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Abstract 
In eSTREAM project, a few lightweight stream ciphers for hardware were 

introduced (2008). In FSE 2015, Sprout was proposed. Sprout introduced a new 

idea, the design of stream ciphers with shorter internal state by using secret key not 

only in initialization but also in keystream generation. Unfortunately, it is insecure. 

Grain-v1 is the lightest secure cipher in the portfolio of eSTREAM project. Fruit is 

the successor of Grain family and Sprout. We show that Fruit is secure and ultra-

lightweight. The size of LFSR and NFSR in Fruit is only 80 bits (for 80-bit 

security), while for resistance against time-memory-data trade-off attack, the 

internal state should be at least twice of the security level. In order to compensate 

this, we use some new ideas in the design.  

Keywords: Stream Cipher, Ultra-lightweight, Lightweight, Grain, Sprout, Cryptographic Primitive, NFSR, 

LFSR, Hardware Implementation 

Introduction 
Nowadays the need to secure lightweight symmetric cipher is obviously more than that of eSTREAM project 

time-(this is provable by a lot of papers in design and cryptanalysis of lightweight ciphers). WSN, RFID and 

mobile phones are instances which lead us to accept the importance of designing new and secure lightweight 

ciphers. 

Three stream ciphers (Trivium [7], MICKEY 2.0 [8] and Grain-v1 [9]) have been introduced in the hardware 

profile of the portfolio of eSTREAM project. Grain-v1 uses NFSR and LFSR together. The linear section 

guarantees good statistical properties and large period, while the nonlinear section protects against attacks 
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that can be mounted against a linear cryptosystem. An attack based on the weakness in the initialization step 

of Grain-v1 proposed [11]. Grain-128 was introduced in 2006 [10], and some attacks were proposed [11, 12, 

13, 14, 15, 16, 17]. Indeed Grain-128 was not secure as expected (such as Grain-v1). Grain-128a [18] was 

proposed in 2011. Although some attacks have been applied to Grain-128a [19, 21], it is still stand-up from 

practicality point of view. 

Sprout is a stream cipher with shorter internal state that was introduced in FSE 2015 [1]. A short while after 

Sprout was introduced, many attacks were published against it [3, 6, 4, 23, 2, 5]. Although it has been found 

that Sprout is insecure, but it had a new idea for designing stream cipher with smaller area size. The new idea 

is to effect secret key not only in the initialization step but also during keystream generation. Actually this 

idea helps to extend internal state to secret key. Due to save key for reuse by different IVs in most applications, 

the idea helps us have bigger internal state (therefore we can design stronger ciphers). On the other hand, we 

need to save key in a fixed memory in most applications (in these cases one fixed key is sufficient for ever) 

and it is known that saving fixed bits needs less area size in comparison to saving bits in temporary memory 

(e.g. bourn fixed key in a fuse). Thus we can design stream ciphers with shorter internal state [1].  

Fixed key was not used in a suitable way in the design of Sprout, and it is too hard to design stream cipher 

using the new idea, which mentioned in the some papers about cryptanalysis of Spout [3, 5], and in other 

paper, authors told it is fascinating [23] and other authors predicted that secure cipher will be proposed by this 

new idea very soon [2]. 

The necessary condition for stream ciphers to be resistance against time-memory-data trade-off attack is 

internal state size should be at least twice of its security (while secret key only use in the initialization step), 

this can be seen in Trivium, MICKEY 2.0 and Grain-v1. However, stream cipher with minimal internal state 

will be a better choice in some applications with less available resource (such as RFID and WSN). We define 

stream ciphers with less than 950  GE (gate equivalents) in area size of hardware implementation, ultra-

lightweight stream ciphers (stream cipher with less than 1K GE is called ultra-lightweight cipher in [2]) and 

we think that this is a new generation in the design of stream ciphers. Here we propose another reduced 

internal state stream cipher, Fruit. It is successor of Grain family and Sprout. We show that Fruit is secure and 

ultra-lightweight cipher and it is resistant against related-key attack. 

We present our hardware implementation results and compare area size of Fruit and Grain-v1. In our 

implementation, Grain-v1 requires 1269 GE and Fruit requires 904 GE (without consider to initialization 

step). This show that area size of Grain-v1 is about 40% more than Fruit. 
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Really, after a while grain will sprout in the nature and in finally we have fruit. We think that Grain-v1 and 

Sprout were two new generations in the design of stream ciphers and now Fruit is mature in stream ciphers.  

We summarize our new ideas in design of Fruit as follows: 

1- New round key function (most weaknesses of sprout is related to round key function) 

2- New nonlinear feedback for NFSR, feedback for LFSR and output function (in Sprout they were 

similar to Grain-128a, they were different only in positions) 

3- Increase the size of LFSR to achieve longer keystream in each loading (in comparison to Sprout) 

4- New way to load IV in the initialization (IV loads in LFSR and NFSR in Grain family and Sprout) 

 

The rest of the paper is organized as follows. We explain about design of Fruit and the design criteria. Then 

we show Fruit is resistance to known attacks. Finally we discuss about the hardware implementation of Fruit.  

 

Design Details of Fruit 

Internal state consists of 43 -bit LFSR ( 𝑙𝑡 , … , 𝑙𝑡+42 ), 37 -bit NFSR ( 𝑛𝑡 , … , 𝑛𝑡+36 ), 7 -bit counter ( 𝐶𝑟: 

(𝑐𝑡
0, … , 𝑐𝑡

6)) and 8-bit counter (𝐶𝑐: (𝑐𝑡
7, … , 𝑐𝑡

14)). A general view of Fruit stream cipher is presented in Fig. 1. 

Inputs of Fruit are 80-bit secret key (𝐾: (𝑘0, … , 𝑘79)) and 70  bits public Initial Value (𝐼𝑉: (𝑣0, … , 𝑣69)). Note 

that maximum number of stream bits that can be produced from one key and IV is 2 43 bits and each key 

should be used less than 215 times with different IVs. It is not acceptable to reuse IV, i.e. use identical IV with 

different keys. IV should be produced in a random way.  

 

Fig. 1: The Block Diagram of Fruit  



4 
 

Now we explain each part of the cipher in details: 

-Counter: the first 7 bits of counter (𝐶𝑟) are allocated to round key function and the last 8  bits (𝐶𝑐) are 

allocated to initialization and keystream generation. These two counters work (count) independently, i.e. first 

counter (𝑐𝑡
0, … , 𝑐𝑡

6) is increased one by one in each clock, and also second counter (𝑐𝑡
7, … , 𝑐𝑡

14) count from 

zero independently. These two counters increase at each clock, and work continually, i.e. after first and second 

parts become all ones, counting from zeros to all ones again. Note that 𝑐𝑡
6 and 𝑐𝑡

14 are LSB of two counters, 

i.e. before first clock our counter is (000000000000000) and then after first clock is (000000100000001). 

 

-Round key function: we define  𝑠 = (𝑐𝑡
0𝑐𝑡

1𝑐𝑡
2𝑐𝑡

3𝑐𝑡
4𝑐𝑡

5), 𝑦 = (𝑐𝑡
3𝑐𝑡

4𝑐𝑡
5), 𝑧 = (𝑐𝑡

4𝑐𝑡
5𝑐𝑡

6), 𝑝 = (𝑐𝑡
0𝑐𝑡

1𝑐𝑡
2𝑐𝑡

3𝑐𝑡
4), 

𝑞 = (𝑐𝑡
1𝑐𝑡

2𝑐𝑡
3𝑐𝑡

4𝑐𝑡
5), and 𝑟 = (𝑐𝑡

3𝑐𝑡
4𝑐𝑡

5𝑐𝑡
6). We combine 6 bits of the key to obtain bits of round key as follow 

in each clock. 

 

 𝑘𝑡
′= 𝑘𝑠. 𝑘𝑦+64 ⊕ 𝑘𝑧+72. 𝑘𝑝 ⊕ 𝑘𝑞+32 ⊕ 𝑘𝑟+64 

 

-g function: we use 1 bit of the LFSR, 1 bit of the counter, 𝑘𝑡
′ and 16  bits of the NFSR as variables of g 

function for clocking of NFSR. 

𝑛𝑡+37 = 𝑘𝑡
′  ⊕ 𝑙𝑡 ⊕ 𝑐𝑡

10 ⊕ 𝑛𝑡 ⊕ 𝑛𝑡+10 ⊕ 𝑛𝑡+20 ⊕ 𝑛𝑡+12. 𝑛𝑡+3 ⊕ 𝑛𝑡+14. 𝑛𝑡+25 ⊕ 𝑛𝑡+8. 𝑛𝑡+18

⊕ 𝑛𝑡+5. 𝑛𝑡+23. 𝑛𝑡+31 ⊕ 𝑛𝑡+28. 𝑛𝑡+30. 𝑛𝑡+32. 𝑛𝑡+34 

 

-f function: the feedback function in LFSR is primitive. Thus, it can produce string with maximum period. 

 𝑙𝑡+43 = 𝑙𝑡 ⊕ 𝑙𝑡+8 ⊕ 𝑙𝑡+18 ⊕ 𝑙𝑡+23 ⊕ 𝑙𝑡+28 ⊕ 𝑙𝑡+37 

 

-h function: this function produces pre-output stream from LFSR and NFSR states. 

 ℎ𝑡 = 𝑛𝑡+1. 𝑙𝑡+15 ⊕ 𝑙𝑡+1. 𝑙𝑡+22 ⊕ 𝑛𝑡+35. 𝑙𝑡+27 ⊕ 𝑛𝑡+33. 𝑙𝑡+11 ⊕ 𝑙𝑡+6. 𝑙𝑡+33. 𝑙𝑡+42 

 

-keystream generation: keystream will be produced by 7 bits from NFSR, 1 bit from LFSR and output of ℎ 

function. 

 𝑧𝑡 = ℎ𝑡 ⊕ 𝑛𝑡 ⊕ 𝑛𝑡+7 ⊕ 𝑛𝑡+13 ⊕ 𝑛𝑡+19 ⊕ 𝑛𝑡+24 ⊕ 𝑛𝑡+29 ⊕ 𝑛𝑡+36 ⊕ 𝑙𝑡+38 

 

-Initialization of the cipher: we extend 𝐼𝑉 to 80 bits by concatenating 9 bits zero and 1 bits one to the first 

of 𝐼𝑉, as follow. 
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𝐼𝑉′ = 𝑣0
′ 𝑣1

′ … 𝑣78
′ 𝑣79

′ = 1000000000𝑣0𝑣1𝑣2 … 𝑣67𝑣68𝑣69  

In initialization step, key bits are loaded to NFSR and LFSR respectively from LSB to MSB (𝑘0 to 𝑛0, 𝑘1 to 

𝑛1 , …, 𝑘36  to 𝑛36 , 𝑘37  to 𝑙0 , 𝑘38  to 𝑙1 , …, 𝑘79  to 𝑙42). 𝑐0
0𝑐0

1 … 𝑐0
13𝑐0

14  are all set to 0 in the first stage of 

initialization. We clock the cipher 80  times and before each clock, XOR output with 𝐼𝑉′  bits and also 

feedback output stream to NFSR and LFSR, i.e. 𝑧𝑖 ⊕ 𝑣𝑖
′, 0 ≤ 𝑖 ≤ 79 (as shown in Fig. 1). Then in the second 

stage of initialization, we set all bits of 𝐶𝑟 equal to LSB of NFSR except the last bit of 𝐶𝑟 that is equal to LSB 

of LFSR (𝑐80
0 = 𝑛80, 𝑐80

1 = 𝑛81, … , 𝑐80
4 = 𝑛84, 𝑐80

5 = 𝑛85, 𝑐80
6 = 𝑙80), and also 𝑙80 is set to 1 for preventing all 

zeros in LFSR. 

Then the cipher should be clock 80 times without feedback output in LFSR and NFSR (i.e. during last 80 

clocks we disconnect feedback of 𝑧𝑡 to LFSR and NFSR). Thus, the cipher doesn’t produce any keystream in 

the 160 initial clocks, i.e. 𝑧0 to 𝑧159 are discarded. Now the cipher is ready to produce first bit of keystream, 

i.e. 𝑧160. 

 

Design criteria 

-Limitation for the producing keystream: the maximum length of keystream is 243  bits in each 

initialization, because of the LFSR length (period of NFSR is a multiple of 243 − 1). We think that 1 terabyte 

is almost sufficient for all application because our cipher is special for hardware application (e.g. WSN and 

RFID). 

 

-Round key function: we produce 27 different keys from original key. Attacker can (with guessing internal 

states and known output keystream) obtain some bits of 𝑘𝑡
′, but due to the unknown counter (unknown index 

of key in round key function), it is not easy to solve equations system. Round key function in Fruit involves 

bits of key independently in the g function, while in Sprout cipher, none of key bits involves in g function in 

some clocks. 

 

-g function: The function that produces 𝑛𝑡+37, is chosen in only 16 variables of NFSR with regard to light 

implementation in hardware in comparison to Grain-v1 and Sprout. If we suppose 𝑘𝑡
′ ⊕ 𝑐𝑡

10 ⊕ 𝑙𝑡 = 0, the 

nonlinearity of g function will be 23 × 3760 and resiliency 2. Variables for high degree term is chosen from 

𝑛𝑡 with 𝑡 > 27 that cause the degree of variables reaches the maximum possible degree in NFSR very soon. 
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-f function: the period of produced string by LFSR with non-zero initial is maximum because feedback 

polynomial is primitive. Due to 𝑙80 is set to 1 after disconnecting feedback of output bit to LFSR, we are sure 

that the period of LFSR and NFSR is at least 243 − 1. Some attacks was proposed to Grain and Sprout from 

this weakness (i.e. it is possible that LFSR becomes all zeros in the during of initialization) [22, 23].  

 

-Output function: The nonlinearity of ℎ function is 976. We add 8 linear terms in order to increase the 

nonlinearity to 249856 and also to make function with 7 resiliency. The best linear approximation of output 

function has 8 terms with 2−5.415 bias.  

Note that 𝑛𝑡+36 and 𝑛𝑡 are used in output function for preventing produce keystream in the next and previous 

clock with unknown 𝑘𝑡
′.  

 

Resistance against known attacks 
Security level of Fruit is 80 bits, thus we discuss about the feasibility of applying some main attacks to it. 

 

-Linear Approximation Attack: this attack was applied to Grain-v0 [24]. In [24] discussed that if NFSR and 

output function are chosen with high nonlinearity and suitable resiliency, it will be resistant to linear 

approximations attack. We choose NFSR and output function with high nonlinearity and good resiliency and 

also a nonlinear function of key is involved on NFSR. If an attacker obtains linear approximation of output 

and also linear approximation of g function, and then eliminates NFSR bits between the two relations, he can 

obtain follow relation with 2−43.86 bias. 

 𝑧𝑡 ⊕ 𝑧𝑡+10 ⊕ 𝑧𝑡+20 ⊕ 𝑧𝑡+80 =  𝑙𝑡 ⊕ 𝑘𝑡
′ ⊕ 𝑐𝑡

10 ⊕ 𝑙𝑡+7 ⊕ 𝑘𝑡+7
′ ⊕ 𝑐𝑡+7

10 ⊕ 𝑙𝑡+13 ⊕ 𝑘𝑡+13
′ ⊕ 𝑐𝑡+13

10 ⊕

𝑙𝑡+19 ⊕ 𝑘𝑡+19
′ ⊕ 𝑐𝑡+19

10 ⊕ 𝑙𝑡+24 ⊕ 𝑘𝑡+24
′ ⊕ 𝑐𝑡+24

10 ⊕ 𝑙𝑡+29 ⊕ 𝑘𝑡+29
′ ⊕ 𝑐𝑡+29

10 ⊕ 𝑙𝑡+36 ⊕ 𝑘𝑡+36
′ ⊕ 𝑐𝑡+36

10 ⊕

𝑙𝑡+38 

 

Now, if the attacker supposes that round key bits and counter bits are equal to zero, and if he tries to obtain a 

relation only based on output bits (by using feedback polynomial of LFSR), the bias of the relation is 2−301.02. 

This bias is too small and therefore Fruit is resistant to this attack. 

 

-Guess and Determine Attack: due to shorter LFSR and NFSR in Fruit and the weakness of Sprout against 

this attack [23], this attack is very important. If an attacker guesses all bits of the internal state in Sprout, he 
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can clock 2 times forward and one time backward (with unknown key), and in each clock he can decrease the 

wrong candidates of the internal state in Sprout. In the next clocks, the attacker obtains one bit of the key or 

decreases the wrong candidates of the internal state. We strengthen the round key function and use 𝑛𝑡+36 and 

𝑛𝑡 in output function for preventing produce keystream in the next and previous clock with unknown key. If 

the attacker can obtain some bits of 𝑘𝑡
′, with regard to unknown number of 𝐶𝑟 (unknown index of key in round 

key function), it is too hard for the attacker to solve equations and obtain key bits.  

If an attacker guesses all bits of 𝐶𝑟, LFSR and NFSR, i.e. 87 bits, he can obtain round key function bits. In 

this situation, due to each bit of round key function is dependent on some bits of the key, it is impossible for 

the attacker to identify wrong candidates of internal states before 80 clocks (except in the first clock he can 

identify half of wrong candidates). The computational complexity of this attack is (at least) 80. 286, which is 

more than complexity of exhaustive attack, i.e. 280. Thus, Fruit is resistant against this attack. 

 

-Time-Memory-Data Trade-off Attack: it is well known that cipher is weak to this attack if the size of 

internal state is not at least twice of security level. We use fixed key as an internal state in Fruit, and also some 

bits of the counter in round key function, and also we independently use 𝑘𝑡
′ to preventing bypass of key in g 

function (such as attack to Sprout [2]), therefore there is no problem from this view.  

 

-Related-key Attack: There exist weakness in the initialization step of all member of Grain family [11, 21] 

and Sprout [3]. Designers of Sprout ruled out related key attack. They believed this attack is not workable on 

Sprout because key is fix in ultra-lightweight ciphers [1]. Nevertheless we propose a new scheme in the 

initialization step to strengthen against this attack. We do not load IV bits directly in the internal state and do 

not combine IV and key bits straightforward together. Also we use asymmetric padding with IV, so there is 

no weakness related to this attack. 

 

-Cube Attack: due to the suitable clock number in the initialization step, it is too hard to find any low degree 

multiplicative expression (of some bits of IV) based on key in Boolean function of the output. In Fruit, the 

length of LFSR and NFSR are shorter than Grain-v1, so with equal clock number in initial step of Grain-v1 

and Fruit, Fruit cipher is stronger against this attack. Therefore our design is more resistant against to all types 

of Cube attack. 
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-Algebraic Attack: this attack has not been applied to Grain family but combination of this attack was applied 

to Sprout [4]. Short internal state (or we tell weak round key function) in Sprout caused this weakness. We 

strengthen round key function and involve bits of key independently in g function, so we think Fruit is secure 

against this attack. Due to fast growth of degree in the internal state of Fruit, it is impossible for an attacker 

to apply pure algebraic attack. But here we discuss that a combine of guess and determine attack and algebraic 

attack is not applicable to Fruit. 

If an attacker guesses bits of NFSR, bits of counter and bits of round key function, then he can obtain two 

equations in each clock (one from output keystream and one from round key function). These equations are 

degree 2 and it is not easy to solve, but we suppose that the attacker can solve equations of output keystream 

and obtain 1 bits of LFSR in each clock. In this scenario the attacker should guess at least 40 bits of round 

key function. Totally the attacker should guess 37 + 7 + 40 bits that is more than computational complexity 

of exhaustive attack.  

 

-Fault Attack: this attack is applied successfully to all members of Grain family [20] and also to Sprout [4, 

25], but we think that it is not applicable on the real world. Fault attack is based on some impractical supposes.  

 An attacker should be able to induce fault on the cipher in a special time and supposes that the induced fault 

effect on special section of cipher, e.g. the attacker should be free for injecting a single bit fault in NFSR just 

after initialization [25]. Other unreal suppose is that the attacker can reset the cipher and obtains correct 

keystream. Therefore we do not consider this attack. 

 

Hardware implementation cost 
Design of lightweight cipher is very important in industries, while we need to light ciphers in many fields 

such as communication, WSN, RFID and etc. Thus, our goal was to design a strong cipher with less than 950 

GE (i.e. Ultra-lightweight stream cipher). In order to get area size in hardware implementation for Fruit and 

Grain-v1, we designed the circuit of them described in VHDL and chose TSMC 0.18 µm technology process 

to do the synthesis. There was no optimization in our hardware implementation, for fair comparison with 

Grain-v1.  

In Table 1, we compare the area size of hardware implementation of eSTREAM finalist (in hardware profile) 

and Fruit. Different results for hardware implementation based on GE, is normal, because hardware 

implementation cost is dependent on many factors such as hardware used in implementation, techniques of 

implementation and etc. The area size of Fruit is significantly less than other ciphers, as expected with regard 
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to length of the internal state of them (except Sprout). Area size (GE) of Fruit is about 71%, 65%, 30%, 

22%, 29% less than Mickey [26], Trivium [26], Grain-v1 [26] and Grain-v1 [1] respectively. Fruit is much 

more secure than Sprout, but requires a little more GE. 

 

Table 1. Area size for eSTREAM finalists and Fruit in hardware implementation 

Stream ciphers Area size(GE) Throughput (Kb/s)# Platform Source 

Mickey [8] 3188 100 0.13 μm CMOS [26] 

Trivium [7] 2580 100 0.13 μm CMOS [26] 

Grain-v1 [9] 1294 100 0.13 μm CMOS [26] 

Grain-v1 [9] 1162 100 0.18 μm CMOS [1] 

Sprout 813 100 0.18 μm CMOS [1] 

Grain-v1 [9] 1269 100 0.18 μm CMOS Our work 

Fruit 904 100 0.18 μm CMOS Our work 
#The throughput is for the clock with 100 KHz frequency 

 

Note that we don’t dedicate any GE to key bits, because in every cipher should save key for reuse with 

different IVs. 

 

Conclusion 
Fruit stream cipher in comparison with Grain-v1 is very lightweight in hardware implementation, and with 

regard to Grain-v1 is the lightest candidate in the eSTREAM finalist of hardware profile, it is obvious that 

design of secure stream ciphers such as Fruit is very interesting. We discussed that Fruit unlike Sprout cipher 

is secure with some new ideas. In most applications of symmetric cipher, secret key (for reuse with other IVs) 

should be saved (in a memory), and we showed how we can exploit it in the design. We showed that suitable 

use of fixed secret key as an internal state can save significantly the area size in the design of secure stream 

cipher. Due to Fruit initialization step is more complicated than initialization step of Grain-v1, we implement 

the ciphers in two types, with and without consider any GE for initialization step .Table 2 shows that the area 

size of Grain-v1 is about 40% more than Fruit without consider to initialization step. If we consider to the 

initialization step of both ciphers, we still have about 18% save in area size. We hope the design of Fruit (as 

a first secure ultra-lightweight stream cipher) will be a beginning of the design of ultra-lightweight stream 

ciphers. 
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Table 2. Synthesize of Fruit and Grain-v1 on TSMC 0.18 µm technology process 

Cipher Implementation type Area size(GE) 

Grain-v1 [9] 
with initialization 1573 

without initialization 1269 

Fruit 
with initialization 1331 

without initialization 904 
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Appendix A: Test vector 
Due to in each clock one bit will be produced, we use hexadecimal format for presenting the keystream, key 

and IV. First bit of output keystream (i.e. 𝑧160) is most significant bit in the first hexadecimal as follow. 

 

𝐾 = {𝑘0𝑘1𝑘2𝑘3, 𝑘4𝑘5𝑘6𝑘7, 𝑘8𝑘9𝑘10𝑘11, … , 𝑘72𝑘73𝑘74𝑘75, 𝑘76𝑘77𝑘78𝑘79} 

𝐼𝑉 = {00𝑣0𝑣1, 𝑣2𝑣3𝑣4𝑣5, 𝑣6𝑣7𝑣8𝑣9, … , 𝑣62𝑣63𝑣64𝑣65, 𝑣66𝑣67𝑣68𝑣69} 

𝑍 = {𝑧160𝑧161𝑧162𝑧163, 𝑧164𝑧165𝑧166𝑧167, 𝑧168𝑧169𝑧170𝑧171, … } 

 

First test vector: 

𝑘 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

𝐼𝑉 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

𝑍 = {9,3, 𝑐, 7, 8, 𝑒, 3, 𝑏, 𝑐, 6, 𝑒, 4,6,2, 𝑑, 8,1, 𝑐, 𝑏, 2} 

 

http://eprint.iacr.org/
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Second test vector: 

𝑘 = {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

𝐼𝑉 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

𝑍 = {5,5,3,5,8,6,4,1,1,4, f, 1,1, a, c, 6, e, f, f, 8} 

 

Third test vector: 

𝑘 = {1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

𝐼𝑉 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1} 

𝑍 = {8,5,3,2,9,4,7,1, 𝑒, 4,0,0,3,5,4,8,1, 𝑒, 𝑏, 1} 

 

Fourth test vector: 

𝑘 = {1,2,3,4,0,0,0,0, a, b, c, d, 0,0,0,0,0,1,2,3,4} 

𝐼𝑉 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1} 

𝑍 = {3,0, 𝑑, 𝑎, 4,0,0,6,4, 𝑑, 𝑑, 7,2, 𝑐, 8,7,0,8,5,6} 

 

 

 


