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Abstract

We give a new construction of bounded key functional encryption. Our scheme is well suited
for optimization in an online-offline model that allows for preparation in an offline phase, where
a majority of the computation is done before the data becomes available. This is followed by an
efficient online phase, which is performed when the data becomes known. Such a model has been
considered in the context of Attribute-Based Encryption by Hohenberger and Waters (PKC’14).

The online component of our scheme significantly outperforms the best previously known
construction of bounded key functional encryption by Gorbunov, Vaikuntanathan and Wee
(CRYPTO’12), and in fact quasi-linearly depends only on the message size in contrast to the
GVW12 ciphertext, which additionally grows as O(q4) for q queries. Security of our scheme is
based on the Ring LWE assumption, which is comparable to the assumption underlying the
GVW scheme and is well-established compared to those underlying known constructions of
unbounded key functional encryption (based on multilinear maps and/or obfuscation).

To prove security of our scheme, we introduce a new proof technique, which we call noisy
functional encryption. Arguing security via this technique requires the encryptor to artificially
add noise to the decryption equation, providing an intriguing tradeoff between correctness and
security. This technique appears to be quite general and we believe it is likely to have other
applications.
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1 Introduction

Functional encryption (FE) [SW05, SW] generalizes public key encryption to allow fine grained
access control on encrypted data. In functional encryption, a user can be provided with a secret
key corresponding to a function g, denoted by SKg. Given SKg and ciphertext CTx encrypting a
message x, the user may run the decryption procedure to learn the value g(x). Security of the
system guarantees that nothing beyond g(x) can be learned from CTx and SKg.

Recent years have witnessed significant progress towards constructing functional encryption
for advanced functionalities [BF01, Coc01, BW06, BW07, GPV08, CHKP10, ABB10, GPSW06,
BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, GGH+13c, GGH+13b, GVW15]. However,
for the most general notion of functional encryption – one that allows the evaluation of arbitrary
efficiently-computable functions g(x) of the message x, and is secure against general adversaries,
the only known constructions rely on indistinguishability obfuscation [GGH+13b] or alternatively
on certain hardness assumptions on multilinear maps [GGHZ14]. Reliance on such primitives is
in some sense inherent, as full-fledged functional encryption has been recently shown to imply
indistinguishability obfuscation [AJ15, BV15, AJS]. Unfortunately, all known candidate multi-
linear map constructions [GGH13a, CLT13, GGH15] as well as indistinguishability obfuscation
[GGH+13b] have been recently broken [CHL+15, CGH+15, HJ15, CJL, CFL+, MSZ], rendering all
constructions of general FE uninstantiable.

Faced with this state of affairs, it is increasingly important to base constructions of functional
encryption on well understood hardness assumptions. Additionally, as functional encryption gains
in popularity, a significant challenge that lies enroute to making it practical is reducing the costs
of encryption and key generation. One potential way around these obstacles is to focus on weaker
notions of functional encryption which may be amenable to more efficient realizations as well as
based on more well-established hardness assumptions.

1.1 Bounded-Collusion Functional Encryption

Gorbunov, Vaikuntanathan and Wee [GVW12] studied the notion of bounded collusion functional
encryption. In this notion, the size of the ciphertext may depend polynomially on the number q
of function queries. The notion of q bounded FE is very appealing, since in practice it may often
be possible to a-priori upper bound the number of function keys that are released. Indeed, for the
special case of Identity Based Encryption (IBE), the question of designing schemes with bounded
collusions has been considered in a number of works [DKXY02, CHH+07, GLW12].

The [GVW12] construction is ingenious, relying only on public key encryption and leveraging
ideas from multiparty computation (we outline their construction in Section A.1). However, its
encryption algorithm is inherently unsuited to the online-offline model – to encrypt a message x, the
encryptor must secret share it into N = O(q4) shares, and encrypt each one with a one-query FE
scheme. This results in encryption time that degrades as O(q4) after the message becomes available.
As both the size of datasets and the number of queries grows, this blowup can be prohibitive,
rendering the scheme impractical.
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1.2 Online-Offline Cryptography

In recent years, as computation is increasingly moving to small devices such as mobile phones, a
trend for online-offline cryptography has been mounting. At a high level, this model allows for an
expensive preparation or offline phase, where a majority of the computation is done before the
data becomes available. This is followed by an efficient online phase, which is performed when the
data becomes known. As noted by Hohenberger and Waters [HW14], an illustrative motivating
scenario is to consider a mobile device with restrictions on power consumption. In this case, it is
desirable to distribute the computation so that offline computations can be performed when the
device is plugged into a power source and online computations are performed on demand, without
significantly draining the battery.

Examples of online-offline cryptography abound in the literature. The notion of online-offline
cryptography was introduced in the context of signatures, by Even, Goldreich and Micali [EGM89] in
1989, and has been studied extensively since then in the context of various cryptographic primitives.
Examples include signatures [ST01], zero knowledge [CLP13], delegation of computation [CKV10],
attribute based encryption [HW14]. In the context of delegation of computation, a client wishes to
outsource computation of some expensive function f to a server. Here, it is standard to require
the client to do a significant amount of work (proportional to the size of f) in an offline phase
and then do substantially less work in the online phase, hopefully amortizing the initial investment
over several runs. In the context of multiparty computation, this question has received particular
attention. We refer the reader to [Bea95, IPS08, BDOZ11, DPSZ12, IKM+13, LR14] and references
therein.

Another classic primitive studied in this model is garbled circuits [Yao82], or more generally
randomized encodings [IK02, AIK06]. As observed by Applebaum et al. [AIK11], in the setting
where we desire a weak computational device in a field to perform computation on sensitive data, the
only known solution relies on performing an offline phase before the device is sent to the field, and an
efficient online phase conducted on field. In the context of functional encryption related primitives,
offline-online versions have already been considered for identity based encryption [GMC08, LZ09]
and attribute based encryption [HW14].

1.3 Our Results

We give a new construction of bounded key Functional Encryption that is highly suitable for
the online-offline model. The online component of our scheme significantly outperforms the best
previously known construction of bounded key functional encryption by Gorbunov, Vaikuntanathan
and Wee (CRYPTO’12), and in fact quasi-linearly depends only on the message size in contrast to the
GVW12 ciphertext, which additionally grows as O(q4) for q queries. Security is based on the Ring
LWE assumption, which is comparable to the assumption underlying the GVW scheme (they rely
on public key encryption) and is well-established compared to those underlying known constructions
of unbounded key functional encryption (based on multilinear maps and/or obfuscation).

Just as in the GVW scheme, the ciphertext size of our scheme scheme grows with the maximal
circuit size |Cg| of the function g(x) to be evaluated. However, while for GVW the ciphertext size
degrades as O(q4|Cg|), in our scheme the total ciphertext size is O(q2|Cg|). Even more importantly,
the complexity of the online phase in our scheme is O(|x|), where |x| is the size of the plaintext. In
other words, online encryption time is independent of both |Cg| and q. We note that beyond having
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significantly larger ciphertexts than our scheme, the GVW scheme appears to be unamenable for
online-offline optimization (see Section A.1).

As a side comment we mention that for the restricted class of FE for bounded degree polynomials,
our scheme enjoys a local updateability property, namely, if a single element of the plaintext changes,
only a constant number of encryptions have to be updated. However, we lose this property after
bootstrapping to general circuits, since the randomized encodings we rely on are only output local,
and not input local.

Our construction crucially relies on a newly introduced notion of noisy functional encryption.
We provide a new construction for noisy functional encryption for linear functions, secure against q
queries, and use it to obtain a construction of online-offline FE for quadratic forms. The latter is
then carefully extended to FE for bounded degree polynomials using an inductive approach. (While
such a construction could have been obtained in a straightforward way by linearizing the message
and invoking any functional encryption for linear functions, we note that this would violate the
online-offline and local updateability properties.)

1.4 Techniques and Ideas

We proceed to describe the main ideas underlying our construction. In what follows, we assume
familiarity of the reader with the Ring Learning With Errors (RLWE) assumption (refer Section 2
for a refresher). Our construction builds on the dual Regev public key cryptosystem [GPV08, Reg09].
Recall that the ciphertext for a vector x in the dual Regev cryptosystem is given by:

d = w · s+ p · η
c = u · s+ p · µ + x

Here, s,η,µ play the role of randomness, sampled afresh each time by the encryptor, (w, u) are in
the public key and the secret key is a low norm matrix E such that ETw = u.

The starting point of our work is the observation that the Dual Regev ciphertext may be viewed
in the following way. The vector c looks precisely like symmetric key fully homomorphic ciphertexts
of the BV FHE cryptosystem [BV11b] with FHE secret s, and the vector d can be seen as a
randomness carrier for the dual Regev CT. The role of the randomness carrier, as the name suggests,
is to “carry” the randomness s which was used in construction of c, so that given the secret key E,
the term c−ETd results in cancellation of the term u · s.

Thus s plays the role of the the symmetric FHE secret key in c, while also playing the role
randomness in the dual Regev encryption system. This dual view of s raises the following question:
is it possible to compute on c treating it as FHE symmetric key CTs, to obtain an FHE CT for
g(x) for some g, and then switch back to the view of dual Regev encryption and cancel out the
large term using a secret key Eg?

Surprisingly, this idea works in a direct and elegant way for linear functions. It is easy to see that
given a linear function vector g, one may take linear combinations

∑
gici to obtain a symmetric

key ciphertext
cg = gTu · s+ gTµ + 〈g, x〉

Now, the key generator who knows g and the public key u, may compute ug = gTu, sample a
preimage eg such that eT

gw = ug and decrypt the dual Regev ciphertext (w, cg) in the natural way
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to obtain 〈g, x〉. This is the essential idea used in recent constructions of FE for linear functions
[ABCP15, ALS].

The key reason this works for linear functions is that the FHE ciphertext cg is encrypted under
the label ug which is publicly computable. However, extending this idea to beyond linear functions
poses at least two problematic issues, as follows.

1. If we multiply the CTs ci and cj using BV style fully homomorphic encryption [BV11b, BV11a],
the resultant CT is encrypted under a label ug which is not publicly computable. Indeed, the
label ug depends not only on the function g and the public key u but also on the original
ciphertext c which the KeyGen algorithm has no way of knowing.

2. FHE ciphertexts are malleable. In the linear FE scheme described above, even if the attacker
malleates the ciphertext c which encrypts x to a new CT that encrypts x + y, this does
not help him distinguish the challenge ciphertext in the security game. This is because the
key SKg will decrypt the above malleated ciphertext to gT(xb + y) which does not offer any
advantage if gTx0 = gTx1.

However, this is no longer the case for non-linear functions. For example, if an adversary
has a key eij to compute the monomial xixj then it holds that x0[i]x0[j] = x1[i]x1[j] for an
admissible adversary. But now, suppose he could malleate the ciphertext to encrypt x + y
then it may no longer hold that (x0 + y)[i](x0 + y)[j] = (x1 + y)[i](x1 + y)[j].

We address both these issues by providing additional advice – encryptions of ci · s, which enable
the keygen to compute ug that does not depend on the ciphertext, as well as which binds the
ciphertext to the secret key 1, ruling out the malleability attack. We now proceed to describe our
construction.

Through the remainder of the informal discussion, we will focus on FE to compute monomials.
This is without loss of generality, since there already exist constructions for linear FE [ABCP15, ALS]
which can be leveraged to support arbitrary quadratic polynomials once we build FE that can
handle monomials 2. Additionally, the ability to handle multiplication is the primary bottleneck in
the construction of these systems, analogously to FHE. A trivial solution would be to linearize the
polynomail and encrypt each xixj term separately using the Linear FE scheme, but this destroys
the online-offline and local updateability properties of the scheme as we shall see below.

Let us consider the ring LWE based symmetric key FHE scheme of [BV11b]. The main
observation in [BV11b] was that if:

ci = ui · s+ µi + xi

cj = uj · s+ µj + xj

then the decryption equation can be written as

xixj ≈ cicj + (uiuj)s
2 − (ujci)s− (uicj)s

1Note that in predicate encryption systems, the need for binding does not arise, since the message is already bound
to the lwe secret by construction.

2FE for linear functions and FE for monomials must be compatible for this to work, but this will the case.
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[BV11b] observed that it is sufficient to add one ciphertext element per level of the circuit to
propagate the computation. A bit more formally, the 3 tuple (cicj , uicj + ujci, uiuj) is a legitimate
level 2 FHE ciphertext, decryptable by the secret key s.

In the context of FE for monomials, things are significantly more complex, since we must return
a key that allows the decryptor to learn xixj and nothing else. However, the above decryption
equation holds potential even for this setting. In particular, observe that in the above equation, the
parenthesis can be shifted so that:

xixj ≈ cicj + uiuj(s
2)− uj(cis)− ui(cjs)

Now, if we use the Linear FE scheme to encrypt the terms in parenthesis, then we can have the
decryptor recover the term uiuj(s

2)− uj(cis)− ui(cjs). More formally, let LinFE be an FE scheme
that supports computation of linear functions. Constructions for the same were provided recently
[ABCP15, ALS]. Now if,

CT = LinFE.Enc(s2, c1 · s, . . . , cw · s)
SK = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SK,CT) should yield the above term by correctness. And this is sufficient, since
the term cicj can compute directly by the decryptor, which enables him to recover xixj .

A bit more abstractly, we observe that a quadratic plaintext can be represented a quadratic
polynomial which is quadratic in terms that are known publicly, and only linear in secret terms
(upto multiplication by s). Since the number of secret terms cis which must be encrypted, is only
linear in w, we appear to avoid the quadratic blowup caused by linearization. Looking ahead, one
may hope that by relinearizing the randomness of the dual Regev CT, which is the secret key of the
BV FHE, one can propagate the computation down the circuit a la BV, and recover the desired
value in the end.

This intuition, while appealing, is very misleading. We describe three thorny issues that arise.
First off, note that if we permit the decryptor to learn the term uiujs

2 − ujcis− uicjs exactly, then
he can recover exact quadratic equations in the secret s, completely breaking the security of the
scheme. To handle this, we resort to the standard trick that takes trivial to intractable – adding
noise. Thus, instead of using Linear FE, we will use a noisy linear functional encryption scheme in
the sense of Section 3, which we construct in Section 5. This takes care of the above attack, as we
shall see below. However, to handle Q queries, we need Q fresh noise terms so this introduces the
dependence of the CT size on Q.

However, the scheme remains unsimulatable. This is because in FE, the adversary also requests
function keys, and the simulated ciphertexts and function keys must work correctly together.
Typically, the simulator “programs” these to satisfy the requisite dependencies. However, when
we attempt this here, we have to contend with w2 linear equations in w variables, and adding the
noise terms above does not help resolve this issue. To handle this, we introduce additional terms in
the key so as to create sufficient degrees of freedom. In the simulation however, these terms must
depend on the challenge ciphertext, so we must carefully argue indistinguishability. The details of
this construction and proof are provided in Section 4.

The third issue is presented by the cross terms cis – if encryptions of cis are required to
compute level 2 CTs, say c2

k (where superscript denotes level), then to proceed to level 3, we require
encryptions of c2

ks, and this involves generating an encryption of cicjs. We handle this by again
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plugging in the efficient quadratic system from above, this time for messages yi = ci and yj = cjs.
By carefully generating ciphertexts encrypting cross terms by recursively plugging in our quadratic
scheme, we achieve a constant factor blowup per level. Thus, at level d, we can provide advice of
size O(2d) which enables the decryptor to compute CTs that encrypt level d monomials. The CT
so far is succinct, and contains encryptions of the terms we want. However, recall that releasing
keys to decrypt these CTs as-is is insecure, so we must have the encryptor add encryptions of noise
terms, and this is what introduces the dependency of CT size on Q. Details of this construction are
described in Section 6.

Now, we come to the key point. In the resulting construction for quadratic forms, the number
of ciphertext elements that depend on the message vector x ∈ Zwp0 is only O(w) the remaining
O(w2) encryptions are of i.i.d noise terms which may be generated offline. This results in an online
encryption complexity of O(w) which is independent of the number of queries requested by the
adversary, in contrast to [GVW12]. Additionally, even the induction and bootstrapping do not
violate this property, as discussed in Section 6.

1.5 Organization of the paper

The paper is organized as follows. In Section 2, we describe preliminary definitions and notation used
throughout the paper. In Section 3, we define the notion of noisy functional encryption which we
rely on crucially for our construction. In Section 4, we describe a construction for FE for quadratic
forms for the online-offline model, which relies on a a construction for noisy functional encryption
for linear functions, secure against Q queries, provided in Section 5. In Section 6, we extend our
quadratic FE to FE for bounded degree polynomials.

2 Preliminaries

In this section, we define the preliminaries we require for our constructions. We begin with defining
the notation that we will use throughout the paper.

Notation. We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n)
to denote a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and
we use poly(n) to denote a polynomial function of n. We say an event occurs with overwhelming
probability if its probability is 1 − negl(n). The function lg x is the base 2 logarithm of x. The
notation bxe denotes the nearest integer to x, rounding towards 0 for half-integers.

2.1 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let
G =

{
Gλ
}
λ∈N denote an ensemble where each Gλ is a finite collection of circuits, and each circuit

g ∈ Gλ takes as input a string x ∈ Xλ and outputs g(x) ∈ Yλ.

A functional encryption scheme F for G consists of four algorithms F = (FE.Setup,FE.Keygen,
FE.Enc,FE.Dec) defined as follows.

• FE.Setup(1λ) is a p.p.t. algorithm takes as input the unary representation of the security
parameter and outputs the master public and secret keys (MPK,MSK).
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• FE.Keygen(MSK, g) is a p.p.t. algorithm that takes as input the master secret key MSK and a
circuit g ∈ Gλ and outputs a corresponding secret key SKg.

• FE.Enc(MPK, x) is a p.p.t. algorithm that takes as input the master public key MPK and an
input message x ∈ Xλ and outputs a ciphertext CT.

• FE.Dec(SKg,CTx) is a deterministic algorithm that takes as input the secret key SKg and a
ciphertext CTx and outputs g(x).

In order to capture the notion of online-offline processing, we will split the FE.Enc(MPK, x) into
two procedures:

• FE.EncOff(MPK) is a p.p.t. algorithm that takes as input the master public key MPK and
outputs a “temporary” state st.

• FE.EncOn(MPK, st, x) is a p.p.t. algorithm that takes as input the master public key MPK a
state st and an input message x ∈ Xλ and outputs a ciphertext CT.

We will denote by FE.Enc(MPK, x) the output of FE.EncOn(MPK, st, x) where st = FE.EncOff(MPK).
We will be generally interested in the running time of FE.EncOn.

Definition 2.1 (Correctness). A functional encryption scheme F is correct if for all g ∈ Gλ and all
x ∈ Xλ,

Pr

[
(MPK,MSK)← FE.Setup(1λ);

FE.Dec
(

FE.Keygen(MSK, g),FE.Enc(MPK, x)
)
6= g(x)

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

2.2 Indistinguishability-based Definition of Security

There has been extensive research on understanding the “right” definition of security for functional
encryption. In this paper we will consider the standard (adaptive) indistinguishability based
definition.

Definition 2.2. A functional encryption scheme F for a function family G is secure in the adaptive
indistinguishability game, denoted as IND secure, if for all probabilistic polynomial-time adversaries
A, the advantage of A in the following experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns MPK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any functions g1, . . . , g`′ ∈ G.
In response, A is given the corresponding keys SKgi .

3. A(1λ,MPK) outputs the challenges (x0,x1) ∈ X to the challenger, subject to the restriction
that gi(x0) = gi(x1) for all i ∈ [`′]

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random bit
b, and returns the ciphertext CTxb .
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5. Key Queries: The adversary may continue to request keys for additional functions, subject
to the restriction that gi(x0) = gi(x1) for all i ∈ {`′ + 1, . . . , `}. In response, A is given the
corresponding keys SKgi .

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2.
We note that without loss of generality, in the selective game, the challenge ciphertext can be
returned along with the public key.

2.3 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly
independent set of vectors whose span is Λ.

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any
positive parameter σ ∈ R>0, let ρσ,c(x) := Exp

(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn

with center c and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over
L, and let DL,σ,c be the discrete Gaussian distribution over L with center c and parameter σ.

Specifically, for all y ∈ L, we have DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian.

Lemma 2.3 ([MR07, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and
suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

We will also need the “noise smudging” or “noise drowning lemma” as follows.

Lemma 2.4 (Drowning Lemma). [GKPV10] Let n ∈ N. For any real σ = ω(
√

log n), and any
c ∈ Zn,

SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

Our constructions are based on the hardness of the ring LWE problem [LPR10]. Let R = Z[x]/(φ)
where φ = xn + 1 and n is a power of 2. Let Rq , R/qR where q is a large prime satisfying q = 1
mod 2n.

Ring Learning with Errors. The ring learning with errors assumption, denoted by RLWE,
[LPR10] is analogous to the standard LWE assumption introduced by Regev [Reg09]. Let χ be a
probability distribution on Rq. For s ∈ Rq, let As,χ be the probability distribution on Rq × Rq
obtained by choosing an element a ∈ Rq uniformly at random, choosing e ← χ and outputting
(a, a · s+ e).

Definition 2.5 (Ring Learning With Errors - RLWEφ,q,χ). The decision R-LWEφ,q,χ problem is: for
s← Rq, given a poly(n) number of samples that are either (all) from As,χ or (all) uniformly random
in Rq ×Rq, output 0 if the former holds and 1 if the latter holds.
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Theorem 2.6 ([LPR10]). Let r ≥ ω(
√

log n) be a real number and let R, q be as above. Then,
there is a randomized reduction from 2ω(logn) · (q/r) approximate RSVP to RLWEφ,q,χ where χ is the
discrete Gaussian distribution with parameter r. The reduction runs in time poly(n, q).

3 Noisy Functional Encryption

Intuitively noisy FE is like regular FE, except that the function value is recovered only up to some
noise. This property turns out to be surprisingly useful, as we shall see in subsequent sections. We
believe this primitive may be of independent interest, for example in differential privacy applications,
where it is desirable to not reveal the function value exactly to safeguard privacy. We define the
notion formally below.

An (ε, δ,Q)-Noisy functional encryption scheme F for some circuit family G consists of four
algorithms F = (FE.Setup,FE.Keygen, FE.Enc,FE.Dec) as in the case of regular functional encryption.
However, now we require the correctness condition to hold only up to some error parameter δ > 0
and define security assuming that the number of queries asked is less than Q, and the challenge
message evaluations on all the keys requested by the adversary differ by at most ε. These properties
are described formally next.

Definition 3.1 (δ-Correctness). Let δ > 0. A functional encryption scheme F is δ-correct if for all
g ∈ Gλ and all x ∈ Xλ,

Pr

[
(MPK,MSK)← FE.Setup(1λ);

FE.Dec
(

FE.Keygen(MSK, g),FE.Enc(MPK,x)
)
6∈ [g(x)− δ, g(x) + δ]

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

Security is defined in the standard indistinguishability setting and should require that for
challenge messages x0,x1 ∈ Xλ, if it holds that:

• For every queried key gi, we have |gi(x0)− gi(x1)| ≤ ε.

• The total number of queries requested is less than Q, for some polynomial Q. We note that it
may be that Q >> w.

Then, we require that the adversary cannot distinguish CT(x0) from CT(x1) with non negligible
advantage. Formally, we define the Noisy-IND game as follows.

Definition 3.2 ((ε,Q) Noisy-AD-IND security.). Let ε, δ > 0 such that ε/δ < negl(λ). A δ-correct
functional encryption scheme F for a function family G is (ε,Q)-secure in the noisy indistinguishability
game if for all probabilistic polynomial-time adversaries A, the advantage of A in the following
experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns MPK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any functions g1, . . . , g`1 ∈
G for i ∈ [`1] and `1 ≤ Q. In response, A is given the corresponding keys SK(gi).
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3. Challenge Ciphertext: A(1λ) outputs the challenges (x0,x1) ∈ X to the challenger. The
challenger checks that |gi(x0) − gi(x1)| ≤ ε for all functions gi requested so far. If not, it
outputs ⊥ and aborts. Otherwise, the challenger chooses a random bit b, and returns the
ciphertext CT(xb).

4. Post-Challenge Key Queries: The adversary may request `2 ∈ [Q−`1] keys for functions of
its choice, subject to the same restrictions as above. In response, A is given the corresponding
keys.

5. Guess. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2.

4 Online Offline FE for Quadratic forms from Ring LWE

The intuition for the construction is discussed in Section 1. Here we describe our construction
formally. Our construction uses as a black box a noisy linear FE scheme, denoted by (ε, δ,Q)-NLinFE
that computes noisy inner products modulo p1 and supports Q queries upto correctness fudge factor
δ as long as the legitimate decryption values differ upto ε. A construction for the same is provided
in Section 5.

For the construction below supporting quadratic polynomials, we will require three prime moduli
p0 < p1 < p2 where p0 serves as the message space for the final quadratic scheme (think of p0 = 2),
p1 serves as the message space for the NLinFE scheme, and p2 is the public key and ciphertext
space for NLinFE. This scheme can be generalized to bounded degree polynomials, as we shall
show in Section 6. Then, for supporting degree d polynomials, we will have a tower of moduli
p0 < p1 < . . . < pd.

We will additionally require a “tower of discrete Gaussian distributions” where each successive
discrete Gaussian is wide enough to “flood” the previous (see Lemma 2.4). We will have D0 < D1 <
D2 for degree two polynomials.

FE.Setup(1λ, 1w): On input a security parameter λ and a parameter w denoting the length of
message vectors, do:

1. Invoke NLinFE.Setup(1λ, 1w+2) to obtain NLinFE.MPK and NLinFE.MSK.

2. Sample u← Rwp1 .

3. For 1 ≤ j ≤ i ≤ w, compute fij as follows:

• Sample µ̃ij ← D1 for 1 ≤ j ≤ i ≤ w.

• Sample ti ∈ Rp1 for i ∈ [0, w].

• Define
fij = uiujt0 − ujti − uitj + p0 · µ̃ij

Set f = (fij)1≤j≤i≤w ∈ RL where L = |{i, j : 1 ≤ j ≤ i ≤ w}|.
4. Output MPK = (NLinFE.MPK,u), MSK = (NLinFE.MSK, f).

FE.Enc(MPK,x): On input public parameters MPK, and message vector x ∈ Rwp0 do:

11



1. Sample s1
R← Rp1 and µ← Dw0 , and compute “message carrier”

c = u · s1 + p0 · µ + x ∈ Rwp1 .

2. Let b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0).

3. Output CT = (c,b)

FE.KeyGen(MPK,MSK,g): On input the public parameters MPK, the master secret key MSK, and
a function g =

∑
1≤j≤i≤w

gijxixj , represented as a coefficient vector (gij) ∈ ZLp0 do:

1. Compute

ug =
∑

1≤j≤i≤w
gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0, fij) ∈ Rw+2

p1 .

2. Compute SKg = NLinFE.KeyGen(ug) and output it.

FE.Dec(MPK, SKg,CTx): On input the public parameters MPK, a secret key SKg for polynomial∑
1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑
1≤j≤i≤w

gijcicj + NLinFE.Dec(b,SKg) mod p0

and output it.

4.0.1 Correctness

We establish correctness of the above scheme.

Let 1 ≤ j ≤ i ≤ w. By definition

xi + p0 · µi = ci − uis1

xj + p0 · µj = cj − ujs1

Letting µij = xiµj + xjµi + µiµj , we have

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1 (4.1)

We denote the noise added by the scheme NLinFE by p0 · ρij . By correctness of the linear scheme
NLinFE, we have that

NLinFE.Dec(b, SKg) = −ciujs1 − cjuis1 + uiujs
2
1 + p0 · ρij

Hence, cicj + NLinFE.Dec(b, SKg) = cicj − ciujs1 − cjuis1 + uiujs
2
1 + p0 · ρij

= xixj + p0 · µij + p0 · ρij∑
1≤j≤i≤w

gij
(
cicj + NLinFE.Dec(b, SKg)

)
=

∑
1≤j≤i≤w

gij xixj + p0 ·
( ∑

1≤j≤i≤w
gij (µij + ρij)

)
=

∑
1≤j≤i≤w

gij xixj mod p0 as desired.
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4.1 Security

For ease of exposition, we will consider the special case where x0 and x1 differ only in a single
coordinate, namely the wth one. This restriction can be removed with a careful change of basis
operation in Rwp0 , and is specified in Appendix G. For the special case in consideration, we note the
following properties about admissible key requests and some implications that will be used crucially
in the proof.

• x0[i]x0[j] = x1[i]x1[j] for all i, j 6= w by assumption and x0[i]x0[w] = x1[i]x1[w] iff it holds
that x0[i]x0[w] = x1[i]x1[w] = 0. We will refer to these monomials as admissible monomials.
Note that since x0[i] = x1[i] and x0[w] 6= x1[w] by assumption, x0[i]x0[w] = x1[i]x1[w] = 0
can only occur when x0[i] = x1[i] = 0.

• It follows that an admissible quadratic polynomial query may only contain a monomial xixw
for some i, if it holds that x0[i]x0[w] = x1[i]x1[w] = 0.

• Hence it suffices to ensure that the simulated keys for xixj , where i, j 6= w decrypt correctly
and the simulated key for xixw decrypts correctly as long as x0[i]x0[w] = x1[i]x1[w] = 0. In
particular note that the simulator is not required to provide a correctly working key for xixw
when x0[i]x0[w] 6= x1[i]x1[w].

• In the proof below, the keys and challenge ciphertext will be programmed so that decryption
provides the honest answer for all admissible monomials. The simulator will be designed to
construct keys even for non-admissible monomials but these will not decrypt correctly, since
the simulator cannot know the value xb[w] and hence cannot know the value of xb[i]xb[w]
unless xb[i] = 0. However, the adversary will never notice this, since he may not request these
keys.

Theorem 4.1. The construction in Section 4 achieves adaptive indistinguishability (AD-IND) based
security.

Proof. We will prove the theorem via a sequence of hybrids, where the first hybrid is the real world
with challenge x0 and the last hybrid is the real world with challenge x1.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world with message x0. In hybrid 0, fij is picked as follows:

1. Sample t0, . . . , tw ← Rp1 .

2. Set fij = uiujt0 − ujti − uitj + p0 · µ̃ij mod p1. Here, µ̃ij is noise chosen to drown µij .

Hybrid 1. In this hybrid, the only thing that is different is that the challenger picks fij to depend
on the challenge ciphertext. Specifically,

1. Sample t0, . . . , tw ← Rp1 .

2. Set

fij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
mod p1
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Hybrid 2. In this hybrid, we change the input for NLinFE.Enc to (t0, t1, . . . , tw, 1) where ti are
chosen uniformly in Rp1 for i ∈ {0, . . . , w}.

Hybrid 3. In this hybrid, we change the message vector in c to x1.

Hybrids 4 and 5. In Hybrid 4 we change the input to NLinFE.Enc to (s2
1, c1s1, . . . , cws1, 0) as in

Hybrid 1. In Hybrid 5, we change fij to be chosen independent of the ciphertext as in Hybrid 0.
This is the real world with message x1.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are indistinguish-
able.

Claim 4.2. Hybrid 0 is statistically indistinguishable from Hybrid 1.

Proof. The only difference between Hybrid 0 and Hybrid 1 is in the way fij is sampled.
In hybrid 0, we have:

1. Sample t0, . . . , tw ← Rp1 .

2. Set fij = uiujt0 − ujti − uitj + p0 · µ̃ij .

In Hybrid 1, fij is picked as follows:

1. Sample t0, . . . , tw ← Rp1 .

2. Set fij =
(
(ci − ĉi)(cj − ĉj)− cicj

)
−
(
uiujt0 − ujti − uitj + p0 · µ̃ij

)
mod p1.

In Hybrid 1, we have:

fij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
=
(
uiujs

2
1 − uicjs1 − ujcis1 − p0 · µij

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
by equation 2.2

= uiuj(s
2
1 − t0)− ui(cjs1 − tj)− uj(cis1 − ti)− p0 · µij + p0 · µ̃ij

= uiujt
′
0 − uit′j − ujt′i − p0 · µij + p0 · µ̃ij

≈ uiujt′0 − uit′j − ujt′i + p0 · µ̃ij as long as µ̃ij floods µij .

Here, we define t′0 = s2
1− t0 and t′i = cis1− ti for i ∈ [w]. Note that t′0, . . . , t

′
w are i.i.d due to addition

of i.i.d t0, . . . , tw. Thus, we get that the distributions of fij in Hybrid 0 and Hybrid 1 are statistically
indistinguishable. Since the only thing that changed between Hybrid 0 and Hybrid 1 is the manner
of sampling fij , we get that Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Claim 4.3. Assuming adaptive IND security of the noisy linear FE scheme NLinFE, Hybrid 1 and
Hybrid 2 are indistinguishable.

Proof. Given an adversary B who distinguishes between Hybrid 0 and 1, we construct an adversary
A who breaks the adaptive IND security of the noisy linear FE scheme NLinFE.

A runs as follows:
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1. The challenger of the NLinFE scheme provides NLinFE.MPK to A. A picks u ∈ Rwp1 , and sends
MPK = (NLinFE.MPK,u) to B.

2. A picks s1 ← Rp1 , and t← Rw+1
p1 .

3. A computes
ci = uis1 + p0 · µi + x0[i] ∀i ∈ [w].

4. When B requests a key for monomial xixj , A does the following:

• A computes t′ as:
t′0 = s2

1 − t0, {t′i = cis1 − ti}i∈[w]

• A computes

fij = uiujt
′
0 − ujt′i − uit′j + p0 · µ̃ij

• A parses this as a linear key with coefficients

(uiuj , 0....0, ui, 0...0, uj , 0...0, fij) ∈ Rw+2
p1 .

Here, ui appears at the jth position, uj appears at the ith position.

• A forwards this key request to the linear FE challenger and returns its response
NLinFE.SKij to B.

5. B outputs challenges x0,x1 ∈ Rwp0 . A chooses challenge messages z0, z1 as:

z0 =
(
s2

1, c1s1, . . . , cws1, 0
)
∈ Rw+2

p1

z1 = (t0, t1, . . . , tw, 1) ∈ Rw+2
p1

A returns (z0, z1) to the Linear FE challenger.

6. When the linear FE challenger sends challenge NLinFE.CT(zb) to A, it sends CT =(
NLinFE.CT(zb), c

)
to B. Recall that it computed c itself in Step 3.

7. B may request more keys which are answered as before.

8. When B outputs a guess bit b, A forwards this guess to the linear FE challenger.

Now, we argue that for all the requested keys, the difference between the decryption values on
the challenge messages z0 and z1 is very small. By setting the parameter ε of the (ε, δ,Q)-NLinFE
scheme to be an upper bound on this difference, we obtain by the security of the noisy linear FE
scheme that NLinFE.CT(z0) and NLinFE.CT(z1) are indistinguishable. We proceed to show this
formally. We will let Q = w2. Consider a key request for monomial xixj .

In Hybrid 1, the function for the monomial xixj evaluated on z0 yields:

uiujs
2
1 − uicjs1 − ujcis1
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In Hybrid 2 the function for the monomial xixj evaluated on z1 yields:

uiujt0 − uitj − ujti + fij

= uiujt0 − uitj − ujti +
(
uiuj(s

2
1 − t0)− uj(cis1 − ti)− ui(cis1 − tj) + p0 · (µ̃ij − µij)

)
≈ uiujs2

1 − uicjs1 − ujcis1 + p0 · µ̃ij since µ̃ij floods µij .

Thus, the decryption values in both worlds are approximately the same upto an additive factor of
p0 · µ̃ij . We set ε in the NLinFE scheme to be larger than p0 · µ̃ij , we obtain by the guarantee of
Noisy Linear FE that Hybrids 1 and 2 are indistinguishable3.

Claim 4.4. Assume Regev public key encryption is semantically ecure. Then, Hybrid 2 is
indistinguishable from Hybrid 3.

Proof. We recall Regev public key encryption. We set (PK, SK) = (u, s1) as the public and secret
key. The ciphertext for message x is computed c = u · s1 + p0 · µ + x, where µ is suitably chosen
noise.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3, we build an adversary
A who breaks the semantic security of Regev public key encryption. The adversary A receives
PK = u upon which, it simulates the view of B as follows:

• Run NLinFE.Setup to obtain NLinFE.MPK and NLinFE.MSK. Return MPK = (NLinFE.MPK,u)
to B.

• When B requests a key, construct it honestly as in Hybrid 0.

• When B outputs challenges x0,x1, A forwards these to the PKE challenger.

• A receives c where c = u · s1 + p0 · µ + xb for a random bit b.

• A computes b = NLinFE.CT(t0, . . . , tw, 1) and returns (c,b) to B.

• B may request more keys which are handled as before. Finally, when B outputs a guess bit b,
A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it sees the distribution
of Hybrid 3. Also, the advantage of the attacker B in distinguishing Hybrids 2 and 3 translates
directly to the advantage of the attacker A in breaking the semantic security of Regev public key
encryption. Hence the claim follows.

Hybrid 4 is analogous to Hybrid 1 and indistinguishability can be argued along the same lines
as that between Hybrids 1 and 2, while Hybrid 5 is analogous to Hybrid 0 but with message x1.
This is the real world with message x1. Indistinguishability between Hybrids 4 and 5 can be argued
along the same lines as that between Hybrids 0 and 1.

3Recall that in the security game of noisy linear FE, the challenge messages must only evaluate to approximately
same values for all functions that are queried. The difference between the decryption values is allowed to differ up to ε
which is a parameter to the scheme.
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Discussion. Note that the above construction enjoys a useful online-offline property – only O(w)
elements of the CT depend on the message while the remaining O(w2) elements are only encryptions
of noise. Thus, the encryptions of noise may be generated offline, which speeds up online encryption.

It also enjoys an intriguing locality property – if 1 element out of w changes, then our solution
requires only changing two ciphertext elements.

5 Noisy Functional Encryption for Linear Functions

In this section, we construct a noisy functional encryption scheme for linear functions which supports
Q queries for a fixed polynomial Q. Security posits that an adversary cannot distinguish between
encryptions of z0 and z1 as long as |gi(z0)− gi(z1)| ≤ ε for every key gi requested, as long as the
number of requested keys is less than Q. We emphasize that Q can be greater than the dimension
of the message/key vectors, namely w – indeed this is the case we will be interested in.

To support Q > w queries so as to achieve the security definition stated above, we artificially
add noise to decryption, so that any two messages whose decryption under a key is equal upto ε
noise, will decrypt to only approximately correct values but will have indistinguishable ciphertexts.

For ease of notation, our description below assumes a stateful keygen. We get rid of this
restriction using standard tricks as described in Appendix C.

5.1 Construction.

The algorithms for the (ε, δ,Q) noisy linear FE scheme, denoted by NLinFE are defined as follows.

FE.Setup(1λ, 1Q, 1w, p1): On input a security parameter λ, a parameter w denoting the length of
the function and message vectors, a parameter Q denoting the number of queries supported
and a modulus p1 denoting the space of the message and function vectors, set (MPK,MSK) =
LinFE.Setup(1w+1+Q).

FE.KeyGen(MSK,g, i): On input MSK, a function vector g ∈ Zwp1 and an index i ∈ [Q] denoting
query number, do:

1. Sample γi ← D1, where D1 is a discrete Gaussian of width large enough to flood ε.

2. Output SKg = LinFE.KeyGen(g‖γi‖ei) where ei ∈ ZQ is the ith unit vector. Note that
the LinFE key explicitly contains the vector (g‖γi‖ei).

FE.Enc(MPK, z): On input public key MPK, a message vector z ∈ Zwp1 , do:

1. Sample δ ← DQ2 and µ← D subject to the following constraints:

• D2 is a discrete Gaussian of width large enough to flood D1. Thus, it will hold that
δi + γi ≈ δi, where γi is chosen by keygen.

• D has width large enough so that µ is distributed indistinguishably from µ+ 1.

2. Let CTz = LinFE.Enc(z‖µ‖δ)
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FE.Dec(SKgi ,CTz): On input a secret key SKgi for function gi, and a ciphertext CTz:

1. Compute LinFE.Dec(CTz, SKgi) to recover gT
i z + µ · γi + δi.

Appropximate correctness is evident since we recovered the correct value upto noise µ · γi + δi.

Note. We remark that the keygen algorithm can be made stateless by using standard tricks, as
in [GVW12, Section 6]. We refer the reader to Appendix C for more details.

5.2 Security.

Next, we argue that the above scheme is secure. We have that for every key query gi, i ∈ [Q], it
holds that gT

i (z0 − z1) = εi. We argue via a sequence of hybrids.

Hybrid 0. This is the real world with message z0. The challenge CT encrypts y0 = (z0‖µ‖δ).

Hybrid 1. In this world, we generate the challenge CT for the message y0 = (z0‖µ‖δ̂ + δ) where
δ floods δ̂. For the keys, we set γ = δ̂.

Hybrid 2. In this world, the noise in the Q keys changes to γ = δ̂ + ε.

Hybrid 3. In this world, we change the message in the challenge CT to y1 = (z1‖µ+ 1‖δ).

Hybrid 4. In this world, we rewrite the message in the challenge CT as y1 = (z1‖µ‖δ). This is
the real world with message z1.

Indistinguishability of Hybrids. It is evident that Hybrids 0 and 1 are statistically
indistinguishable, since δ floods δ̂. By the same argument, Hybrid 1 and 2 are statistically
indistinguishable since δ̂ floods ε and Hybrid 3 and Hybrid 4 are statistically indistinguishable since
µ is distributed indistinguishably from µ + 1. The chief transition that must be argued is that
between Hybrids 2 and 3, which we argue now.

Claim 5.1. If the exact linear scheme is AD-IND secure, then Hybrids 2 and 3 are indistinguishable.

Proof. Given an adversary A who can distinguish between Hybrids 2 and 3, we will construct an
adversary B who will break the security of the exact linear scheme. B plays the AD-IND game with
the LinFE challenger, denoted by C.

1. The LinFE challenger C outputs the public key MPK, which B forwards to A.

2. A requests a key gi for i ∈ [`1], where `1 ≤ Q. B chooses γi as in the real world and requests
a key for ĝi = (g‖γi‖ei) to the LinFE challenger C. The challenger returns LinFE.SK(ĝi) which
B gives A.

3. A outputs two challenges z0, z1 ∈ Zwp1 . B checks that gT
i (z0 − z1) = εi ≤ ε for all queries gi

requested so far. If this condition does not hold, output ⊥ and abort.

18



4. B chooses δ̂i = γi − εi for i ∈ [`1]. The remaining δ̂`1+1 . . . δ̂Q it chooses as in the real world.

Next, it constructs ŷ0 = (z0‖µ‖δ̂) and ŷ1 = (z1‖µ + 1‖0) and returns these to the LinFE
challenger C as the challenge messages.

5. A may request more keys gi so that gT
i (z0 − z1) = εi. B chooses γi = δ̂i + εi and requests a

key for ĝi = (g‖γi‖ei) to the LinFE challenger. The challenger returns LinFE.SK(ĝi), which B
gives A.

6. C outputs the challenge ciphertext CT(ŷb). B adds noise δ to the last Q coordinates and
returns this to A as the challenge CT. Thus, A sees an encryption of either y0 = (z0‖µ‖δ̂ + δ)
or y1 = (z1‖µ+ 1‖δ).

7. When A outputs a guess for bit b, B outputs the same.

Observe that the query ĝi is an admissible query for the LinFE challenger because:

ĝT
i ŷ0 = gT

i z0 + µ · γi + δ̂i

ĝT
i ŷ1 = gT

i z1 + µ · γi + γi

= gT
i z0 − εi + µ · γi + δ̂i + εi

= gT
i z0 + µ · γi + δ̂i

= ĝT
i ŷ0

If the LinFE challenger C returns an encryption of ŷ0, then A sees an encryption of y0 =
(z0‖µ‖δ̂ + δ), otherwise it sees an encryption of y1 = (z1‖µ+ 1‖δ). In the former case we obtain
the distribution of Hybrid 2, in the latter case of Hybrid 3.

Hence, we argued that for Q (for Q > w) queries, our noisy linear FE scheme satisfies (ε,Q)
Noisy-AD-IND security as per Definiton 3.2.

5.3 Perspective: Random Self Reducibility

Recently, Bitansky and Vaikuntanathan [BV16] showed that indistinguishability obfuscation and
functional encryption enjoy “random self reducibility”. We will only discuss one aspect of their
results here. In the context of functional encryption, one of the things they show, is (informally)
that if an FE scheme is secure for inputs that are sampled from some distribution χ, then there is a
transformation that converts it to an FE scheme that is secure for arbitrarily chosen inputs. This
transformation however assumes that the underlying FE scheme supports the evaluation of PRFs
(in particular, the function must be able to evaluate the decryption function of a symmetric key
encryption scheme, see Figure 2 in Section 4 of [BV16]).

We remark that one implication of our results is to provide an analogous statement for much
weaker classes of functions, namely bounded degree polynomials. To see this in the context of
quadratic polynomials, note that the message dependent component of our ciphertext is succinct,
namely O(w) for messages of size w, and to support w2 queries, the encryptor must provide w2

encryptions of noise terms.

We note that these w2 noise terms need not be i.i.d for the security argument to go through,
they can be correlated. This is because the purpose of the noise terms added by noisy FE are
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used to flood the difference terms ε1, . . . , εQ between hybrids 1 and 2 in Section 4. Since the terms
ε1, . . . , εQ are correlated, it suffices to choose correlated noise terms to flood them as well (as shown
in Appendix F).

Thus, if the Q = w2 noise encryptions in our quadratic FE scheme could be replaced with only
O(w) noise encryptions δ̂1, . . . , δ̂w and the w2 encryptions of δ̂iδ̂j could be computed on the fly
under a public LWE label, then these terms could now be added as the noise in noisy FE and the
remainder of the argument would proceed as before. Combined with the already succinct message
dependent ciphertexts, the succinct representation of noise would yield an overall succinct scheme.
Thus, using our construction, the problem of succinctly computing quadratic functions on arbitrary
messages x reduces to the problem of succinctly computing quadratic functions on noise terms. We
refer the reader to Appendix F for more details.

6 Shallow to Deep FE via Induction

In this section, we will describe how our quadratic FE scheme can be bootstrapped to support
circuits of arbitrary polynomial depth, secure against bounded collusions.

This transformation proceeds in two steps as follows.

1. First, we convert our bounded query FE for quadratic forms into a bounded query FE for
bounded degree polynomials via induction. This is the most technical part of the overall
transformation, since we cannot resort to linearization to preserve the online-offline property
of our construction.

2. Next, we use the bootstrapping theorem of [GVW12] which converts a q query FE scheme
for bounded degree polynomials into a q query scheme for all polynomial circuits. The
bootstrapping relies on the result of Applebaum et al. [AIK06] which states that every
polynomial time computable function f can be represented by constant degree to obtain a
bounded query FE scheme for all polynomial sized circuits.

We note that in addition to the encryptions of the noise terms which can be generated offline,
encryptions of the randomness needed for the randomized encoding may also be generated offline.
Thus, even for all polynomial sized circuits, the final bounded collusion FE scheme only requires
O(w) online encryptions – there is no dependence on Q for the online encryption stage.

6.1 FE for Bounded Degree Polynomials via Induction

Notation. To begin, we set up some notation that will be useful throughout this section. Let Ck
denote the set of advice provided to compute the ciphertexts of level k and a box, e.g. x denote
the Regev encryption of x under a publicly computable label. Additionally ck denotes a ciphertext
at level k, i.e. an encryption of level k monomial. N · denotes the noise used in generating the
encryption · and L · denotes the LWE label for the same.

Intuition. Before we begin, we provide some intuition. Recall that the quadratic scheme described
in Section 4 enables us to create an LWE ciphertext, under a publicly computable label, for a
quadratic function of the plaintext (xixj for example). Note that the O(w2) ciphertexts, encrypting
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terms xixj for i ∈ [w], can be computed using only O(w) message dependent ciphertexts and O(w2)
encryptions of noise terms.

The main observation of this section is that there is no need to stop at level 2 – the computation
can be propagated down a circuit efficiently so that at every new level, the message dependent terms
suffer only a constant factor blowup over those in the previous level. Hence, for any constant depth
d, the number of message dependent ciphertext components are O(2d · w) as against O(wd)), and
all the remaining encryptions are of noise.

Induction. The above intuition can be formalized using an inductive argument. The intuition for
the induction is not difficult to see even if the details are hairy. In what follows we focus only on
the message dependent components of the ciphertext and ignore encryptions of noise, as these need
only be added at the last level of the circuit. Recall that the level 1 ciphertexts ci = xi for i ∈ [w]
along with advice ci · s were sufficient to compute the message dependent ciphertext components

at level 2. Hence, at any level k, given ck−1 and ck−1 · s , we would be in a position to compute ck

using the quadratic scheme of Section 4. Thus we have that to compute ciphertext at level k, it
suffices to provide advice that is linear in the size of level k − 1 ciphertexts ck−1.

This intuition is complicated by the fact that we are not given ck−1 directly, but rather advice, a
set of ciphertexts Ck−1 which enables the decryptor to compute ck−1 on the fly. The question then,
is whether there exists advice linear in the size of the set Ck−1 which suffices to compute the advice

ck−1 · s required to compute ck on the fly. We answer this affirmatively below. Throughout this
section, we assume circular security of LWE. This is for notational convenience as well as efficiency.
This assumption can be removed by choosing new randomness si for each level i as in leveled fully
homomorphic encryption.

Theorem 6.1. Define the message set at level k, denoted by Mk recursively to include:

1. [Rule 1.] Ck−1

2. [Rule 2.] Mk−1 · s

3. [Rule 3.] N Mk−1

4. [Rule 4.] N Mk−1 · s

Let Ck = Mk . Then, given ∪
i∈[k]
Ci, the following can be computed.

1. ck−1 and N ck−1 .

2. ck−1 · s and N ck−1 · s .

Note that ck−1 · s and ck−1 suffice to compute ck by Section 4. ck−1 will be needed to compute
level k + 1 ciphertexts and the noise terms will ease the analysis. Thus, the advice size at level k is
larger than the advice at level k − 1 by a factor of 4. That is,

|Ck| ≤ 4 · |Ck−1|
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Proof. Proof by induction. Since for bootstrapping it suffices to build (online-offline) FE for degree
3 polynomials, we analyze the first 3 levels below for concreteness. The generalization to arbitrary
(bounded) levels is provided in Appendix D.

Computation for first 3 levels. We will show that the above rules suffice to compute ciphertexts
of level 3 monomials. In what follows, we will not enlist the messages encrypted at any level
exhaustively, but only enlist the subset that is required for a given step.

At level 1, encryptions are provided for:

M1 ⊆ {xi, s }, and C1 ⊆
{
xi︸︷︷︸
ci

, s
}

At level 2, encryptions are provided for:

M2 ⊆ {ci, xi · s, s2, N xi , N s , N xi · s , N s · s }

We claim that:

Claim 6.2. C2 defined as above suffices to compute ci as well as ci · s .

Proof. Since ci ∈ C1 ⊂ M2, ci ∈ C2. Now, let us consider ci · s . We have by additive
homomorphism that:

ci · s = (ui · s+ µi + xi) · s

= ui s
2 + µi · s + xi · s

= ui s
2 + N xi · s + xi · s

The boxed terms are provided as part of C2, hence we are done.

Next, we consider level 3. We claim that:

Claim 6.3. C3 suffices to compute c2
ij · s as well as c2

ij .

Proof. We examine each term in turn below.

Computing c2
ij · s . We have that,

c2
ij · s =

(
cicj
)
· s +

(
− ui cj · s − ui ci · s + uiuj s2

)
· s

Thus, to compute c2
ij · s , we are required to compute cicjs , ci · s · s and s2 · s .

We claim that it is sufficient to provide advice to compute cicjs , since this advice subsumes

the remaining terms. To see this, note that cicjs can be seen as a quadratic term in ci and cj · s, and
to use the quadratic scheme to compute an encryption of the product, we are required to compute

ci , cj · s as well as the advice ci · s and ci · s · s . We examine each of the terms below.
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1. Consider ci , cj · s : These terms can be computed using the advice C2 as established by

claim 6.2.

2. ci · s : This term can be expanded as
(
L ci · s+ N ci + ci

)
· s which may be computed

by linear homomorphism given advice s2 4, N ci · s and ci · s . By rule 4, M3 contains

N ci · s and by we know that M2, it contains s2. The encryption of ci · s can be computed

by the induction hypothesis. Thus, the decryptor can compute ci · s .

3. ci · s · s : This term can be expanded as in the previous case to yield the requirement of

the following advice terms:

(a) ci · s2 : This in turn can be computed homomorphically from xi · s2 and N xi · s2 .

These terms are provided in C3 by rule 2. In more detail, since M2 contains xi · s and
N xi · s, rule 2 implies that M3 will contain xi · s2 and N xi · s2, which implies that C3

will contain xi · s2 and N xi · s2 as desired.

(b) N ci · s · s : Note that N ci · s can be computed given N s2 , N xi · s and N µi · s

where the last term can be written as N N xi · s . Thus, we need encryptions of:

N s2 · s, N xi · s · s, N N xi · s · s

Note that s2, xi · s, N xi · s are in M2, hence C2 contains{
s2 , xi · s , N xi · s

}
Hence, by rules 3 and 4,{

N s2 , N xi · s , N N xi · s , N s2 ·s, N xi · s ·s, N N xi · s ·s
}
⊆M3

which implies that C3 contains the desired encryptions.

Computing c2
ij . Recall that c2

ij = cicj +
(
− ui cj · s − ui ci · s + uiuj s2

)
. Thus, by

additive homomorphism, we require:

4. (a) cicj : This requires ci as well as ci · s which are accounted for in steps 1 and 2

above.

(b) cj · s : This requires cj · s and N cj · s . The former is accounted for by I.H., and for

the latter, note that N cj · s can be computed using additive homomorphism of terms

in M3 as discussed in Step 3b above. Hence, N cj · s ∈ C3 as desired.

4 Note that the label L ci is public and may be multiplied by the decryptor to s2
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The generalization of the proof to arbitrary bounded depth polynomials requires us to establish
the induction step. These details are deferred to Appendix D.

Thus, we have established Theorem 6.1 for depth 3 circuits. In more detail, we have shown
that if the encryptor provides the 43 · |x| = O(w) encryptions for the terms specified by the above
rules, then the decryptor can compute level 3 ciphertexts c3

i on the fly. Recall that c3
i encrypts all

monomials at level 3, such as x1x2x3x4 under a publicly computable label. Thus, the key generator
knows the LWE label under which the function value is encrypted and can provide a key for the
same. For concreteness, if we denote this label by Lf , then the decryptor recovers terms:

cf = Lf · s+ µf + f(x) c0 = w · s+ µ0 for some w in the public key

Now, the key is a short preimage e such that 〈w, e〉 = Lf and the decryptor can recover f(x).

Description of PolyFE. In more detail, consider a scheme PolyFE, in which the encryptor computes
encryptions of all the terms in M1 ∪M2 ∪M3. Now, as established by claim 6.3, the decryptor

can compute c2
ij · s by computing an equation QuEq which has a single quadratic term of public

elements ci and cj · s and remaining linear terms in variables fromM1 ∪M2 ∪M3. Say that the

linear equation LinEq in variables m1, . . . ,mL ∈ {M1 ∪M2 ∪M3} has coefficients a1, . . . , aL for
L = |M1 ∪M2 ∪M3|. The key generator now provides a noisy linear key for the linear function
a1, . . . , aL so that the decryptor may compute LinEq on the values provided by the encryptor.

Since ci and cj · s are provided as part of C1 ∪ C2 ∪ C3, the decryptor can compute equation

QuEq as in the construction of Section 4.

Security can be argued exactly as in Section 4, by observing that even for level 3 (or more
generally for level d) the key generator must provide a noisy linear FE key, just as for level 2, albeit
for a larger dimensional message/function space. Hence the argument from Section 4 generalizes
naturally – we defer the details to the full version.

Splitting Encryption as Online-Offline. As seen above, if the encryptor provides O(w)
encryptions for the terms in ∪

k∈[3]
Mk, then the decryptor can compute level 3 ciphertexts c3

i

on the fly. This is the online part of the encryption algorithm.

As discussed, it is not secure to release keys to decrypt the above ciphertexts as-is. To provide a
secure decryption key, the encryptor must additionally encrypt Q′ noise terms to support q queries,
where q′ = O(q2) suffices. This is the offline part of the encryption algorithm.

Thus, we have constructed an online-offline FE scheme PolyFE for bounded degree polynomials.
The security notion we achieve is inherited from the underlying Linear FE scheme, which, by [ALS]
is adaptive indistinguishability. For the case of bounded degree polynomials, this is equivalent to
non-adaptive simulation security by [O’N10].
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7 Putting it together : Online-Offline Bounded FE for all circuits

In this section, we describe how to put together all the pieces from the previous sections to build a
bounded collusion FE scheme for all circuits, denoted by BddFE. The underlying scheme PolyFE
is assumed to be non-adaptive simulation secure, i.e. NA-SIM, as discussed above. This yields a
final security notion of NA-SIM, i.e. (poly, poly, 0)-SIM which means the adversary may make an
unbounded number of pre-challenge queries, ask for an unbounded number of challenge ciphertexts
but may not make any post-challenge key queries. While the construction of [GVW12] supports the
stronger AD-SIM security in addition to NA-SIM, this notion can only be achieved for a scheme that
supports a single ciphertext. We consider the model of a single ciphertext and bounded number of
keys overly restrictive, and do not attempt to achieve this notion. This is also the approach taken
by [GKP+13].

7.1 Bootstrapping Functional Encryption

Gorbunov et al. [GVW12] show that q query FE for NC1 can be bootstrapped to q query FE
for all circuits. At a high level, their approach can be summarized as follows. Let C be a family
of polynomial sized circuits. Let C ∈ C and let x be some input. Let C̃(x, R) be a randomized
encoding of C that is computable by a constant depth circuit with respect to inputs x and R. Then
consider a new family of circuits G defined by:

GC,∆(x, R1, . . . , RS) = C̃
(
x; ⊕

a∈∆
Ra

)
As observed by [GVW12, Section 6], GC,∆(·, ·) is computable by a constant degree polynomial (one
for each output bit). Given an FE scheme for G, one may construct a scheme for C by having the
decryptor first recover the output of GC,∆(x, R1, . . . , RS) and then applying the decoder for the
randomized encoding to recover C(x).

As observed by [ALS], q query FE that supports evaluation for constant degree polynomials is a
much weaker object than q query FE for all of NC1. Note that NC1 is a powerful class that is, in
particular, capable of evaluating a pseudorandom function (PRF). Indeed, the suggested approach
by [GVW12] for bootstrapping unbounded query FE for NC1 to unbounded query FE for all circuits
does require evaluating a PRF. However for the case of bounded queries, we only need FE to support
the evaluation of constant degree polynomials. In particular, our construction from Section 6.1
suffices for bootstrapping, to yield q-query online-offline FE for all circuits.

The construction follows the blueprint described in [ALS], but we recap it here for completeness.
As in [GVW12, ALS], let (S, v,m) be parameters to the construction. Let ∆i for i ∈ [q] be a
uniformly random subset of S of size v. To support q queries, the key generator identifies the set
∆i ⊆ S with query i. If v = O(λ) and S = O(λ · q2) then the sets ∆i are cover free with high

probability as shown by [GVW12]. Let L
def
= (`3 + S ·m).

BddFE.Setup(1λ, 1`): Upon input the security parameter λ and the message space M = {0, 1}`,
invoke (mpk,msk) = PolyFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk,C)): Upon input the master secret key and a circuit C, do:

1. Choose a uniformly random subset ∆ ⊆ S of size v.
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2. Express C(x) by GC,∆(x, R1, . . . , RS), which in turn can be expressed as a sequence of
degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).

3. Set BddFE.SKC = {SKi = PolyFE.KeyGen(PolyFE.msk,Pi)}i∈[k] and output it.

BddFE.Enc(x,mpk): Upon input the public key and the input x, do:

1. Choose R1, . . . , RS ← {0, 1}m, where m is the size of the random input in the randomized
encoding.

2. Set CTx = PolyFE.Enc(PolyFE.mpk,x,R1, . . . ,Rs) and output it.

BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a secret key SKC for
circuit C, do the following:

1. Compute GC,∆(x, R1, . . . , RS) = PolyFE.Dec(CTx,SKC).

2. Run the Decoder for the randomized encoding to recover C(x) from GC,∆(x, R1, . . . , RS).

Correctness follows immediately from the correctness of PolyFE and the correctness of randomized
encodings. We provide an argument for security and the description of the online-offline phase in
Appendix E.

Acknowledgements. We thank Damien Stehlé and Chris Peikert for helpful discussions.
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A Supplementary material and Appendices

A.1 The GVW Construction

In this section we sketch the GVW scheme and discuss why it appears unsuitable for Online-Offline
optimization. The scheme can be summarized as follows.

• The first ingredient they need is a single key FE scheme for all circuits. A construction for
this was provided by Sahai and Seyalioglu in [SS10].

• Next, the single FE scheme is generalized to a q query scheme for NC1 circuits. This
gerenalization is fairly complex, we provide an outline here. At a high level, they run N
copies of the single key scheme, where N = O(q4). The encryptor encrypts the views of the
BGW MPC protocol for N parties, computing some functionality related to C. They rely on
the fact that BGW is non-interactive when used to compute bounded degree functions. To
generate a secret key, KeyGen chooses a random subset of the single query FE keys, where the
parameters are set so that the subsets have small pairwise intersections. This subset of keys
enables the decryptor to recover sufficiently many shares of C(x) which allows him to recover
C(x). [GVW12] argue that an attacker with q keys only learns a share xi when two subsets
of keys intersect, but since the subsets were chosen to have small pairwise intersections, this
does not occur often enough to recover enough shares of x. Finally, by the security of secret
sharing, x remains hidden.

• As the last step they “bootstrap” the q query FE for NC1 to q query FE for all circuits using
computational randomized encodings [AIK06]. They must additionally use cover free sets to
ensure that fresh randomness is used for each randomized encoding.

Thus, to encrypt a message x, the encryptor must secret share it into N = O(q4) shares, and
encrypt each one with the one query FE. Since they use Shamir secret sharing with polynomial of
degree t and t = O(q2), note that at most O(q2) shares can be generated offline, since t+ 1 points
will determine the polynomial. Hence O(q4) shares must be generated in the online phase. This
results in an online encryption time that degrades as O(q4).
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B Preliminaries

B.1 Simulation Based Definition of Security against Bounded Collusions

In this section, we define simulation based security for bounded collusions, as in [GVW12, Defn 3.1].

Definition B.1 (q-NA-SIM- and q-AD-SIM- Security). Let F be a functional encryption scheme
for a circuit family C. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim, consider
the following two experiments:

Expreal
F ,A(1λ): Expideal

F ,Sim(1λ):

1: (MPK,MSK)← FE.Setup(1λ)

2: (x, st) ←AFE.Keygen(MSK,·)
1 (MPK)

3: CT← FE.Enc(MPK, x)

4: α ← A
O(MSK,·)
2 (MPK,CT, st)

5: Output (x, α)

1: MPK← FE.Setup(1λ)

2: (x, st)←AFE.Keygen(MSK,·)
1 (MPK)

Let V def
= (Ci, Ci(x),SKi)i∈[q]

3: CT, st′ ← Sim(MPK,V, 1|x|)
4: α← A

O′(MSK,st′,·)
2 (MPK,CT, st)

5: Output (x, α)

Above, Ci denote the queries made by the adversary. We distinguish between two cases of the above
experiment:

1. The adaptive experiment, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

• the oracle O′(MSK, st′, ·) is the simulator, namely SimUx(MSK,st′,·)(·) and Ux(C) = C(x)
for any C ∈ C.

The simulator algorithm is stateful in that after each invocation, it updates the state st′ which
is carried over to its next invocation. We call a stateful simulator algorithm Sim admissible if,
on each input C, Sim makes just a single query to its oracle Ux(·) on C itself.

The functional encryption scheme F is then said to be q query simulation-secure for one
message against adaptive adversaries (q-AD-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2) that makes at
most q queries, the following two distributions are computationally indistinguishable:{

Expreal
F ,A(1λ)

}
λ∈N

c
≈
{

Expideal
F ,Sim(1λ)

}
λ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(MSK, st, ·) are both the
“empty oracles” that return nothing.

The functional encryption scheme F is then said to be q query simulation-secure for one
message against non-adaptive adversaries (q-NA-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2) that makes at
most q queries, the two distributions above are computationally indistinguishable.
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C Making KeyGen stateless for Noisy Linear FE

We note that the keygen algorithm can be made stateless by using standard tricks, as in [GVW12,
Section 6]. To see this, let us examine how noise is added in the above system at present. The
encryptor provides encryptions of Q noise terms δ and for i ∈ [Q], the key generator appends the ith

key vector gi with a Q sized unit vector ei. As a result, decryption of the ith key with the ciphertext
results in an additional term δTei = δi, which gets added to the legitimate decryption value gz

i .
Thus, to ensure that a fresh noise term δi is added for each decryption equation, the key generator
must keep track of how many keys it has issued in the past (or receive this information as input).

Cover free sets offer a natural tool to deal with this issue, and this technique was used towards a
similar end in [GVW12]. The idea is to choose Q′ > Q and have the encryptor provide encryptions
of Q′ noise values in place of Q. The key generator is modified to be stateless and randomly pick a
Q′ sized binary vector of weight v in place of ei. Now the decryption computes a random subset
sum of Q′ noise terms for every key, which for appropriate setting of Q′ and v guarantees that each
decryption equation has at least one fresh noise term. It is shown in [GVW12] that Q′ = Q2 and
v = λ suffices.

The careful reader might notice that the summands in this case are discrete Gaussians and a
random subset of discrete Gaussians does not yield the original distribution. However, fortunately
this is not an issue, since the cover free property implies that every decryption equation has at
least one freshly sampled discrete Gaussian that is not used in any other equation. This suffices for
security.

We also note that though the general construction of linear FE for inner products modulo a
prime by [ALS] is stateful, as noted by the authors of [ALS], this is only for the most general
adversary and does not apply to our setting. For our setting, the function queries to the underlying
Linear FE are linearly independent allowing for a stateless keygen, due to the fact that each query
vector contains at least one unique index which is nonzero in that vector alone, and zero for all
other query vectors. This is ensured by the use of cover free sets in the construction. We refer to
[ALS] for more details, as this issue is discussed at length there.

D Details of Induction

Induction Step. Assume that the claim is true for level k − 1. Then we establish that it is true
for level k. Namely, we show that using the induction hypothesis and the rules, we can compute

ck−1
i and ck−1

j · s . The latter, along with ck−1 (which is provided by the I.H) suffice to compute

ciphertexts at level k, namely ck.

Computing ck−1
ij · s . We have that

ck−1
ij · s =

(
ck−2
i ck−2

j − uk−2
i ck−2

j · s − uk−2
j cji

k−2 · s + uk−2
i uk−2

j s2
)
· s

Consider ck−2
i ck−2

j · s . Computing this using the quadratic scheme requires:
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1. ck−2
i and ck−2

j · s . These can be computed by the induction hypothesis.

2. ck−2
i · s = (L ck−2

i · s+ N ck−2
i + ck−2

i ) · s , hence we require ck−2
i · s , s2 and N ck−2

i · s .

The first two terms are provided by the induction hypothesis.

For N ck−2
i · s , notice that Ck−2

i ∈Mk−1 which implies that N Ck−2
i ∈ Ck−1. Hence by rule

4, we have that N Ck−2
i · s ∈Mk. Hence Ck contains N Ck−2

i · s . This suffices to compute

N ck−2
i · s by additive linear homomorphism, as desired.

3. ck−2
i · s · s : To compute this we need ck−2

i · s2 and N ck−2
i · s · s .

(a) Consider ck−2
i · s2 . We have that Ck−2 · s ∈Mk−1 by rule 4. Hence Ck−2 · s2 ∈Mk by

Rule 2, which implies that Ck−2 · s2 ∈ Ck. This suffices to compute ck−2
i · s2

(b) Consider N ck−2
i · s · s : We have that Ck−2 · s ∈Mk−1 by Rule 4, which implies that

N Ck−2 · s ∈ Ck−1. Thus, again by Rule 4 we get that N Ck−2 · s ·s ∈Mk. This implies

that N Ck−2 · s · s ∈ Ck.

Claim D.1 (Noise Lemma). we can compute N cki and N ckj · s using only linear homomorphism

on the terms
{

N Ck , N Mk ,N Ck · s ,N Mk · s
}

.

Proof. We show that N cki is a linear combination of terms N Mk . Note that:

cki = ck−1
j ck−1

` − bkj` Note, here b lives in larger space.

= ck−1
j ck−1

` −
(
uk−1
j ck−1

` · s + uk−1
` ck−1

j · s − ukjuk` s2
)

Hence, N cki can be computed using linear combinations of:

N cki ∈
{

N ck−1
j ck−1

` , N ck−1
` · s

}
N ck−1

j ck−1
` ∈

{
N ck−1

j · s
}

∈
{

N N ck−1
j · s , N ck−1

j · s
}
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N cki · s can be computed using linear combinations of:

N cki · s ∈
{

N ck−1
j ck−1

` · s , N ck−1
` · s · s

}
N ck−1

j ck−1
` ∈

{
N ck−1

j · s
}

∈
{

N N ck−1
j · s , N ck−1

j · s
}

Now, by I.H we have that N ck−1
i is a linear combination of terms N Ck−1 and N Ck−1 · s .

Now consider N ck−1
` · s . First note that ck−1

` · s may be computed using N ck−1
` · s and

ck−1
` · s by additive homomorphism. Hence, N Mk suffices to compute N cki .

E Security of the Construction in Section 7

In this section, we argue that the construction described in Section 7 is secure. Let RE.Sim be the
simulator guaranteed by the security of randomized encodings and PolyFE.Sim be the simulator
guaranteed by the security of the PolyFE scheme. Again, the blueprint is the same as in [ALS], only
the underlying scheme is different. We proceed to describe the simulator below.

Bdd.Sim
(
{Ci, Ci(x),SKi}i∈[q∗]

)
: The simulator Bdd.Sim receives the secret key queries Ci, the

corresponding (honestly generated) secret keys SKi and the values Ci(x) for i ∈ [q∗] where q∗ ≤ q,
and must simulate the ciphertext CTx. It proceeds as follows:

1. Pick ∆1, . . . ,∆q ⊆ S randomly, of size v each.

2. For each i ∈ [q∗], invoke RE.Sim(Ci(x)) to learn GC,∆i(x).

3. Let CTx = PolyFE.Sim
(
{GCi,∆i , GCi,∆i(x, R1, . . . , RS),SKi}i∈[q∗]

)
and output it.

The correctness of Bdd.Sim follows from the correctness of RE.Sim and PolyFE.Sim.

Remark. Note that the most general version of the FE scheme for linear functions mod p presented in
[ALS] is stateful, but as observed in [ALS], it can be made stateless for many applications, including
the one we consider here. We refer the reader to [ALS] for more details.

Splitting Encryption as Online-Offline. If the encryptor provides O(w) encryptions for the
terms in ∪

k∈[3]
Mk, then the decryptor can compute level 3 ciphertexts c3

i on the fly. Now, to support

q queries on circuits C ∈ C of depth d using bootstrapping, the encryptor must additionally provide
encryptions of R1, . . . , RS as seen above, where S = O(q2) and each Ri is of size m which is O(|C|).
However, note that these encryptions can also be generated offline, since they do not depend on the
message.

Thus, the online complexity of the encryption algorithm remains O(w) while the offline complexity
is O(|C| · q2).
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F Correlated Noise suffices in Quadratic FE

For concreteness, consider Q = w2 and εk = µiµj for i, j ∈ [w], k ∈ [Q] and µi chosen from a discrete

Gaussian distribution. We show that we may sample (δ̂1, . . . , δ̂w) so that δ̂i drowns µi and generate w2

terms using these. Thus, instead of sampling (δ̂i, . . . , δ̂Q) i.i.d to drown (ε1, . . . , εQ) and setting γ = δ̂,

we will sample δ̂ = (δi)i∈[w] using only w i.i.d noise terms δ̂i and set γ = (δ̂1δ̂1, . . . δ̂iδ̂j , . . . , δ̂wδ̂w).

To justify this choice of δ̂, we show that if

∆(δ̂i, δ̂i + µi) ≤ negl ∀i ∈ [w]

Then, ∆(δ̂iδ̂j , δ̂iδ̂j + µiµj) ≤ negl ∀i, j ∈ [w]

This follows from a sequence of straightforward applications of two properties of statistical
distance, namely:

1. Statistical distance is a metric on distributions.

2. For every randomized function F , ∆
(
F (X), F (Y )

)
≤ ∆(X,Y ).

Now, we have:

∆(δ̂i, δ̂i + µi) ≤ negl

By Property (2) , ∆
(
δ̂iδ̂j , (δ̂i + µi)δ̂j

)
≤ negl

∆
(
(δ̂i + µi)δ̂j , (δ̂i + µi)(δ̂j + µj)

)
≤ negl

By Property (1) , ∆
(
δ̂iδ̂j , (δ̂i + µi)(δ̂j + µj)

)
≤ negl

∆
(
δ̂iδ̂j − δ̂iµj , δ̂iδ̂j + µiδ̂j + µiµj

)
≤ negl

By Property (2) , ∆
(
δ̂iδ̂j , δ̂iδ̂j − δ̂iµj

)
≤ negl

Hence, ∆
(
δ̂iδ̂j , δ̂iδ̂j + µiδ̂j + µiµj

)
≤ negl

Similarly, we obtain ∆
(
δ̂iδ̂j , δ̂iδ̂j + µiµj

)
≤ negl as desired.

By the same reasoning, we can get that:

∆
(
δiδj , δiδj + δ̂iδ̂j

)
≤ negl

G Handling arbitrary challenge messages

In this section, we discuss how to generalise the proof in Section 4.1 to handle arbitrary challenge
messages. This can be done in a manner analogous to the proof of linear FE, which is explained in
[ABCP15, ALS]. At a high level, we design B to be a low norm basis that contains x0 − x1 as the
last basis vector bw and the remaining basis vectors orthogonal to it. The challenger constructs
the public parameters, and the ciphertext c, b along this basis. Along this basis, it holds that the
adversary only queries for a monomial involving xbw iff x0[bi]x0[bw] = x1[bi]x1[bw] = 0. That is,
along this basis, the above restriction on the proof holds. To convert this to an arbitrary basis,
the challenger applies a change of basis transformation, which, by the construction of [ALS], is low
norm.
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