
current work.

1More precisely, in the number of corruptions a protocol can tolerate, which is a constant fraction of n.
2Throughout this work we will consider protocols in which all parties receive their output. If one relaxes this

requirement (i.e., allows that some parties may not receive their outputs and give up on fairness) then the techniques
of Goldwasser and Lindell [30] allow for replacing broadcast with a constant-round multi-cast primitive.

3We remark that even though those protocols are for the computational setting, the lower bound on broadcast
round complexity also applies.

4Note that this includes even FHE-based protocols, as they also assume a broadcast channel and their security
fails if multi-cast over point-to-point channels is used instead.

5Essentially, the value of the coin can be adopted by the honest parties in case disagreement at any given round
is detected, a process that is repeated multiple times.

6Throughout this paper we use running time and round complexity interchangeably.
7It should be noted however that in many of these protocols there is a known (constant) “slack” of c rounds, such

that if a party terminates in round r, then it can be sure that every honest party will have terminated by round r+ c.

2

What made the simulation-based approach a more accessible technique in security proofs was the
introduction simulation-based security frameworks. The ones that stand out in this development—
and are most often used in the literature—are Canetti’s modular composition (aka stand-alone
security) [9] and the universal composition (UC) frameworks [10, 11]. The former defines security
of synchronous protocols executed in isolation (i.e., only a single protocol is run at a time, and
whenever a subroutine-protocol is called, it is run until its completion); the latter allows protocols
to be executed alongside arbitrary (other) protocols and be interleaved in an arbitrary manner.
We remark that although the UC framework is inherently asynchronous, several mechanisms have
been proposed to allow for a synchronous execution within it (e.g., [11, 40, 37, 12]).

Despite the wide-spread use of the simulation-based paradigm to prove security of protocols with
deterministic termination, the situation has been quite different when probabilistic-termination
protocols are considered. Here, despite the existence of round-efficient BA protocols as mentioned
above [24, 34], to our knowledge, no formal treatment of the problem in a simulation-based model
exists, which would allow us to apply the ingenious ideas of Rabin and Ben-Or in order to speed
up cryptographic protocols. We note that Katz and Koo [34] even provided an expected-constant-
round MPC protocol using their fast BA protocol as a subroutine, employing several techniques to
ensure proper use of randomized BA. In lack, however, of a formal treatment, existing constructions
are usually proved secure in a property-based manner or rely on ad hoc, less studied security
frameworks [43].8

A simulation-based and composable treatment of such probabilistic-termination (PT for short)
protocols would naturally allow, for example, to replace the commonly used broadcast channel with
a broadcast protocol, so that the expected running time of the resulting protocol is the same as
the one of the original (broadcast-hybrid) protocol. A closer look at this replacement, however,
exposes several issues that have to do not only with the lack of simulation-based security but
also with other inherent limitations. Concretely, it is usually the case in an MPC protocol that
the broadcast channel is accessed by several (in many cases by all) parties in the same (broadcast)
round in parallel. Ben-Or and El-Yaniv [5] observed that if one näıvely replaces each such invocation
by a PT broadcast protocol with expected constant running-time, then the expected number of
rounds until all broadcasts terminate is no longer constant; in fact, it is not hard to see that in
the case of [24], the expected round complexity would be logarithmic in the number of instances
(and therefore also in the player-set size). (We expand on the reason for this blow-up in the round
complexity in Appendix A.) Nevertheless, in [5] a mechanism was proposed for implementing such
parallel calls to broadcast so that the total number of rounds remains constant.

The difficulties arising with generic parallel composition are not the only issue with PT proto-
cols. As observed by Lindell et al. [43], composing such protocols in sequence is also problematic.
The main issue here is that, as already mentioned, PT protocols do not have simultaneous termi-
nation and therefore a party cannot be sure how long after he receives his output from a call to
such a PT protocol he can safely carry on with the execution of the calling protocol. Although PT
protocols usually guarantee a constant “slack” of rounds (say, c) in the output of any two honest
parties, the näıve approach of using this property to synchronize the parties—i.e., wait c rounds
after the first call, 2c rounds after the second call, and so on—imposes an exponential blow-up
on the round complexity of the calling protocol. To resolve this, [43] proposed using fixed points
in time at which a re-synchronization subroutine is executed, allowing the parties to ensure that
they never get too far out-of-sync. Alternative approaches for solving this issue was also proposed
in [8, 34] but, again, with a restricted (property-based) proof.

8As we discuss below, the protocol of Katz and Koo has an additional issue with adaptive security in the rushing
adversary model, as defined in the UC framework, similar to the issue exploited in [32].

3

Despite their novel aspects, the aforementioned results on composition of PT protocols do not
use simulation-based security, and therefore it is unclear how (or if) they could be used to, for
example, instantiate broadcast within a higher-level cryptographic protocol. In addition, they do
not deal with other important features of modern security definitions, such as adaptive security and
strict polynomial time execution. In fact, this lack of a formal cryptographic treatment places some
of their claims at odds with the state-of-the-art cryptographic definitions—somewhat pointedly, [5]
claims adaptive security, which, although it can be shown to hold in a property-based definition,
is not achieved by the specified construction when simulation-based security is considered (cf.
Section 5).

Our contributions. In this paper we provide the first formal simulation-based (and composable)
treatment of MPC with probabilistic termination. Our treatment builds on Canetti’s universal
composition (UC) framework [10, 11]. In order to take advantage of the fast termination of PT
protocols, parties typically proceed at different paces and therefore protocols might need to be
run in an interleaved manner—e.g., in an MPC protocol a party might initiate the protocol for
broadcasting his r-round message before other parties have received output from the broadcasting
of messages for round r− 1. This inherent concurrency along with its support for synchrony makes
the UC framework the natural candidate for our treatment.

Our motivating goal, which we achieve, is to provide a generic compiler that allows us to
transform any UC protocol π making calls to deterministic-termination UC protocols ρi in a “stand-
alone fashion” (similar to [9], i.e., the protocols ρi are invoked sequentially and in each round exactly
one protocol is being executed by all the parties) into a protocol in which each ρi is replaced by a
(faster) PT protocol ρ′i. The compiled protocol achieves the same security as π and has (expected)
round complexity proportional to

∑
i diri, where di is the expected number of calls π makes to ρi

and ri is the expected round complexity of ρi.
Towards this goal, the first step is to define what it means for a protocol to (UC-)securely

realize a functionality with probabilistic termination in a simulation-based manner, by proposing
an explicit formulation of the functionality that captures this important protocol aspect. The
high-level idea is to parameterize the functionality with an efficiently sampleable distribution D
that provides an upper bound on the protocol’s running time (i.e., number of rounds), so that the
adversary cannot delay outputs beyond this point (but is allowed to deliver the output to honest
parties earlier, and even in different rounds).

Next, we prove our universal composability result. Informally, our result provides a generic com-
piler that takes as input a “stand-alone” protocol ρ, realizing a probabilistic-termination function-
ality FD (for a given distribution D) while making sequential calls to (deterministic-termination)
secure function evaluation (SFE)-like functionalities, and compiles it into a new protocol ρ′ in
which the calls to the SFEs are replaced by probabilistic-termination protocols realizing them. The
important feature of our compiler is that in the compiled protocol, the parties do not need to wait
for every party to terminate their emulation of each SFE to proceed to the emulation of the next
SFE. Rather, shortly after a party (locally) receives its output from one emulation, it proceeds to
the next one. This yields an (at most) multiplicative blow-up on the expected round complexity
as discussed above. In particular, if the protocols used to emulate the SFE’s are expected constant
round, then the expected round complexity of ρ′ is the same (asymptotically) as that of ρ.

We then showcase our definition and composition theorem by providing simulation-based (there-
fore composable) probabilistic-termination protocols and security proofs for several primitives re-
lying on point-to-point channels: expected-constant-round perfect Byzantine agreement, expected-
constant-round perfect parallel broadcast, and perfectly secure MPC with round complexity inde-

4

pendent of the number of parties. Not surprisingly, the simulation-based treatment reveals several
issues, both at the formal and at the intuitive levels, that are not present in a property-based
analysis, and which we discuss along the way. We now elaborate on each application in turn.
Regarding Byzantine agreement, we present a protocol that perfectly securely UC-implements the
probabilistic-termination Byzantine agreement functionality for t < n/3 in an expected-constant
number of rounds. (We will use RBA to denote probabilistic-termination BA, as it is often referred
to as “randomized BA.”9) Our protocol follows the structure of the protocol in [24], with a modifi-
cation inspired by Goldreich and Petrank [29] to make it strict polynomial time (see the discussion
below), and in a sense it can be viewed as the analogue for RBA of the well-known “CLOS” protocol
for MPC [13]. Indeed, similarly to how [13] converted (and proved) the “GMW” protocol [27] from
statically secure in the stand-alone setting into an adaptively secure UC version, our work trans-
forms the broadcast and BA protocols from [24] into adaptively UC-secure randomized broadcast
and RBA protocols.10

Our first construction above serves as a good showcase of the power of our composition theorem,
demonstrating how UC-secure RBA is built in a modular manner: First, we de-compose the sub-
routines that are invoked in [24] and describe simple(r) (SFE-like) functionalities corresponding to
these sub-routines; this provides us with a simple “backbone” of the protocol in [24] making calls
to these hybrids, which can be easily proved to implement expected-constant-round RBA. Next,
we feed this simplified protocol to our compiler which outputs a protocol that implements RBA
from point-to-point secure channels; our composition theorem ensures that the resulting protocol
is also expected constant round.

There is a sticky issue here that we need to resolve for the above to work: the protocol in [24]
does not have guaranteed termination and therefore the distribution of the terminating round is
not sampleable by a strict probabilistic polynomial-time (PPT) machine.11 A way around this issue
would be to modify the UC model of execution so that the corresponding ITMs are expected PPT
mach8ines. Such a modification, however, would impact the UC model of computation, and would
therefore require a new proof of the composition theorem—a trickier task than one might expect,
as the shift to expected polynomial-time simulation is known to introduce additional conceptual
and technical difficulties (cf. [36]), whose resolution is beyond the scope of this work. Instead, here
we take a different approach which preserves full compatibility with the UC framework: We adapt
the protocol from [24] using ideas from [29] so that it implements a functionality which samples
the terminating round with almost the same probability distribution as in [24], but from a finite
(linear-size) domain; as we show, this distribution is sampleable in strict polynomial time and can
therefore be used by a standard UC functionality.

Next, we use our composition theorem to derive the first simulation-based and adaptively (UC)
secure parallel broadcast protocol, which guarantees that all broadcast values are received within
an expected constant number of rounds. This extends the results from [5, 34] in several ways:
first, our protocol is perfectly UC-secure which means that we can now use it within a UC-secure
SFE protocol to implement secure channels, and second, it is adaptively secure against a rushing
adversary.12

9BA is a deterministic output primitive and it should be clear that the term “randomized” can only refer to the
actual number of rounds; however, to avoid confusion we will abstain from using this term for functionalities other
than BA whose output might also be probabilistic.

10As we show, the protocol in [24] does not satisfy input independence, and therefore is not adaptively secure in
a simulation-based manner (cf. [32]).

11All entities in UC, and in particular ideal functionalities, are strict interactive PPT Turing machines, and the
UC composition theorem is proved for such PPT ITMs.

12Although security against a “dynamic” adversary is also claimed in [5], the protocol does not implement the
natural parallel broadcast functionality in the presence of an adaptive adversary (see Section 5).

5

Finally, by applying once again our compiler to replace calls to the broadcast channel in the
SFE protocol by Ben-Or, Goldwasser, and Wigderson [6] (which, recall, is perfectly secure against
t < n/3 corruptions in the broadcast-hybrid model [2]) by invocations to our adaptively secure UC
parallel broadcast protocol, we obtain the first UC-secure PT MPC protocol in the point-to-point
secure channels model with (expected) round complexity O(d), independently of the number of
parties, where d is the multiplicative depth of the circuit being computed. As with RBA, this
result can be seen as the first analogue of the UC compiler by Canetti et al. [13] for SFE protocols
with probabilistic termination.

We stress that the use of perfect security to showcase our composition theorem is just our
choice and not a restriction of our composition theorem. In fact, our theorem can be also applied
to statistically or computationally secure protocols. Moreover, if one is interested in achieving
better constants in the (expected) round complexity then one can use SFE protocols that attempt
to minimize the use of the broadcast channel (e.g., [35]). Our composition theorem will give a
direct methodology for this replacement and will, as before, eliminate the dependency of the round
complexity from the number of parties.13

2 The Model

We consider n parties P1, . . . , Pn and an adaptive t-adversary, i.e., the adversary corrupts up to
t parties during the protocol execution.14 We work in the UC model and assume the reader has
some familiarity with its basics. To capture synchronous protocols in UC we use the framework of
Katz et al. [37]. Concretely, the assumption that parties are synchronized is captured by assuming
that the protocol has access to a “clock” functionality Fclock. The functionality Fclock maintains
an indicator bit which is switched once all honest parties request the functionality to do it. At any
given round, a party asks Fclock to turn the bit on only after having finished with all operations
for the current round. Thus, this bit’s value can be used to detect when every party has completed
his round, in which case they can proceed to the next round. As a result, this mechanism ensures
that no party sends his messages for round r + 1 before every party has completed round r. For
clarity, we retain from writing this clock functionality in our theorem statement; however, all our
results assume access to such a clock functionality.

In the communication network of [37], parties have access to bounded-delay secure channels.
These channels work in a so-called “fetch” mode, i.e., in order to receive his output the receiver
issues a fetch-output command. This allows to capture the property of a channel between a sender
Ps and a receiver Pr, delaying the delivery of a message by an amount δ: as soon as the sender Ps
submits an input y (message to be sent to the receiver) the channel functionality starts counting
how many times the receiver requests it.15 The first δ−1 such fetch-output requests (plus all such
requests that are sent before the sender submits input) are ignored (and the adversary is notified
about them); the δ’th fetch-output request following a submitted input y from the sender results
in the channel sending (output, y) to Pr. In this work we take an alternative approach and model
secure channels as special simple SFE functionalities. These SFEs also work in a fetch mode16 and
provide the same guarantee as the bounded-delay channels.

13Note that even a single round of broadcast is enough to create the issues with parallel composition and non-
simultaneous termination discussed above.

14In contrast, a static adversary chooses the set of corrupted parties at the onset of the computation.
15Following the simplifying approach of [37], we assume that communication channels are single use, thus each

message transmission uses an independent instance of the channel (cf. Appendix B).
16In fact, for simplicity we assume that they deliver output on the first “fetch”.

6

There are two important considerations in proving the security of a synchronous UC protocol:
(1) The simulator needs to keep track of the protocol’s current round, and (2) because parties
proceed at the same pace, they can synchronize their reaction to the environment; most fully
synchronous protocols, for example, deliver output exactly after a given number of rounds. In [37]
this property is captured as follows: The functionality keeps track of which round the protocol
would be in by counting the number of activations it receives from honest parties. Thus, if the
protocol has a regular structure, where every party advances the round after receiving a fixed
number µ of activations from its environment (all protocols described herein will be in this form), the
functionality can easily simulate how rounds in the protocol advance by incrementing its round index
whenever it receives µ messages from all honest parties; we shall refer to such a functionality as a
synchronous functionality. Without loss of generality, in this work we will describe all functionalities
for µ = 1, i.e., once a functionality receives a message from every party it proceeds to the simulation
of the next protocol round. We stress that this is done to simplify the description, and the in an
actual evaluation, as in the synchronous setting of [37], in order to give the simulator sufficiently
many activations to perform its simulation, functionalities typically have to wait for µ > 1 messages
from each party where the last µ− 1 of these messages are typically “dummy” activations (usually
of the type fetch-output).

To further simplify the description of our functionalities, we introduce the following terminology.
We say that a synchronous functionality F is in round ρ if the current value of the above internal
round counter in F is r = ρ. All synchronous functionalities considered in this work have the
following format: They treat the first message they receive from any party Pi as Pi’s input17—if
this message is not of the right form (input, ·) then a default value is taken as Pi input; as soon as an
honest party sends its first message, any future message by this party is treated as a fetch-output

message. Refer to Appendix B for a more detailed overview of [37] and discussion of our model.

3 Secure Computation with Probabilistic Termination

The work of Katz et al. [37] addresses (synchronous) cryptographic protocols that terminate in a
fixed number of rounds for all honest parties. However, as mentioned in Section 1, Ben-Or [4] and
Rabin [47] showed that in some cases, great asymptotic improvements on the expected termination
of protocols can be achieved through the use of randomization. Recall, for example, that in the
case of BA, even though a lower bound of O(n) on the round complexity of any deterministic BA
protocol tolerating t = Ω(n) corruptions exists [25, 22], Rabin’s global-coin technique (fully realized
later on in [24]) yields an expected-constant-round protocol. This speed-up, however, comes at a
price, namely, of relinquishing both fixed and simultaneous termination [21]: the round complexity
of the corresponding protocols may depend on random choices made during the execution, and
parties may obtain output from the protocol in different rounds.

In this section we show how to capture protocols with such probabilistic termination (PT),
i.e., without fixed and without simultaneous termination, within the UC framework. To capture
probabilistic termination, we first introduce a functionality template Fcsf called a canonical syn-
chronous functionality (CSF). Fcsf is a simple two-round functionality with explicit (one-round) in-
put and (one-round) output phases. Computation with probabilistic termination is then defined by
wrapping Fcsf with an appropriate functionality wrapper that enables non-fixed, non-simultaneous
termination.

17Note that this implies that also protocol machines treats its first message as their input.

7

3.1 Canonical Synchronous Functionalities

At a high level, Fcsf corresponds to a generalization of the UC secure function evaluation (SFE)
functionality to allow for potential leakage on the inputs to the adversary and potential adversarial
influence on the outputs.18 In more detail, Fcsf has two parameters: (1) a (possibly) randomized
function f that receives n+ 1 inputs (n inputs from the parties and one additional input from the
adversary) and (2) a leakage function l that leaks some information about the input values to the
adversary.
Fcsf proceeds in two rounds: in the first round all the parties hand Fcsf their input values, and

in the second round each party receives its output. This is very similar to the standard (UC) SFE
functionality; the difference here is that whenever some input is submitted to Fcsf, the adversary is
handed some leakage function of this input—similarly, for example, to how UC secure channels leak
the message length to the adversary. The adversary can use this leakage when deciding the inputs
of corrupted parties. Additionally, he is allowed to input an extra message, which—depending on
the function f—might affect the output(s). The detailed description of Fcsf is given in Figure 1.

Functionality Ff,lcsf(P)

Fcsf proceeds as follows, parametrized by a function f : ({0, 1}∗∪{⊥})n+1 → ({0, 1}∗)n and a leakage
function l : ({0, 1}∗∪{⊥})n → {0, 1}∗, and running with parties P = {P1, . . . , Pn} and an adversary S.

• Initially, set the input values x1, . . . , xn, the output values y1, . . . , yn, and the adversary’s value a
to ⊥.

• In round ρ = 1:

– Upon receiving (adv-input, sid, v) from the adversary, set a← v.

– Upon receiving a message (input, sid, v) from some party Pi ∈ P, set xi ← v and send
(leakage, sid, Pi, l(x1, . . . , xn)) to the adversary.

• In round ρ = 2:

– Upon receiving (adv-input, sid, v) from the adversary, if y1 = . . . = yn = ⊥, set a ← v. Other-
wise, discard the message.

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, if y1 = . . . = yn = ⊥ compute
(y1, . . . , yn) = f(x1, . . . , xn, a). Next, send (output, sid, yi) to Pi and (fetch-output, sid, Pi) to
the adversary.

Figure 1: The canonical synchronous functionality

Next, we point out a few technical issues about the description of Fcsf. Following the simplifica-
tions from Section 2, Fcsf advances its round as soon as it receives µ = 1 message from each honest
party. This ensures that the adversary cannot make the functionality stall indefinitely. Thus,
formally speaking, the functionality Fcsf is not well-formed (cf. [13]), as its behavior depends on
the identities of the corrupted parties.19 We emphasize that the non-well-formedness relates only
to advancing the rounds, and is unavoidable if we want to restrict the adversary not to block the
evaluation indefinitely (cf. [37]).

We point out that as a generalization of the SFE functionality, CSFs are powerful enough to
capture any deterministic well-formed functionality. In fact, all the basic (unwrapped) functional-

18Looking ahead, this adversarial influence will allow us to describe BA-like functionalities as simple and intuitive
CSFs.

19This is, in fact, also the case for the standard UC SFE functionality.

8

ities considered in this work will be CSFs. We now describe how standard functionalities from the
MPC literature can be cast as CSFs:

Secure Message Transmission (aka Secure Channel). In the secure message trans-
mission (SMT) functionality, a sender Pi with input xi sends its input to Pj . Since Fcsf is
an n-party functionality and involves receiving input messages from all n parties, we define
the two-party task using an n-party function. The function to compute is f i,jsmt(x1, . . . , xn, a) =
(λ, . . . , xi, . . . , λ) (where xi is the value of the j’th coordinate) and the leakage function is
li,jsmt(x1, . . . , xn) = y, where y = |xi| in case Pj is honest and y = xi in case Pj is corrupted.

We denote by F i,jsmt the functionality Fcsf when parametrized with the above functions f i,jsmt and
li,jsmt, for sender Pi and receiver Pj .

Broadcast. In the (standard) broadcast functionality, a sender Pi with input xi distributes
its input to all the parties, i.e., the function to compute is f ibc(x1, . . . , xn, a) = (xi, . . . , xi).
The adversary only learns the length of the message xi before its distribution, i.e., the leakage
function is libc(x1, . . . , xn) = |xi|. This means that the adversary does not gain new information
about the input of an honest sender before the output value for all the parties is determined,
and in particular, the adversary cannot corrupt an honest sender and change its input after
learning the input message. We denote by F ibc the functionality Fcsf when parametrized with
the above functions f ibc and libc, for sender Pi.

Secure Function Evaluation. In the secure function evaluation functionality, the
parties compute a randomized function g(x1, . . . , xn), i.e., the function to compute is
fgsfe(x1, . . . , xn, a) = g(x1, . . . , xn). The adversary learns the length of the input values via
the leakage function, i.e., the leakage function is lsfe(x1, . . . , xn) = (|x1| , . . . , |xn|). We denote
by Fgsfe the functionality Fcsf when parametrized with the above functions fgsfe and lsfe, for
computing the n-party function g.

Byzantine Agreement (aka Consensus). In the Byzantine agreement functionality,
defined for the set V , each party Pi has input xi ∈ V . The common output is computed such
that if n−t of the input values are the same, this will be the output; otherwise the adversary gets
to decide on the output. The adversary is allowed to learn the content of each input value from
the leakage (and so it can corrupt parties and change their inputs based on this information).
The function to compute is fba(x1, . . . , xn, a) = (y, . . . , y) such that y = x if there exists a value
x such that x = xi for at least n − t input values xi; otherwise y = a. The leakage function
is lba(x1, . . . , xn) = (x1, . . . , xn). We denote by FVba the functionality Fcsf when parametrized
with the above functions fba and lba, defined for the set V .

3.2 Probabilistic Termination in UC

Having defined CSFs, we turn to the notion of (non-reactive) computation with probabilistic ter-
mination. This is achieved by defining the notion of an output-round randomizing wrapper. Such a
wrapper is parametrized by an efficient probabilistic algorithm D, termed the round sampler, that
may depend on a specific protocol implementing the functionality. The round sampler D samples
a round number ρterm by which all parties are guaranteed to receive their outputs no matter what
the adversary strategy is. Moreover, since there are protocols in which all parties terminate in
the same round and protocols in which they do not, we consider two wrappers: the first, denoted
Wstrict, ensures in a strict manner that all (honest) parties terminate in the same round, whereas
the second, denotedWflex, is more flexible and allows the adversary to deliver outputs to individual
parties at any time before round ρterm.

A delicate issue that needs to be addressed is the following: While an ideal functionality can

9

be used to abstractly describe a protocol’s task, it cannot hide the protocol’s round complexity.
This phenomenon is inherent in the synchronous communication model: any environment can
observe how many rounds the execution of a protocol takes, and, therefore, the execution of the
corresponding ideal functionality must take the same number of rounds.20

As an illustration of this issue, let F be an arbitrary functionality realized by some protocol π.
If F is to provide guaranteed termination (whether probabilistic or not), it must enforce an upper
bound on the number of rounds that elapse until all parties receive their outputs. If the termination
round of π is not fixed (but may depend on random choices made during its execution), this upper
bound must be chosen according to the distribution induced by π.

Thus, in order to simulate correctly, the functionality F and π’s simulator S must coordinate
the termination round, and therefore F must pass the upper bound it samples to S. However,
it is not sufficient to simply inform the simulator about the guaranteed-termination upper bound
ρterm. Intuitively, the reason is that protocol π may make probabilistic choices as to the order in
which it calls its hybrids (and, even worse, these hybrids may even have probabilistic termination
themselves). Thus, F needs to sample the upper bound based on π and the protocols realizing the
hybrids called by π. As S needs to emulate the entire protocol execution, it is now left with the
task of trying to sample the protocol’s choices conditioned on the upper bound it receives from
F. In general, however, it is unclear whether such a reverse sampling can be performed in (strict)
polynomial time.

To avoid this issue and allow for an efficient simulation, we have F output all the coins that
were used for sampling round ρterm to S. Because S knows the round sampler algorithm, it can
reproduce the entire computation of the sampler and use it in its simulation. In fact, as we discuss
below, it suffices for our proofs to have F output a trace of its choices to the simulator instead of
all the coins that were used to sample this trace. In the remainder of this section, we motivate and
formally describe our formulation of such traces. The formal description of the wrappers, which in
particular sample traces, can then be found at the end of this section.

Execution traces. As mentioned above, in the synchronous communication model, the execution
of the ideal functionality must take the same number of rounds as the protocol.For example, suppose
that the functionality F in our illustration above is used as a hybrid by a higher-level protocol π′.
The functionality G realized by π′ must, similarly to F, choose an upper bound on the number of
rounds that elapse before parties obtain their outputs. However, this upper bound now not only
depends on π′ itself but also on π (in particular, when π is a probabilistic-termination protocol).

Given the above, the round sampler of a functionality needs to keep track of how the function-
ality was realized. This can be achieved via the notion of trace. A trace basically records which
hybrids were called by a protocol, and in a recursive way, for each hybrid, which hybrids would
have been called by a protocol realizing that hybrid. The recursion ends with the hybrids that are
“assumed” by the model, called atomic functionalities.21

Building on our running illustration above, suppose protocol π′ (realizing G) makes ideal hybrid
calls to F and to some atomic functionality H. Assume that in an example execution, π′ happens
to make (sequential) calls to instances of H and F in the following order: F, then H, and finally
F again. Moreover, assume that F is replaced by protocol π (realizing F) and that π happens to
make two (sequential) calls to H upon the first invocation by π′, and three (sequential) calls to H
the second time. Then, this would result in the trace depicted in Figure 2.

Assume that π is a probabilistic-termination protocol and π′ a deterministic-termination pro-

20In particular, this means that most CSFs are not realizable, since they always guarantee output after two rounds.
21In this work, atomic functionalities are always Fpsmt CSFs.

10

G

F H F

H H H H
π

π′

π

H

Figure 2: Example of an execution trace

tocol. Consequently, this means that F is in fact a flexibly wrapped functionality of some CSF F ′,
i.e., F =WDF

flex (F ′), where the distribution DF samples (from a distribution induced by π) depth-1

traces with root WDF
flex (F ′) and leaves H.22 Similarly, G is a strictly wrapped functionality of some

CSF G′, i.e., G =WDG
strict(G′), where the distribution DG first samples (from a distribution induced

by π′) a depth-1 trace with rootWDG
strict(G′) and leavesWDF

flex (F ′) as well as H. Then, each leaf node

WDF
flex (F′) is replaced by a trace (independently) sampled from DF . Thus, the example trace from

Figure 2 would look as in Figure 3.

WDG
strict(G′)

H

H H H H
π

π′

π

H

WDF
flex(F ′) WDF

flex(F ′)

Figure 3: An execution trace with probabilistic-termination and deterministic-termination protocols

Formally, a trace is defined as follows:

Definition 3.1 (traces). A trace is a rooted tree of depth at least 1, in which all nodes are labeled
by functionalities and where every node’s children are ordered. The root and all internal nodes are
labeled by wrapped CSFs (by either of the two wrappers), and the leaves are labeled by unwrapped
CSFs. The trace complexity of a trace T , denoted ctr(T), is the number of leaves in T . Moreover,
denote by flextr(T) the number of flexibly wrapped CSFs in T .

Remark. The actual trace of a protocol may depend on the input values and the behavior of
the adversary. For example, in the setting of Byzantine agreement, the honest parties may get the
output faster in case they all have the same input, which results in a different trace. However, the
wrappers defined below sample traces independently of the inputs. All protocols considered in this
work can be shown to realize useful ideal functionalities in spite of this restriction.

Strict wrapper functionality. We now proceed to give the formal descriptions of the wrappers.
The strict wrapper functionality, defined in Figure 4, is parametrized by (a sampler that induces)

22Note that the root node of the trace sampled from DF is merely labeled by WDF
flex (F ′), i.e., this is not a circular

definition.

11

a distribution D over traces, and internally runs a copy of a CSF functionality F. Initially, a trace
T is sampled from D; this trace is given to the adversary once the first honest party provides
its input. The trace T is used by the wrapper to define the termination round ρterm ← ctr(T).
In the first round, the wrapper forwards all the messages from the parties and the adversary to
(and from) the functionality F. Next, the wrapper essentially waits until round ρterm, with the
exception that the adversary is allowed to send (adv-input, sid, ·) messages and change its input
to the function computed by the CSF. Finally, when round ρterm arrives, the wrapper provides the
output generated by F to all parties.

Wrapper Functionality WD
strict(F)

Wstrict, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send (trace, sid, T)
to the adversary.a

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed
as follows:

– If ρ = ρterm, forward the message to F, and the response (output, sid, yi) to Pi.

– Else, send (fetch-output, sid, Pi) to the adversary.

Figure 4: The strict-wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Flexible-wrapper functionality. The flexible-wrapper functionality, defined in Figure 5, follows
in similar lines to the strict wrapper. The difference is that the adversary is allowed to instruct the
wrapper to deliver the output to each party at any round. In order to accomplish this, the wrapper
assigns a termination indicator termi, initially set to 0, to each party. Once the wrapper receives
an early-output request from the adversary for Pi, it sets termi ← 1. Now, when a party Pi sends
a fetch-output request, the wrapper checks if termi = 1, and lets the party receive its output in
this case (by forwarding the fetch-output request to F). When the guaranteed-termination round
ρterm arrives, the wrapper provides the output to all parties that didn’t receive it yet.

12

Wrapper Functionality WD
flex(F)

Wflex, parametrized by an efficiently sampleable distribution D, internally runs a copy of F and
proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← ctr(T). Send (trace, sid, T)
to the adversary.a In addition, initialize termination indicators term1, . . . , termn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In round ρ = 1: Forward (input, sid, ·) messages from each party Pi ∈ P to F. In addition, forward
(leakage, sid, ·) messages from F to the adversary.

• In rounds ρ > 1:

– Upon receiving (fetch-output, sid) from some party Pi ∈ P, proceed as follows:

∗ If termi = 1 or ρ = ρterm (and Pi did not receive output yet), forward the message to F, and
the output (output, sid, yi) to Pi.

∗ Else, send (fetch-output, sid, Pi) to the adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1.

Figure 5: The flexible-wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

4 (Fast) Composition of Probabilistic-Termination Protocols

Canonical synchronous functionalities that are wrapped using the flexible wrapper (cf. Section 3.2),
i.e., functionalities that correspond to protocols with non-simultaneous termination, are cumber-
some to be used as hybrid functionalities for protocols. The reason is that the adversary can
cause parties to finish in different rounds, and, as a result, after the execution of the first such
functionality, the parties might be out of sync.

This “slack” can be reduced, however, only to a difference of one round, unless one is willing to
pay a linear blow-up in round complexity [25, 22]. Hence, all protocols must be modified to deal
with a non-simultaneous start of (at least) one round, and protocols that introduce slack must be
followed by a slack-reduction procedure. Since this is a tedious, yet systematic task, in this section
we provide a generic compiler that transforms protocols designed in a simpler “stand-alone” setting,
where all parties remain synchronized throughout the protocol (and no slack and round-complexity
issues arise) into UC protocols that deal with these issues while maintaining their security.

Out starting point are protocols that are defined in the “stand-alone” setting. In such protocols
all the hybrids are CSFs and are called in a strictly sequential manner.

Definition 4.1 (SNF). Let F1, . . . ,Fm be canonical synchronous functionalities. A synchronous
protocol π in the (F1, . . . ,Fm)-hybrid model is in synchronous normal form (SNF) if in every round
exactly one ideal functionality Fi is invoked by all honest parties, and in addition, no honest party
hands inputs to other CSFs before this instance halts.

Clearly, designing and proving the security of SNF protocols, which only make calls to simple
two-round CSFs is a much simpler task than dealing with protocols that invoke more complicated
hybrids, potentially with probabilistic termination (see Section 5 for concrete examples).

SNF protocols are designed as an intermediate step, since the hybrid functionalities Fi are
two-round CSFs, and, in general, cannot be realized by real-world protocols. To that end, we

13

define a protocol compiler that transforms SNF protocols into (non-SNF) protocols making calls
to wrapped CSFs that can be realized in the real world, while maintaining their security and
asymptotic (expected) round complexity. At the same time, the compiler takes care of any potential
slack that is introduced by the protocol and ensures that the protocol can be executed even if the
parties do not start the protocol simultaneously.

In Section 4.1 we apply this approach to deterministic-termination protocols that use
deterministic-termination hybrids, and in Section 4.2 generalize it to the probabilistic-termination
setting. Section 4.3 covers the base case of realizing the wrapped Fpsmt using only Fsmt function-
alities. All proofs can be found in Appendix C.

4.1 Composition with Deterministic Termination

We start by defining a slack-tolerant variant of the strict wrapper (cf. Section 3.2), which can be
used even when parties operate with a (known) slack. Then, we show how to compile an SNF
protocol π realizing a strictly wrapped CSF F into a (non-SNF) protocol π′ realizing a version of
F wrapped with the slack-tolerant strict wrapper and making calls to wrapped hybrids.

Slack-tolerant strict wrapper. The slack-tolerant strict wrapper WD,c
sl-strict, formally defined in

Figure 6, is parametrized by an integer c ≥ 0, which denotes the amount of slack tolerance that
is added, and a distribution D over traces. The wrapper Wsl-strict is similar to Wstrict but allows
parties to provide input within a window of 2c+1 rounds and ensures that they obtain output with
the same slack they started with. The wrapper essentially increases the termination round by a
factor of Bc = 3c+ 1, which is due to the slack-tolerance technique used to implement the wrapped
version of the atomic parallel SMT functionality (cf. Section 4.3).

Wrapper Functionality WD,c
sl-strict(F)

Wsl-strict, parametrized by an efficiently sampleable distribution D and a non-negative integer c, in-
ternally runs a copy of F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc ·ctr(T), where Bc = 3c+1.
Send (trace, sid, T) to the adversary.a Initialize slack counters c1, . . . , cn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If the message is (input, sid, ·), forward it to F, forward the (leakage, sid, ·) message F subse-
quently outputs to the adversary, and set Pi’s local slack ci ← ρ− 1.

– Else, send (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c + 1: Upon receiving a message (fetch-output, sid) from some party Pi ∈ P,
proceed as follows:

– If ρ = ρterm + ci, send the message to F, and the output (output, sid, yi) to Pi.

– Else, send (fetch-output, sid, Pi) to the adversary.

Figure 6: The slack-tolerant strict wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

14

Deterministic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous function-
alities, and let π an SNF protocol that UC-realizes the strictly wrapped functionalityWD

strict(F), for
some depth-1 distribution D, in the (F1, . . . ,Fm)-hybrid model, assuming that all honest parties
receive their inputs at the same round. We define a compiler Compcdt, parametrized with a slack
parameter c ≥ 0, that receives as input the protocol π and distributions D1, . . . , Dm over traces
and replaces every call to a CSF Fi with a call to the wrapped CSF WDi,c

sl-strict(Fi). We denote the
output of the compiler by π′ = Compcdt(π,D1, . . . , Dm).23

As shown below, π′ realizes WDfull,c
sl-strict(F), for a suitably adapted distribution Dfull, assuming all

parties start within c+ 1 consecutive rounds. Consequently, the compiled protocol π′ can handle a
slack of up to c rounds while using hybrids that are realizable themselves.

Calling the wrapped CSFs instead of the CSFs (F1, . . . ,Fm) affects the trace corresponding to
F. The new trace Dfull = full-trace(D,D1, . . . , Dm) is obtained as follows:

1. Sample a trace T ← D, which is a depth-1 tree with a root label WD
strict(F) and leaves from

the set {F1, . . . ,Fm}.
2. Construct a new trace T ′ with a root label WDfull

strict(F).
3. For each leaf node F ′ = Fi, for some i ∈ [m], sample a trace Ti ← Di and append the trace
Ti to the first layer in T ′ (i.e., replace the node F′ with T ′).

4. Output the resulting trace T ′.

The following theorem states that the compiled protocol π′ UC-realizes the wrapped function-

ality WDfull,c
sl-strict(F).

Theorem 4.2. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and let π an SNF pro-
tocol that UC-realizes WD

strict(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution
D, assuming that all honest parties receive their inputs at the same round. Let D1, . . . , Dm be
arbitrary distributions over traces, Dfull = full-trace(D,D1, . . . , Dm), and c ≥ 0. Then, proto-

col π′ = Compcdt(π,D1, . . . , Dm) UC-realizes WDfull,c
sl-strict(F) in the (WD1,c

sl-strict(F1), . . . ,WDm,c
sl-strict(Fm))-

hybrid model, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.
The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

The proof of Theorem 4.2 can be found in Appendix C.1.

4.2 Composition with Probabilistic Termination

The composition theorem in Section 4.1 does not work if the protocol π itself introduces slack
(e.g., the fast broadcast protocol by Feldman and Micali [24]) or if one of the hybrids needs to
be replaced by a slack-introducing protocol (e.g., instantiating the broadcast hybrids with fast
broadcast protocols in BGW [6]).

As in Section 4.1, we start by adjusting the flexible wrapper (cf. Section 3.2) to be slack-tolerant.
In addition, the slack-tolerant flexible wrapper ensures that all parties will obtain their outputs

23The distributions Di depend on the protocols realizing the strictly wrapped functionalities WDi,c
sl-strict(Fi). Note,

however, that the composition theorems in Sections 4.1 and 4.2 actually work for arbitrary distributions Di.

15

within two consecutive rounds. Then, we show how to compile an SNF protocol π realizing a
CSF F, wrapped with the flexible wrapper, into a (non-SNF) protocol π′ realizing a version of F
wrapped with slack-tolerant flexible wrapper. The case where π implements a strictly wrapped
CSF, but some of the hybrids are wrapped with the slack-tolerant flexible wrapper follows along
similar lines.

Slack-tolerant flexible wrapper. The slack-tolerant flexible wrapper WD,c
sl-flex, formally defined

in Figure 7, is parametrized by an integer c ≥ 0, which denotes the amount of slack tolerance that is
added, and a distribution D over traces. The wrapper Wsl-flex is similar to Wflex but allows parties
to provide input within a window of 2c+ 1 rounds and ensures that all honest parties will receive
their output within two consecutive rounds. The wrapper essentially increases the termination
round to

ρterm = Bc · ctr(T) + 2 · flextr(T) + c,

where the blow-up factor Bc is as explained in Section 4.1, and the additional factor of 2 results
from the termination protocol described below for every flexibly wrapped CSF, which increases the
round complexity by at most two additional rounds (recall that flextr(T) denotes the number of such
CSFs), and c is due to the potential slack. Wsl-flex allows the adversary to deliver output at any
round prior to ρterm but ensures that all parties obtain output with a slack of at most one round.
Moreover, it allows the adversary to obtain the output using the (get-output, sid) command, which
is necessary in order to simulate the termination protocol.

Probabilistic-termination compiler. Let F,F1, . . . ,Fm be canonical synchronous functional-
ities, and let π be an SNF protocol that UC-realizes the flexibly wrapped functionality WD

flex(F)
in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution D, assuming all parties start at
the same round. Define the following compiler Compptr, parametrized by a slack parameter c ≥ 0.
The compiler receives as input the protocol π, distributions D1, . . . , Dm over traces, and a subset
I ⊆ [m] indexing which CSFs Fi are to be wrapped withWsl-flex and which withWsl-strict; every call
in π to a CSF Fi is replaced with a call to the wrapped CSF WDi,c

sl-flex(Fi) if i ∈ I or to WDi,c
sl-strict(Fi)

if i /∈ I.
In addition, the compiler adds the following termination procedure, based on an approach

originally suggested by Bracha [7], which ensures all honest parties will terminate within two
consecutive rounds:

• As soon as a party is ready to output a value y (according to the prescribed protocol) or upon
receiving at least t+ 1 messages (end, sid, y) for the same value y (whichever happens first),
it sends (end, sid, y) to all parties.

• Upon receiving n − t messages (end, sid, y) for the same value y, a party outputs y as the
result of the computation and halts.

Observe that this technique only works for public-output functionalities, and, therefore, only CSFs
with public output can be wrapped by Wsl-flex. We denote the output of the compiler by π′ =
Compcptr(π,D1, . . . , Dm, I).

The following theorem states that the compiled protocol π′ UC-realizes the wrapped function-

ality WDfull,c
sl-flex (F), for the adapted distribution Dfull = full-trace(D,D1, . . . , Dm). Consequently, the

compiled protocol π′ can handle a slack of up to c rounds, while using hybrids that are realizable
themselves, and ensuring that the output slack is at most one round (as opposed to π). Calling the

16

wrapped hybrids instead of the CSFs affects the trace corresponding to F in exactly the same way
as in the case with deterministic termination (cf. Section 4.1).24

Wrapper Functionality WD,c
sl-flex(F)

Wsl-flex, parametrized by an efficiently sampleable distribution D and a non-negative integer c, inter-
nally runs a copy of (the public-output functionality) F and proceeds as follows:

• Initially, sample a trace T ← D and compute the output round ρterm ← Bc · ctr(T) + 2 · flextr(T) +
c, where Bc = 3c + 1. Send (trace, sid, T) to the adversary.a Initialize termination indicators
term1, . . . , termn ← 0.

• At all times, forward (adv-input, sid, ·) messages from the adversary to F.

• In rounds ρ = 1, . . . , 2c+ 1: Upon receiving a message from some party Pi ∈ P, proceed as follows:

– If the message is (input, sid, ·), send it to F and forward the (leakage, sid, ·) message F subse-
quently outputs to the adversary.

– Else, send (fetch-output, sid, Pi) to the adversary.

• In rounds ρ > 2c+ 1:

– Upon receiving a message (fetch-output, sid) from some party Pi ∈ P, proceed as follows:

∗ If termi = 1 or ρ = ρterm, forward the message to F, and the output (output, sid, y) to Pi.
Record the output value y.

∗ Else, output (fetch-output, sid, Pi) to the adversary.

– Upon receiving (get-output, sid) from the adversary, if the output value y was not recorded yet,
send (fetch-output, sid) to F on behalf of some party Pi. Next, send (output, sid, y) to the
adversary.

– Upon receiving (early-output, sid, Pi) from the adversary, set termi ← 1 and ρterm ←
min{ρterm, ρ+ 1}.

Figure 7: The slack-tolerant flexible wrapper functionality

aTechnically, the trace is sent to the adversary at the first activation of the functionality along with the
first message.

Theorem 4.3. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and let π an SNF
protocol that UC-realizes WD

flex(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution
D, assuming that all honest parties receive their inputs at the same round. Let I ⊆ [m] be the subset
(of indices) of functionalities to be wrapped using the flexible wrapper, let D1, . . . , Dm be arbitrary
distributions over traces, denote Dfull = (D,D1, . . . , Dm) and let c ≥ 0. Assume that F and Fi, for
every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcptr(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F) in the

(W(F1), . . . ,W(Fm))-hybrid model, whereW(Fi) =WDi,c
sl-flex(Fi) if i ∈ I andW(Fi) =WDi,c

sl-strict(Fi)
if i /∈ I, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)] + 2,

24Of course, the root of the trace T sampled from D is a flexibly wrapped functionalityWD
flex(F) in the probabilistic-

termination case.

17

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

The proof of Theorem 4.3 can be found in Appendix C.2.
Consider now the scenario where an SNF protocol π realizes a strictly wrapped functionality,

yet some of the CSF hybrids are to be wrapped by flexible wrappers. The corresponding compiler
Comppt works as Compptr with the exception that the slack-reduction protocol is not performed
at the end. The proof of the following theorem follows that of Theorem 4.3.

Theorem 4.4. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and let π an SNF
protocol that UC-realizesWD

strict(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution
D, assuming that all honest parties receive their inputs at the same round. Let I ⊆ [m] be the subset
(of indices) of functionalities to be wrapped using the flexible wrapper, let D1, . . . , Dm be arbitrary
distributions over traces, denote Dfull = full-trace(D,D1, . . . , Dm) and let c ≥ 0. Assume that F
and Fi. for every i ∈ I. is a public-output functionalities.

Then, the compiled protocol π′ = Compcpt(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F) in the

(W(F1), . . . ,W(Fm))-hybrid model, whereW(Fi) =WDi,c
sl-flex(Fi) if i ∈ I andW(Fi) =WDi,c

sl-strict(Fi)
if i /∈ I, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

4.3 Wrapping Secure Channels

The basis of the top-down, inductive approach taken in this work consists of providing protocols
realizing wrapped atomic functionalities, using merely secure channels, i.e., Fsmt. Due to the
restrictions to SNF protocols, which may only call a single CSF hybrid in any given round, a
parallel variant Fpsmt of Fsmt (defined below) is used as an atomic functionality. This ensures that
in SNF protocols parties can securely send messages to each other simultaneously.

Parallel SMT. The parallel secure message transmission functionality Fpsmt is a CSF for the
following functions fpsmt and lpsmt Each party Pi has a vector of input values (xi1, . . . , x

i
n) such that

xij is sent from Pi to Pj . That is, the function to compute is fpsmt((x
1
1, . . . , x

1
n), . . . , (xn1 , . . . , x

n
n), a) =

((x1
1, . . . , x

n
1), . . . , (x1

n, . . . , x
n
n)). As we consider rushing adversaries, that can determine the mes-

sages sent by the corrupted parties after receiving the messages sent by the honest parties, the leak-
age function should leak the messages that are to be delivered from honest parties to corrupted par-
ties. Therefore, the leakage function is lpsmt((x

1
1, . . . , x

1
n), . . . , (xn1 , . . . , x

n
n)) = (y1

1, y
1
2, . . . , y

n
n−1, y

n
n),

where yij = |xij | in case Pj is honest and yij = xij in case Pj is corrupted.

Realizing wrapped parallel SMT. The remainder of this section deals with securely realizing
WD,c

sl-strict(Fpsmt) in the Fsmt-hybrid model, for a particular distribution D and an arbitrary non-
negative integer c. Note that the corresponding protocol πpsmt is not an SNF protocol since it makes
n2 parallel calls to Fsmt in each round; this is of no concern since it directly realizes a wrapped
functionality and therefore need not be compiled. There is a straight-forward (non-SNF) protocol

18

realizing Fpsmt in the Fsmt-hybrid model, and therefore (due to the UC composition theorem) it
suffices to describe protocol πpsmt in the Fpsmt-hybrid model.

A standard solution to overcome asynchrony by a constant number of rounds c ≥ 0, introduced
by Lindell et al. [42] and used by Katz and Koo [34], is to expand each communication round to
2c + 1 rounds. Each party listens for messages throughout all 2c + 1 rounds, and sends its own
messages in round c+ 1. It is straight-forward to verify that if the slack is c, i.e., the parties start
within c + 1 rounds from each other, round r-messages (in the original protocol, without round
expansion) are sent, and delivered, before round (r+ 1)-messages and after round (r−1)-messages.

The solution described above does not immediately apply to our case, due to the nature of
canonical synchronous functionalities. Recall that in a CSF the adversary can send an adv-input

message (and affect the output) only before any honest party has received an output from the
functionality. If only 2c + 1 rounds are used a subtle problem arises: Assume for simplicity that
c = 1 and say that P1 is a fast party and P2 is a slow party. Initially, P1 listens for one round.
In the second round P2 listens and P1 send its messages to all the parties. In the third round P2

sends its messages and P1 receives its message, produces output and completes the round. Now,
P2 listens for an additional round, and the adversary can send it messages on behalf of corrupted
parties. In other words, the adversary can choose the value for P2’s output after P1 has received its
output – such a phenomena cannot be modeled using CSFs. For this reason we add an additional
round where each party is idle; if P1 waits one more round (without listening) before it produces
its output, then P2 will receive all the messages that determine its output, and so once P1 produces
output and completes, the adversary cannot affect the output of P2.

As a result, in the protocol presented in Figure 8, each round is expanded to 3c + 1 rounds,
where during the final c rounds, parties are simply idle and ignore any messages they receive.

Protocol πpsmt (realizing wrapped Fpsmt)

Each party Pi ∈ P = {P1, . . . , Pn} proceeds as follows:

• Initially, obtain input (input, (x
(i)
1 , . . . , x

(i)
n)) from the environment. Set y1, . . . , yn ← ⊥.

• In every round ρ = 1, . . . , c:a Send (input,⊥) to (a fresh instance of) Fpsmt. Obtain output
(output, (u1, . . . , un)) from Fpsmt with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In round ρ = c + 1: Send the message (input, (x
(i)
1 , . . . , x

(i)
n)) to Fpsmt, and obtain the output

(output, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = c + 2, . . . , 2c + 1: Send (input,⊥) to Fpsmt, and obtain the output
(output, (u1, . . . , un)) with ui ∈ {0, 1}∗ ∪ {⊥}. For each i with ui 6= ⊥, set yi ← ui.

• In every round ρ = 2c+ 2, . . . , 3c: Do nothing.

• In round ρ = 3c+ 1: Output (output, sid, (y1, . . . , yn)).

Figure 8: The wrapped parallel SMT protocol, in the Fpsmt-hybrid model

aNote that ρ is the local round counter of party Pi.

Denote by Dpsmt the deterministic distribution that outputs a depth-1 trace consisting of a root
WDpsmt

strict (Fpsmt) and a single leaf Fpsmt.

Lemma 4.5. Let c ≥ 0. Protocol πpsmt UC-realizes WDpsmt,c
sl-strict(Fpsmt) in the Fpsmt-hybrid model,

assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

19

Proof. For simplicity, denote byW(Fpsmt) the wrapped functionalityWDpsmt,c
sl-strict(Fpsmt). Let Z be an

environment. We construct the following simulator S running with W(Fpsmt) and Z, simulating
the dummy adversary.25 Initially, S receives the message (trace, sid, T), where T is a depth-1
trace consisting of a single leaf Fpsmt. Next, S simulates 3c + 1 sequential instances of Fpsmt, by
interacting with Z and W(Fpsmt). In every instances of Fpsmt, S proceeds as follows:

• If S receives an input message (input, sid, xi) from Z, where xi 6= ⊥ is a vector of messages
to be sent from a corrupted Pi, S forwards the message to W(Fpsmt).

• If S receives a leakage message (leakage, sid, Pi, li) from W(Fpsmt), where li is a length-n
vector, consisting of the messages sent by Pi to each corrupted party (and the length of
messages Pi sends to honest parties), S forwards the message to Z. If no leakage message
arrived during this round, S sends the message (leakage, sid, Pi,⊥) to Z, on behalf of every
party.

• In the “output” round of this Fpsmt instance, S sends (output, sid, yi) to Z for every corrupted
Pi, where yi is a vector consisting of the messages sent to Pi in the “input” round (if some
party did not send a mesasge to Pi the value λ is used).

By inspection, it can be seen that the view of Z is identically distributed when interacting with S in
an ideal computation of W(Fpsmt), or when interacting with the dummy adversary in an execution
of πpsmt.

The corollary follows since Fpsmt can be realized in the Fsmt-hybrid model in a straight-forward
way, by calling Fsmt in parallel n2 times.

Corollary 4.6. Let c ≥ 0. The functionalityWDpsmt,c
sl-strict(Fpsmt) can be UC-realized in the Fsmt-hybrid

model, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

5 Applications of Our Fast Composition Theorem

In this section we demonstrate the power of our framework by providing some concrete appli-
cations. All of the protocols we present in this section enjoy perfect security facing adaptive
adversaries corrupting less than a third of the parties. We start in Section 5.1 by presenting
expected-constant-round protocols for Byzantine agreement. Next, in Section 5.2 we present an
expected-constant-round protocol for parallel broadcast. Finally, in Section 5.3 we present a secure
function evaluation protocol whose round complexity is O(d) in expectation, where d is the depth
of the circuit representing the function.

5.1 Fast and Perfectly Secure Byzantine Agreement

We start by describing the binary and multi-valued randomized Byzantine agreement protocols (the
definition of Fba appears in Section 3.1). These protocols are based on techniques due to Feldman
and Micali [24] and Turpin and Coan [49], with modifications to work in the UC framework. We
provide simulation-based proofs for these protocols.

A binary Byzantine agreement protocol. We now describe a UC protocol for randomized bi-
nary Byzantine agreement, that is based on the protocol of Feldman and Micali [24]. For simplicity,
we work in a hybrid model, where parties have access to the oblivious common coin functionality;
we first present this functionality as a canonical synchronous functionality Fcsf.

25Recall that proving security with respect to the dummy adversary is sufficient (cf. [10, Claim 10]).

20

Oblivious common coin. In the oblivious common coin ideal functionality (introduced in [24])
every honest party Pi outputs a bit yi ∈ {0, 1} such that the following holds: with probability p > 0
all honest parties will agree on a uniformly distributed bit, and with probability 1− p the output
for each honest party is determined by the adversary. The meaning of obliviousness here is that
the parties are unaware of whether agreement on the coin is achieved or not.

In more detail, each honest party Pi sends an empty string xi = λ as input, and the leakage
function is loc(x1, . . . , xn) = ⊥. The function to compute, foc(x1, . . . , xn, a) = (y1, . . . , yn), is
parametrized by an efficiently sampleable distribution D over {0, 1}, that outputs 1 with probability
p and 0 with probability 1− p, and works as follows:

• Initially, sample a “fairness bit” b← D.

• If b = 1 or if a = ⊥ (i.e., if the adversary did not send an adv-input message) sample a
uniformly distributed bit y ← {0, 1} and set yi ← y for every i ∈ [n].

• If b = 0 and a 6= ⊥, parse the adversarial input a as a vector of n values (a1, . . . , an), and set
yi ← ai for every i ∈ [n].

We denote by Foc the CSF functionality parametrized with the above functions foc and loc. Feldman
and Micali [24, Thm. 3] showed a constant-round oblivious common coin protocol for p = 0.35.

Overview of the protocol. The binary BA functionality, realized by the protocol, is the

wrapped functionality WDrba
flex (F{0,1}ba) (the distribution Drba is formally defined in Lemma 5.1),

denoted Frba for short. The protocol πrba, described in Figure 9, is based on the protocol from [24]
modified using the “best-of-both-worlds” technique due to Goldreich and Petrank [29]. Recall that
following Section 4, it is sufficient to describe the protocol using CSFs as hybrids rather than
wrapped CSFs (even though such a description might be overly ideal, and cannot be instantiated
in the real world), and the same level of security is automatically achieved in a compiled proto-
col (that can be instantiated) where the underlying CSFs are properly wrapped. Therefore, the

protocol is defined in the (Fpsmt,Foc,F{0,1}ba)-hybrid model.

At first sight, it may seem odd that the binary Byzantine agreement functionality F{0,1}ba is
used in order to implement the randomized binary Byzantine agreement functionality Frba. How-

ever, the functionality F{0,1}ba will only be invoked in the event (which occurs with a negligible
probability) that the protocol does not terminate within a poly-log number of rounds. Once the

protocol is compiled, the CSF functionality F{0,1}ba will be wrapped using a strict wrapper, such that

the wrapped functionality Wstrict(F{0,1}ba) can be instantiated using any linear-round deterministic
Byzantine agreement protocol (e.g., the protocol in [32]).

At a high level, protocol πrba proceeds as follows. Initially, each party sends its input to all
other parties over a point-to-pint channel using Fpsmt, and sets its vote to be its input bit. Next,
the parties proceed in phases, where each phase consists of invoking the functionality Foc followed
by a voting process consisting of three rounds of sending messages via Fpsmt. The voting ensures
that (1) if all honest parties agree on their votes at the beginning of the phase, they will terminate
at the end of the phase, (2) in each phase, all honest parties will agree on their votes at the end of
each phase with probability at least p, and (3) if an honest party terminates in some phase then all
honest parties will terminate with the same value by the end of the next phase. In the negligible
event that the parties do not terminate after τ = log1.5(k)+1 phases, the parties use the Byzantine
agreement functionality Fba in order to ensure termination.

To avoid confusion in πrba between the different calls to Foc, the α’th invocation will use the
session identifier sidα = sid ◦ α, obtained by concatenating α to sid.

21

Protocol πrba

Each party Pi ∈ P = {P1, . . . , Pn} proceeds as follows:

• Initially, Pi sets the phase counter α← 0 and the termination indicator term← 0. For every other
party Pj ∈ P set a value Bj ← 0 for storing the last bit value received from Pj . In addition, denote
τ = log1.5(k) + 1.

• In the first round, upon receiving (input, sid, v) with v ∈ {0, 1} from the environment, party Pi sets
bi ← v (note that the value bi will change during the protocol) and sends (sid, bi) to all the parties
(via Fpsmt). Let (sid, bj) be the value received from Pj (via Fpsmt) with bj ∈ {0, 1}, set Bj ← bj . If
no message was received from Pj , set bj ← Bj .

• While term = 0 and α ≤ τ , do the following:

1. Set α← α+ 1 and send (input, sidα, λ) to Foc. Let (output, sidα, β), with β ∈ {0, 1}, be the
output received from Foc.

2. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← β; If 2n/3 ≤ c ≤ n set bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

3. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0 and term← α; If n/3 ≤ c < 2n/3 set bi ← 0; If 2n/3 ≤ c ≤ n set bi ← 1.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

4. Compute c←∑n
j=1 bj .

If c < n/3 set bi ← 0; If n/3 ≤ c < 2n/3 set bi ← 1; If 2n/3 ≤ c ≤ n set bi ← 1 and term← α.
Send (sid, bi) to all the parties (via Fpsmt). Upon receiving (sid, bj) from Pj (via Fpsmt) with
bj ∈ {0, 1}, set Bj ← bj ; if no message was received from Pj , set bj ← Bj .

• If 0 < term < τ , then output (output, sid, bi) and halt.

• Else (i.e., if term = 0 or term = τ), send (input, sid, bi) to F{0,1}ba (note that bi is the value that was
set in phase τ). Upon receving (output, sid, b), with b ∈ {0, 1}, if term = 0 output (output, sid, b)
and halt. Else, if term = τ , output (output, sid, bi) and halt.

Figure 9: The binary randomized Byzantine agreement protocol, in the (Fpsmt,Foc,F{0,1}ba)-
hybrid model

Denote by Drba the distribution that outputs a depth-1 trace, where the root is WDrba
flex (F{0,1}ba),

and the leaves are set as follows: initially sample an integer r from the geometric distribution with
parameter p = 0.35 and support {1 . . . , τ +1} (representing the phase where Foc samples a fairness
bit 1, plus the option that Foc samples 0 in all τ phases). The first leaf in the trace is Fpsmt,

followed by min(r, τ) sequences of (Foc,Fpsmt,Fpsmt,Fpsmt). Finally, if r ≥ τ add the leaf F{0,1}ba

to the trace. In Appendix D.1 we prove the following lemma.

Lemma 5.1. Let t < n/3, then, assuming all honest parties receive their inputs at the same round,

protocol πrba UC-realizes Frba = WDrba
flex (F{0,1}ba), in the (Fpsmt,Foc,F{0,1}ba)-hybrid model, with

perfect security, in the presence of an adaptive malicious t-adversary.

We now use Theorem 4.3 to derive the main result of this section.

Theorem 5.2. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D such

that the functionality WD,c
sl-flex(F{0,1}ba) has an expected constant round complexity, and can be UC-

22

realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

Proof (sketch). Denote by Doc the deterministic distribution that outputs a depth-1 trace con-
sisting of a root WDoc

strict(Foc) and 36 leaves Fpsmt (recall that the Foc protocol in [24, Claim
T4-4] requires 36 rounds), and denote by Dba the deterministic distribution that outputs

a depth-1 trace consisting of a root WDba
strict(F

{0,1}
ba) and O(n) leaves Fpsmt. Let Dfull

rba =
full-trace(Drba, Doc, Dpsmt, Dba).

For simplicity, denote Fpt
ba = WDfull

rba,c
sl-flex (F{0,1}ba), Fdt

psmt = WDpsmt,c
sl-strict(Fpsmt), Fdt

oc = WDoc,c
sl-strict(Foc)

and Fdt
ba =WDba,c

sl-strict(F
{0,1}
ba). In addition, denote D1 = Dpsmt, D2 = Doc, D3 = Dba and I = ∅.

From Lemma 5.1, πrba UC-realizes WDrba
flex (F{0,1}ba), in the (Fpsmt,Foc,F{0,1}ba)-hybrid model, in

an expected constant number of rounds, assuming all parties receive their inputs at the same round.
Following Theorem 4.3, the compiled protocol Compcptr(πrba, D1, D2, D3, I) UC-realizes Fpt

ba , in the
(Fdt

psmt,Fdt
oc ,Fdt

ba)-hybrid model, in an expected constant number of rounds, assuming all parties
receive their inputs within c+ 1 consecutive rounds.

The proof follows since each of the functionalities (Fdt
psmt,Fdt

oc ,Fdt
ba) can be UC-realized in

the Fsmt-hybrid model. This follows from Lemma 4.5, combined with the protocols from [24]
and [32].

Multi-valued Byzantine agreement protocol. In Appendix D.1 we present an analogue of
the multi-valued Byzantine agreement protocol due to Turpin and Coan [49] for the UC framework,
and prove the following.

Theorem 5.3. Let c ≥ 0, t < n/3 and V ⊆ {0, 1}∗. There exists an efficiently sampleable
distribution D such that the functionality WD,c

sl-flex(FVba) has an expected constant round complexity,
and can be UC-realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive
rounds.

5.2 Fast and Perfectly Secure Parallel Broadcast

As discussed in Section 1 (and Appendix A), composing protocols with probabilistic termination
näıvely does not retain expected round complexity. Ben-Or and El-Yaniv [5] constructed an elegant
protocol for probabilistic-termination parallel broadcast26 with a constant round complexity in
expectation, albeit under a property-based security definition. In this section we adapt the [5]
protocol to the UC framework and show that it does not realize the parallel broadcast functionality,
but rather a weaker variant which we call unfair parallel broadcast. Next, we show how to use
unfair parallel broadcast in order to compute (fair) parallel broadcast in constant excepted number
of rounds.

In a standard broadcast functionality (cf. Section 3.1), the sender provides a message to the
functionality which delivers it to the parties. Hirt and Zikas [32] defined the unfair version of the
broadcast functionality, in which the functionality informs the adversary which message it received,
and allows the adversary, based on this information, to corrupt the sender and replace the message.
Following the spirit of [32], we now define the unfair parallel broadcast functionality, using the
language of CSF.

26In [5] the problem is referred to as “interactive consistency.”

23

Unfair Parallel Broadcast. In the unfair parallel broadcast functionality, each party
Pi with input xi distributes its input to all the parties. The adversary is allowed to learn
the content of each input value from the leakage function (and so it can corrupt parties and
change their messages prior to their distribution, based on this information). The function
to compute is fupbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)) and the leakage function is
lupbc(x1, . . . , xn) = (x1, . . . , xn). We denote by Fupbc the functionality Fcsf when parametrized
with the above functions fupbc and lupbc.

In Appendix D.2.1 we present an adaptation of the [5] protocol, show that it perfectly UC-
realizes (a wrapped version of) Fupbc (see Figure 12) and prove the following result.

Theorem 5.4. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality WD,c

sl-flex(Fupbc) has an expected constant round complexity, and can be UC-
realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

We now turn to define the (fair) parallel broadcast functionality.

Parallel Broadcast. In the parallel broadcast functionality, each party Pi with input xi
distributes its input to all the parties. Unlike the unfair version, the adversary only learns
the length of the honest parties’ messages before their distribution, i.e., the leakage function
is lpbc(x1, . . . , xn) = (|x1| , . . . , |xn|). It follows that the adversary cannot use the leaked infor-
mation in a meaningful way when deciding which parties to corrupt. The function to compute
is identical to the unfair version, i.e., fpbc(x1, . . . , xn, a) = ((x1, . . . , xn), . . . , (x1, . . . , xn)). We
denote by Fpbc the functionality Fcsf when parametrized with the above functions fpbc and lpbc.

Unfortunately, the unfair parallel broadcast protocol πupbc (cf. Figure 12) fails to realize (a
wrapped version of) the standard parallel broadcast functionality Fpbc. The reason is similar to
the argument presented in [32]: in the first round of the protocol, each party distributes its input,
and since we consider a rushing adversary, the adversary learns the messages before the honest
parties do. It follows that the adversary can corrupt a party before the honest parties receive the
message and replace the message to be delivered. This attack cannot be simulated in the ideal
world where the parties interact with Fpbc, since by the time the simulator learns the broadcast
message in the ideal world, the functionality does not allow to change it.

Although protocol πupbc does not realize Fpbc, it can be used in order to construct a protocol
that does. Each party commits to its input value before any party learns any new information,
as follows. Each party, in parallel, first secret shares its input using a t-out-of-n secret-sharing
protocol.27 In the second step, every party, in parallel, broadcast a vector with all the shares
he received, by use of the above unfair parallel broadcast functionality Fupbc, and each share is
reconstructed based on the announced values. The reason this modification achieves fair broadcast
is the following: If a sender Pi is not corrupted until he distributes his shares, then a t-adversary
has no way of modifying the reconstructed output of Pi’s input, since he can at most affect t < n/3
shares. Thus, the only way the adversary can affect any of the broadcast messages is by corrupting
the sender independently of his input, an attack which is easily simulated. We describe this protocol,
denoted πpbc, in Figure 10.

27In [32] verifiable secret sharing (VSS) is used; however, as we argue, this is not necessary.

24

Protocol πpbc

1. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi secret
shares xi using a t-out-of-n secret sharing scheme, denoted by (x1

i , . . . , x
n
i). Next, Pi sends for

every party Pj its share (sid, xji) (via Fpsmt). Denote by xij the value received from Pj .

2. In the second round, Pi broadcasts the values xi = (xi1, . . . , x
i
n) using the unfair parallel broad-

cast functionality, i.e., Pi sends (input, sid,xi) to Fupbc. Denote by yj = (yj1, . . . , y
j
n) the value

received from Pj . Now, Pi reconstructs all the input values, i.e., for every j ∈ [n] reconstructs
yj from the shares (y1

j , . . . , y
n
j), and outputs (output, sid, (y1, . . . , yn)) .

Figure 10: The parallel broadcast protocol, in the (Fpsmt,Fupbc)-hybrid model

Theorem 5.5. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality WD,c

sl-flex(Fpbc) has an expected constant round complexity, and can be UC-
realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

Proof (sketch). The simulator uses the adversary attacking πpbc in a black-box straight-line manner.
To simulate the first (secret sharing) round, for honest senders the simulation to simply hands the
adversary random shares for all corrupted parties and for corrupted he follows the adversary’s
instructions. If during this step the adversary asks to corrupt new senders, the simulator learns
their outputs and can easily complete the sharing to match this output. At the end of this phase,
the simulator interacts with its hybrid until it produces output. Once this is the case, he uses this
output to continue the simulation with its adversary. Clearly, for any sender Pi who is not corrupted
until he distributes his shares, then a t-adversary has no way of modifying the reconstructed output
of Pi’s input, since he can at most affect t < n/3 shares. Thus the only way the adversary can affect
any of the broadcasted message is by corrupting the sender independently of his input, an attack
which is easily simulated. The fact that the running time is constant (expected) follows trivially
from the fact that πpbc executes only one round (namely the sharing round) more than the unfair
protocol which is expected constant round (cf. Theorem 5.4).

5.3 Fast and Perfectly Secure SFE

We conclude this section by showing how to construct a perfectly UC-secure SFE protocol which
computes a given circuit in expected O(d) rounds, independently of the number of parties, in
the point-to-point channels model. The protocol is obtained by taking the protocol from [6],28

denoted πbgw. This protocol relies on (parallel) broadcast and (parallel) point-to-point channels,
and therefore it can be described in the (Fpsmt,Fpbc)-hybrid model. It follows from Theorem 4.4,
that the compiled protocol Compcpt(πbgw, D1, D2, I), for D1 = Dpsmt, D2 = Dfull

pbc and I = {2},
UC-realizes the corresponding wrapped functionalityWD,c

sl-flex(Fsfe) (for an appropriate distribution

D), in the (WDpsmt,c
sl-strict(Fpsmt),WDfull

pbc,c
sl-flex (Fpbc))-hybrid model, resulting in the following.

Theorem 5.6. Let f be an n-party function, C an arithmetic circuit with multiplicative depth d
computing f , and t < n/3. Then there exists an efficiently sampleable distribution D such that

the functionality WD,c
sl-flex(Ffsfe) has round complexity O(d) in expectation, and can be UC-realized in

the Fsmt-hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary,
assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

28A full simulation proof of the protocol with a black-box straight-line simulation was recently given by [2] and [19].

25

References

[1] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In EUROCRYPT 2012, pages 483–501, 2012.

[2] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly-secure multiparty
computation. Electronic Colloquium on Computational Complexity (ECCC), 18:36, 2011.

[3] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[4] Michael Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols
(extended abstract). In Robert L. Probert, Nancy A. Lynch, and Nicola Santoro, editors, 2nd ACM
PODC, pages 27–30. ACM Press, August 1983.

[5] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in constant time. Dis-
tributed Computing, 16(4):249–262, 2003.

[6] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In 20th ACM STOC, pages 1–10. ACM
Press, May 1988.

[7] Gabriel Bracha. An asynchronou [(n-1)/3]-resilient consensus protocol. In Robert L. Probert, Nancy A.
Lynch, and Nicola Santoro, editors, 3rd ACM PODC, pages 154–162. ACM Press, August 1984.

[8] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous
broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 524–541.
Springer, August 2001.

[9] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[10] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[11] Ran Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint
Archive, Report 2003/239, 2003. http://eprint.iacr.org/2003/239.

[12] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security for
standard multiparty computation. In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO 2015,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 3–22. Springer, 2015.

[13] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party and
multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[14] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, August 2003.

[15] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure protocols (ex-
tended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May 1988.

[16] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party compu-
tation from cut-and-choose. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II,
volume 8617 of LNCS, pages 513–530. Springer, August 2014.

[17] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a black-box pseudo-
random generator. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 378–394.
Springer, August 2005.

[18] Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Prac-
tical covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits. In Jason Crampton,
Sushil Jajodia, and Keith Mayes, editors, ESORICS 2013, volume 8134 of LNCS, pages 1–18. Springer,
September 2013.

26

http://eprint.iacr.org/2003/239

[19] Ivan Damg̊ard and Jesper Buus Nielsen. Adaptive versus static security in the UC model. In ProvSec
2014, pages 10–28, 2014.

[20] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 643–662. Springer, August 2012.

[21] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine agreement. J.
ACM, 37(4):720–741, 1990.

[22] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing, 12(4):656–666, 1983.

[23] Bennett Eisenberg. On the expectation of the maximum of IID geometric random variables. Statistics
& Probability Letters, 78(2):135–143, 2008.

[24] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agree-
ment. SIAM Journal on Computing, 26(4):873–933, 1997.

[25] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183–186, 1982.

[26] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In TCC 2014, pages 74–94, 2014.

[27] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity and
a methodology of cryptographic protocol design (extended abstract). In 27th FOCS, pages 174–187.
IEEE Computer Society Press, October 1986.

[28] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.

[29] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing termination in fast random-
ized byzantine agreement protocols. Information Processing Letters, 36(1):45–49, 1990.

[30] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. Journal of
Cryptology, 18(3):247–287, July 2005.

[31] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guarantee of
output delivery. In CRYPTO 2015, Part II, pages 63–82, 2015.

[32] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, EURO-
CRYPT 2010, volume 6110 of LNCS, pages 466–485. Springer, May 2010.

[33] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 572–591. Springer,
August 2008.

[34] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agreement. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 445–462. Springer, August 2006.

[35] Jonathan Katz and Chiu-Yuen Koo. Round-efficient secure computation in point-to-point networks. In
Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages 311–328. Springer, May 2007.

[36] Jonathan Katz and Yehuda Lindell. Handling expected polynomial-time strategies in simulation-based
security proofs. In Joe Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 128–149. Springer,
February 2005.

[37] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable synchronous
computation. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 477–498. Springer, March
2013.

27

[38] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively secure MPC with
dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13,
pages 549–560. ACM Press, November 2013.

[39] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages 20–31. ACM
Press, May 1988.

[40] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure protocols and security
under composition. In Jon M. Kleinberg, editor, 38th ACM STOC, pages 109–118. ACM Press, May
2006.

[41] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[42] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated byzantine
agreement. In 34th ACM STOC, pages 514–523. ACM Press, May 2002.

[43] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of protocols without simul-
taneous termination. In Aleta Ricciardi, editor, 21st ACM PODC, pages 203–212. ACM Press, July
2002.

[44] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO 2015, Part II, pages 319–338, 2015.

[45] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, volume 9666 of Lecture Notes
in Computer Science, pages 735–763. Springer, 2016.

[46] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228–234, 1980.

[47] Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foundations of
Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 403–409. IEEE Computer Society,
1983.

[48] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[49] Russell Turpin and Brian A. Coan. Extending binary byzantine agreement to multivalued byzantine
agreement. Information Processing Letters, 18(2):73–76, 1984.

[50] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd FOCS, pages
160–164. IEEE Computer Society Press, November 1982.

A On Parallel (In)Composability of Protocols with Probabilistic
Termination

Ben-Or and El-Yaniv [5] observed that when executing randomized protocols with probabilistic
termination in parallel, then, in general, the expected running time of the composed protocol (i.e.,
the rounds its takes for all protocols to give output to all parties) is not preserved. We prove a
formal example where this is the case. Concretely, consider a protocol realizing a particular ideal
functionality such that the probability that all parties have completed the protocol by round k
is pk for some 0 < p < 1. Then, the expected running time of the protocol is 1/p rounds, i.e.,
constant. (This is essentially the case in most randomized BA protocols starting with Feldman and
Micali [24].) However, as implied by the following lemma, if m instances of the protocol are run in
parallel, in a straight-forward manner, the resulting protocol will have an expected running time
of Θ(logm), which is no longer constant.

In particular, running m parallel copies of the protocol of Feldman and Micali [24] results in a
protocol that in expectation takes Θ(logm) phases (and thus rounds) to complete.

28

Lemma A.1. Let X1, . . . , Xm be independent, identically distributed (IID) geometric random vari-
ables, such that for every i ∈ [m] it holds that Pr[Xi = 1] = p for some 0 < p < 1. Then,

E

[
max

1≤i≤m
Xi

]
= Θ(logm).

Proof. As shown in Eisenberg [23], the expected value of the maximum of the random variables is

1

− log(1− p)
m∑
k=1

1

k
≤ E

[
max

1≤i≤m
Xi

]
≤ 1 +

1

− log(1− p)
m∑
k=1

1

k
.

The lemma follows immediately by observing that

m∑
k=1

1

k
= Hm = Θ(logm).

B The Model (Cont’d)

In this section we give complementary material to Section 2 and in particular we include a high-
level overview of the formulation of synchronous UC from [37]. More concretely, Katz et al. [37]
introduced a framework for universally composable synchronous computation. For self contain-
ment we describe here the basics of the model and introduce some terminology that simplifies the
description of corresponding functionalities.

Synchronous protocols can be cast as UC protocols which have access to a special clock func-
tionality Fclock—which allows them to coordinate round switches as described below—and com-
municate over bounded-delay channels.29 In a nutshell, the clock-functionality works as follows:
It stores a bit b which is initially set to 0 and it accepts from each party two types of messages:
clock-update and clock-read. The response to clock-read is the value of the bit b to the
requestor. Each clock-update is forwarded to the adversary, but it is also recorded, and upon
receiving such a clock-update message from all honest parties, the clock functionality updates b
to b⊕ 1. It then keeps working as above, until it receives again a clock-update message from all
honest parties, in which case it resets b to b⊕ 1 and so on.

Such a clock can be used as follows to ensure that honest parties remain synchronized, i.e.,
no honest party proceeds to the next round before all (honest) parties have finished the current
round: Every party stores a local variable where it keeps (its view of) the current value of the
clock indicator b. At the beginning of the protocol execution this variable is 0 for all parties.
In every round, every party uses all its activations (i.e., messages it receives) to complete all its
current-round instructions and only then sends clock-update to the clock signaling to the clock
that it has completed its round; following clock-update, all future activations result to the party
sending clock-read to the clock until its bit b is flipped; once the party observes that the bit b
has flipped, it starts its next round. Recall that, as mentioned in Section 2, for the sake of clarity,
we do not explicitly mention Fclock in our constructions.

In [37], for each message that is to be sent in the protocol, the sender and the receiver are given
access to an independent single-use channel.30 We point out, that instead of the bounded-delay

29As argued in [37], bounded-delay channels are essential as they allow parties to detect whether or not a message
was sent within round.

30As pointed out in [37], an alternative approach would be to have a multi-use communication channel; as modelling
the actual communication network is out of the scope of the current work, we will use the more standard and formally
treated model of single-use channels from [37].

29

channels, in this work we will assume very simple SFEs31 that take as input from the sender the
message he wishes to send (and a default input from other parties) and deliver the output to the
receiver in a fetch mode. Such a simple secure-channel SFE can be realized in a straightforward
manner from bounded-delay channels and a clock Fclock.

As is common in the synchronous protocols literature, throughout this work we will assume
that protocols have the following structure: In each round every party sends/receives a (potentially
empty) message to all parties and hybrid functionalities. Such a protocol can be described in UC
in a regular form (cf. Section 2) using the methodology from [37] as follows: Let µ ∈ N denote
the maximum number of messages that any party Pi might send to all its hybrids during some
round.32 Every party in the protocol uses exactly µ activations in each round. That is, once
a party Pi observes that the round has changed, i.e., the indicator-bit b of the clock has being
flipped, Pi starts its next round as described above. However, this round finishes only after Pi
receives µ additional activations. Note that Pi uses these activations to execute his current round
instructions; since µ is a bound to the number of hybrids used in any round by any party, µ are
enough activations for the party to complete its round (If Pi finishes the round early, i.e., in less
than µ activations, it simply does nothing until the µ activations are received.) Once µ activations
are received in the current round, Pi sends clock-update to the clock and then keeps sending
clock-read message, as described above, until it observes a flip of b indicating that Pi can go to
the next round.

In addition to the regular form of protocol execution, Katz et al. described a way of capturing
in UC the property that a protocol is guaranteed to terminate in a given number of rounds.
The idea is that a synchronous protocol in regular form which terminates after r rounds realizes
the following functionality F. F keeps track of the number of times every honest party sends µ
activations/messages and delivers output as soon as this has happened r times. More concretely,
imitating an r-round synchronous protocol with µ activations per party per round, upon being
instantiated, F initiates a global round-counter λ = 0 and an indicator variable λi := 0 for each
Pi ∈ P; as soon as some party Pi sends µ messages to F, while the round-counter λ is the same, F
sets λi := 1 and does the following check:33 if λi = 1 for all honest Pi then increase λ := λ+ 1 and
reset λi = 0 for all Pi ∈ P. As soon as λ = r, F enters a “delivery” mode. In this mode, whenever
a message fetch-output is received by some party Pi, F outputs to Pi its output. (If F has no
output to Pi is outputs ⊥.)

We refer to a functionality that has the above structure, i.e., which keeps track of the current
round λ by counting how many times every honest party has sent a certain number µ of messages,
as a synchronous functionality. To simplify the description of our functionalities, we introduce the
following terminology. We say that a synchronous functionality F is in round ρ if the current value
of the above internal counter in F is λ = ρ.

We note that protocols in the synchronous model of [37] enjoy the strong composition properties
of the UC framework. However, in order to have protocols being executed in a lock-step mode, i.e.,
where all protocols complete their round within the same clock-tick, Katz et al. [37] make use of
the composition with joint-state (JUC) [14]. The idea is the parties use an Fclock-hybrid protocol
π̂ that emulates towards each of the protocols, sub-clocks and assigns to each sub-clock a unique

31In fact, in Section 3 we introduce a more liberal variant of the UC SFE functionality that we call canonical
synchronous functionality (in short CSF,) that allows us to abstract several (even more complicated) tasks such as
Byzantine agreement.

32In the simple case where the parties only use point-to-point channels, µ = 2(n− 1), since each party uses n− 1
channels as sender and n− 1 as receiver to exchange his messages for each round with all other n parties.

33To make sure that the simulator can keep track of the round index, F notifies S about each received input,
unless it has reached its delivery state defined below.

30

sub-session ID (ssid). Each of these sub-clocks is local to its calling protocol, but π̂ makes sure that
it gives a clock-update to the actual (joint) clock functionality Fclock, only when all sub-clocks
have received such a clock-update message. This ensures that all clocks will switch their internal
bits at the same time with the bigger clock, which means that the protocols using them will be
mutually synchronized. This property can be formally proved by direct application of the JUC
theorem. For further details the interested reader is referred to [37, 14].

C Composition of Probabilistic-Termination Protocols (Cont’d)

This section contains the proofs for Section 4.

C.1 Composition with Deterministic Termination (Cont’d)

We start by giving the intuition for the proof of Theorem 4.2. Loosely speaking, the main differences
between the SNF protocol π implementing the functionality WD

strict(F) and the compiled protocol

π′ implementing WDfull,c
sl-strict(F) is that the hybrids are that π uses CSF as hybrids whereas π′ uses

wrapped CSFs, and in addition, parties might not start at the same round, but with a slack of c
rounds. In order to ensure that any potential overlap between concurrent calls to different wrapped
hybrids remain secure, the wrappers expand each round to 3c+ 1 rounds.

Now, given a simulator S for the dummy adversary and the SNF protocol π, we construct a
simulator S ′ for the dummy adversary and the compiled protocol π′. The new simulator acts as a
proxy between S on the one hand and the environment and the ideal functionality on the other,
with the exception that it must “synchronize” the round counters between them. Therefore, S ′
stores a local round counter ρi for every hybrid Hi, and a “slack counter” cj for every party Pj to
ensure that its messages are delivered with the same initial slack it started the protocol.

Theorem 4.2. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and let π an SNF pro-
tocol that UC-realizes WD

strict(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution
D, assuming that all honest parties receive their inputs at the same round. Let D1, . . . , Dm be
arbitrary distributions over traces, Dfull = full-trace(D,D1, . . . , Dm), and c ≥ 0. Then, proto-

col π′ = Compcdt(π,D1, . . . , Dm) UC-realizes WDfull,c
sl-strict(F) in the (WD1,c

sl-strict(F1), . . . ,WDm,c
sl-strict(Fm))-

hybrid model, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.
The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)],

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

Proof. Let S be the simulator for protocol π running with the dummy adversary.34 Consider the
following simulator S ′ for π′, that internally runs a copy of S. Initially, S ′ sets slack counters
c1, . . . , cn ← 0 and proceeds as follows.

• At any round forward (adv-input, sid, ·) messages from S to WDfull,c
sl-flex (F).

• In rounds ρ = 1, . . . , 2c+ 1, upon receiving (leakage, sid, Pj , ·) from WDfull,c
sl-strict(F), forward the

message to S and in addition record the slack for party Pj as cj ← ρ− 1.

34Recall that proving security with respect to the dummy adversary is sufficient (cf. [10, Claim 10]).

31

Along with the very first such message, S ′ receives a trace T full fromWDfull,c
sl-strict(F). S ′ constructs

a new trace T with the root WD
strict(F), where the leaves are set as follows: Each node in the

first layer of T full is a root for a subtree labeled with WDi
strict(Fi) (for some i ∈ [m]), S ′ adds

the leaf Fi to the first layer in T . Finally, S ′ passes T to S.

• Simulate the execution of every wrapped hybrid Hi = WDj ,c
sl-strict(Fj) (for some j ∈ [m]) in

the order they appear in the first layer in T full as follows35 (the first such hybrid must be
simulated as early as in round ρ = 1. Note that if there is actual slack among the parties,
the simulations of consecutive hybrids overlap):

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding subtree

in T full.

– In any round ρi forward the messages (adv-input, sid, ·) (that are directed to Hi) from
the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S and
pass it to the environment;36 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, simply forward (fetch-output, sid, ·) messages from WDfull,c
sl-flex (F)

to the environment (to simulate the advancement of the execution of Hi).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

Let Z ′ be an environment that can distinguish between an execution of protocol π′ in the
(WD1,c

sl-strict(F1), . . . ,WDm,c
sl-strict(Fm))-hybrid model with the dummy adversary and the execution in

the ideal model withWDfull,c
sl-strict(F) and S ′. We construct the following environment Z distinguishing

between an execution of π in the (F1, . . . ,Fm)-hybrid model with the dummy adversary and the
ideal model with WD

strict(F) and S:

• Z internally runs a copy of Z ′, emulating the parties and the adversary (either in a real
execution of π or an ideal execution of WD

strict(F)). Initialize slack counters c1, . . . , cn ← 0
and a simulated round counter ρ (for Z ′).

• Whenever Z ′ sends a message (input, sid, ·) to Pj in rounds ρ = 1, . . . , 2c+ 1, Z forward the
message to Pj and records slack cj ← ρ− 1.

• For each executed (resp. simulated) two-round CSF hybrid Fi, proceed as follows to simulate
an execution (resp. simulation) of WDi,c

sl-flex(Fi) to Z ′ (the first such simulation takes place as
early as in round ρ = 1. Note that if there is actual slack among the parties, the simulations
of consecutive hybrids overlap):

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.

– For every party Pj , in round ρi = cj + 1, obtain the leakage for Pj from the adversary
and pass it to Z ′;37 add (trace, sid, T full

i) to the first such message.

35Recall that the children at each node in a trace are ordered.
36S can be advanced by suitably sending it (fetch-output, sid, ·) messages.
37The execution Z interacts with can be advanced by suitably sending (fetch-output, sid, ·) messages to the

parties.

32

– In all other rounds ρi, upon receiving (fetch-output, sid, ·) messages from Z ′ for some
party Pj , pass (fetch-output, sid, Pj) to Z ′ (to simulate the advancement of the execu-
tion).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

• At any round, forward (output, sid, ·) messages from a party to Z ′.

• Output whatever decision bit Z ′ outputs.

It can be seen by inspection that:

• When Z interacts with a real-world execution of π with hybrids Fi, the view of Z ′ is ex-
actly the view it would have when interacting with a real-world execution of π′ with hybrids
WDi,c

sl-strict(Fi), and

• When Z interacts with an ideal-world execution of WD
strict(F) with simulator S, the view

of Z ′ is exactly the view it would have when interacting with an ideal-world execution of

WDfull,c
sl-strict(F) with simulator S ′.

C.2 Composition with Probabilistic Termination (Cont’d)

The intuition for proving Theorem 4.3 is similar to that of proving Theorem 4.2. In addition to
simply synchronizing between the simulator S and the ideal functionality and environment, S ′ must
also address the following issues. First, some CSFs (Fi for i ∈ I) are wrapped using the flexible
wrapper whereas other (Fi for i /∈ I) are wrapped using the strict wrapper. Second, S ′ must
simulate the termination procedure at the end of every flexibly wrapped CSF and at the end of the
simulation.

Theorem 4.3. Let F,F1, . . . ,Fm be canonical synchronous functionalities, and let π an SNF
protocol that UC-realizes WD

flex(F) in the (F1, . . . ,Fm)-hybrid model, for some depth-1 distribution
D, assuming that all honest parties receive their inputs at the same round. Let I ⊆ [m] be the subset
(of indices) of functionalities to be wrapped using the flexible wrapper, let D1, . . . , Dm be arbitrary
distributions over traces, denote Dfull = (D,D1, . . . , Dm) and let c ≥ 0. Assume that F and Fi, for
every i ∈ I, are public-output functionalities.

Then, the compiled protocol π′ = Compcptr(π,D1, . . . , Dm, I) UC-realizes WDfull,c
sl-flex (F) in the

(W(F1), . . . ,W(Fm))-hybrid model, whereW(Fi) =WDi,c
sl-flex(Fi) if i ∈ I andW(Fi) =WDi,c

sl-strict(Fi)
if i /∈ I, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

The expected round complexity of the compiled protocol π′ is

Bc ·
∑
i∈[m]

di · E[ctr(Ti)] + 2 ·
∑
i∈[m]

di · E[flextr(Ti)] + 2,

where di is the expected number of calls in π to hybrid Fi, Ti is a trace sampled from Di, and
Bc = 3c+ 1 is the blow-up factor.

Proof. Let S be the simulator for protocol π running with the dummy adversary.38 Consider the
following simulator S ′ for π′, that internally runs a copy of S. Initially, S ′ sets slack counters
c1, . . . , cn ← 0 and proceeds as follows.

38Recall that proving security with respect to the dummy adversary is sufficient [10, Claim 10].

33

• At any round forward (adv-input, sid, ·) messages from S to WDfull,c
sl-flex (F).

• In rounds ρ = 1, . . . , 2c+ 1, upon receiving (leakage, sid, Pj , ·) from WDfull,c
sl-strict(F), forward the

message to S and in addition record the slack for party Pj as cj ← ρ− 1.

Along with the very first such message, S ′ receives a trace T full fromWDfull,c
sl-flex (F). S ′ constructs

a new trace T with the rootWD
flex(F), where the leaves are set as follows: Each node in the first

layer of T full is a root for a subtree labeled with WDi
strict(Fi) or WDi

flex(Fi) (for some i ∈ [m]),
S ′ adds the leaf Fi to the first layer in T . Finally, S ′ passes T to S.

• Simulate the execution of all wrapped hybrids Hi in the order they appear in T full39 (the first
such hybrid must be simulated as early as in round ρ = 1. Note that if there is actual slack
among the parties, the simulations of consecutive hybrids overlap). If the hybrid Hi is of the

form WDj ,c
sl-strict(Fj) (for some j ∈ [m]), i.e., if j /∈ I, proceed as follows:

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding subtree

in T full.

– In any round ρi forward the messages (adv-input, sid, ·) (that are directed to Hi) from
the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S and
pass it to the environment;40 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, simply forward (fetch-output, sid, ·) messages from WDfull,c
sl-flex (F)

to the environment (to simulate the advancement of Hi’ execution).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

If the hybrid Hi is of the formWDj ,c
sl-flex(Fj) (for some j ∈ [m]), i.e., if j ∈ I, proceed as follows:

– Let ρi be the (simulated) round counter of Hi and let T full
i be the corresponding subtree

in T full. Set ρterm ← Bc · ctr(T full) + 2 · flextr(T
full) + c.

– In any round ρi forward the messages (adv-input, sid, ·) (that are directed to Hi) from
the environment to S.

– For every party Pj , in round ρi = cj + 1, obtain the simulated leakage for Pj from S and
pass it to the environment;41 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, simply forward (fetch-output, sid, ·) messages from WDfull,c
sl-flex (F)

to the environment (to simulate the advancement of Hi’ execution).

– If the environment issues (early-output, sid, ·) commands for certain parties before
round ρterm, set ci ← 0 for these parties and ci ← 1 for the others and end the simulation
of H one round later. If the environment does not issue such a command for any party,
set ci ← 0 for all parties and end the simulation of H in round ρterm.

• When S wants to output (early-output, sid, Pj) to WDfull,c
sl-flex (F), proceed as follows:

– Pass (get-output, sid) to WDfull,c
sl-flex (F), obtain (output, sid, y), and record y (the first

time).

39Recall that the children at each node in a trace are ordered.
40S can be advanced by suitably sending it (fetch-output, sid, ·) messages.
41S can be advanced by suitably sending it (fetch-output, sid, ·) messages.

34

– Simulate Pj sending (end, sid, y) to all parties.

– For every party Pj , keep track of how many simulated (end, sid, ·) messages have been
received by Pj (including those sent by corrupted parties).

∗ When a party receives t + 1 such messages (for the same value y), simulate that
party’s sending of such a message of its own (unless already done so).

∗ When a party Pj receives n − t such messages (for the same value y), send

(early-output, sid, Pj) to WDfull

pt (F).

Let Z ′ be an environment distinguishing between an execution of π′ in the (W(F1), . . . ,W(Fm))-

hybrid model and the ideal model withWDfull,c
sl-flex (F) and S ′. We construct the following environment

Z distinguishing between an execution of π in the (F1, . . . ,Fm)-hybrid model and the ideal model
with WD

flex(F) and S:

• Z internally runs a copy of Z ′ and emulates the parties and the adversary (either in a real
execution of π or an ideal execution of WD

flex(F)). Initialize slack counters c1, . . . , cn ← 0 and
a simulated round counter ρ (for Z ′).

• When Z ′ sends a message (input, sid, ·) for Pj in rounds ρ = 1, . . . , 2c + 1, Z forwards the
message to Pj and records slack cj ← ρ− 1.

• For each executed (resp. simulated) two-round CSF hybrid Fi, simulate an execution (resp.
simulation) of WDi,c

sl-flex(Fi) to Z ′ (the first such simulation takes place as early as in round
ρ = 1. Note that if there is actual slack among the parties, the simulations of consecutive

hybrids overlap). If the hybrid Hi is of the formWDj ,c
sl-strict(Fj) (for some j ∈ [m]), i.e., if j /∈ I,

proceed as follows:

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.

– For every party Pj , in round ρi = cj + 1, obtain the leakage for Pj from the adversary
and pass it to Z ′;42 add (trace, sid, T full

i) to the first such message.

– In all other rounds ρi, upon receiving (fetch-output, sid, ·) messages from Z ′ for some
party Pj , pass (fetch-output, sid, Pj) to Z ′ (to simulate the advancement of the execu-
tion).

– The simulation for party Pj ends in round ρi = Bc · ctr(T full
i) + cj .

If the hybrid Hi is of the formWDj ,c
sl-flex(Fj) (for some j ∈ [m]), i.e., if j ∈ I, proceed as follows:

– Initialize a round counter ρi ← 1 and sample a trace T full
i from Di. Set

ρterm ← Bc · ctr(T full
i) + 2 · flextr(T

full
i) + c.

– At any round, forward (adv-input, sid, ·) messages from Z ′ to the adversary.

– For every party Pj , in round ρi = cj + 1, obtain the leakage for Pj from the adversary
and pass it to Z ′;43 add (trace, sid, T full

i) to the first such message.

42The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the parties.
43The execution Z interacts with can be advanced by suitably sending (fetch-output, sid) messages to the parties.

35

– In all other rounds ρi, upon receiving (fetch-output, sid) messages from Z ′ for some
party Pj , pass (fetch-output, sid, Pj) to Z ′ (to simulate the advancement of the execu-
tion).

– If Z ′ issues (early-output, sid, ·) commands for certain parties before round ρterm, set
ci ← 0 for these parties and ci ← 1 for the others, and end the simulation of H one
round later. If Z ′ did not issue such a command to any party by round ρterm, set ci ← 0
for all parties and end the simulation of H in round ρterm.

• When a party wants to output (output, sid, y), proceed as follows:

– Pass (get-output, sid) to WDfull,c
sl-flex (F), obtain (output, sid, y), and record y (only at the

first time).

– Simulate (to Z ′) Pj sending (end, sid, y) to all parties.

– For every party Pj , keep track of how many simulated (end, sid, ·) messages it has received
(including those sent by corrupted parties).

∗ When a party receives t + 1 such messages (for the same y), simulate that party’s
sending such a message of its own (unless already done so).

∗ When a party Pj receives n− t such messages (for the same y), pass (output, sid, y)
to Z ′ on behalf of Pj .

• Output whatever decision bit Z ′ outputs.

It can be seen by inspection that:

• When Z interacts with a real-world execution of π with hybrids Fi, the view of Z ′ is exactly
the view it would have when interacting with a real-world execution of π′ with hybridsW(Fi)
and the dummy adversary.

• When Z interacts with an ideal-world execution of WDfull

strict(F) with simulator S, the view
of Z ′ is exactly the view it would have when interacting with an ideal-world execution of

WDfull,c
sl-flex (F) with simulator S ′.

D Applications of Our Fast Composition Theorem (Cont’d)

This section includes complementary material to Section 5.

D.1 Fast and Perfectly Secure Byzantine Agreement (Cont’d)

In Section 5.1 we presented the randomized binary Byzantine agreement protocol πrba, we now
proceed to prove Lemma 5.1.

Lemma 5.1. Let t < n/3, then, assuming all honest parties receive their inputs at the same round,

protocol πrba UC-realizes Frba = WDrba
flex (F{0,1}ba), in the (Fpsmt,Foc,F{0,1}ba)-hybrid model, with

perfect security, in the presence of an adaptive malicious t-adversary.

36

Proof (sketch). We first claim correctness, i.e., that all honest parties output the same value and
that if n− t of the inputs are the same, this value will be the common output. The protocol πrba
consists of two parts, the first is running (up to) τ phases of the Feldman-Micali protocol and the
second (which only occurs if there exists an honest party that did not receive output, i.e., has value
term = 0, in the first part, or if there exists an honest party that received output in phase τ , i.e.,
has value term = τ) consists of calling a BA functionality. As shown in [24, Thm. 4], the Feldman-
Micali protocol satisfies the consistency and validity properties in the property-based definition of
Byzantine agreement. In addition, if some honest party received output b in some phase α (i.e.,
if it sets term = α), then the value bi of every honest party Pi equals b at the end of phase α. It
follows that:

• In case n − t honest parties (in particular if all honest parties) start with the same input,
they will agree on this value as their output and terminate in the first phase. (In all other
cases it remains only to show that all honest parties agree on the output.)

• In case the first honest party received output in phase α < τ − 1, it holds that by phase
α + 1 < τ all honest parties will receive the same output (i.e., 0 < term < τ for all honest
parties), and so correctness follows from [24].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest parties),
all honest parties send their internal values to Fba and output the result, hence, correctness
follows from the Fba functionality.

• In case all honest parties receive their outputs in phase τ (i.e., term = τ for all honest parties),
then by [24] they receive the same value. In this case, this is the value they will output after
calling Fba and so correctness is satisfied.

• In case some honest parties receive their outputs in phase τ (i.e., term = τ) and the other
honest parties do not (i.e., term = 0), then it holds that all honest parties send the same
value to Fba, and correctness is satisfied.

• In case some honest parties receive their outputs in phase τ − 1 (i.e., term = τ − 1), they
do not send any input to Fba. However, the remaining honest parties will receive the same
output in phase τ (i.e., term = τ), and will output this value, regardless of the output they
receive from Fba. Therefore, correctness is satisfied.

Regarding termination, [24, Claim T4-4] showed that for any positive integer m, if all honest
parties agree on the same bit at the beginning of the m’th phase, then they will all terminate at
the end of the phase with probability at least p. It follows that in case all honest parties start
with the same input value, they will terminate within the first iteration. Otherwise, the probability
distribution of terminating in less than τ = log1.5(k) + 1 phases is geometric with parameter p. In
the negligible probability that the parties did not receive output in less than τ phases, termination
is guaranteed by Fba.

We now prove that πrba UC-realizes Frba. Let A be the dummy adversary. We construct a
simulator S that simulates the honest parties in πrba, the adversary A and the ideal functionalities
Fpsmt,Foc and Fba to the environment, as follows.

• S forwards all messages from the environment to A (and vice versa).

• S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party Pi as soon as Pi sends it to Frba by receiving the message

37

(leakage, sid, Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol by receiving
the message (trace, sid, T) from Frba, and can derive the terminating phase rout by counting
the number of sequences (Foc,Fpsmt,Fpsmt,Fpsmt) in T (and setting rout ← τ + 1 if the last
leaf is Fba).

• Whenever A sends a message (sid, bj) on behalf of a corrupted party Pj to some honest party
during the first round, S sends (input, sid, bj) to Frba on behalf of Pj .

• Whenever A requests to corrupt some party Pi ∈ P, S corrupts Pi and sends the simulated
internal state of Pi (consisting of Pi’s input, randomness and incoming messages) to A. Recall
that in case A corrupts a party Pi after it sent its input to some corrupted party, during the
first round, A may instruct Pi to send a different value as its input to all other parties. In
this case, S sends (input, sid, bi) to Frba on behalf of Pi.

• When simulating Foc in the first rout−1 phases, instead of sampling the fairness bit, S acts as
if b = 0, i.e., it allows A to decide on the output values of the parties. In case some subset of
simulated honest parties P ′ terminate in a phase r (prior to phase rout) with value y ∈ {0, 1},
S sends (adv-input, sid, y) to Frba followed by (early-output, sid, Pi) for every Pi ∈ P ′. In
addition, S proceeds based on the following cases:

– In case r < τ , S sends (early-output, sid, Pi) for every Pi ∈ P \ P ′ in the next phase,
ensuring that all honest parties will terminate appropriately.

– In case r = τ , then the honest parties in P \ P ′ proceed to the invocation of Fba, S
simulates all honest parties in P \ P ′ sending y as their input and receives input values
from the adversary. Next, S computes the output just like Fba would, and sends to the
adversary the output values. (Recall that the output value from Fba is not being used
by the honest parties.)

– Note that the case r = τ + 1 can never happen.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , S samples a random bit y ∈ {0, 1} in the rout’th phase, sends
(adv-input, sid, y) to Frba, and simulates the next invocation of Foc by setting the
fairness bit b = 1 and with output y, i.e., ensuring that the honest parties will receive
output y in the simulated protocol. Recall that if rout < τ then indeed all honest parties
will terminate in the simulated protocol, however, if rout = τ the simulator must simu-
late Fba to A. Note that A cannot affect the output value in this scenario (as all honest
parties participate with input value y); S simulates all honest parties sending y as their
input, and responds with y as the output for all corrupted parties.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates the
functionality Fba to the adversary. Initially, S simulates all honest parties sending their
local intermediate value as their input to Fba, and receives the input values from the
adversary on behalf of the corrupted parties. (Recall that the adversary may dynamically
corrupt honest parties and change their input message.) Next, S computes the result as
in Fba, i.e., it checks whether there exists at least n − t input values that all equal to
some value y, and if so sets it as the output; otherwise, it sets the output based on the
adv-input message sent by the adversary.

38

It follows using a standard hybrid argument that for every environment Z it holds that

EXECπrba,A,Z ≡ EXECFrba,S,Z .

D.1.1 Multi-Valued Byzantine Agreement Protocol

As presented above, πrba is a binary BA protocol. Using a transformation due to Turpin and
Coan [49], the decision domain can be extended without increasing the expected running time.
Given a set V ⊆ {0, 1}∗, denote by Dmv-ba the deterministic distribution that outputs a depth-1

trace consisting of a root WDmv-ba
strict (FVba) and three leaves (Fpsmt,Fpsmt,F{0,1}ba).

Lemma D.1. Let t < n/3 and V ⊆ {0, 1}∗. Then, assuming all honest parties receive their

inputs at the same round, the protocol πmv-ba UC-realizes WDmv-ba
strict (FVba), in the (Fpsmt,F{0,1}ba)-

hybrid model, with perfect security, in the presence of an adaptive malicious t-adversary.

The proof of the Lemma is straight-forward.

Protocol πmv-ba

The protocol πmv-ba is parametrized by the set V . Each party Pi ∈ P = {P1, . . . , Pn} proceeds as
follows:

• Initially, Pi sets the values y ← ⊥, z ← ⊥ and vote← 0.

• In round ρ = 1: upon receiving (input, sid, vi) from the environment, Pi sends (sid, vi) to all the
parties (via Fpsmt). Denote by vj the value received from Pj in this round.

• In round ρ = 2: if there exists a value v ∈ V that appears more than n − t times in the set
{v1, . . . , vn} then set y ← v. Send (sid, y) to all the parties (via Fpsmt). Denote by yj the value
received from Pj in this round.

• In round ρ = 3: if there exists a value v ∈ V that appears more than n−t times in the set {y1, . . . , yn}
then set vote← 1. In addition, set z to be the value that appears the most in {y1, . . . , yn}.
Send (input, sid, vote) to F{0,1}ba and let (output, sid, b), with b ∈ {0, 1}, be the output from F{0,1}ba .
If b = 1 then output (output, sid, z), otherwise output (output, sid, v0) for some default v0 ∈ V .

Figure 11: The multi-valued Byzantine agreement protocol, in the (Fpsmt,F{0,1}ba)-hybrid
model

Theorem 5.3. Let c ≥ 0, t < n/3 and V ⊆ {0, 1}∗. There exists an efficiently sampleable
distribution D such that the functionality WD,c

sl-flex(FVba) has an expected constant round complexity,
and can be UC-realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive
malicious t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive
rounds.

Proof (sketch). Let Dfull
mv-ba = full-trace(Dmv-ba, Dpsmt, D

full
rba). For simplicity, denote Fpt,v

ba =

WDfull
mv-ba,c

sl-flex (FVba), D1 = Dpsmt, D2 = Dfull
rba and I = {2}.

From Lemma D.1, πmv-ba UC-realizes WDmv-ba
strict (FVba), in the (Fpsmt,F{0,1}ba)-hybrid model, in

three rounds, assuming all parties receive their inputs at the same round. Following Theorem 4.4,
the compiled protocol Compcpt(πmv-ba, D1, D2, I) UC-realizes Fpt,v

ba , in the (Fdt
psmt,Fpt

ba)-hybrid

39

model, in an expected constant number of rounds, assuming all parties receive their inputs within
c+ 1 consecutive rounds.

The proof follows since, following Lemma 4.5 and Theorem 5.2 the functionalities Fdt
psmt and

Fpt
ba can be UC-realized in the Fsmt-hybrid model, using expected-constant-round protocols.

D.2 Fast and Perfectly Secure Parallel Broadcast (Cont’d)

Our construction proceeds in two steps. In a first step we show how to adapt the protocol from
Ben-Or and El-Yaniv [5] to obtain a probabilistic-termination (expected-constant-round) version
of unfair parallel broadcast with perfect security. In step two, we use (and improve on) an idea
due to Hirt and Zikas [32] to transform our unfair protocol into a fair parallel broadcast protocol.

D.2.1 The Unfair Parallel Broadcast Protocol

In this section we adjust the interactive-consistency protocol of Ben-Or and El-Yaniv [5] (with minor
adjustments) to the UC framework. The protocol πupbc (see Figure 12 for a detailed description) is
parametrized by two integers d and m. Initially, each party distributes its input to all other parties.
The underlying idea of the protocol is to run n ·m instances of the BA protocol πrba in parallel,
such that for each Pi, a class of m instances of πrba are executed on the input of Pi. However,
in order to avoid the blowup in the number of rounds, the parallel execution of the protocols is
truncated after d phases. Once the first step concludes, each party checks for each of the n classes
if it received output in at least one of the executions. If so, it arbitrarily selects one output for each
class and distributes the vector of output values to all the parties.

Next, the parties run a leader-election protocol and once some party Pk is elected to be the
leader, all parties run a BA protocol on the output vector that was distributed by the leader Pk
earlier (which might be null). Each party checks if the agreed output corresponds to the output
values it received in the first step and sets a termination indicator accordingly. Finally, the parties
run another BA protocol on the termination indicators and terminate in case the output is 1;
otherwise another iteration is executed.

Ben-Or and El-Yaniv showed that consistency and validity properties are satisfied, and further-
more, if m = log(n) and d is such that at least 5 phases of the truncated randomized BA protocol
are executed, then the protocol will terminate in a constant expected number of rounds.

We analyze this protocol in a hybrid model, where parties have access to a leader-election
functionality Fle and a Byzantine agreement functionality Fba. We actually require two types of
BA functionalities, the first is a standard BA functionality whereas the second if a “truncated”
BA, which runs for a specific number of rounds and halts even if no output is specified. We now
describe these ideal functionalities as CSFs.

Leader election. In the leader election functionality, the parties agree on a random value k ∈R
[n]. This functionality can be cast as a special case of secure function evaluation (as defined in
Section 3.1), where the parties compute the function gle(λ, . . . , λ) = (k, . . . , k). We denote by Fle

the functionality Fglesfe.

Truncated Byzantine agreement. The truncated Byzantine agreement functionality, is a CSF
whose function is parametrized by an efficiently sampleable distribution D and a non-negative
integer d. Each party Pi has input xi, and receives two output values (yi1, y

i
2). The adver-

sary is allowed to learn all the input values as the honest parties send them, i.e., the leakage

40

function is lt-rba(x1, . . . , xn) = (x1, . . . , xn). The function to compute is ft-rba(x1, . . . , xn, a) =
((yi1, y

i
2), . . . , (yi1, y

i
2)) operates as follows:

• If there exists a value y such that y = xi for at least n− t input values xi, then set (yi1, y
i
2)←

(y,⊥) for every i ∈ [n].

• Else, sample a number r ← D. The adversarial input a is parsed as a vector of n+ 1 integer
values (a0, a1 . . . , an). The first coordinate a0 represents the output value, i.e., set y ← a0.
Next, for each party Pi, set a value di ← min(ai, r). Finally, the output values for each party
Pi is defined as follows:

– If di < d then set (yi1, y
i
2)← (y,⊥).

– If di = d then set (yi1, y
i
2)← (⊥, y).

– If di > d then set (yi1, y
i
2)← (⊥,⊥).

In fact, in the protocol πupbc, a parallel version (of s instances, for some s) of the above described
functionality is required. That is, each party Pi has a vector of input values xi = (xi1, . . . , x

i
s), and

receives a vector of s output values (yi1, . . . , y
i
s) where each yij is a pair of values as above. The leakage

function reveals all the input values to the adversary, and the function to compute is essentially
s instances of the above function f , where for each instance the value r is sampled from D using
independent random coins. In addition, the adversarial input a is parsed as a vector of s(n + 1)
integer values, where for each instance, the adversary specifies a different vector (a0, a1 . . . , an).
Note, however, that the value d is the same in all s instances.

We denote by Ft-rba the functionality Fcsf describing the parallel version of truncated random-
ized BA, as described above.

The protocol. We first describe a version of the protocol by [5] augmented with (a simpler
version of) the technique from [29], where all hybrids used are CSFs;44 using Theorem 4.3 we
then obtain our result. Recall that the unfair parallel broadcast functionality Fupbc is defined in
Section 5.2.

Lemma D.2. Let d ≥ 5 and m = log(n). Denote by D the geometric distribution with parameter
2q/3 and support {1 . . . , τ + 1}, where q is the probability that when independently sampling nm
“terminating phases” (r1, . . . , rnm) from the distribution Drba then for every j ∈ [n] it holds that
at least one of the values (r(j−1)m+1, . . . , r(j−1)m+m) is smaller than d. (The distribution D outputs
the phase in which the event where Fle returned a party that was honest before the Fle invocation
and received output in each BA occurs, plus the option that this event did not occur in all τ phases.)

Denote by Dupbc the distribution that outputs a depth-1 trace with a root WDupbc
flex (Fupbc) and

where the leaves are set as follows: initially sample an integer r ← D. The first leaf is Fpsmt,
followed by min(r, τ) sequences of (Ft-rba,Fpsmt,Fle,Fba,Fba). Finally, if r = τ + 1 add the leaf
Fupbc.

Then, for t < n/3, and assuming all honest parties receive their inputs at the same round, the
protocol πupbc UC-realizes Fpt-upbc =WDupbc

flex (Fupbc), in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)-hybrid
model, with perfect security, in the presence of an adaptive malicious t-adversary.

44Note that although the hybrids are CSFs, and all honest parties terminate at the same round, the protocol has
probabilistic termination.

41

Protocol πupbc

Protocol πupbc, parametrized by positive integers d (number of phases to run the truncated BA func-
tionality) and m (how many instances of truncated BA to compute for each input value). The
functionality Ft-rba runs nm instances in parallel, and is parametrized by the distribution Drba and
integer d.

1. Initially, Pi sets the phase index α ← 0, and the termination indicator term ← 0. In addition,
denote τ = log1.5(k) + 1.

2. In the first round, upon receiving (input, sid, xi) with xi ∈ V from the environment, Pi sends
(sid, xi) to all the parties (via Fpsmt). Denote by xj the value received from Pj .

3. While term = 0 and α ≤ τ , do the following:

(a) Set α← α+ 1 and send values to Ft-rba, such that the value xj is sent to the m instances
corresponding to the j’th value. Formally, prepare the vector z = (z1, . . . , znm) such that
for every j ∈ [n] and every l ∈ [m] set z(j−1)m+l = xj . Send (input, sidα1 , z) to Ft-rba.

Let (output, sidα1 ,v) be the output from Ft-rba, where v is a vector of nm pairs
((v1

1 , v
1
2), . . . , (vnm1 , vnm2)) with vj1, v

j
2 ∈ V ∪ {⊥}.

(b) For every j ∈ [n], set Sj1 ← {v
(j−1)m+1
1 , . . . , vjm1 } (corresponding to output values before

phase d) and Sj2 ← {v
(j−1)m+1
2 , . . . , vjm2 } (corresponding to output values at phase d).

(c) If Sj1 6= ∅ for every j ∈ [n] (i.e., if for every class of BAs there was at least one output),

then for every j ∈ [n] choose cj ∈ Sj1 (arbitrarily), set ci = (c1, . . . , cn) and send (sid, ci)
to all the parties (via Fpsmt).
Denote by cj the tuple received from Pj ; if no message was received, set cj = ∅.

(d) Send (input, sidα2 , λ) to the functionality Fle. Let (output, sidα2 , k), with k ∈ [n], be the
output received from Fle.

(e) Send (input, sidα3 , ck) to Fba, parametrized by the set V n ∪ {∅}. Let (output, sidα3 , c) be
the output received from Fba (with c = (c1, . . . , cn) ∈ V n or c = ∅).

(f) If c 6= ∅ and for every j ∈ [n], cj ∈ Sj1 ∪ Sj2 then set b← 1; otherwise set b← 0.

(g) Send (input, sidα4 , b) to Fba, parametrized by the set {0, 1}. Let (output, sidα4 , β), with
β ∈ {0, 1}, be the output received from Fba. If β = 1 then set term← 1.

4. If term = 1, then output (output, sid, c) and halt.

5. Else, set the vector xi = (λ, . . . , λ, xi, λ, . . . , λ) (the vector of length n whose i’th coordinate
is xi and all other cooridinates are the empty string λ) and send (input, sid,xi) to Fupbc. Let
(output, sid, c) be the output received from Fupbc. Output (output, sid, c) and halt.

Figure 12: The unfair parallel broadcast protocol, in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)-
hybrid model

Proof (sketch). We first claim correctness. The protocol πupbc consists of two parts, the first is
running (up to) τ phases of the Ben-Or and El-Yaniv [5] protocol and the second (which only
occurs if no output was generated in the first part, i.e., if all honest parties have value term = 0)
consists of calling an unfair parallel broadcast functionality. As shown in [5, Thm. 5], the Ben-
Or and El-Yaniv protocol satisfies the consistency and validity properties in the property-based
definition of interactive consistency (i.e., parallel Byzantine agreement). In addition, since the last
step in each phase is invoking the BA functionality in order to agree whether all honest parties
received output and can safely terminate, or whether an additional phase should be executed, it
follows that if one honest party has received output in some phase then so do the rest of the honest

42

parties. It follows that:

• In case some honest party received output in phase α ≤ τ , then all honest parties also receive
the same output at this phase (i.e., term = 1 for all honest parties), and so correctness follows
from [5].

• In case no honest party received output in all τ phases (i.e., term = 0 for all honest parties),
all honest parties send their initial values to Fupbc and output the result, hence, correctness
follows from the Fupbc functionality.

Regarding termination, Ben-Or and El-Yaniv showed that for d ≥ 5 and m = log(n), all honest
parties receive their outputs within a constant number of phases in expectation. In the negligible
probability that the parties did not receive output in less than τ phases, termination is guaranteed
by Fupbc.

We now prove that πupbc UC-realizes Fpt-upbc. Let A be the dummy adversary. We construct a
simulator S that simulates the honest parties in πupbc, the adversary A and the ideal functionalities
Fpsmt,Fba,Fle,Ft-prba and Fupbc to the environment, as follows.

• S forwards all messages from the environment to A (and vice versa).

• S simulates every honest party by independently sampling random coins for the party and
running the protocol according to the protocol’s specification. Note that S learns the in-
put for each honest party Pi as soon as Pi sends it to Fpt-upbc by receiving the message
(leakage, sid, Pi, (x1, . . . , xn)). In addition, S learns the trace of the protocol by receiving
the message (trace, sid, T) from Fpt-upbc, and can derive the guaranteed-termination phase
rout by counting the number of sequences (Ft-prba,Fpsmt,Fle,Fba,Fba) in T (and setting
rout ← τ + 1 if the last CSF is Fupbc).

• Whenever A sends a message (sid, xj) on behalf of a corrupted party Pj to some honest party
during the first round, S sends (input, sid, xj) to Fpt-upbc on behalf of Pj . (Note that xj is
in fact a vector.)

• Whenever A requests to corrupt some Pi ∈ P, S corrupts Pi and sends the simulated internal
state of Pi (consisting of Pi’s input, randomness and incoming messages) to A. Recall that
in case A corrupts a party Pi after it sent its input to some corrupted party, during the first
round, A may instruct Pi to send a different value xi as its input to all other parties. In this
case, S sends (input, sid, xi) to Fpt-upbc on behalf of Pi.

• In the first rout − 1 phases, S simulates Ft-rba according to the behavior of the ideal func-
tionality, i.e., by independently sampling nm values from Drba. Next, when simulating the
functionality Fle, instead of sampling a random index k ∈ [n], S samples k such that in
case Ft-rba was succsessful (i.e., if the honest parties received output) k is uniformly dis-
tributed conditioned on Pk is corrupted, i.e., S allows A to decide whether the protocol will
successfully terminate or not in this phase. In case A instructs Pk to follow the protocol,
then all honset parties will terminate in this phase (prior to phase rout) with value c; S sends
(adv-input, sid, c) to Fpt-upbc followed by (early-output, sid, Pi) for every Pi ∈ P.

• In case no honest party has terminated prior to phase rout, then S proceeds as follows:

– In case rout ≤ τ , when simulating Ft-rba in the rout’th phase, S ensures that honest
parties will receive output, and when simulating Fle, S uniformly selects an index k such

43

that Pk was honest before the simulation of Fle. Next, S sends (adv-input, sid, ck) to
Fpt-upbc, and continues simulating the protocol. Since Pk was honest when distributing
ck, this ensures that the honest parties will receive output ck in the simulated protocol.

– In case rout = τ +1, i.e., in case no party received output in all τ phases, S simulates the
functionality Fupbc to the adversary. Initially, S simulates all honest parties sending their
initial inputs as their input to Fupbc, and receives the input values from the adversary
on behalf of the corrupted parties. (Recall that the adversary may dynamically corrupt
honest parties and change their input message.) Next, S computes the result as in Fupbc,
i.e., it provide the output (x1, . . . , xn) to each party.

It follows using a standard hybrid argument that for every environment Z it holds that

EXECπupbc,A,Z ≡ EXECFpt-upbc,S,Z .

Using Theorem 4.3 we obtain the following as a result.

Theorem 5.4. Let c ≥ 0 and t < n/3. There exists an efficiently sampleable distribution D such
that the functionality WD,c

sl-flex(Fupbc) has an expected constant round complexity, and can be UC-
realized in the Fsmt-hybrid model, with perfect security, in the presence of an adaptive malicious
t-adversary, assuming that all honest parties receive their inputs within c+ 1 consecutive rounds.

Proof (sketch). Denote by Dt-rba the deterministic distribution that outputs a trace consisting of
a root WDt-rba

strict (Ft-rba) and a constant number of leaves Fpsmt (corresponding to d phases of πrba).
Denote by Dle the deterministic distribution that outputs a trace consisting of a root WDle

strict(Fle)
and a constant number of leaves Fpsmt (to be precise 36 leaves, as in the oblivious coin protocol
from [24]) followed by Frba. Denote by Ddt-upbc the deterministic distribution that outputs a trace
consisting of a root WDdt-upbc

strict (Fupbc) and O(n) leaves Fpsmt.
Let Dfull

le = full-trace(Dle, Dpsmt, D
full
rba). For simplicity, denote the functionalities Fpt

upbc =

WDfull
upbc,c

sl-flex (Fupbc), fdtt-rba = WDt-rba,c
sl-strict (Ft-rba), Fpt

le = WDfull
le ,c

sl-flex (Fle), Fdt
upbc = WDdt-upbc,c

sl-strict (Fupbc). In
addition, denote D1 = Dpsmt, D2 = Dfull

rba, D3 = Dle, D4 = Dt-rba, D5 = Ddt-upbc and I = {2, 3}.
Following Lemma D.2, πupbc UC-realizesWDupbc

flex (Fupbc), in the (Fpsmt,Fba,Fle,Ft-rba,Fupbc)–
hybrid model, using an expected constant number of rounds, assuming that all the parties
receive their inputs at the same round. By applying Theorem 4.3, the compiled protocol
Compcptr(πupbc, D1, D2, D3, D4, D5, I) UC-realizes Fpt

upbc, in the (Fdt
psmt,Fpt

ba ,Fpt
le , f

dt
t-rba,Fdt

upbc)-
hybrid model, in an expected constant number of rounds, assuming all parties receive their inputs
within c+ 1 consecutive rounds.

The proof follows since each of the functionalities {Fdt
psmt,Fpt

ba ,Fpt
le , f

dt
t-rba,Fdt

upbc} can be UC-
realized in the Fsmt-hybrid model with expected constant round complexity.

44

	Introduction
	The Model
	Secure Computation with Probabilistic Termination
	Canonical Synchronous Functionalities
	Probabilistic Termination in UC

	(Fast) Composition of Probabilistic-Termination Protocols
	Composition with Deterministic Termination
	Composition with Probabilistic Termination
	Wrapping Secure Channels

	Applications of Our Fast Composition Theorem
	Fast and Perfectly Secure Byzantine Agreement
	Fast and Perfectly Secure Parallel Broadcast
	Fast and Perfectly Secure SFE

	On Parallel (In)Composability of Protocols with Probabilistic Termination
	The Model (Cont'd)
	Composition of Probabilistic-Termination Protocols (Cont'd)
	Composition with Deterministic Termination (Cont'd)
	Composition with Probabilistic Termination (Cont'd)

	Applications of Our Fast Composition Theorem (Cont'd)
	Fast and Perfectly Secure Byzantine Agreement (Cont'd)
	Fast and Perfectly Secure Parallel Broadcast (Cont'd)

