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Abstract. How to deal with large tightness gaps in security proofs is a vexing issue in
cryptography. Even when analyzing protocols that are of practical importance, leading
researchers often fail to treat this question with the seriousness that it deserves. We discuss
nontightness in connection with complexity leveraging, HMAC, lattice-based cryptography,
identity-based encryption, and hybrid encryption.

1. Introduction

The purpose of this paper is to address practicality issues in cryptography that are
related to nontight security reductions. A typical security reduction (often called a “proof
of security”) for a protocol has the following form: A certain mathematical task P reduces
to the task Q of successfully mounting a certain class of attacks on the protocol — that
is, of being a successful adversary in a certain security model. More precisely, the security
reduction is an algorithm R for solving the mathematical problem P that has access to
a hypothetical oracle for Q. If the oracle takes time at most T and is successful with
probability at least ǫ (here T and ǫ are functions of the security parameter k), then R
solves P in time at most T ′ with probability at least ǫ′ (where again T ′ and ǫ′ are functions
of k). Then the reduction R is said to be tight if T ′ ≈ T and ǫ′ ≈ ǫ, and it is nontight if
T ′ ≫ T or if ǫ′ ≪ ǫ. In the latter case we call (T ′ǫ)/(Tǫ′) the tightness gap.

A tight security reduction is often very useful in establishing confidence in a protocol. As
long as one is not worried about attacks that lie outside the security model (such as side-
channel attacks, duplicate-signature key selection attacks, or multi-user attacks [59]), one
is guaranteed that the adversary’s task is at least as hard as solving a certain well-studied
mathematical problem (such as integer factorization) or finding a better-than-random way
to predict output bits from a standardized primitive (such as AES).

The usefulness of a nontight security reduction is more controversial. Opinions depend on
how much importance one attaches to quantitative guarantees. In his paper [11] explaining
practice oriented provable security, Bellare writes:

Practice oriented provable security attempts to explicitly capture the in-
herently quantitative nature of security, via a concrete or exact treatment
of security.... This enables a protocol designer to know exactly how much
security he/she gets. (emphasis in original)

In contrast, some researchers minimize the importance of quantitative security and object
strongly when someone criticizes a practice oriented provable security result for giving a

Date: 7 April 2016.

1



2 SANJIT CHATTERJEE, NEAL KOBLITZ, ALFRED MENEZES, AND PALASH SARKAR

useless concrete security bound. For example, an anonymous reviewer of [57] defended the
nonuniform proof in [12], acknowledging that its nonuniformity “reduces the quantitative
guarantees” but then stating:

Many proofs do not yield tight bounds, but they still are powerful qualitative
indicators of security.

This reviewer characterized the use of the word “flaw” in [57] in reference to a fallacious
analysis and erroneous statement of quantitative guarantees as “misleading” and “offensive,”
presumably because the “qualitative indicators” in [12] were still valid.

What makes the nontightness question particularly sensitive is that cryptographers are
supposed to be cautious and conservative in their recommendations, and sources of uncer-
tainty and vulnerability are not supposed to be swept under the rug. In particular, one
should always keep in mind the possibility of what Menezes in [66] calls the nightmare sce-
nario — that there actually is an attack on the protocol that is reflected in the tightness
gap.

In [27] the authors presented attacks on MAC schemes in the multi-user setting — attacks
that are possible because the natural security reduction relating the multi-user setting to
the single-user setting is nontight. Similar attacks on protocols in the multi-user setting
were given for a network authentication protocol, aggregate MAC schemes, authenticated
encryption schemes, disk encryption schemes, and stream ciphers.

In Appendix A we describe the attacks of Zaverucha [80] on hybrid encryption in the
multi-user setting. In §5 we describe another situation where the tightness gap reflects the
fact that there’s an actual attack, in this case due to Pietrzak [73, 40].

A practical issue that is closely related to the nontightness question is the matter of
safety margins. There are at least two kinds of safety margins: (1) parameter sizes that
give significantly more bits of security than are currently needed, and (2) “optional” features
in a protocol that are believed (sometimes because of tradition and “instinct” rather than
any rigorous security argument) to help prevent new attacks or attacks that are outside the
commonly used security models.

At present it is widely agreed that it is prudent to have at least 128 bits of security.
Why not 96? In the near future it is unlikely that anyone (even the N.S.A.) will expend
296 operations to break a protocol. The reason for insisting on 128 bits of security is that
one should anticipate incremental improvements in cryptanalytic attacks on the underlying
mathematical problem that will knock several bits off the security level. If nontightness
has already reduced the security assurance provided by the proof from 128 to 96 bits (and
if the parameter sizes have not been increased so as to restore 128 bits of security), then
even relatively small advances in attacking the mathematical problem will bring the security
assurance further down to a level where a successful attack on the protocol is feasible in
principle.

A common explanation of the value of security proofs is that features that are not needed
in the proof can be dropped from the protocol. For instance, Katz and Lindell make this
point in the introduction to [49]. However, in Appendix A (see also §5 of [59]) we shall
find that optional features included in protocols often thwart attacks that would otherwise
reduce the true security level considerably.
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On the one hand, there is widespread agreement that tight proofs are preferable to
nontight ones, many authors have worked hard to replace nontight proofs with tighter
proofs when possible, and most published security reductions duly inform the reader when
there is a large tightness gap. On the other hand, authors of papers that analyze protocols
that are of practical importance almost never suggest larger parameters that compensate
for the tightness gap. Presumably the reason is that they would have to sacrifice efficiency.
As Bellare says [11],

A weak reduction means that to get the same level of security in our protocol
we must use larger keys for the underlying atomic primitive, and this means
slower protocols.

Indeed, many standardized protocols were chosen in part because of security “proofs” in-
volving highly nontight security reductions. Nevertheless, we are not aware of a single
protocol that has been standardized or deployed with larger parameters that properly ac-
count for the tightness gaps. Thus, acknowledgment of the nontightness problem remains
on the level of lip service.

In §§3-7 we discuss nontightness in connection with complexity leveraging, HMAC, lattice-
based cryptography, and identity-based encryption; in Appendix A we discuss Zaverucha’s
results on nontightness in security proofs for hybrid encryption in the multi-user setting. In
the case of HMAC, in view of the recent work [57, 40] on the huge tightness gaps in pseu-
dorandomness results, in §5 we recommend that standards bodies reexamine the security
of HMAC when used for non-MAC purposes (such as key derivation or passwords) or with
MD5 or SHA1.

2. An Important Caveat

In our view, any scientific work that makes ambitious claims of practical importance
needs to be examined carefully and critically. One should not be blinded by hype or wishful
thinking, or by the authors’ impressive credentials. In an interdisciplinary field such as
cryptography, where mistakes can be devastating, it is important to welcome the commen-
tary of people with a variety of backgrounds — mathematicians, engineers, and hackers, as
well as computer scientists.

However, an important caveat must be made. It is not right to trash work that contains
elegant ideas and makes no claim to have practical applications in the foreseeable future.
The proof of Fermat’s Last Theorem in 1995 was rightly regarded as a major achievement
of human thought. Closer to our field, work on the oracle-complexity of factoring, first
by Rivest and later by Maurer, was elegant and compelling. It would be anti-intellectual
and philistine to ridicule this type of work because it has no known applications outside of
theory.1 (See [54] for a discussion of this type of philistinism.)

One of the negative consequences of the anti-intellectualism that is so prevalent in the
United States and some other countries is that in grant applications and elsewhere theoret-
ical mathematicians have sometimes exaggerated or even fabricated a connection between
their research and cryptography. As Koblitz commented in the Notices of the American
Mathematical Society [53], “It was sad that some mathematicians seemed to feel pressured

1In the trip-report [69] about Eurocrypt 1992, the NSA author makes fun of Maurer’s results with sarcastic
humor.
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into portraying their research as being somehow related to cryptography.” Part of the expla-
nation is that people are responding to the common notion in our society that scholarship
has to be commercially useful.

* * *

In his well-written and thought-provoking essay [75], Rogaway sharply criticizes what he
calls crypto-for-crypto, “meaning that it doesn’t ostensibly benefit commerce or privacy,
and it’s quite speculative if it will ever evolve to do either.” In particular, he ridicules the
entire fields of Fully Homomorphic Encryption (FHE) and indistinguishability Obfuscation
(iO) as “speculative, theory-centric directions” that DARPA (the U.S. Defense Advanced
Research Projects Agency) is happy to fund precisely because they are so useless. Rogaway’s
essay suggests that it is immoral (or amoral) to work in such areas. This theory-bashing
is regrettable. Both FHE and iO are fields in their infancy, and attacking them in such an
extreme way is like trying to strangle them at birth.

Some authors of papers on FHE and iO do perhaps deserve to be criticized for hyping
their work and misleading readers about its relation to practice. However, both fields have
produced some elegant ideas and constructions. And it’s not completely true that none of
it is of practical use. For example, Lauter et al. [52, 64] have used homomorphic encryption
to develop methods of privacy protection for human genome datasets. As far as we can
judge, this work is practical and even (in Rogaway’s sense) “moral.”

In contrast to FHE and iO, which he regards as useless, Rogaway gives a series of rec-
ommendations for “moral” cryptography that are based in large part on his own work. In
our research community it is quite common to market one’s own work as superior to others’
and more worthy of emulation. However, to suggest that those who choose to work in other
subfields are “amoral” is uncollegial and a tad arrogant.

3. Complexity Leveraging

“Complexity leveraging” is a general technique for proving that a cryptographic protocol
that has been shown to be selectively secure is also adaptively secure. Here “selectively se-
cure” means that the adversary has to select its target before it is presented with its inputs
(e.g., public keys, signing oracles, etc.), whereas “adaptive security” means that the adver-
sary is free to select its target at any time during its attack. The second type of adversary is
in general much stronger than the first type. Thus, selective security is in principle a much
weaker result than adaptive security, and so is not usually relevant to practice. Because
selective security is often easier to prove than adaptive security, researchers devised the
method of complexity leveraging to convert any selective security theorem into an adaptive
security theorem.

Complexity leveraging has been used to prove the adaptive security of many kinds of
cryptographic protocols including identity-based encryption [23], functional encryption [39],
constrained pseudorandom functions [25], and constrained verifiable random functions [35].
In §3.1 we illustrate the problems with complexity leveraging in the context of signature
schemes. In §3.2 we consider the case of identity-based encryption.
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3.1. Signature schemes. The most widely accepted definition of security of a signature
scheme is against an existential forger under chosen-message attack. This means that the
forger is given a user’s public key and is allowed ≤ q queries, in response to which she is
given a valid signature on each queried message. The forger is successful if she then forges
any message M other than one that was queried.

A much weaker property is security against a selective forger. In that case the adversary
is required to choose the message M that she will forge before she even knows the user’s
public key. She cannot modify M in response to the public key or the signature queries, and
to be successful she must forge a signature on the original M . Selective security is obviously
much weaker than existential security. A theorem that gives only selective security is not
generally regarded as satisfactory for practice.

Complexity leveraging works by converting an arbitrary existential forger into a selective
forger, as follows. The selective forger Cynthia guesses a message M , which she desperately
hopes will be the message on which the existential forger eventually forges a signature. She
then runs the existential forger. She is successful if the message forged is M ; otherwise she
simply tries again with a different guess. Her probability of success in each run is ǫ = 2−m,
where m is the allowed bitlength of messages. The bound m on the message length could
be large, such as one gigabyte.

Fortunately for Cynthia, in practice messages are normally hashed, say by SHA256, and
it is the hash value that is signed. Thus, Cynthia needs to guess the 256-bit hash value
of the message on which the existential forger forges a signature, not the message itself.
Her probability of success is then 2−256, and so the tightness gap in going from selective to
existential security is 2256.

Suppose, for example, that we have an integer-factorization-based signature protocol for
which selective security has been shown to be tightly equivalent to factoring. How large does
the modulus N have to be so that the corresponding existential security theorem gives us a
guarantee of 128 bits of security? If only 3072-bit N is used, then the protocol will have 128
bits of selective security, but complexity leveraging gives us no existential security, because
of the 2256 tightness gap. In order to have 128 bits of existential security, we need to have
128 + 256 = 384 bits of security against factoring N , and this means roughly 40,000-bit N .
Even though this is what we must do if we want complexity leveraging to give us the desired
security, no one would ever seriously recommend deploying 40,000-bit moduli. Thus, from
a practical standpoint complexity leveraging gives us nothing useful here.

3.2. Identity-based encryption. Boneh and Boyen [23] used bilinear pairings on elliptic
curves to design an identity-based encryption scheme. They proved that their scheme is
selectively secure in the sense that the adversary has to select the target before she gets the
public parameters and access to the appropriate oracles (see §7 for background on identity-
based encryption). The highlight of the proof is that it does not invoke the random oracle
assumption.

Boneh and Boyen [23, Theorem 7.1] then used complexity leveraging to prove that a
generic identity-based encryption scheme that is selectively secure is also adaptively secure.
The proof has a tightness gap of 22ℓ, where ℓ is the desired security level and 2ℓ is the output
length of a collision-resistant hash function (the hash function is applied to the identifiers of
parties). Boneh and Boyen remarked that the reductionist proof is “somewhat inefficient”
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and explained that the desired level of security can be attained by increasing the parameters
of the underlying pairing.

Suppose now that one desires 128 bits of security. Suppose also that the proof of selective
security for the identity-based encryption scheme is tight. Then one can achieve 128 bits of
selective security by using an (asymmetric) bilinear pairing e : G1×G2 → GT derived from
a prime-order Barreto-Naehrig (BN) elliptic curve E over a finite field Fp [10]. Here, p is
a 256-bit prime, G1 = E(Fp), G2 is a certain order-n subgroup of E(Fp12), and GT is the
order n-subgroup of F∗

p12 , where n = #E(Fp). This pairing is ideally suited for the 128-bit
security level since the fastest attacks known on the discrete logarithm problems in G1, G2

and GT all take time approximately 2128.2 If resistance to adaptive attacks is desired, then
to account for the tightness gap of 2256 a pairing e : G1 × G2 → GT should be selected so
that the fastest attacks known on the discrete logarithm problems in G1, G2 and GT take
time at least 2384. If the protocol is implemented using BN curves, then one now needs
p12 ≈ 240000 and thus p ≈ 23300. Consequently, computations in G1 and GT will be over
3300- and 40000-bit fields, instead of 256- and 3072-bit fields had the reduction been tight.
Hence, the tightness gap that arises from complexity leveraging has a very large impact on
efficiency.

4. Nonuniformity to Achieve Better Tightness

Informally speaking, a nonuniform algorithm to solve a problem P is more powerful
than a uniform algorithm because it is given an “advice string,” depending on the input
length (and usually assumed to be of polynomial size in the input length), that may be
very helpful in solving P. Several prominent researchers have repeatedly claimed that
security theorems that are proved in the nonuniform model of computation are stronger than
theorems proved in the uniform model, because they provide assurances against successful
attacks by nonuniform as well as uniform adversaries. In their lecture notes for their 2008
course at MIT [42], Bellare and Goldwasser state:

Clearly, the nonuniform adversary is stronger than the uniform one. Thus
to prove that “something” is “secure” even in presence of a nonuniform
adversary is a better result than only proving it is secure in presence of a
uniform adversary. (p. 254)

In an email explaining why his paper [12] did not inform the reader that the security
reduction was being given in the nonuniform model, Bellare wrote [13]:

I had no idea my paper would be read by anyone not familiar with the fact
that concrete security is nonuniform.

What these researchers are failing to take into account is that the use of the nonuniform
model makes the hypothesis as well as the conclusion of the theorem stronger. Thus, the
theorem’s assumption that a certain mathematical task is hard or that a certain compres-
sion function cannot be distinguished from a random function has to allow nonuniform
algorithms. It is usually very difficult to get any idea of the strength of the commonly-used
primitives against nonuniform attacks, and in practice they are not designed to withstand

2We are not accounting for recent progress by Kim and Barbulescu [51] in algorithms for computing
discrete logarithms in GT .
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such attacks. See [58] for a discussion of the history of confusion about this issue in the
literature and a detailed rebuttal of the arguments in favor of the nonuniform model in
cryptography.

Whether or not nonuniform algorithms for a problem P are known that are much faster
than uniform ones depends very much on the problem P.

Example 1. (No known difference between uniform and nonuniform.) There is no known
nonuniform algorithm for the general integer factorization problem that is faster than the
fastest known uniform algorithms.

In the next two examples, let Hk be a fixed family of hash functions, one for each security
level k. In both examples, suppose that the input is k written in unary (this is a trick used
to allow the input length to be different for different k).

Example 2. (Trivial in the nonuniform model.) For a well-constructed family Hk, by
definition one knows no efficient uniform algorithm for finding a collision. In contrast, one
has a trivial nonuniform algorithm, since the advice string can consist of two messages
whose hash values are equal.

Example 3. (Between these two extremes.) Consider the problem of distinguishing a hash
functionHk in a family of keyed hash functions from a random function; a function for which
this cannot be done with non-negligible success probability is said to have the pseudorandom
function property (PRF). More precisely, an attack on the PRF property is an algorithm
that queries an oracle that with equal probability is either the hash function with hidden
key or else a random function and, based on the responses, can determine which it is with
probability ǫ + 1/2 of being correct, where the advantage ǫ is significantly greater than
0. For a well-constructed hash function no uniform algorithm is known that is faster than
simply guessing the key, and this has advantage roughly T/2ℓ, where ℓ is the key-length and
T is the time (here we are assuming that each query takes unit time). However, there is a
simple nonuniform algorithm that runs in unit time and distinguishes a hash function with
hidden key from a random function with advantage roughly 2−ℓ/2 — an advantage that
would take the uniform algorithm time T ≈ 2ℓ/2 to achieve. Our advice string is a message
M that has a very special property with respect to Hk when averaged over all possible keys.
For example, let M be a message that maximizes the probability that the 29th output bit
is 1 rather than 0. The nonuniform algorithm then queries M to the oracle; if the oracle’s
response has 29th bit equal to 1, it guesses that the oracle is the hash function with hidden
key, but if the 29th bit is 0, it guesses that the oracle is a random function. It follows by
an easy argument from the theory of random walks that the expected advantage of this
nonuniform algorithm is roughly 2−ℓ/2.

As pointed out in [58], almost all security proofs in the literature are valid in the uniform
model of complexity, and only a few use what’s sometimes called coin-fixing to get a proof
that is valid only in the nonuniform model. As far as we are aware, none of the nonuniform
theorems in the literature have hypotheses of type 1 or 2; all are of type 3, that is, the
task whose hardness is being assumed is easier in the nonuniform model, but not trivial.
The authors’ main purpose in using coin-fixing in these cases is to achieve a tighter security
reduction than they could have achieved in the uniform model.
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Unfortunately, it is easy to get tripped up if one attempts to use coin-fixing to get a
stronger result — authors fool themselves (and others) into thinking that their result is
much stronger than it actually is. The most important example of a researcher who was
led astray by his belief in the nonuniform model is Bellare in his Crypto 2006 paper [12]
on HMAC. We will summarize this story and carry it up to the present by discussing some
errors in his revised version [14], which was recently published in the Journal of Cryptology.

5. The HMAC Saga

HMAC [17, 19] is a popular hash-function-based message authentication code (MAC).
The controversy about nonuniform reductions concerns security proofs of the PRF property
(see Example 3 of §4) of NMAC, which is a MAC that is closely related to HMAC. We
shall discuss NMAC rather than HMAC, because the extension of results from NMAC to
HMAC has generated relatively little controversy (see [60] for an analysis of 1-key variants
of NMAC).

By a compression function we mean a function z = f(x, y), where y ∈ {0, 1}b and
x, z ∈ {0, 1}c; typically b = 512 and c is equal to either 128 (for MD5), 160 (for SHA1), or
256 (for SHA256).

Given a compression function f , to construct an iterated hash function H one starts
with an initializing vector IV, which is a publicly known bitstring of length c that is fixed
once and for all. Suppose that M = (M1, . . . ,Mm) is a message consisting of m ≤ m b-bit
blocks (where m is the bound on the block-length of messages; for simplicity we suppose
that all message lengths are multiples of b). Then we set x0 = IV, and for i = 1, . . . ,m we
recursively set xi = f(xi−1,Mi); finally, we set H(M) = HIV(M) = xm, which is the c-bit
hash value of M .3

Suppose that Alice shares two secret c-bit keys K1 and K2 with Bob, and wants to create
an NMAC-tag of a message M so that Bob can verify that the message came from Alice.
She first uses K1 as the IV and computes HK1

(M). She pads this with b− c zeros (denoted
by a 0-superscript) and sets her tag t(M) equal to HK2

(HK1
(M)0).

The purpose of finding a security reduction for NMAC is to show that if one has confidence
that the compression function f enjoys a certain security property, then one can be sure
that NMAC has the same property. Two decades ago HMAC was first proposed by Bellare,
Canetti, and Krawczyk [17, 19]. In [17] they proved (assuming collision-resistance of H)
that if f has the secure-MAC property, then so does NMAC. (The secure-MAC property is
analogous to existential security of signatures, see §3.) The proof in [17] was tight. It was
also short and well-written; anyone who was considering using HMAC could readily verify
that the proof was tight and correct.

In 2006 Bellare [12] published a different security reduction for NMAC. First, he dispensed
with the collision-free assumption on H, which is a relatively strong assumption that has
occasionally failed for real-world iterated hash functions. Second, he replaced the secure-
MAC property with the stronger PRF property, that is, he showed that if f has the PRF
property, then so does NMAC. This was important in order to justify the use of HMAC for

3In iterated hash functions one also appends a “length block” to the message M before hashing. We are
omitting the length block for simplicity.
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purposes other than message authentication — in applications where the PRF property is
desired, such as key-derivation protocols [34, 45, 62] and password-systems [68].

Remark 1. A third advantage (not mentioned in [12, 14]) of assuming the PRF property
rather than collision-resistance arises if one derives a concrete security assurance using the
best known generic attacks on the property that the compression function is assumed to
have. As far as we know the best generic attack on the PRF property using classical (i.e.,
uniform and non-quantum) algorithms has running time ≈ 2c (it amounts to guessing the
hidden key), whereas the birthday-paradox attack on collision-resistance only takes time

≈ 2c/2. Other things being equal, one expects that c must be twice as great if one is
assuming collision-resistance than if one is assuming the PRF property.

However, in 2012 Koblitz and Menezes found a flaw in [12]. For Bellare, who along with
Rogaway developed the concept of “practice-oriented provable security” [11], his theorem
was not merely a theoretical result, but rather was intended to provide some concrete
assurance to practitioners. Thus, it was important for him to determine in real-world terms
what guarantee his theorem provided. To do this, Bellare’s approach was to take the fastest
known generic attack on the PRF-property of a compression function, and evaluate what
his theorem then implied for the security of NMAC. In his analysis he took the key-guessing
attack (see Example 3 of §4) as the best generic attack on f , and concluded that NMAC

is secure “up to roughly 2c/2/m queries.” For instance, for a bound of m = 220 on the
block-length of messages Bellare was claiming that NMAC-MD5 is secure up to 244 queries
and NMAC-SHA1 up to 260 queries. (In 2006, MD5 and SHA1 were common choices for
hash functions.)

Bellare failed to account for the fact that, because of his “coin-fixing,” i.e., nonuniform
security reduction, he was logically required to examine security of f against nonuniform
attacks, not just uniform attacks. As we saw in §4, there are simple generic nonuniform
attacks on the PRF property that have a much higher success probability than the key-
guessing attack. If one repeats Bellare’s analysis using the nonuniform attack described in
§4, one finds that NMAC’s security is guaranteed only up to at most 2c/4/

√
m queries, that

is, 222 for NMAC-MD5 and 230 for NMAC-SHA1. That level of security is of little value in
practice.

When we say that Bellare’s paper had a basic flaw, we have in mind the definition of the
f-word that was given by Stern, Pointcheval, Malone-Lee, and Smart [79], who said:

The use of provable security is more subtle than it appears, and flaws in
security proofs themselves might have a devastating effect on the trustwor-
thiness of cryptography. By flaws, we do not mean plain mathematical errors
but rather ambiguities or misconceptions in the security model.

* * *

Now let us bring this story up to the present. In an effort to determine what can be
said about the relation between the PRF-property of the compression function f and the
PRF-property of NMAC, Koblitz and Menezes [57] gave a uniform security reduction that
had tightness gap m ·max(2, q2/(2cǫ)), where ǫ is a measure of the PRF-security of f and
q is a bound on the number of queries. They had to use a stronger version of the PRF
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property of f (a version that’s similar to the property used in [18]); a corollary of their
theorem then gave a tightness gap of 2mq if one assumes only standard PRF-security of f .4

The interpretation in [57] of the authors’ Theorem 10.1 and Corollary 10.3 on NMAC
security is pessimistic. Those results assume the single-user setting and strong properties
of f ; moreover, they have large tightness gaps. The authors conclude:

We would not want to go out on a limb and say that our Theorem 10.1
is totally worthless. However, its value as a source of assurance about the
real-world security of HMAC is questionable at best.

Specifically, they caution that “In our opinion none of the provable security theorems for
HMAC with MD5 or SHA1 [...] by themselves provide a useful guarantee of security.” For
instance, suppose that the query bound q is 230, the block-length bound m is 225, and the
number of users n is 225. (As we shall see in Appendix A, the step from single-user to multi-
user setting introduces an additional factor of n in the tightness gap.) Then the number of
bits of security drops by 30+ 25+ 25 = 80 due to these tightness gaps. In other words, the
guarantees drop to 48 bits and 80 bits in the case of MD5 and SHA1, respectively.

Remark 2. If SHA256 is used in order to have at least 128 bits of HMAC security, then
there is such a huge safety margin that even these tightness gaps do not lower the security
to an undesirable level, at least if one assumes that there is no attack on the PRF-property
of the SHA256 compression function that is faster than the generic key-guessing one. This
is because key-guessing takes time ≈ 2256, leaving a safety margin of 128 bits. One reason
SHA256 might be used for HMAC even if only 128 bits of security are required is that
the user might need SHA256 for other protocols that require collision-resistance and so she
cannot allow fewer than 256 bits of hash-output; in the interest of simplicity she might
decide to use a single hash function everywhere rather than switching to SHA1 for HMAC.

Remark 3. The above comment about a huge safety margin when SHA256 is used in
HMAC applies only if a 256-bit key and 256-bit message tags are used. Not all standards
specify this. For example, the NIST standard [33] recommends 128-bit HMAC keys for 128
bits of security and allows 64-bit tags. The recommendations in [33] are supported by an
ad hoc analysis, but are not supported by any provable security theorem.

Aside from the issue of the tightness gaps, there is another fundamental reason why the
theorems in [12, 14, 57] about security of NMAC and HMAC under the PRF-assumption
offer little practical assurance. To the best of our knowledge, the PRF-assumption has never
been seriously studied for the compression functions used in MD5, SHA1, or SHA256; in
fact, we are not aware of a single paper that treats this question. Moreover, when those com-
pression functions were constructed, the PRF-property was not regarded as something that
had to be satisfied — rather, they were constructed for the purpose of collision-resistance
and pre-image resistance. Thus, in the case of the concrete hash functions used in practice,
we have no evidence that could rule out attacks on the PRF-property that are much better

4The early posted versions of [57] contained a serious error that was pointed out to the authors by Pietrzak,
namely, the theorem is given assuming only the PRF property rather than the strong PRF property that
is needed in the proof. This error was explained and corrected in the posted versions and the published
version. Soon after the corrected version was posted, Pietrzak posted a paper [73] containing a different
proof of essentially the same result as in Corollary 10.3 of Theorem 10.1 of [57] (see also [40]).
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than the generic ones. It would be very worthwhile for people to study how resistant the
concrete compression functions are to attacks on the PRF-property; in the meantime it
would be prudent not to rely heavily on theorems that make the PRF assumption.

Remark 4. The situation was quite different for AES, since a longstanding criterion for a
good block cipher has been to have the PRF-property with respect to the secret (hidden)
key. That is, an adversary should not be able to distinguish between the output of a block
cipher with hidden key and that of a random function (more precisely, AES can be assumed
to have the pseudorandom permutation property). However, the criteria for judging hash
constructions have been very different from those for judging encryption.

Remark 5. In [15] the authors prove security of a MAC scheme called AMAC, which
is a prefix-MAC in which the output of the hash function is truncated so as to thwart
the extension attacks to which prefix-MACs are susceptible. As in the case of the HMAC
papers discussed above, the authors of [15] assume that the underlying compression function
is a PRF. Their proof has the remarkable feature that it does not lose tightness in the
multi-user setting. On the other hand, the tightness gap in the single-user setting is much
larger than in the above security reductions for HMAC — namely, roughly q2m2. With,
for instance, q ≈ 230 and m ≈ 225 one has a tightness gap of 110 bits. The paper [15]
does recommend the use of SHA512, and if one assumes 512 bits of PRF-security for its
compression function, then we have such a large safety margin that a 2110 tightness gap
is not worrisome. Nevertheless, it should be stressed that the PRF-assumption is a very
strong one that, to the best of our knowledge, has never been studied or tested for the
SHA512 compression function.

Remark 6. In [43], Goldwasser and Kalai propose a notion of what it means for a complex-
ity assumption to be reasonable in the context of reductionist security proofs. Among other
things, the assumption should be falsifiable and non-interactive. Since the assumption that
the compression function in a hash function such as MD5, SHA1, SHA256 or SHA512 has
the PRF-property is an interactive one, it does not meet the Goldwasser-Kalai standard
for a reasonable cryptographic assumption. Rather, in the words of Goldwasser and Kalai,
such an assumption “can be harmful to the credibility of our field.”

Returning to our narrative, in 2015 Bellare [14] published a revised version of [12] in
J. Cryptology that, regrettably, just muddied the waters because of errors and unclarities
in his abstract and introduction that could easily mislead practitioners. First of all, the
first sentence of the abstract states that the 1996 paper [17] proved “HMAC...to be a PRF
assuming that (1) the underlying compression function is a PRF, and (2) the iterated hash
function is weakly collision resistant.” In fact, only the secure-MAC property, not the PRF
property, was proved in [17].5

In the second place, in the concluding paragraph of the introduction of [14] Bellare gives
the impression that Pietrzak in [73] proved tight bounds for the PRF-security of NMAC:6

5The abstract to [40] also erroneously states that “NMAC was introduced by Bellare, Canetti and
Krawczyk [Crypto96], who proved it to be a secure pseudorandom function (PRF), and thus also a MAC,
assuming that (1) f is a PRF and (2) the function we get when cascading f is weakly collision-resistant.”

6In this quotation Bellare uses the word “blackbox” in a non-standard way. Later in his paper he defines
a “blackbox” reduction to be one that is constructible and a “non-blackbox” reduction to be one that is
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“Tightness estimates [in the present paper] are now based on the blackbox version of our
reductions and indicate that our bounds are not as tight as we had thought. The gap has
been filled by Pietrzak [73], who gives blackbox reduction proofs for NMAC that he shows
via matching attack to be tight.”7 A practitioner who reads the abstract and introduction
of [14] but not the technical sections would probably go away believing that PRF-security of
NMAC has been proved to be tightly related to PRF-security of the compression function.
This is false. In fact, it is the opposite of what Pietrzak proved.

What Pietrzak showed in [73, 40] was that the mq tightness gap cannot be reduced in the
general case (although the possibility that better tightness might conceivably be achieved
for a special class of compression functions wasn’t ruled out). He found a simple attack on
NMAC that shows this. This is far from reassuring — it’s what Menezes in [66] called the
“nightmare scenario.” To put it another way, Pietrzak’s attack shows a huge separation in
PRF-security between the compression function and NMAC. The desired interpretation of
a security reduction of the sort in [14], [57] or [40] is that it should tell you that the study
of a certain security property of a complicated protocol is unnecessary if one studies the
corresponding property of a standard primitive. In this case the tightness gap along with
Pietrzak’s attack show that this is not the case.

It is unfortunate that neither of Bellare’s papers [12, 14] discuss the practical implications
of the large tightness gap. It would be interesting to know why he disagrees with the conclu-
sion of Koblitz–Menezes that the tightness gaps and other weaknesses render the security
reductions (proved by them in Theorems 10.1 and Corollary 10.3 of [57]) “questionable at
best” as a source of real-world assurance. In view of Pietrzak’s recent work, which shows
that the tightness gap cannot be removed and reflects an actual attack, it is particularly
puzzling that even the revised paper [14] has nothing to say about the practical implications
of this weakness in the security reductions for HMAC.

We conclude this section with a recommendation. Standards bodies should reexamine
— taking into account tightness gaps — the security of all standardized protocols that use
HMAC for non-MAC purposes such as key derivation or passwords. The same should be
done for HMAC-protocols using hash functions such as MD5 or SHA1 that are not believed
to have weak collision-resistance in the sense of [17].

In some cases adjustments should be made, such as mandating a feature that is currently
optional (such as a nonce or a randomization) in order to prevent known attacks; in other
cases the recommended parameters or choices of hash function may need to be changed in
order to account for the tightness gaps. Protocols that use HMAC as a MAC and use a
collision-resistant hash function do not have to be reexamined, because in that case [17]
has a tight security reduction. (However, in view of the multi-user attacks discussed in
Appendix A, the standards for any protocol that is used in a setting with a large number

non-constructible. However, when comparing a proof as in [12] that uses “coin-fixing” with more recent
proofs that do not, the standard terms are nonuniform/uniform rather than non-blackbox/blackbox.

7The section “Our Contributions” in [40] starts out: “Our first contribution is a simpler, uniform, and
as we will show, basically tight proof for the PRF-security of NMACf assuming only that f is a PRF.” The
authors apparently meant to say that their tightness gap is best possible, i.e., cannot be improved. Their
proof is not tight, however — far from it. Their tightness gap is nq, essentially the same as in Corollary 10.3
of [57].
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of users should be modified if necessary to account for the multi-user/single-user tightness
gap.)

6. Lattice-Based Quantum-Safe Crypto

The reason for intense interest in lattice-based cryptography can be traced back to the
early years of public key, when Merkle–Hellman proposed the knapsack public-key encryp-
tion system. It aroused a lot of interest both because of its superior efficiency (compared to
RSA) and the supposedly high level of confidence in its security, since it was based on an
NP-hard problem. Within a few years Shamir, Brickell and others completely broke both
the original knapsack and modified versions of it. It turned out that the knapsack was based
on an easy subproblem of the NP-hard subset sum problem, not on hard instances. This
was a traumatic experience for researchers in the nascent field of public-key cryptography.
The lesson learned was that it would be good to base systems on hardness of a problem for
which the average case is provably equivalent to the hardest case (possibly of a different
problem).

There was a lot of excitement (even in the popular press) when Ajtai–Dwork announced a
lattice-based encryption scheme based on such a problem [2, 3]. Since that time much of the
motivation for working on lattice-based systems (especially now that standards bodies are
looking for quantum-safe cryptographic protocols that have provable security guarantees)
is that many of them can be proved to have worst-case/average-case equivalence. In this
section we shall look at these proofs from the standpoint of tightness.

First, though, it is important to recognize that equivalence between average and worst
cases is not the Holy Grail for cryptographers that some might think. As Dan Bernstein
has noted (quoted in [43]), long before Ajtai-Dwork we had discrete-log cryptosystems
over characteristic-two fields. For each k the discrete log problem (DLP) in the group F

∗
2k

is random self-reducible, meaning that instances can be randomized. This gives a tight
equivalence between hardest instances and average instances. However, the DLP in those
groups has long been known to be weaker than the DLP in the multiplicative group of
prime-order fields [30], and recently it was completely broken [9].

Meanwhile the general DLP in the multiplicative group of prime fields F∗
p does not have

this nice self-reducibility property, since for a given bitlength of p one has vastly different
levels of difficulty of the DLP. Yet as far as we know these groups are secure for suitably
chosen p of bitlength > 1024.

6.1. Lattices. A (full rank) lattice L in R
n is the set of all integer linear combinations of n

linearly independent vectors B = {v1, v2, . . . , vn}. The set B is called a basis of L, and the
dimension of L is n. If the vi are in Z

n, then L is said to be an integer lattice; all lattices
in this section are integer lattices. The length of a vector is its Euclidean norm. For each
1 ≤ i ≤ n, the ith successive minimum λi(L) is the smallest real number r such that L has
i linearly independent vectors the longest of which has length r. Thus, λ1(L) is the length
of a shortest nonzero vector in L.

6.2. Lattice problems. Let L be an n-dimensional lattice. When we say that we are
“given a lattice” L, we mean that we are given some arbitrary basis for L.
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A well-studied lattice problem is the Shortest Vector Problem (SVP): Given L, find
a lattice vector of length λ1(L). The SVP problem is NP-hard. The fastest classical

algorithms known for solving it have provable running time 2n+o(n) [1] and heuristic running

time 20.337n+o(n) [63]. The fastest quantum algorithm known for solving SVP has heuristic

running time 20.286n+o(n) [63]. More generally, one can consider the Approximate-SVP
Problem (SVPγ), which is the problem of finding a nonzero lattice vector of length at most

γ ·λ1(L). If γ >
√
n, then SVPγ is unlikely to be NP-hard [41]. In fact, if γ > 2n log lgn/ logn,

then SVPγ can be solved in polynomial time using the LLL algorithm. For γ = 2k, the

fastest algorithm known for SVPγ has running time 2Θ̃(n/k), where the Θ̃ term hides a
constant factor and a factor of a power of log n (see [72]).

A related problem to SVPγ is the Approximate Shortest Independent Vectors Problem
(SIVPγ): Given L, find n linearly independent lattice vectors all of which have length at
most γ · λn(L). The hardness of SIVPγ is similar to that of SVPγ [21]; in fact, SIVP√

nγ

polynomial-time reduces to SVPγ [67].

6.3. Learning with errors. The Learning With Errors (LWE) problem was introduced
by Regev in 2005 [74]. The LWE problem and the related R-LWE problem (see [65]) have
been extensively used to design many cryptographic protocols including public-key encryp-
tion, identity-based encryption, and fully homomorphic encryption. Public-key encryption
schemes based on LWE (and R-LWE) are also attractive because no quantum algorithms
for solving LWE are known that perform better than the fastest known classical algorithms.
Thus, LWE-based public-key encryption schemes are viable candidates for post-quantum
cryptography.

Let q = q(n) and m = m(n) be integers, and let α = α(n) ∈ (0, 1) be such that
αq > 2

√
n. Let χ be the probability distribution on Zq obtained by sampling from a

Gaussian distribution with mean 0 and variance α2/2π, and then multiplying by q and
rounding to the closest integer modulo q; for more details see [74]. Then the (search
version of the) LWE problem is the following: Let s be a secret vector selected uniformly at
random from Z

n
q . Given m samples (ai, ai · s+ ei), where each ai is selected independently

and uniformly at random from Z
n
q , and where each ei is selected independently from Z

n
q

according to χ, determine s. Intuitively, in LWE you are asked to solve a linear system
modulo q, except that the constants on the right of the system are given to you with random
errors according to a Gaussian distribution.

The decisional version of LWE, called DLWE, asks us to determine whether we have been
given m LWE samples (ai, ai ·s+ei) or m random samples (ai, ui), where each ui is selected
independently and uniformly at random from Zq.

6.4. Regev’s reduction. Regev [74] proved the following remarkable result8

Theorem 1. If there exists an efficient algorithm that solves DLWE (in the average case),
then there exists an efficient quantum algorithm that solves SIVPγ in the worst case where

γ = Õ(n/α).

8Regev’s theorem can also be stated with the GapSVPγ problem instead of SIVPγ . Given an n-
dimensional lattice L and a number r > 0, GapSVPγ requires that one output “yes” if λ1(L) ≤ r and
“no” if λ1(L) > γr (either “yes” or “no” is allowed if r < λ1 ≤ γr).
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Suppose now that a lattice-based cryptosystem has been designed with a reductionist
security proof with respect to the hardness of average-case DLWE. By Theorem 1, this
cryptosystem also has a reductionist security proof with respect to the hardness of SIVPγ

in the worst case. This is widely interpreted as providing iron-clad assurance for the security
of the cryptosystem since there is compelling evidence that the well-studied SIVPγ problem
is hard in the worst case when γ is small.

However, in the literature there is virtually no discussion of the concrete security assur-
ances that worst-case to average-case results such as Theorem 1 provide for lattice-based
cryptosystems. A closer examination of Theorem 1 reveals several obstacles to using it
to obtain concrete security assurances for DLWE-based cryptosystems. We list five such
difficulties. Whereas the first and second are widely acknowledged in the literature, there
is scant mention of the remaining three difficulties.

(1) One needs to assess the hardness of SIVPγ under quantum attacks and not just
under attacks on classical computers.

(2) For parameters n, q and α that arise in DLWE-based cryptosystems, the SIVPγ

problem is likely not NP-hard. Thus, the evidence for worst-case hardness of SIVPγ

instances that arise in lattice-based cryptography is not as compelling as the evi-
dence for the worst-case hardness of an NP-hard problem.

(3) Very little work has been done on concretely assessing the hardness of SIVPγ . As

mentioned in §6.2, the fastest attack on SIVPγ where γ = 2k has running time

2Θ̃(n/k); however this expression for the running time is far from concrete.
(4) The statement of Theorem 1 uses “efficient” to mean “polynomial time in n”. How-

ever, the exact tightness gap in the reduction of worst-case SIVPγ to average-case
DLWE has to the best of our knowledge never been stated.

(5) A more precise formulation of DLWE involves several parameters including the
number of available samples and the adversary’s advantage in distinguishing between
LWE and random samples. These parameters are chosen based on the security needs
of the DLWE-based cryptosystem. However, there is virtually no discussion in the
literature of concrete values for these parameters. All the reductionist security
claims that we examined for DLWE-based cryptosystems are stated in asymptotic
terms and make liberal use of the phrases “polynomial time,” “polynomial number,”
and “non-negligible.”

§6.5 elaborates on (4) and (5).

6.5. Analysis of Regev’s reduction. A careful examination of Regev’s proof of Theo-
rem 1 reveals the following refined statement. For concreteness, we will take q = n2 and
α = 1/(

√
n log2 n), whence γ = Õ(n1.5); these are the parameters proposed by Regev for

his DLWE-based public-key encryption scheme [74]. Suppose that there is an algorithm W1

that, given m = nc samples, solves DLWE for a fraction 1/nd1 of all s ∈ Z
n
q with advantage

at least 1/nd2 . Then there is a polynomial-time algorithm W2 for solving SIVPγ that calls
the W1 oracle a total of

(1) O(n11+c+d1+2d2)

times. The tightness gap is thus O(n11+c+d1+2d2). While this is polynomial in n, it can be
massive for concrete values of n, c, d1 and d2.
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Suppose, for example, that one takes n = 1024 (n = 1024 is used in [5, 26] for imple-
mentations of an R-LWE based cryptosystem). In a DLWE-based encryption scheme such
as Regev’s [74], the public key is a collection of m = n1+ǫ LWE samples and the secret
key is s; for simplicity we take m = n whence c = 1. The encryption scheme is considered
to be insecure if an attacker can distinguish between encryptions of 0 and 1 with advan-
tage at least 1/nd for some d > 0 depending on the security parameter. This advantage
is assessed over choices of public-private key pairs and the randomness in the encryption
algorithm. Regev showed that such an adversary can be used to solve DLWE for a fraction
1/4nd of all s ∈ Z

n
q with advantage at least 1/8nd; thus d1 ≈ d and d2 ≈ d. If one is

aiming for the 128-bit security level, then a reasonable choice for d might be 12.8. Then,
ignoring the hidden constant in the expression (1), the tightness gap is n50.4 ≈ 2504. Thus,
if average-case DLWE can be solved in time T , then Theorem 1 shows that SIVPγ can be
solved by a quantum algorithm in time 2504T . As mentioned above, the fastest quantum
algorithm known for solving SVP has running time 20.286n+o(n). If we assume that this is
also the fastest quantum algorithm for solving SIVPγ and ignore the o(n) term in the expo-
nent, then the algorithm has running time approximately 2293 ≪ 2504T . Thus, Theorem 1
provides no assurances whatsoever for the hardness of average-case DLWE or for the secu-
rity of the encryption scheme. In other words, even though Theorem 1 is viewed by many
as providing “powerful qualitative indicators of security” (in the words of the anonymous
reviewer quoted in §1), the quantitative security assurance it provides is vacuous.

Remark 7. The condition αq > 2
√
n is needed for Regev’s proof of Theorem 1 to go

through. It was later discovered that this condition is indeed necessary for security. In 2011,
Arora and Ge [7] showed that if αq = nt, where t < 1/2 is a constant and q ≫ n2t log2 n,

then there is a subexponential 2Õ(n2t) algorithm that solves LWE. This attack is touted as a
demonstration of the importance of security proofs — Theorem 1 anticipated the Arora-Ge
attack which was discovered 6 years after Theorem 1 was proven. In the same vein, one can
wonder about the large tightness gap in Theorem 1. One needs to ask: Is the tightness gap
anticipating yet-to-be-discovered algorithms for solving DLWE that are considerably faster
than the fastest algorithms for solving SIVPn1.5? The answer to this question has major
consequences for the security of DLWE-based protocols.

On the other hand, if one were to select a larger value for n while still targeting the
128-bit security level, then the large tightness gap in (1) might not be a concern if there is a
very large safety margin — large enough so that the fastest quantum algorithm for solving
the corresponding SIVPγ is believed to have running time 2k for k ≫ 128. While this
necessitates selecting a larger value of n, the impact on the cryptosystem’s performance
might not be too large. Thus, there remains the possibility that Theorem 1 can indeed
provide meaningful security assurances for DLWE-based cryptosystems in practice. In order
for this to occur, the following problems should be further investigated:

(1) Determine concrete lower bounds for the worst-case quantum hardness of SIVPγ in
terms of n and γ.

(2) Determine whether the tightness gap in Regev’s worst-case to average-case reduction
(see the estimate (1)) can be improved.

(3) Determine appropriate values of c, d1 and d2.
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(4) Assess the tightness gap in the reductionist security proof for the cryptosystem (with
respect to average-case DLWE).

Similarly, it would be very worthwhile to assess whether the analogue of Theorem 1 for
the R-LWE problem provides any meaningful assurances for cryptosystems based on R-
LWE using parameters that have been proposed in recent work [70, 4, 26, 5]. We note that
the worst-case to average-case reduction for R-LWE [65] is with respect to SVPγ in so-called
ideal lattices (that is, lattices that come from ideals in rings). Deriving concrete bounds on
the hardness of SVPγ for these lattices is more challenging than deriving concrete bounds
on the hardness of SIVPγ for arbitrary lattices.

Remark 8. NTRU is a lattice-based public-key encryption scheme that was first presented
in 1996 (see [47, 46]) and has been standardized by several accredited organizations in-
cluding ANSI [6] and IEEE [48]. NTRU uses lattices that arise from certain polynomial
rings. The algebraic structure of these lattices facilitate implementations that are signifi-
cantly faster than public-key encryption schemes based on LWE and R-LWE. Despite its
longevity, NTRU is routinely disparaged in the theoretical cryptography literature because,
unlike the case of public-key encryption schemes based on LWE or R-LWE (including some
variants of NTRU that were proposed more recently [78]), there are no worst-case to average-
case reductions to support the security of its underlying lattice problems. However, as we
have noted, whether or not these asymptotic worst-case to average-case reductions provide
meaningful concrete security assurances is far from being understood. Thus, the claim that
the more recent lattice-based encryption schemes have better security than classical NTRU
rests on a flimsy scientific foundation.

In [71] Peikert writes

...worst-case reductions give a hard-and-fast guarantee that the cryptosys-
tem is at least as hard to break as the hardest instances of some underlying
problem. This gives a true lower bound on security, and prevents the kind
of unexpected weaknesses that have so often been exposed in schemes that
lack such reductions.

This would be true if the reductions were tight and if the underlying problem were SIVPγ

for a small γ (small enough so that SIVPγ is NP-hard or so that there is reason to have
confidence that there are no efficient algorithms for SIVPγ). However, neither is the case.

7. Tightness in Identity-Based Encryption

By way of counterpoint to the main theme of this paper — the potential dangers in
ignoring tightness gaps in security reductions — we now discuss the case of Boneh-Franklin
Identity-Based Encryption (IBE), where a large tightness gap is, we believe, of no concern.
The evidence for this belief is that an informal (but convincing) argument allows one to
reduce to the case where the adversary is not allowed any key-extraction queries.

An identity-based encryption scheme offers the flexibility of using any string — in par-
ticular, the identity of an individual or entity — as a public key. There is an authority
called the Private Key Generator which publishes its own public parameters, including a
public key, and maintains a master secret key. To obtain a decryption key corresponding
to her identity, a user in the system applies to the Private Key Generator, which performs
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appropriate checks (possibly including physical checks) to ascertain the identity. Then the
Private Key Generator uses its public parameters and master secret key to generate the
decryption key corresponding to the identity. This decryption key is transmitted to the
user through a secure channel. Anybody who wishes to securely send a message uses the
identity of the recipient and the public parameters to perform the encryption. The recipient
can decrypt using her decryption key.

Security of an IBE scheme is modeled using a game between a simulator and an adver-
sary [24]. The game models security against an attack by a set of colluding users attempting
to decrypt a ciphertext intended for a user outside the set.

In the initial phase, the simulator sets up an instance of the scheme based on the security
parameter. The simulator generates the public parameters, which are given to the adversary,
and the master secret key. The adversary is allowed to adaptively make key-extraction
queries to the simulator, who must provide the decryption keys corresponding to identities
of the adversary’s choosing. At some point, the adversary provides the simulator with
an identity id

⋆ (called the target identity) and two messages M0 and M1 of equal length.
The simulator randomly chooses a bit b and provides the adversary with C⋆, which is an
encryption ofMb for the identity id

⋆. The adversary continues making key-extraction queries
in an adaptive manner. Finally, the adversary outputs its guess b′; its advantage in winning
the game is defined to be |Pr[b = b′] − 1/2|. The adversary may not make more than one
key-extraction query for the same id; and of course it must not have queried the simulator
for the decryption key of id⋆, as otherwise the game becomes trivial to win. The adversary’s
resources are measured by the time that it takes and the number of key-extraction queries
that it makes.

The model that we have described provides what is called IND-ID-CPA security (indis-
tinguishability for ID-based encryption under key-extraction9 attack). This model does not
allow the adversary to make decryption queries. The model where such queries are also
allowed is said to provide IND-ID-CCA (chosen ciphertext) security.

The first efficient IBE construction is due to Boneh and Franklin [24]. Their scheme —
and in fact all subsequent efficient IBE constructions — uses bilinear pairings. A (symmet-
ric) bilinear pairing is a map e : G×G → GT , where G = 〈P 〉 and GT are groups of some
prime order p, that satisfies the following conditions: e(aP, bP ) = e(P, P )ab, e(P, P ) 6= 1,
and e is efficiently computable. Practical bilinear pairings are obtained from elliptic curves
where G is a subgroup of points on an appropriately chosen elliptic curve and GT is a
subgroup of the multiplicative group of a finite field.

Identity-based encryption schemes are proved secure under various computational hard-
ness assumptions. We mention the basic bilinear Diffie-Hellman (BDH) assumption and
two of its derivatives. The bilinear Diffie-Hellman (BDH) assumption is that computing
e(P, P )abc given (P, aP, bP, cP ) is infeasible. The decisional bilinear Diffie-Hellman (DBDH)
assumption is that distinguishing between the distributions (P, aP, bP, cP, e(P, P )abc) and
(P, aP, bP, cP, e(P, P )z), where a, b, c and z are independent and uniform random choices
from Zp, is infeasible. The gap bilinear Diffie-Hellman (GBDH) assumption is that com-

puting e(P, P )abc given (P, aP, bP, cP ) and access to a DBDH oracle is infeasible.

9In the IBE setting “CP” does not stand for chosen plaintext but rather for clave pedida, which means
“requested key” in Spanish.
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We now briefly describe the basic Boneh-Franklin IBE scheme. The Private Key Genera-
tor sets up the scheme by selecting a generator P of the group G; choosing a random s from
Zp and setting Q = sP ; and selecting two hash functions H1 : {0, 1}∗ → G, H2 : GT →
{0, 1}n. The public parameters are (P,Q,H1, H2) while the master secret key is s. Given
an identity id ∈ {0, 1}∗, let Qid = H1(id); the decryption key is defined to be did = sQid.
Encryption of an n-bit message M for the user with identity id is done by first choosing a
random r in Zp and then computing the ciphertext (C1, C2) = (rP,M ⊕ H2(e(Q,Qid)

r)).
Decryption is made possible from the relation e(Q,Qid)

r = e(rP, did).
Note that the basic Boneh-Franklin scheme does not provide chosen-ciphertext security,

because the message occurs in the ciphertext only in the last XOR step. This means that a
plaintext M can be determined from its ciphertext (C1, C2) by asking for the decryption of
the ciphertext (C1, C

′
2), where C ′

2 is C2 with the first bit flipped. One can, however, obtain
IND-ID-CPA security results for the basic Boneh-Franklin scheme under the assumption
that H1 and H2 are random oracles.

Using the Fujisaki-Okamoto transformation [36], the basic Boneh-Franklin IBE scheme
can be converted into a scheme, called FullIdent (see [24]), that provides IND-ID-CCA
security. To get FullIdent the basic scheme is modified as follows. First, a random ρ ∈
{0, 1}n is chosen and r is set equal to H3(ρ,M), where H3 is a hash function that maps
bitstrings to integers mod p; we then define C1 = rP as before. The second component C2 of
the ciphertext is defined by C2 = ρ⊕H2(e(Q,Qid)

r) (that is, the hash value is XORed with
ρ rather than with M), and we also need a third component C3 defined by C3 = M⊕H4(ρ),
where H4 is a hash function that maps {0, 1}n to {0, 1}n. The decryption proceeds by first
computing ρ = C2 ⊕H2(e(C1, did)) and then M = C3 ⊕H4(ρ). But the decryption rejects
the ciphertext unless it is validated by checking that H3(ρ,M)P = C1. This last check is
very important, since it prevents an adversary from generating a valid ciphertext for an
unknown message M .

Boneh and Franklin [24] argued for the IND-ID-CCA security of their construction using
a three stage reduction based on BDH; the reduction turned out to be flawed. Galindo [38]
provided a corrected reduction which resulted in a tightness gap of q3H , where qH is the
maximum number of queries made to any of the random oracles H1, H2, H3 or H4. Zhang
and Imai [81] provided a direct reduction based on the same BDH assumption with a
tightness gap of qD · qE · qH , where qD bounds the number of decryption queries and qE
bounds the number of key-extraction queries made by the adversary.10 The tightness gap
can be reduced to qE · qH by making the following change to the simulation of the H3

random oracle in the proof of Theorem 1 in [81]: when the simulator responds to a query
(σi,Mi) with ri, it stores g

ri in addition to (σi,Mi, ri) in its “H3-list” (here we’re using the
notation of the proof in [81] rather than our own notation, in which σ would be ρ and gr

would be rP ). With this change, the simulator can respond to all qD decryption queries
in time qD instead of qD · qH (we are ignoring the time to sort and search the H3-list). As
a result, the lower bound for the BDH-time now has order equal to the sum of the query
bounds qD + qH2

+ qH4
+ qE , which is essentially the adversary’s running time. In other

words, in this way we can remove the tightness gap in the running times, and we’re left

10In Table 1 of [81], Zhang and Imai claim that their security reduction has a tightness gap of qE · qH ;
this assertion is repeated in Table 4 of [8]. However, they neglected to account for the tightness gap arising
from the running times in Theorem 1 of their paper.
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with the tightness gap qE · qH2
that comes from the success probabilities in Theorem 1 of

[81].
As noted in [8], the tightness gap reduces further to qE if one is willing to base the security

on the presumably stronger DBDH or GBDH assumptions. In practice, the hash functions
in the IBE constructions are publicly known functions. Thus, the number of queries made
to these functions by the adversary can be quite high — qH could be 264 or even 280 for
powerful adversaries. The number of key-extraction queries qE , on the other hand, will be
lower.

An informal argument can be used to show why the tightness gaps in the reductions
for Boneh-Franklin IBE are inconsequential for real-world security. Namely, we claim that
key-extraction queries give no useful information to the adversary, and so without loss of
generality we may take qE = 0; in that case, as mentioned above, there is a tight reduction
based on the DBDH or GBDH assumption. Recall that in response to a queried id, the
Private Key Generator returns Qid = H1(id), where H1 is a random oracle, and did = sQid.
This can be simulated by the adversary itself, who chooses k mod p at random and sets
Qid = kP and did = kQ. Note that this does not give a valid formal reduction from the case
when qE > 0 to the case when qE = 0, because the adversary does not get the “true” key
pair of the user, whose public point is produced by the random oracle H1. However, it is
hard to conceive of any difference this could possibly make in the adversary’s effectiveness
against the IND-ID-CCA security of FullIdent.

Remark 9. In §3.1 of [56] Koblitz and Menezes made an analogous informal argument in
order to conclude that the tightness gap in the security reduction for RSA Full Domain
Hash should not be a cause of concern. These examples show, as remarked in [55], that
“whether or not a cryptographic protocol lends itself to a tight security reduction argument
is not necessarily related to the true security of the protocol.... the question of how to
interpret a nontight reductionist security argument has no easy answer.”

8. Conclusion

Reductionist arguments can contribute to our understanding of the real-world security
of a protocol by providing an ironclad guarantee that certain types of attacks are infeasible
as long as certain hardness assumptions remain valid. However, even this limited kind of
assurance may, as we have seen, turn out to be meaningless in practice if the reduction is
nontight and the parameters have not been increased to account for the tightness gap. In
order to properly evaluate provable security claims, one needs to study the tightness issue.
In this paper we have given examples of the type of analysis of tightness that should be
performed, but much work remains to be done. Among the open problems are the following:

(1) Examine all uses of complexity leveraging to see whether or not the concrete adaptive
security results are meaningful.

(2) Evaluate the effect on the required parameter sizes of nontightness in security proofs
for HMAC and adjust standards accordingly, particularly in applications that re-
quire the pseudorandom function property; also study whether or not the commonly
used hash compression functions are likely to satisfy the PRF-assumption.

(3) Carefully evaluate all lattice-based protocols that have worst-case-to-average-case
reductions to see what concrete bounds, if any, follow from these reductions.
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(4) For protocols whose security reductions lose tightness in the multi-user setting or the
multi-challenge setting (or both), determine how parameter sizes should be increased
to account for this.
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Appendix A. Nontightness and Multi-User Attacks

In an important paper that has been all but ignored by the cryptographic research com-
munity, Zaverucha [80] showed that “provably secure” hybrid encryption, as described in
several standards, is insecure in the multi-user setting if certain permitted (and even recom-
mended) choices are made in the implementation. Because this work should be much better
known than it is, we shall devote this section to explaining and summarizing [80]. We shall
focus on hybrid encryption schemes in the comprehensive ISO/IEC 18033-2 standard [77].

We first recall the definition in [16] of IND-CCA security (Indistinguishability under
Chosen-Ciphertext Attack) of encryption in the multi-user setting. Suppose there are n
users. The adversary is given n public keys, a decryption oracle for each public key, and
an LR (left-or-right encryption) oracle for each public key. The adversary can query each
decryption oracle up to qd times and each LR oracle up to qLR times. A decryption query
simply asks for a chosen ciphertext to be decrypted under the corresponding public key. An
LR query works differently. The n LR-oracles all have a hidden random bit b in common.
The adversary chooses two equal-length messages M0 and M1 to query to one of the LR-
oracles, which then returns an encryption C∗ of Mb. The adversary is not permitted to
query C∗ to the decryption oracle for the same public key. The adversary’s task is to guess
b with success probability significantly greater than 1/2.

Remark 10. This “multi-challenge” security model (that is, qLR > 1) can also be used
in the single-user setting, but almost never is ([22] is a rare exception); in the standard
IND-CCA security model qLR = 1. We shall later give a simple attack that shows that the
standard IND-CCA is deficient and should be replaced by the multi-challenge model.

Remark 11. In [16] the authors give a generic reduction with tightness gap n ·qLR between
the multi-user and single-user settings. In the full version of [16] they also give a construction
that shows that this tightness bound is optimal; that is, they describe a protocol that can
be attacked with nq̇LR times the advantage in the multi-user setting than in the single-
challenge single-user setting. Their construction is contrived and impractical; later we shall
describe a simple attack on hybrid encryption that shows that in practice as well as in theory
the generic tightness bound in [16] is best possible. That is, the attack described below
reduces security by a factor equal to n times the number of messages sent to each user (see
Remark 13). (In specific cases tighter reductions are sometimes possible — for example,
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the paper [16] contains a reduction with tightness gap qLR in the case of the Cramer–Shoup
public-key encryption scheme [31].)

We now recall the setup and terminology of hybrid encryption. The encryption has two
stages: a key-encapsulation mechanism (KEM) using a public-key cryptosystem (with the
recipient’s public/secret key pair denoted PK/SK), and a data-encapsulation mechanism
(DEM) using a symmetric-key cryptosystem that encrypts the data by means of the shared
key K that is produced by the KEM. The KEM takes PK as input and produces both the
key material K by means of a key-derivation function (KDF) and also a ciphertext C1 that
will enable the recipient to compute K; the DEM takes K and the message M as input and
produces a ciphertext C2. The recipient decrypts by first using C1 and SK to find K and
then using C2 and the symmetric key K to find M .

Among the public-key systems commonly used for KEM are Cramer-Shoup [31] and
ECIES (ElGamal encryption using elliptic curves, see [77]); symmetric-key systems com-
monly used for DEM are AES in cipher block chaining (CBC) mode and XOR-Encrypt
using a hash function with a counter. (We will describe this in more detail shortly.) The
KDF is a publicly known way to produce key material of a desired length L from a shared
secret that’s computed using the public-key system.

Suppose, following [77], that we use 128-bit AES in CBC-mode with zero initializing
vector for DEM. Let MAC denote a message authentication code that depends on a 128-bit
key. Our KDF produces two 128-bit keys K = (k1, k2). To send a 128m-bit message M ,
we set C2 equal to a pair (C ′, t), where C ′ is the 128m-bit ciphertext computed below and
t =MACk2(C

′) is its tag. The ciphertext C ′ = (C ′
1, . . . , C

′
m) is given by: C ′

1 =AESk1(M1),
C ′
i =AESk1(C

′
i−1 ⊕Mi) for i = 2, . . . ,m.

After receiving (C1, C2) = (C1, C
′, t), the recipient first uses C1, SK, and the KDF to find

(k1, k2), and then uses the shared key k2 to verify that t is in fact the tag of C ′; otherwise
she rejects the message. Then she decrypts using k1.

Alternatively, for DEM we could use XOR-Encrypt with a hash function H as follows.
To send a message M consisting of m 256-bit blocks, we have the KDF generate a 256m-bit
key k1 = (k1,1, . . . , k1,m) by setting k1,i = H(z0‖i), where z0 is a shared secret produced by
KEM, and also a MAC-ing key k2. The MAC works as before, but now C ′ is determined
by setting C ′

i = Mi ⊕ k1,i. This is the hash function with counter (CTR) mode mentioned
above.

In [32] Cramer and Shoup gave a tight proof that hybrid encryption has IND-CCA
security under quite weak assumptions. The MAC-scheme need only be “one-time secure”
(because it receives a new key k2 for each message), and the symmetric encryption function
need only be one-time secure against passive adversaries — in particular, there is no need for
randomization (again the reason is that it gets a new key k1 for each message). In accordance
with the general principle that standards should not require extra features that are not
needed in the security reductions, the standards for hybrid encryption [77] do not require
randomization in the symmetric encryption; nor do they impose very stringent conditions
on the KDF. In addition, in [77] Shoup comments that if KEM is implemented using the
Cramer–Shoup construction [31], which has a security proof without random oracles, and if
DEM is implemented using AES-CBC, then it is possible to prove a tight security reduction
for the hybrid encryption scheme without the random oracle assumption. Thus, anyone
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who mistrusts random oracle proofs should use AES-CBC rather than XOR-Encrypt. All
of these security proofs are given in the single-user setting.

A.1. Attacks in the multi-user setting. We now describe some of the attacks of Za-
verucha [80] in the multi-user setting, which of course is the most common setting in prac-
tice. Let n = 2a be the number of users. First suppose that the DEM is implemented using
AES128 in CBC-mode. Suppose that Bob sends all of the users messages that all have the
same first two blocks (M1,M2) (that is, they start with the same 256-bit header). The rest
of the message blocks may be the same (i.e., broadcast encryption), or they may be differ-
ent. The adversary Cynthia’s goal is to read at least one of the 2a messages. She guesses a
key k that she hopes is the k1-key for one of the messages. She computes C ′′

1 =AESk(M1)
and C ′′

2 =AESk(C
′′
1 ⊕M2) and compares the pair (C ′′

1 , C
′′
2 ) with the first two blocks of ci-

phertext sent to the different users. If there’s a match, then it is almost certain that she
has guessed the key k1 = k for the corresponding message. That is because there are 2128

possible keys k1 and 2256 possible pairs (C ′
1, C

′
2), so it is highly unlikely that distinct keys

would give the same (C ′
1, C

′
2). Once Cynthia knows k1 — each guess has a 2−(128−a) chance

of producing a match — she can quickly compute the rest of the plaintext. This means
that even though the hybrid encryption scheme might have a tight security reduction in
the single-user setting that proves 128 bits of security, in the multi-user setting it has only
128 − a bits of security. Commenting on how dropping randomization in DEM made his
attack possible, Zaverucha [80] calls this “an example of a provable security analysis leading
to decreased practical security.”

Remark 12. In modern cryptography — ever since the seminal Goldwasser-Micali paper
[44] — it has been assumed that encryption must always be probabilistic. In [77] this
principle is violated in the interest of greater efficiency because the security proof in [32]
does not require randomization. This decision was bold, but also rash, as Zaverucha’s attack
shows.

Remark 13. The above attack can also be carried out in the single-user setting if we
suppose that Bob is sending Alice 2a

′

different messages that all have the same header
(M1,M2). Since different keys are generated for different messages (even to the same user),
there is no need for the recipients of the messages to be different. This gives a reduction
of the number of bits of security by a′. This attack shows the need for the multi-challenge
security model even in the single-user setting. Thus, even in the single-user setting the
standard security model for encryption is deficient because it fails to account for the very
realistic possibility that Bob uses hybrid encryption as standardized in [77] to send Alice
many messages that have the same header.

Remark 14. Note that if the 2a
′

messages are broadcast to 2a users, then obviously the
reduction in security is by a′+a bits. In some circumstances a′+a could be large enough to
reduce the security well below acceptable levels. For example, if a′ + a > 32, it follows that
what was thought to have 128 bits of security now has fewer than 96, which, as remarked
in §1, is not enough. It should be emphasized that the security is reduced because of actual
practical attacks, not because of a tightness gap that could conceivably be removed if one
finds a different proof.
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We note that the above attack does not in general work if DEM is implemented using
XOR-Encrypt. (Of course, someone who does not trust security proofs that use random
oracles would not be using XOR-Encrypt, and so would be vulnerable.) But Zaverucha
has a different attack on hybrid encryption with XOR-Encrypt that works for certain KDF
constructions.

A.2. Attacks on Extract-then-Expand with XOR-Encrypt. The most commonly
used KDF takes the shared secret z0 produced in KEM and derives a key of the desired
length by concatenating H(z0‖i) for i = 1, . . .. However, at Crypto 2010, as Zaverucha [80]
explains,

Krawczyk argues that cryptographic applications should move to a single,
well-studied, rigorously analyzed family of KDFs. To this end, he formally
defines security for KDFs, presents a general construction that uses any
keyed pseudorandom function (PRF), and proves the security of his con-
struction in the new model. The approach espoused by the construction is
called extract-then-expand. [...] The HKDF scheme is a concrete instanti-
ation of this general construction when HMAC is used for both extraction
and expansion.

The Extract-then-Expand key derivation mechanism was soon standardized [28, 29] and
[61]. In particular, RFC 5869 describes HKDF, which instantiates the Extract-then-Expand
mechanism with HMAC, and states that HKDF is intended for use in a variety of KDF
applications including hybrid encryption.

Extract-then-Expand works in hybrid encryption as follows. Suppose that z0 is the
shared secret produced in KEM. The Extract phase produces a bitstring z1 = Extract(z0),
perhaps of only 128 bits, which is much shorter than z0. (The Extract phase may also
depend on a “salt,” but this is optional, and we shall omit it.) Then the key material K is
obtained by a function that expands z1, i.e., K = Expand(z1, L), where L as before is the
bitlength of K. (There is also the option of putting some contextual information inside the
Expand-function, but we shall not do this.)

We now describe Zaverucha’s attack on hybrid encryption when Extract-then-Expand
with 128-bit z1 values is used as the KDF and XOR-Encrypt is used for message encryption.
Suppose that Bob sends messages to 2a users that all have the same header (M1,M2)
and the same bitlength L. Cynthia’s goal is to recover at least one of the plaintexts.
Rather than guessing a key, she now guesses the bitstring z1. For each guess she computes
K =Expand(z1, L) and C ′′

i = Mi⊕k1,i, i = 1, 2. When she gets a match with (C ′
1, C

′
2) for one

of the users, she can then recover the rest of the plaintext sent to that user: Mi = C ′
i ⊕ k1,i,

i > 2.
Note that this attack does not work for XOR-Encrypt with the KDF using H(z0‖i)

described above. Once again the “provably secure” choice of Extract-then-Expand turns
out to be vulnerable, whereas the traditional choice of KDF is not. Zaverucha comments
that “In this example, replacing a commonly used KDF in favor of a provably secure one
causes a decrease in practical security.”

As discussed in [80], Zaverucha’s attacks can be avoided in practice by putting in features
that are not required in the standard single-user single-challenge security proofs. It would
be worthwhile to give proofs of this.
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Open problem. Give a tight security reduction for hybrid encryption in the multi-user
multi-challenge security model (random oracles are permitted) if DEM uses either: (1) ran-
domized encryption rather than one-time-secure encryption (for example, AES-CBC with
random IV that is different for each message and each recipient), (2) XOR-Encrypt us-
ing H(z0‖i) for the KDF, (3) XOR-Encrypt using HKDF with a recipient- and message-
dependent salt in the Extract phase and/or recipient- and message-dependent contextual
information in the Expand phase.

We conclude this section by noting a curious irony. As we remarked in §1, it is very rare
for a standards body to pay much attention to tightness gaps in the security reductions
that are used to support a proposed standard or to whether those security reductions were
proved in the multi-user or single-user setting. However, recently the IETF decided that the
standard for Schnorr signatures [76] should require that the public key be included in the
hash function. The reason was that Bernstein [20] had found a flaw in the tight reduction
from an adversary in the single-user setting to an adversary in the multi-user setting that
had been given by Galbraith, Malone-Lee, and Smart [37], and he had proved that a tight
security reduction could be restored if the public key is included in the hash function. (Later
Kiltz, Masny, and Pan [50] gave a tight security reduction without needing to include the
public key in the hash function; however, their assumptions are stronger than in [37], and it
is not yet clear whether their result will cause the IETF to go back to dropping the public
key from the hash input.)

The peculiar thing is that the tightness gap between single-user and multi-user settings is
only a small part of the tightness problem for Schnorr signatures. All security proofs for the
Schnorr signature scheme in the single-user setting have enormous tightness gaps, so even
a tight single-user/multi-user equivalence leaves untouched the huge tightness gap between
Schnorr security and hardness of the underlying mathematical problem (the Discrete Log
Problem). It should also be noted that the IETF was responding to the error Bernstein
found in a proof, not to any actual attack that exploited the tightness gap (we now know
that such an attack is probably impossible, because of the recent proof in [50] that under a
certain reasonable assumption there is no single-user/multi-user tightness gap).

In the meantime, standards bodies have done nothing to address Zaverucha’s critique of
the standardized version [77] of hybrid encryption, which allows implementations that have
far less security than previously thought, as shown by actual attacks.
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