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Abstract. The unavoidable transition to post-quantum cryptography
requires mature quantum-safe digital signature schemes. Hash-based sig-
natures are well-understood and promising candidates. A common con-
cern regarding their deployment is their statefulness, due to their use of
one-time signature schemes. While the theory of hash-based signatures
is mature, a complete understanding of the system security issues aris-
ing from the concrete management of their state has been lacking. In
this paper, we analyze state management in N -time hash-based signa-
ture schemes, considering both security and performance, and categorize
the security issues that can occur due to state synchronization failures.
We describe a state-reservation approach that loosens the coupling be-
tween volatile and nonvolatile storage, and show that it can be naturally
realized in a hierarchical signature scheme. To protect against uninten-
tional copying of private key state, we consider a hybrid stateless/stateful
scheme, which provides a graceful security degradation in the face of un-
intentional copying, at the cost of increased signature size. Compared to
a completely stateless scheme, the hybrid approach realizes the essential
benefits, with smaller signatures and faster signing.

1 Introduction

Security protocols routinely rely on digital signatures for authentication. Com-
mon examples are code signing for software updates, server authentication for
TLS, and S/MIME for secure email. The most common cryptographic schemes
for digital signatures (RSA [26], DSA [8], and ECDSA [16]) are all susceptible
to quantum computer cryptanalysis using Shor’s algorithms [28]. While the con-
crete realization of quantum computers still is an object of ongoing research,
substantial efforts in this area are ongoing [22,27].

Independently of the actual realization of quantum computing, governmen-
tal and standardization organizations are encouraging the transition to post-
quantum cryptography, i.e. cryptographic schemes not known to be vulnerable
to quantum computer attacks. Notably, the NSA recently announced its tran-
sition from the Suite B set of cryptographic algorithms towards post-quantum



cryptography [23]. Standardization efforts are also underway, for instance by
NIST [6] and ETSI [9]. As more stakeholders are required to heed official recom-
mendations, the deployment of post-quantum cryptography becomes inevitable.

Fortunately, post-quantum cryptographic schemes exist, and some are al-
ready well-understood. In particular, hash-based signatures have been thor-
oughly analyzed [2, 3, 7, 13, 18, 21] and are currently undergoing standardiza-
tion [14,20].

Motivation One major obstacle to the widespread use of hash-based signatures is
the fact that the signing algorithm is stateful. That is, with each message being
signed, the private key must change. There are stateless hash-based signature
schemes [1,12] that address state concerns, but their signature sizes (over 40KB)
are significantly higher than stateless schemes which make them impractical in
some scenarios. In a stateful scheme, when a private key is long-lived, it must be
stored in nonvolatile memory, and the version of the private key in memory must
continuously be synchronized with that in volatile memory (e.g. Random Access
Memory, or RAM). State synchronization is especially important because it is
critical to the security of the system; if two distinct messages are signed with
the same private key, then an attacker can use those signatures to construct a
forgery. Synchronization requires a time delay between signatures that can lead
to a significant performance penalty.

In this paper, we consider the design of N -time signature schemes and the
system engineering considerations needed to ensure that they avoid the problems
outlined above. We describe a simple state management scheme for hierarchical
signature schemes that minimizes synchronization delay and reduces the chance
of synchronization failure. It works by storing only the root (or topmost) level(s)
of the signature hierarchy in nonvolatile storage, and having the remaining levels
exist only in volatile memory. However, this scheme does not address the cloning
problem; to address that point, we then consider a hybrid scheme: a hierarchical
signature scheme in which the root level consists of a stateless N -time scheme,
while the other levels are stateful.

Outline The remainder of this paper is organized as follows. We recall one-
time signature schemes as well as N -time signature schemes and hierarchical
signature schemes, and establish some notation (Sec. 2). We then review the
security and performance issues with stateful signature schemes, notably the
impact of volatile and nonvolatile cloning (Sec. 3). Next, we cover basics of
synchronization between volatile and nonvolatile storage (Sec. 4), illustrated
with concrete examples. We proceed by describing a strategy for loosening the
coupling between those data stores by having the signer ‘reserve’ the state needed
to sign multiple messages (Sec. 5). We show that hierarchical signature schemes
naturally support this state-reservation strategy, in a way that benefits security
and performance. These techniques provide the best possible security for stateful
signature schemes, but they do not address scenarios in which a private key may
be unintentionally cloned. To address those cases, we outline a hybrid approach,



in which the root level scheme of a hierarchical scheme is stateless, but the lower
levels are stateful (Sec. 6). We then offer our conclusions (Sec. 7).

2 Stateful Hash-Based Signature Schemes

One-time signature schemes Hash-based signatures use one-time signature schemes
as a fundamental building block. One-time signature schemes, unlike most other
signature schemes, require only a secure cryptographic hash function and no
other hardness assumption (about a number-theoretic problem) and are not
vulnerable to Shor’s algorithms. Secure here refers to either collision resistance
or mere second-preimage resistance, depending on the specific one-time signa-
ture scheme. Common examples of one-time signature schemes are the seminal
one by Lamport-Diffie [18], the Winternitz scheme [7], and its recent variant W-
OTS+ [13]. In one-time signature schemes, the private key is usually randomly
generated and the public key is a function of the private key, involving the under-
lying hash function. Advanced one-time signature schemes feature a parameter
enabling a time/memory trade-off, e.g. the Winternitz parameter. These schemes
are inadequate on their own in practice, since each one-time private key can only
be used to securely sign a single message.

N -time signature schemes Stateful N -time signature schemes, introduced by
Merkle [21] and often improved since (e.g. [2, 3, 19]), are built out of one-time
signature schemes. They make one-time signatures practical by combining 2H

of them in a single structure — a complete binary tree of height H. Let ΥN =
(K,S, V ) denote an N -time signature scheme that consists of a key generation
algorithm K, a signing algorithm S, and a signature validation algorithm V .
The private key Ψ for the N -time scheme ΥN consists of the set of N private
keys of the underlying one-time scheme. A simple way to reduce the size of that
key is to instead define it to be a short string, and then use a cryptographically
secure pseudorandom function to generate the keys of the underlying one-time
scheme [21]. Formally speaking, this strategy changes the algorithms K and S by
creating an additional preprocessing step. The private state is thus reduced down
to the short private key and an integer counter, simplifying state management
somewhat through a reduction in scale. Nonetheless, the correct management of
the counter across multiple invocations of S is critical to security.

Hierarchical Signatures A hierarchical signature scheme is an N -time signature
scheme that uses other signature schemes as a component. Let Γ = (ΥN0 , ΥN1 , . . . , ΥNl−1)
denote a hierarchical signature scheme with l levels. The public key Z for Γ is
the output of K0 (that is, the key generation algorithm of the top level). The
private key for Γ consists of the private keys of each level: X0, X1, . . . , Xl−1. A
signature for Γ consists of the public keys Z1, . . . , Zl−1 of levels 1 through l− 1,
along with the signatures Y0(Z1), Y1(Z2), . . . , Yl−2(Zl−1) of the ith level’s public
key by the (i− 1)th level private key, and the signature Yl−1(M) of the message
M with the private key of the last level. If the signature scheme ΥNi at the ith



level of Γ can sign Ni signatures, then Γ is an N -time signature scheme with
N =

∏l−1
i=0 Ni. Concrete examples of hierarchical hash-based signatures include

XMSSMT [15], in which the number of layers d is a parameter, and the scheme by
Leighton and Micali [19]. SPHINCS’ [1] hierarchical tree structure also consists
of d levels. Additionally, the LMS [20] specification also describes a hierarchical
hash-based signature variant.

3 State Synchronization Security Risks

We identified several distinct issues with stateful signature schemes, which we
consider here. Ensuring the correct synchronization of the private key between
a storage unit and the execution unit requires a carefully engineered system. In
most cases, the synchronization cost is likely to add to the time required for
signatures. We call this additional latency the synchronization delay. We say
that a synchronization failure occurs if the private key in nonvolatile storage
fails to advance at or before the time that the private key in RAM advances.
This could be caused by the crash of an application or an operating system,
by a power outage, by the corruption of the nonvolatile state, or by a software
bug. Another issue with statefulness is the cloning problem: the situation arising
when a private key is copied and then used without coordination by two or
more execution units. This can for instance happen through Virtual Machine
(VM) image cloning, or by the restoration of a key file to a previous state from
a backup system. Cloning will cause multiple signatures to be generated from
the same system state, thus undermining security. The most important issue is
nonvolatile cloning, as is outlined above. A related but distinct problem is that
of volatile cloning, which is the copying of a private key from volatile memory,
as discussed below.

In a well-designed stateful signature system, synchronization failure can be
avoided, but also synchronization delay will greatly impact performance. Non-
volatile cloning may not be a consideration on a system that is dedicated to
signature generation, but it is a significant risk on general-purpose software sys-
tems.

Volatile cloning in VM environments There is a low risk of volatile cloning, ex-
cept in VM environments. Most contemporary VM environments (e.g. VMware
Virtual Center, Oracle Virtual Box, KVM or Xen) support live cloning. This is
usually achieved by first capturing a system snapshot. Such environments intro-
duce several other risks for cryptography and security protocols. Pseudorandom
number generators are at risk, since their state can be cloned, too. The exact risk
to pseudorandom number generation depends on the method of entropy collec-
tion (possibly causing state divergence), but the risk is great enough that volatile
cloning should be avoided. Generally speaking, values that may only be used once
are at risk from live VM cloning. In addition to random numbers, this includes
“initialization vectors, counters for encryption, seeds for digital signatures, and
one-time passwords” [10]. Issues with such primitives can result in catastrophic



failures for classic (pre-quantum) digital signature schemes such as DSA, and
even on the level of security protocols such as TLS [25]. These vulnerabilities
relate to random number generators caching randomness far in advance. Many
other systems are at risk from live virtual machine cloning, including the S/KEY
one-time password system and the TCP protocol [11], for which initial sequence
numbers could be reused for hijacking. Volatile cloning therefore appears prob-
lematic to such an extent that the vulnerability of hash-based signature to this
scenario is by no means a special case.

In our view, stateful hash-based signature techniques can be safely imple-
mented in some scenarios, such as dedicated cryptographic hardware, which can
then benefit from their smaller signatures and signing times. On the other hand,
there is also a need for techniques that are secure even when nonvolatile cloning
occurs, for use in general purpose software environments. The hybrid approach
of Sec. 6 addresses the latter need.

4 State Synchronization Considerations

State synchronization can be delayed by caching, or interfered with by other
processes on the used system. Of course, it is neither possible nor reasonable in
general to avoid caching and therefore the resulting delay. There are multiple
levels of caches coexisting on typical systems, both in hardware and software,
helping the system to function properly. Nevertheless, partially mitigating mea-
sures can be applied by forcing cache flushing, or by deactivating it.

The access to nonvolatile storage deserves more detailed consideration. In
terms of file I/O, on POSIX environments, the O_SYNC flag (for the open()
system call) will cause invocations of the write() system call to block the calling
process until the data has been written to the underlying hardware. Equivalent
flags (e.g. FILE_FLAG_WRITE_THROUGH for CreateFile() on Win32 API) exist
on other platforms. Still, the secure way to make sure that the data was written
is to read the data again and compare it to what was expected, which would
add to the synchronization latency.

However, if that hardware has its own memory cache, it must be separately
dealt with using an operating system- or device-specific tool such as hdparm to
flush the on-drive cache, or to deactivate write caching for that drive.

The synchronization latency depends on the chosen hash-based signature
scheme and its implementation. A typical example following the specification of
XMSS [14] merely requires updating the leaf index in the secret key, a 4-byte
value; or an 8-byte value for XMSSMT . This assumes that all data including the
one-time keys and all nodes are stored in the global secret key. The LMS [20]
specification also requires updating a 16 or 32-byte random private key value.
Of course, generating 16 or 32-byte values can be avoided by generating them
from a seed and index with a PRNG, which would reduce the state update of a
few byte long index.

A pseudo-random number generator (PRNG) is often [5] used to help gen-
erating the OTS keys. That way one is able to reduce the size of the scheme’s



secret key by storing only a part of it and rebuilding the necessary information
on the fly. A sequence of 2h seeds is computed from a single initial seed, itera-
tively. In that case, the one-time key pairs (2h in total) are not all stored in the
overall secret key but are generated successively instead. This generation takes
place twice: for the generation of the overall public key and for signing1. The
very basic data to be synchronized are the index and the succeeding seed. This
would be just 36 bytes with n = 32 and XMSS or 72 bytes with n = 64 and
XMSSMT .

The size of all data, which has to be updated depends on the implementation
then, e.g. the authentication path has to be updated. We now consider this
case where a PRNG is used. When nodes are computed on the fly like this,
an important concern is the worst case running time. Without precomputation,
the large variation in node computing time (depending on how many already
known nodes can be reused) would lead to unbalanced node computations and
unacceptable delays in signing speed. By precomputation, modern tree traversal
algorithm proposals strive to mitigate these variations by balancing the number
of leaves computed in each computation of an authentication path [4]. Besides
the index and the seed, the next authentication path and some nodes, which are
needed in the near future, must be stored in the meantime (while some older
nodes may be deleted).

To give a sense of the size of the state to be synchronized in this case, we
consider the following typical (plain) XMSS parameter set: tree height h = 16,
message length m = 32 bytes, node length n = 32 bytes, Winternitz parameter
w = 162. For LMS [20], the parameter set are equivalent. They are provided in
the specification’s Table 1.

A number of different tree traversal algorithms exist (e.g. [4, 17]), and the
choice of this algorithm defines the exact node precomputation method. In turn,
the total size of the state depends on the chosen node precomputation method.
As an example, consider the BDS tree traversal algorithm [4]. We assume the
value K = 2 for the BDS parameter. The state of the BDS algorithm comprises
the current authentication path, an array of nodes used for the efficient com-
putation of left authentication nodes, a single right authentication node, tail
nodes on the stack and nodes for the treehash algorithm. Buchmann, Dahmen
and Schneider showed [4] that the total space requirement of this algorithm de-
pends only on the height of the tree and the size of the nodes: it is bounded
by (3.5h− 4)n bytes for that algorithm, i.e. 1664 bytes for our chosen concrete
parameter set, which have to be written to the nonvolatile storage in addition.
The algorithm computes h−1

2 leaves and h−3
2 inner nodes on average for each

authentication path.

1 Please note that this allows for some forward-secure constructions if used with the
right schemes. That way an attacker may get access to the secret key on a system
but is not able to forge old signatures. A hash-based secret key is then to be seen
just as secure as any other signing key, that an attacker gets access to.

2 Recall that the Winternitz parameter is used as a trade-off setting for the underlying
one-time signature scheme.



Storing therefore adds to each signing operation by several milliseconds, but
using the techniques introduced in the following section helps reducing the need
for storing each update of the key.

5 A State Reservation Strategy

When an N -time signature system’s private key is read from nonvolatile storage
into RAM, it can use a state reservation approach by writing back into storage
the private key that is u signatures ahead of the current signature. In this way,
the execution unit reserves the next u signatures for use, and avoids the need to
write the updated private key u times into nonvolatile storage.

We formalize this idea by introducing a new reserve operation R : [0, N ] →
{0, 1}K , which takes as input the number of private keys to reserve for use, and
returns their values after it has updated the nonvolatile storage. We define an N -
time signature system with reservation as an N -time system Υ = (K,R, S, V ) in
which the signing algorithm cannot directly access any private key information,
and must first call the reserve function to obtain that key.

Given any N -time signature system, it is easy to define a signature system
with reserve by introducing the appropriate function and a counter. Multiple
signing engines can be accommodated by calling the reserve function to obtain
a distinct private key range for each signing engine. The key still is a critical
resource with this approach, but access to it is accelerated, as an engine calling
the reserve function does not have to wait for another engine or process to finish
signing first.

The reserve strategy minimizes the number of write operations to nonvolatile
storage, which significantly reduces synchronization delay. The larger the inter-
val u is, the less storage overhead is necessary. It also incurs a small penalty.
Interrupting the update process of the reserve function is not a problem, as the
key may not be written to nonvolatile storage but also will not be handed to a
signing engine. However, any interruption of the signing process — including a
crash, a graceful shutdown or the signing process simply not using all the signa-
tures available — will reduce the number of messages that can be signed by the
long-term key.

To offer an optimal coverage on diverse keys for addressing different use cases,
for example with keys using different parameter sets, a key provider tool may
be used, holding a key pool P = (Ψ0, Ψ1, . . . , Ψp−1) where p is the number of
different keys. Each private key Ψ can be accessed via a reserve function.

Several ways to improve the performance of N -time signature schemes in
practice exist. One common strategy is to generate the one-time signature key
pairs by using a PRNG, instead of creating each key pair randomly following a
uniform distribution. That way a seed s is used to feed the PRNG, which returns
output for the key generation as well as the successor seed s′. In this case the
nature of N -time signature schemes can be used in favor of more security. Instead
of creating all one-time signature key pairs using one initial seed that is employed
iteratively by the PRNG, one may reseed the PRNG for every fixed interval u



and limit the reserve function to a maximum limit of u signatures per call of the
function by an engine. That way a signing engine receives several signing keys,
but cannot get any information about the remainder of the long-term key. One
then has to consider the compatibility with the used tree traversal algorithm. As
mentioned above, a tree traversal algorithm may precalculate further nodes to
allow for a balanced average signing time. If using different seeds, a tree traversal
algorithm used by the signing engine does not need that precalculation, which
even makes the operation faster, if the interval u is chosen well and does not
cross the boundaries of subtrees. Still, the algorithm has to be compatible with
that behavior. The reserve function does have access to all secret key information
and therefore has no problem updating the secret key using several seeds.

Another way to improve security is to introduce volatile and nonvolatile levels
within the signature scheme Υ . This approach is detailed next.

5.1 Volatile and nonvolatile levels

A hierarchical signature scheme very naturally supports a reserve operation of all
r = Nl−1 signatures associated with level l− 1. We formalize this notion in this
section with the idea of a volatile level. In a hierarchical signature system, the
first m ≤ l levels can be maintained in nonvolatile storage, while the remaining
l −m levels can be volatile. Without essential loss of generality, we consider a
signature chain with exactly two levels3; Υ0 is nonvolatile, and Υ1 is volatile.
The overall scheme is an N0N1 time signature scheme that naturally supports
a reserve of exactly r = N1. The only time that Υ0 needs to sign is when the
reserve operation is invoked and when Υ1 is exhausted (that is, it has produced
all N1 of its signatures). Each invocation of the reserve operation invokes the
top level signing algorithm and the bottom level key generation algorithm. The
key generation process may take a long time, but note however that the system
could generate bottom-level private keys in advance of when they are needed,
and bring them into Υ at that time.

When a bottom level public/private keypair is generated, any public data
(such as the components of a Merkle hash tree) can be cached in nonvolatile
storage without raising any security issues. Furthermore, a private key could
be kept in nonvolatile storage for some period of time pending its use in a
volatile level, as long as it is erased from nonvolatile storage before it is used.
That is to say, the private key of a volatile level may be temporarily stored in
nonvolatile memory between the time that it is generated and the time that
it is linked into Υ by signing its public key with the top level. We emphasize,
however, that all private keys at the volatile level must not be synchronized with
nonvolatile storage. A system that uses this volatile key precomputation strategy
must carefully avoid synchronization issues that might cause a cached private
key to be used in multiple levels.

3 Note that either of these two levels could themselves be hierarchical signature
schemes.



A hierarchical signature scheme with a volatile bottom level enforces the
reservation property; since the private key of the volatile level is never written
onto nonvolatile storage, it avoids synchronization problems. Of course, the root
level must be nonvolatile, but it only rarely performs signing, and thus rarely
changes its state. This is a benefit because synchronization delay is no longer an
issue, and there is less chance of a synchronization problem (in the reasonable
model that problems occur when there is a crash or power outage during a write
operation).

We conjecture that a nonvolatile level with 220 signatures is sufficient to
provide security in general-purpose software environments, since that number of
keys can be used to sign once per hour for over a century, or once per second
for nearly two years. This is enough time to allow for almost all types of system
failures to be detected and corrected. Even 216 signatures may be sufficient if
a signature is associated with an hourly re-initialization, considering that it is
enough to last for seven years.

However, hierarchical signature schemes do not address the volatile (or non-
volatile) cloning problem. If a root level private key is copied and then used by
multiple execution units, an attacker could forge a signature on a bottom level
public key, and thus perpetrate Nl−1 forgeries. This limits the scenarios in which
signature scheme could be used.

6 Stateless and Hybrid Approaches

The SPHINCS hash based signature scheme [1] is stateless, and thus avoids the
synchronization delay and cloning problems outlined above. It can sign a nearly
arbitrary number of messages, but unfortunately, it is less efficient than stateful
hash based signatures; its signatures are over 40KB in length, and they take a
relatively long time to generate.

Ideally, we would like to have a signature scheme that has the shorter sig-
natures and quicker signing of a stateful method, but which has the advantages
of the stateless methods. One approach which gets us somewhere in the middle
is the following hybrid scheme: a hierarchical signature scheme with a stateless
N0-time scheme at the root level of Υ , while the other levels are stateful. This hy-
brid approach provides security against nonvolatile cloning, because it does not
require any state synchronization at the root level. It also avoids synchronization
delay.

A stateless N -time signature scheme can sign up to N signatures at a cer-
tain security level. If more than N signatures are generated, its security will
degrade, but this degradation can be graceful. The Hash to Obtain Random
Subset (HORS) scheme [24] is a good example of this type of system. Each dis-
tinct message that is signed reveals a small subset of the private state, i.e. a
few-time signature scheme is used instead of a one-time signature scheme as a
cornerstone of the system. In order to perpetrate a forgery, an attacker would
need to collect the private state that is revealed from many different signatures.
HORS is a component of the



We conjecture that the hybrid approach described above can bring worth-
while advantages, because it can make use of a stateless signature scheme that
can sign only a limited number of signatures, e.g. 64K or 1M. It does not entirely
eliminate all of the issues surrounding state management. Even with a stateless
N -time signature scheme, there is still a need to limit the number of signatures
created with the scheme, and the enforcement of that limit might require some
state synchronization. Of course, this need to restrict the number of signatures
is fundamental to any N -time signature scheme. However, there may be some
natural bounds on the number of signatures that a system could create with a
nonvolatile private key. If those signatures are associated with the initialization
of an application or an operating system, for example, then even if a restart or
reboot occurs every hour, it would take seven years to reach N = 216 root-level
signatures and over a century to reach N = 220 signatures. In a backup scenario,
either of those root level schemes would be adequate, since the restoration of an
operating system or application from backup does not change the number of ex-
ecution units. In a VM scenario, however, each cloning would produce multiple
execution units; we do not recommend the hybrid approach for the volatile part
of the hybrid structure for such environments. As discussed earlier (Sec. 3), there
are several other security issues with the cloning of VMs, so it is not clear how
important this limitation is in practice.

If volatile private keys are cached in nonvolatile storage, it will be essential
to make sure that they are not cloned. For instance, it would be acceptable to
have the private key stored in swap memory (assuming that there are adequate
security protections in place), but it would not be acceptable to cache those keys
in a file that might be cloned in a VM or backed up.

In practice, with a hybrid scheme, if we can assume that we will never perform
more than N restarts (for some reasonable N), then this would allow us to
eliminate all issues with state management. We would regenerate the volatile
state after every reboot (and generate a signature of that volatile state based on
the stateless scheme); we would then generate signatures based on the volatile
state. If we design our volatile signature scheme to be able to generate enough
signatures, we can avoid regenerating that state until the next reboot.

7 Conclusions

As the transition to post-quantum cryptography moves forward, existing schemes
must be evaluated for real-world scenarios. Hash-based signature schemes are
good candidates for the post-quantum era, but their statefulness is often men-
tioned as a barrier to adoption. We have taken a closer look at concrete cloning
and state management scenarios, considered examples with typical parameter
sets, and shown that the security critical issues can be avoided using relatively
simple measures.

In particular, the state reservation strategy is essential for practical imple-
mentations. It makes sense to formalize this fact by defining it into the interface.
The only way to avoid the reserve scheme is to accept the inefficiency of synchro-



nizing state with nonvolatile storage, or to have N be so large that it could not
be exceeded by the signing systems in use. Hierarchical signatures are a practical
and reasonably simple scheme.

The hybrid approach is potentially useful in general-purpose software envi-
ronments, and it deserves further exploration.
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