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Abstract

We provide a new construction of functional encryption for circuits in the bounded collusion
model. In this model, security of the scheme is guaranteed as long as the number of colluding
adversaries can be a-priori bounded by some polynomial q. Compared to the previous best
construction in this model, by Gorbunov, Vaikuntanathan and Wee (CRYPTO’12), our scheme
has the following advantages:

• The ciphertext of our scheme grows as O(q2), whereas that in [GVW12] grows as O(q4).

• The ciphertext of our scheme can be divided into a succinct data dependent component and
a non-succinct data independent component. This makes it well suited for optimization in
an online-offline model that allows for preparation in an offline phase, where a majority of
the computation is done before the data becomes available. This is followed by an efficient
online phase, which is performed when the data becomes known. The online component
of our scheme significantly outperforms the online component of [GVW12], and depends
linearly only on the message size, whereas that of [GVW12] additionally depends on the
circuit size and the number of queries.

• The ciphertext of our scheme is decomposable – namely, the data dependent component of
the ciphertext CTx may be decomposed as

(
CT1, . . . ,CT|x|

)
, where CTi depends only on

the bit xi. Since our ciphertext enjoys both decomposability as well as succinctness of the
online component, our scheme is very suitable for distributed data applications where the
data to be encrypted is held by multiple, separated parties that share only a PRF seed.
Existing schemes do not enjoy this feature to the best of our knowledge.

Security of our scheme is based on the standard Learning With Errors assumption (LWE)
or its ring variant (Ring-LWE). To prove security of our scheme, we introduce a new proof
technique, called noisy functional encryption, which may be of independent interest.
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1 Introduction

Functional encryption (FE) [SW05, SW] generalizes public key encryption to allow fine grained
access control on encrypted data. In functional encryption, a secret key SKg corresponds to a
function g, and a ciphertext CTx corresponds to some input x from the domain of g. Given SKg
and CTx, functionality posits that the user may run the decryption procedure to learn the value
g(x), while security guarantees that nothing about x beyond g(x) can be learned.

Recent years have witnessed significant progress towards constructing functional encryption
for advanced functionalities [BF01, Coc01, BW06, BW07, GPV08, CHKP10, ABB10, GPSW06,
BSW07, KSW08, LOS+10, AFV11, Wat12, GVW13, GGH+13c, GGH+13b, GVW15]. However,
for the most general notion of functional encryption – one that allows the evaluation of arbitrary
efficient functions and is secure against general adversaries, the only known constructions rely on
indistinguishability obfuscation (iO) [GGH+13b] or on the existence of multilinear maps [GGHZ14].
For full-fledged functional encryption, reliance on such strong primitives is not a co-incidence, since
functional encryption has been shown to imply indistinguishability obfuscation [AJ15, BV15, AJS15].

Unfortunately, all known candidate multi-linear map constructions [GGH13a, CLT13, GGH15]
as well as some candidates of indistinguishability obfuscation have been recently broken [CHL+15,
CGH+15, HJ15, CJL, CFL+, MSZ], rendering all constructions of general FE uninstantiable. To
support general functionalities and base hardness on standard assumptions, a prudent approach is to
consider principled relaxations of the security definition, as studied in [GVW12, GKP+13, GVW15].

The notion of bounded collusion functional encryption, inspired from the domain of secure
multiparty computation (MPC), was introduced by Gorbunov, Vaikuntanathan and Wee [GVW12].
This notion assumes that the number of colluding adversaries against a scheme can be upper
bounded by some polynomial q, which is known at the time of system design. It is important to note
that q-bounded security does not impose any restriction on the functionality of FE – in particular,
it does not disallow the system from issuing an arbitrary number of keys. It only posits, à la MPC,
that security is guaranteed as long as any collusion of attackers obtains at most q keys. Note that
multiple independent collusions of size at most q are supported.

The notion of q-bounded FE is appealing – proving security under the assumption that not too
many parties are dishonest is widely accepted as reasonable in protocol design. Even in the context
of FE, for the special case of Identity Based Encryption (IBE), bounded collusion security has been
considered in a number of works [DKXY02, CHH+07, GLW12].

Structure versus Generality. Gorbunov et al. [GVW12] showed that q-bounded FE can be
constructed generically from any public key encryption (PKE) scheme by leveraging ideas from
multiparty computation. Considering that most constructions of FE for general functionalities rely
on the existence of sophisticated objects such as multilinear maps or indistinguishability obfuscation,
basing a meaningful relaxation of FE on an assumption as generic and mild as PKE is both surprising,
and aesthetically appealing. However, this generality comes at the cost of efficiency and useful
structural properties. The ciphertext of the scheme is large and grows as O(q4) to support collusions
of size q. Additionally, the entire ciphertext is data dependent, making the scheme unsuitable for
several natural applications of FE, as discussed below.
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1.1 Our Results

In this work, we provide a new construction of bounded key functional encryption. Our construction
makes black box use of the recently developed Functional Encryption for Linear Functions [ALS16],
denoted by LinFE, and combines this with techniques developed in the context of Fully Homomorphic
Encryption (FHE)1 [BV11b, BV11a]. Since LinFE and FHE can be based on LWE/Ring LWE, our
construction inherits the same hardness assumption.

Our construction offers several advantages:

1. The ciphertext size of our scheme grows quadratically with the number of queries q, improving
over the previous best construction [GVW12], where it grows as O(q4).

2. Our scheme is highly suitable for the online-offline model, which allows for an expensive
offline encryption phase, where a majority of the computation is done before the data becomes
available, followed by an efficient online phase, which is performed when the data becomes
known. The online component of our ciphertext is succinct, i.e. depends only on the message
size. By contrast, [GVW12] has an online component that depends on both the size of the
circuit as well as the number of queries.

3. The ciphertext in our construction is decomposable – namely, the data dependent “online”
component, denoted by CTonline, may be decomposed as

(
CT1, . . . ,CT|x|

)
, where CTi depends

only on the bit xi. Since our ciphertext enjoys both decomposability as well as succinctness of
the online component, our scheme is very suitable for distributed data applications as discussed
below. Existing schemes do not imply these to the best of our knowledge.

Distributed Data Applications. Our construction is very suitable for applications where data
belonging to a single party is distributed across multiple locations. As an example, consider a
large healthcare organization with k > 1 branches across multiple cities, which desires to store
data from all centres in a central repository and compute functions on this. Ideally, we would like
each centre to upload encryptions of its data to the server independently of other centres. Our
construction provides a natural solution – all k centres may share a PRF seed, using which centre i
can construct ciphertext component CTi that depends only on its data xi and upload this. The
size of the ciphertext component CTi is poly(λ, |xi|), where λ is the security parameter, hence the
upload operation consumes optimal bandwidth. The ciphertext components CT1, . . . ,CTk can then
be combined to produce a ciphertext CTx which may be decrypted by a function key SKg to obtain
g(x). See Section 7 for more details.

As another example consider the following scenario described by Applebaum et al. [AIK14]: a
computationally weak device is sent to the field in order to perform some expensive computation
C on some sensitive data x. The computation is too expensive for the device to perform it on its
own, but since the data is sensitive, the device cannot send the data back in the clear. As noted
by [AIK14], garbled circuits provide the only feasible non-interactive solution to this question: the
weak device can compute the garbled circuit for circuit C in an offline phase before going to the
field, and keep the garbled keys {K0

i ,K
1
i }i∈[|x|] with itself. Once it learns the input x, it performs

the lightweight operation of selecting the appropriate keys Kxi
i and sends these back. Note that

1We emphasise that we do not rely on FHE in a black box way, but rather adapt techniques developed in this
domain to our setting.
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this application crucially relies on succinctness of the “online” or data-dependent component of the
encoding Kxi

i , so that transmission cost is minimized. Indeed, reducing the online complexity of
randomized encodings, for both single and multiple executions of the circuit, is an active area of
research – see [LR14, HKK+14, AIKW15] and references therein. Also, note that decomposability
of garbled circuits enables supporting multiple sensor devices: since the encoding Kxi

i depends only
on bit xi and none other, device i may be given keys (K0

i ,K
1
i ) before it is sent to the field, and the

function may be computed on data collected by multiple devices.

Since functional encryption may be viewed as a generalization of randomized encodings, many
applications of randomized encodings benefit immediately from the additional power offered by FE.
For instance, by replacing the decomposable, online-succinct garbled circuit in the above example by
a decomposable, online-succinct functional encryption scheme, we may: 1) choose the function to be
computed on the data after the devices are sent to the field, 2) a given function may be computed
on an unbounded number of ciphertexts, and 3) we may compute multiple (i.e. q) functions on a
given set of data. It is evident that these capabilities are not enjoyed by the garbled circuit protocol
described above. Also note that since computing CTi is the online part of the operation and is
efficient, it is within the capabilities of the weak device.

See Section 7 for more details about how our scheme achieves these properties and Appendix A
for a discussion on why previous schemes could not.

1.2 Techniques

In this section, we describe our techniques. We begin by outlining the approach taken by previous
work. [GVW12] begin with a single key FE scheme for circuits [SS10] and generalize this to a q
query scheme for NC1 circuits. This is the most sophisticated part of the construction, and leverages
techniques from multiparty computation. Then, the q query FE for NC1 is bootstrapped to q query
FE for all circuits by replacing the circuit in the key by a tuple of low degree polynomials admitted
by computational randomized encodings [AIK06].

Recently, Agrawal et al. [ALS16] observe that a different construction for bounded collusion
FE can be obtained by replacing [SS10] and its generalisation to q query FE for NC1, with an FE
that computes inner products modulo some prime p. Such a scheme, which we denote by LinFE,
was constructed by [ALS16] and computes the following functionality: the encryptor provides a
ciphertext CTx for some vector x ∈ F `p , the key generator provides a key SKv for some vector

v ∈ F `p , and the decryptor, given CTx and SKv can compute 〈x,v〉 mod p2. Since the bootstrapping
theorem in [GVW12] only requires FE for degree 3 polynomials, and FE for linear functions trivially
implies FE for bounded degree polynomials simply by linearizing the message terms x and encrypting
each monomial xixjxk separately, LinFE may be used to compute degree 3 polynomials.

Thus, in [ALS16], the challenge of supporting multiplication is “brute-forced” by merely having
the encryptor encrypt each monomial separately so that the FE must only support linear functions in
order to achieve bounded degree polynomials. This brute force approach has several disadvantages:
the ciphertext is not decomposable as the influence of bit xi cannot be contained to CTi, is not
online-succinct as the entire ciphertext is data dependent, and its size grows as O(q6). See Appendix
A for more details.

2We note that the FE scheme by Abdalla et al. [ABCP15] also supports linear functions but only over Z, while
[ALS16] requires an FE scheme that supports Zp. Also note the difference from Inner Product orthogonality testing
schemes [KSW08, AFV11] which test whether 〈x,v〉 = 0 mod p or not.
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Our Approach. In this work, we observe that viewing functional encryption through the lens
of fully homomorphic encryption (FHE) enables a more sophisticated application of the Linear
FE scheme LinFE, resulting in a bounded collusion FE scheme for circuits that is decomposable,
online-succinct as well as achieves ciphertext growth of O(q2).

In what follows, we focus on FE for quadratic polynomials for ease of exposition. Additionally,
here and in the rest of the paper, we present our construction from Ring-LWE rather than standard
LWE, for notational convenience and clarity. Our construction can be ported to the standard LWE
setting, by performing standard transformations such as replacing ring products by vector tensor
products. Details are provided in Appendix C.

Consider the ring LWE based symmetric key FHE scheme of [BV11b]. Recall that the ciphertext
of this scheme, as in [Reg09], is structured as (u, c) where c = u ·s+2 ·µ+x. Here, s is the symmetric
key chosen randomly over an appropriate ring R, u is an element chosen by the encryptor randomly
over R, x is a message bit and µ is an error term chosen by the encryptor from an appropriate
distribution over R. Given secret key s, the decryptor may compute c− u · s mod 2 to recover the
bit x.

The main observation in [BV11b] was that if:

ci = ui · s+ 2 · µi + xi

cj = uj · s+ 2 · µj + xj

then the decryption equation can be written as

xixj ≈ cicj + (uiuj)s
2 − (ujci)s− (uicj)s

Thus, the 3 tuple (cicj , uicj + ujci, uiuj) is a legitimate level 2 FHE ciphertext, decryptable by
the secret key s. [BV11b] observed that it is sufficient to add one ciphertext element per level of
the circuit to propagate the computation.

In the context of FE, things are significantly more complex even for quadratic polynomials, since
we must return a key that allows the decryptor to learn xixj and nothing else. Hence, providing s
to the decryptor is disastrous for FE security. Here we use our first trick: observe that in the above
equation, the parenthesis can be shifted so that:

xixj ≈ cicj + uiuj(s
2)− uj(cis)− ui(cjs)

Now, if we use the Linear FE scheme to encrypt the terms in parenthesis, then we can have the
decryptor recover the term uiuj(s

2)− uj(cis)− ui(cjs). More formally, let |x| = w. Now if,

CT = LinFE.Enc(s2, c1s, . . . , cws)

SKij = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SKij ,CT) should yield the above term by correctness. Since c1, . . . , cw may be
provided directly in the ciphertext, the decryptor may itself compute the term cicj . Now, LinFE
decryption yields uiuj(s

2)− uj(cis)− ui(cjs), so the decryptor may recover (approximately) xixj
as desired 3.

3As in FHE, approximate recovery is enough since the noise can be modded out.
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A bit more abstractly, we observe that a quadratic plaintext xixj can be represented as a
quadratic polynomial which is quadratic in public terms ci, cj , and only linear in secret terms cis.
In particular, since the number of secret terms cis which must be encrypted is only linear in w, we
appear to avoid the quadratic blowup caused by linearization.

This intuition, while appealing, is very misleading. First off, note that if we permit the decryptor
to learn the term uiujs

2 − ujcis− uicjs exactly, then he can recover exact quadratic equations in
the secret s, completely breaking the security of the scheme. To handle this, we resort to our second
trick: add noise artificially to the decryption equation. Thus, instead of using Linear FE, we will
use a noisy linear functional encryption scheme which trades some correctness for security. This
notion is formally defined in Section 3, and constructed in Section 5. This takes care of the above
attack, but to handle q queries, we need q fresh noise terms to be encrypted in the ciphertext. This
step introduces the dependence of the ciphertext size on q.

Providing a proof of security requires crossing several additional hurdles. For example, the
simulator must “program” the challenge ciphertext and function keys to decrypt correctly, but
to do this, the simulator must satisfy w2 decryption equations (corresponding to w2 monomial
keys) in only w variables (corresponding to the terms {cis}i∈[w] in the ciphertext). To handle
this, we introduce additional terms in the key so as to create sufficient degrees of freedom in the
simulation. This requires care, since in the real world these terms are chosen independently but in
the simulation, they must depend on the challenge ciphertext. Hence, arguing indistinguishability
is not straightforward. The details of the proof are provided in Section 4. Generalizing quadratic
to ternary polynomials requires additional tricks, since the online-succinct and decomposability
properties of the scheme must be maintained. We describe how this is accomplished in Section 6.

Towards Unbounded Query FE. As discussed above, the ciphertext of our scheme can
be divided into two components: a succinct data dependent component, which we refer to as
CTonline(x) and a non-succinct data independent component, which we call CTindpt(x). Aside from
the aforementioned benefits of this structure, it is very intriguing to us that CTonline(x) is sufficient
by itself to propagate computation on x efficiently down an arithmetic circuit. To see this for the
case of quadratic monomials, observe that the ciphertext ci = ui · s+ 2 · µi + xi for i ∈ [w] along
with b = LinFE.Enc(s2, c1s, . . . , cws) is sufficient to compute a quadratic monomial

xixj ≈ cicj + uiuj(s
2)− uj(cis)− ui(cjs)

as described above. Since LinFE has succinct ciphertext [ALS16], b is succinct, hence CTonline =
(c1, . . . , cw,b) is also succinct. Section 4 presents the scheme for quadratic polynomials, while
Section 6 extends the construction to degree 44.

Thus, functionally, our scheme implies succinct FE for degree 4 polynomials: the encryptor can
provide a succinct ciphertext for x, namely CTonline(x), the key generator can provide a key SKP
for polynomial P , and the decryptor can compute a ciphertext corresponding to CT(P (x)), apply
to it the key SKP and learn P (x).

Unfortunately, the succinct scheme described above is insecure, and to achieve security, we must
artificially add noise to the decryption equation computed by every key. This forces the encryptor
to encode a separate noise term for each possible key, which results in a large data independent

4We do not extend to higher degree polynomials in this work, but conjecture that constant depth circuits can be
supported.
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component CTindpt and creates the dependence of the ciphertext size on the number of requested
keys. This artificial addition of noise to the decryption equation is captured by the primitive of
noisy functional encryption, which allows for a proof of security at the cost of succinctness.

Whether the noise can be added to the ciphertext in a more efficient way is a pressing open
question, and one with important consequences, as recent work [LV16] has shown that functional
encryption for constant degree polynomials implies indistinguishability obfuscation.

1.3 Organization of the paper

The paper is organized as follows. In Section 2, we describe preliminary definitions and notation used
throughout the paper. In Section 3, we define the notion of noisy functional encryption which we
rely on crucially for our construction. In Section 4, we describe a construction for FE for quadratic
forms for the online-offline model, which relies on a a construction for noisy functional encryption
for linear functions, secure against q queries, provided in Section 5. In Section 6, we construct
FE for degree 3 polynomials. In Appendix A, we discuss additional related work. We conclude in
Section 8.

2 Preliminaries

In this section, we define the preliminaries we require for our constructions. Some additional
preliminaries are provided in Appendix B.

2.1 Functional Encryption

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N denote ensembles where each Xλ and Yλ is a finite set. Let
G =

{
Gλ
}
λ∈N denote an ensemble where each Gλ is a finite collection of circuits, and each circuit

g ∈ Gλ takes as input a string x ∈ Xλ and outputs g(x) ∈ Yλ.

A functional encryption scheme F for G consists of four algorithms F = (FE.Setup,FE.Keygen,
FE.Enc,FE.Dec) defined as follows.

• FE.Setup(1λ) is a p.p.t. algorithm takes as input the unary representation of the security
parameter and outputs the master public and secret keys (PK,MSK).

• FE.Keygen(MSK, g) is a p.p.t. algorithm that takes as input the master secret key MSK and a
circuit g ∈ Gλ and outputs a corresponding secret key SKg.

• FE.Enc(PK, x) is a p.p.t. algorithm that takes as input the master public key PK and an input
message x ∈ Xλ and outputs a ciphertext CT.

• FE.Dec(SKg,CTx) is a deterministic algorithm that takes as input the secret key SKg and a
ciphertext CTx and outputs g(x).

Definition 2.1 (Correctness). A functional encryption scheme F is correct if for all g ∈ Gλ and all
x ∈ Xλ,

Pr

[
(PK,MSK)← FE.Setup(1λ);

FE.Dec
(
FE.Keygen(MSK, g),FE.Enc(PK, x)

)
6= g(x)

]
= negl(λ)
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where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

2.2 Indistinguishability-based Definition of Security

We define the standard indistinguishability based security definition for functional encryption.

Definition 2.2. A functional encryption scheme F for a function family G is secure in the
adaptive indistinguishability game, denoted as AD-IND secure, if for all probabilistic polynomial-time
adversaries A, the advantage of A in the following experiment is negligible in the security parameter
λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any functions g1, . . . , g`′ ∈ G.
In response, A is given the corresponding keys SKgi .

3. Challenge Declaration: A(1λ,PK) outputs the challenges (x0,x1) ∈ X to the challenger,
subject to the restriction that gi(x0) = gi(x1) for all i ∈ [`′]

4. Challenge CT: A requests the challenge ciphertext, to which challenger chooses a random bit
b, and returns the ciphertext CTxb .

5. Key Queries: The adversary may continue to request keys for additional functions, subject
to the restriction that gi(x0) = gi(x1) for all i ∈ {`′ + 1, . . . , `}. In response, A is given the
corresponding keys SKgi .

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2.
In the selective game, the adversary is required to declare the challenge messages in the very first
step, without seeing the public key/ In the semi-adaptive game the adversary is required to declare
the challenge messages after it sees the public parameters (before making any key queries).

2.3 Linear Functional Encryption

Our construction will make use of the linear functional encryption scheme, denoted by LinFE,
constructed by [ALS16]. Recall the functionality of LinFE: the encryptor provides a ciphertext
CTx for some vector x ∈ F kp , the key generator provides a key SKv for some vector v ∈ F kp , and
the decryptor, given CTx and SKv can compute 〈x,v〉 mod p. We note that the FE scheme by
Abdalla et al. [ABCP15] also supports linear functions but only over Z, while [ALS16] requires an
FE scheme that supports Zp.

The construction LinFE has several useful structural properties which will be very useful for our
construction. These are:

1. Decomposability: Say that LinFE supports messages of length k. Then, the public key
in LinFE may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) and the ciphertext may be
interpreted as CTx = (CT1, . . . ,CTk,CTindpt). Here the data dependent components of the
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public key and the ciphertext are (PK1, . . . ,PKk) and (CT1, . . . ,CTk) and the data independent
components are (PKindpt,CTindpt). Additionally, we may write:

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here, E is a deterministic encoding algorithm and r is common randomness used by all
components of the encryption. Apart from the common randomness r, each CTi may
additionally make use of independent randomness r̂i. The data dependent part of the
ciphertext (CT1, . . . ,CTk) is referred to as CTonline.

2. Malleability: The ciphertext components of LinFE are malleable so that if CTi encodes xi
then CTi + xj is a valid encoding for xi + xj (as long as xi + xj belong to the message space
of E). More formally, if CTi = E (PKi, xi, r, r̂i) then E (PKi, xi + xj , r, r̂i) = CTi + xj .

3. Additive homomorphism of ciphertext components: The ciphertext components of
LinFE enjoy additive homomorphism, i.e. if CTi encodes xi and CTj encodes xj then vi CTi +
vj CTj encodes vixi + vjxj , as long as vi, vj belong to the valid function space of LinFE.

4. Ciphertext Succinctness: The ciphertext of LinFE is succinct, i.e. the size of CT(x) is
O(poly(λ), k) where λ is the security parameter and k = |x|.

3 Noisy Functional Encryption

In this section, we define the notion of noisy functional encryption that we will use in our construction.
Intuitively, noisy FE is like regular FE, except that the function value is recovered only up to some
noise. This property turns out to be surprisingly useful, as we shall see in subsequent sections. We
believe this primitive may be of independent interest, for example in differential privacy applications,
where it is desirable to not reveal the function value exactly to safeguard privacy. We define the
notion formally below.

An (ε, δ,Q)-Noisy functional encryption scheme F for some circuit family G consists of four
algorithms F = (FE.Setup,FE.Keygen, FE.Enc,FE.Dec) as in the case of regular functional encryption.
However, now we require the correctness condition to hold only up to some error δ > 0, define
security assuming that the number of queries asked is less than Q, and require that the challenge
messages evaluated on all the keys requested by the adversary differ by at most ε. These properties
are described formally next.

Definition 3.1 (δ-Correctness). Let δ > 0. A functional encryption scheme F is δ-correct if for all
g ∈ Gλ and all x ∈ Xλ,

Pr

[
(PK,MSK)← FE.Setup(1λ);

FE.Dec
(
FE.Keygen(MSK, g),FE.Enc(PK,x)

)
6∈ [g(x)− δ, g(x) + δ]

]
= negl(λ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

Security is defined in the standard indistinguishability setting and should require that for
challenge messages x0,x1 ∈ Xλ, if it holds that:

• For every queried key gi, we have |gi(x0)− gi(x1)| ≤ ε.
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• The total number of queries requested is less than Q, for some polynomial Q. We note that it
may be that Q >> |x|.

Then, we require that the adversary cannot distinguish CT(x0) from CT(x1) with non negligible
advantage. Formally, we define the Noisy-IND game as follows.

Definition 3.2 ((ε,Q) Noisy-AD-IND security.). Let ε, δ > 0 such that ε/δ < negl(λ). A δ-correct
functional encryption scheme F for a function family G is (ε,Q)-secure in the noisy indistinguishability
game if for all probabilistic polynomial-time adversaries A, the advantage of A in the following
experiment is negligible in the security parameter λ:

1. Public Key: Challenger returns PK to the adversary.

2. Pre-Challenge Key Queries: A may adaptively request keys for any functions g1, . . . , g`1 ∈
G for i ∈ [`1] and `1 ≤ Q. In response, A is given the corresponding keys SK(gi).

3. Challenge Ciphertext: A(1λ) outputs the challenges (x0,x1) ∈ X to the challenger. The
challenger checks that |gi(x0) − gi(x1)| ≤ ε for all functions gi requested so far. If not, it
outputs ⊥ and aborts. Otherwise, the challenger chooses a random bit b, and returns the
ciphertext CT(xb).

4. Post-Challenge Key Queries: The adversary may request `2 ∈ [Q−`1] keys for functions of
its choice, subject to the same restrictions as above. In response, A is given the corresponding
keys.

5. Guess. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success probability and 1/2.

4 Q bounded FE for Quadratic forms

Since the intuition behind the construction has been discussed in Section 1, we proceed to the
formal description. Our construction uses as a black box a noisy linear FE scheme, denoted
by (ε, δ,Q)-NLinFE that computes noisy inner products modulo p1 and supports Q queries upto
correctness fudge factor δ as long as the legitimate decryption values differ upto ε. A construction
for the same is provided in Section 5.

For the construction below supporting quadratic polynomials, we will require two prime moduli
p0 < p1 where p0 serves as the message space for the final quadratic scheme (think of p0 = 2), and
p1 serves as the message space for the NLinFE scheme.

FE.Setup(1λ, 1w): On input a security parameter λ and a parameter w denoting the length of
message vectors, do:

1. Invoke NLinFE.Setup(1λ, 1w+2) to obtain NLinFE.PK and NLinFE.MSK.

2. Sample u← Rwp1 .

3. For 1 ≤ j ≤ i ≤ w, compute fij as follows:

• Sample µ̃ij ← D1 for 1 ≤ j ≤ i ≤ w.
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• Sample ti ∈ Rp1 for i ∈ [0, w].

• Define
fij = uiujt0 − ujti − uitj + p0 · µ̃ij

Set f = (fij)1≤j≤i≤w ∈ RL where L = |{i, j : 1 ≤ j ≤ i ≤ w}|.
4. Output PK = (NLinFE.PK,u), MSK = (NLinFE.MSK, f).

FE.Enc(PK,x): On input public parameters PK, and message vector x ∈ Rwp0 do:

1. Sample s1
R← Rp1 and µ← Dw0 , and compute “message carrier”

c = u · s1 + p0 · µ + x ∈ Rwp1 .

2. Let b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0).

3. Output CT = (c,b)

FE.KeyGen(PK,MSK,g): On input the public parameters PK, the master secret key MSK, and a
function g =

∑
1≤j≤i≤w

gijxixj , represented as a coefficient vector (gij) ∈ ZLp0 do:

1. Compute

ug =
∑

1≤j≤i≤w
gij (uiuj , 0....0,−ui, 0...0,−uj , 0...0, fij) ∈ Rw+2

p1 .

2. Compute SKg = NLinFE.KeyGen(ug) and output it.

FE.Dec(PK,SKg,CTx): On input the public parameters PK, a secret key SKg for polynomial∑
1≤j≤i≤w

gijxixj , and a ciphertext CTx = (c,b), compute

∑
1≤j≤i≤w

gijcicj + NLinFE.Dec(b,SKg) mod p0

and output it.

4.1 Correctness

We establish correctness of the above scheme.

Let 1 ≤ j ≤ i ≤ w. By definition

xi + p0 · µi = ci − uis1

xj + p0 · µj = cj − ujs1

Letting µij = xiµj + xjµi + p0µiµj , we have

xixj + p0 · µij = cicj − ciujs1 − cjuis1 + uiujs
2
1 (4.1)
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We denote the noise added by the scheme NLinFE by p0 · ρij . We note that the noise added
by NLinFE can easily be chosen to be a multiple of p0, since this is chosen by the encryptor of the
NLinFE scheme. See Section 5 for more details.

By correctness of the linear scheme NLinFE, we have that

NLinFE.Dec(b, SKg) = −ciujs1 − cjuis1 + uiujs
2
1 + p0 · ρij

Hence, cicj + NLinFE.Dec(b, SKg) = cicj − ciujs1 − cjuis1 + uiujs
2
1 + p0 · ρij

= xixj + p0 · µij + p0 · ρij∑
1≤j≤i≤w

gij
(
cicj + NLinFE.Dec(b, SKg)

)
=

∑
1≤j≤i≤w

gij xixj + p0 ·
( ∑

1≤j≤i≤w
gij (µij + ρij)

)
=

∑
1≤j≤i≤w

gij xixj mod p0 as desired.

Analysis of Ciphertext Structure. The ciphertext in the above scheme is comprised of:

c = u · s1 + p0 · µ + x ∈ Rwp1 , b = NLinFE.Enc (s2
1, c1s1, . . . , cws1, 0)

It is evident that c is decomposable as well as succinct, since the ith component ci of c depends
on the ith component xi of x and none other. Next, b is decomposable and online-succinct, since
NLinFE is decomposable and online-succinct, as we shall see in Section 5.

Note that c is succinct, hence succinctness of the ciphertext relies on the succinctness of b.
Unfortunately, b is only online-succinct and not fully succinct (see Section 5 for details). Thus, a
succinct version of NLinFE would lead to succinct ciphertext in the above construction.

4.2 Security

For ease of exposition, we will consider the special case where x0 and x1 differ only in a single
coordinate, namely the wth one. This restriction can be removed with a careful change of basis
operation in Rwp0 , and is specified in Appendix G. For the special case in consideration, we note the
following properties about admissible key requests and some implications that will be used crucially
in the proof.

• x0[i]x0[j] = x1[i]x1[j] for all i, j 6= w by assumption and x0[i]x0[w] = x1[i]x1[w] iff it holds
that x0[i]x0[w] = x1[i]x1[w] = 0. We will refer to these monomials as admissible monomials.
Note that since x0[i] = x1[i] and x0[w] 6= x1[w] by assumption, x0[i]x0[w] = x1[i]x1[w] = 0
can only occur when x0[i] = x1[i] = 0.

• It follows that an admissible quadratic polynomial query may only contain a monomial xixw
for some i, if it holds that x0[i]x0[w] = x1[i]x1[w] = 0.

• Hence it suffices to ensure that the simulated keys for xixj , where i, j 6= w decrypt correctly
and the simulated key for xixw decrypts correctly as long as x0[i]x0[w] = x1[i]x1[w] = 0. In
particular note that the simulator is not required to provide a correctly working key for xixw
when x0[i]x0[w] 6= x1[i]x1[w].
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• In the proof below, the keys and challenge ciphertext will be programmed so that decryption
provides the honest answer for all admissible monomials. The simulator will be designed to
construct keys even for non-admissible monomials but these will not decrypt correctly, since
the simulator cannot know the value xb[w] and hence cannot know the value of xb[i]xb[w]
unless xb[i] = 0. However, the adversary will never notice this, since he may not request these
keys.

Theorem 4.1. The construction in Section 4 achieves semi-adaptive indistinguishability based
security defined in Section 2.2.

Proof. We will prove the theorem via a sequence of hybrids, where the first hybrid is the real world
with challenge x0 and the last hybrid is the real world with challenge x1.

The Hybrids. Our Hybrids are described below.

Hybrid 0. This is the real world with message x0. In hybrid 0, fij is picked as follows:

1. Sample t0, . . . , tw ← Rp1 .

2. Set fij = uiujt0 − ujti − uitj + p0 · µ̃ij mod p1. Here, µ̃ij ← D1 is noise chosen to flood µij .

Hybrid 1. In this hybrid, the only thing that is different is that the challenger picks fij to depend
on the challenge ciphertext. Specifically,

1. Sample t0, . . . , tw ← Rp1 .

2. Set

fij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
mod p1

Hybrid 2. In this hybrid, we change the input for NLinFE.Enc to (t0, t1, . . . , tw, 1) where ti are
chosen uniformly in Rp1 for i ∈ {0, . . . , w}.

Hybrid 3. In this hybrid, we change the message vector in c to x1.

Hybrids 4 and 5. In Hybrid 4 we change the input to NLinFE.Enc to (s2
1, c1s1, . . . , cws1, 0) as in

Hybrid 1. In Hybrid 5, we change fij to be chosen independent of the ciphertext as in Hybrid 0.
This is the real world with message x1.

Indistinguishability of Hybrids. Below we establish that consecutive hybrids are indistinguish-
able.

Claim 4.2. Hybrid 0 is statistically indistinguishable from Hybrid 1.

Proof. The only difference between Hybrid 0 and Hybrid 1 is in the way fij is sampled.
In hybrid 0, we have:
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1. Sample t0, . . . , tw ← Rp1 .

2. Set fij = uiujt0 − ujti − uitj + p0 · µ̃ij .

In Hybrid 1, fij is picked as follows:

1. Sample t0, . . . , tw ← Rp1 .

2. Set fij =
(
(ci − ĉi)(cj − ĉj)− cicj

)
−
(
uiujt0 − ujti − uitj + p0 · µ̃ij

)
mod p1.

In Hybrid 1, we have:

fij =
(
xixj − cicj

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
=
(
uiujs

2
1 − uicjs1 − ujcis1 − p0 · µij

)
−
(
uiujt0 − ujti − uitj − p0 · µ̃ij

)
by equation 2.2

= uiuj(s
2
1 − t0)− ui(cjs1 − tj)− uj(cis1 − ti)− p0 · µij + p0 · µ̃ij

= uiujt
′
0 − uit′j − ujt′i − p0 · µij + p0 · µ̃ij

≈ uiujt′0 − uit′j − ujt′i + p0 · µ̃ij as long as µ̃ij floods µij .

Here, we define t′0 = s2
1− t0 and t′i = cis1− ti for i ∈ [w]. Note that t′0, . . . , t

′
w are i.i.d due to addition

of i.i.d t0, . . . , tw. Thus, we get that the distributions of fij in Hybrid 0 and Hybrid 1 are statistically
indistinguishable. Since the only thing that changed between Hybrid 0 and Hybrid 1 is the manner
of sampling fij , we get that Hybrid 0 and Hybrid 1 are statistically indistinguishable.

Claim 4.3. Assuming adaptive IND security of the noisy linear FE scheme NLinFE, Hybrid 1 and
Hybrid 2 are indistinguishable.

Proof. Given an adversary B who distinguishes between Hybrid 0 and 1, we construct an adversary
A who breaks the adaptive IND security of the noisy linear FE scheme NLinFE.

A runs as follows:

1. The challenger of the NLinFE scheme provides NLinFE.PK to A. A picks u ∈ Rwp1 , and sends
PK = (NLinFE.PK,u) to B.

2. A picks s1 ← Rp1 , and t← Rw+1
p1 .

3. A computes
ci = uis1 + p0 · µi + x0[i] ∀i ∈ [w].

4. When B requests a key for monomial xixj , A does the following:

• A computes t′ as:
t′0 = s2

1 − t0, {t′i = cis1 − ti}i∈[w]

• A computes

fij = uiujt
′
0 − ujt′i − uit′j + p0 · µ̃ij
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• A parses this as a linear key with coefficients

(uiuj , 0....0, ui, 0...0, uj , 0...0, fij) ∈ Rw+2
p1 .

Here, ui appears at the jth position, uj appears at the ith position.

• A forwards this key request to the linear FE challenger and returns its response
NLinFE.SKij to B.

5. B outputs challenges x0,x1 ∈ Rwp0 . A chooses challenge messages z0, z1 as:

z0 =
(
s2

1, c1s1, . . . , cws1, 0
)
∈ Rw+2

p1

z1 = (t0, t1, . . . , tw, 1) ∈ Rw+2
p1

A returns (z0, z1) to the Linear FE challenger.

6. When the linear FE challenger sends challenge NLinFE.CT(zb) to A, it sends CT =(
NLinFE.CT(zb), c

)
to B. Recall that it computed c itself in Step 3.

7. B may request more keys which are answered as before.

8. When B outputs a guess bit b, A forwards this guess to the linear FE challenger.

Now, we argue that for all the requested keys, the difference between the decryption values on
the challenge messages z0 and z1 is very small. By setting the parameter ε of the (ε, δ,Q)-NLinFE
scheme to be an upper bound on this difference, we obtain by the security of the noisy linear FE
scheme that NLinFE.CT(z0) and NLinFE.CT(z1) are indistinguishable. We proceed to show this
formally. We will let Q = w2. Consider a key request for monomial xixj .

In Hybrid 1, the function for the monomial xixj evaluated on z0 yields:

uiujs
2
1 − uicjs1 − ujcis1

In Hybrid 2 the function for the monomial xixj evaluated on z1 yields:

uiujt0 − uitj − ujti + fij

= uiujt0 − uitj − ujti +
(
uiuj(s

2
1 − t0)− uj(cis1 − ti)− ui(cis1 − tj) + p0 · (µ̃ij − µij)

)
≈ uiujs2

1 − uicjs1 − ujcis1 + p0 · µ̃ij since µ̃ij floods µij .

Thus, the decryption values in both worlds are approximately the same upto an additive factor of
p0 · µ̃ij . We set ε in the NLinFE scheme to be larger than p0 · µ̃ij , we obtain by the guarantee of
Noisy Linear FE that Hybrids 1 and 2 are indistinguishable5.

Claim 4.4. Assume Regev public key encryption is semantically secure. Then, Hybrid 2 is
indistinguishable from Hybrid 3.

5Recall that in the security game of noisy linear FE, the challenge messages must only evaluate to approximately
same values for all functions that are queried. The difference between the decryption values is allowed to differ up to ε
which is a parameter to the scheme.
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Proof. We recall Regev public key encryption. We set (PK, SK) = (u, s1) as the public and secret
key. The ciphertext for message x is computed c = u · s1 + p0 · µ + x, where µ is suitably chosen
noise.

Given an adversary B who distinguishes between Hybrid 2 and Hybrid 3, we build an adversary
A who breaks the semantic security of Regev public key encryption. The adversary A receives
PK = u upon which, it simulates the view of B as follows:

• Run NLinFE.Setup to obtain NLinFE.PK and NLinFE.MSK. Return PK = (NLinFE.PK,u) to
B.

• When B requests a key, construct it honestly as in Hybrid 0.

• When B outputs challenges x0,x1, A forwards these to the PKE challenger.

• A receives c where c = u · s1 + p0 · µ + xb for a random bit b.

• A computes b = NLinFE.CT(t0, . . . , tw, 1) and returns (c,b) to B.

• B may request more keys which are handled as before. Finally, when B outputs a guess bit b,
A outputs the same.

Clearly, if b = 0, then B sees the distribution of Hybrid 2, whereas if b = 1, it sees the distribution
of Hybrid 3. Also, the advantage of the attacker B in distinguishing Hybrids 2 and 3 translates
directly to the advantage of the attacker A in breaking the semantic security of Regev public key
encryption. Hence the claim follows.

Hybrid 4 is analogous to Hybrid 1 and indistinguishability can be argued along the same lines
as that between Hybrids 1 and 2, while Hybrid 5 is analogous to Hybrid 0 but with message x1.
This is the real world with message x1. Indistinguishability between Hybrids 4 and 5 can be argued
along the same lines as that between Hybrids 0 and 1.

5 Noisy Functional Encryption for Linear Functions

In this section, we construct a noisy functional encryption scheme for linear functions which supports
Q queries for a fixed polynomial Q. Security posits that an adversary cannot distinguish between
encryptions of z0 and z1 as long as |gi(z0)− gi(z1)| ≤ ε for every key gi requested, as long as the
number of requested keys is less than Q. We emphasize that Q can be greater than the dimension
of the message/key vectors, namely w – indeed this is the case we will be interested in.

To support Q > w queries so as to achieve the security definition stated above, we artificially
add noise to decryption, so that any two messages whose decryption under a key is equal upto ε
noise, will decrypt to only approximately correct values but will have indistinguishable ciphertexts.

For ease of notation, our description below assumes a stateful keygen. We get rid of this
restriction using standard tricks as described in Appendix E. We will crucially utilize malleability of
the underlying LinFE scheme, see Section 2.3 for more details.

FE.Setup(1λ, 1Q, 1w, p1): On input a security parameter λ, a parameter w denoting the length of
the function and message vectors, a parameter Q denoting the number of queries supported
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and a modulus p1 denoting the space of the message and function vectors, set (PK,MSK) =
LinFE.Setup(1w+1+Q).

FE.KeyGen(MSK,g, i): On input MSK, a function vector g ∈ Zwp1 and an index i ∈ [Q] denoting
query number, do:

1. Sample γi ← D1, where D1 is a discrete Gaussian of width large enough to flood ε.

2. Output SKg = LinFE.KeyGen(g‖γi‖ei) where ei ∈ ZQ is the ith unit vector. Note that
the LinFE key explicitly contains (in the clear) the vector (g‖γi‖ei).

FE.Enc(PK, z): On input public key PK, a message vector z ∈ Zwp1 , do:

1. Sample δ ← DQ2 and µ← D subject to the following constraints:

• D2 is a discrete Gaussian of width large enough to flood D1. Thus, it will hold that
δi + γi ≈ δi, where γi is chosen by keygen.

• D has width large enough so that µ is distributed indistinguishably from µ+ 1.

2. Let CTz = LinFE.Enc(z‖µ‖δ)

FE.Dec(SKgi ,CTz): On input a secret key SKgi for function gi, and a ciphertext CTz:

1. Compute LinFE.Dec(CTz, SKgi) to recover gT
i z + µ · γi + δi.

Appropximate correctness is evident since we recovered the correct value upto noise µ · γi + δi.

Note. We remark that the keygen algorithm can be made stateless by using standard tricks, as
in [GVW12, Section 6]. We refer the reader to Appendix E for more details.

Analysis of Ciphertext Structure. We note that the ciphertext of the NLinFE scheme is a
LinFE ciphertext with message (z‖µ‖δ), where (µ‖δ) are noise terms. Since LinFE ciphertext is
decomposable, as discussed in Section 2, we have that the ciphertext can be split into a pair
(CT1,CT2) where CT1 encodes z and CT2 encodes (µ‖δ). Note that here, only CT1 depends on the
data, and is the online part of the ciphertext, while CT2 is the offline part. Since the ciphertext of
LinFE is succinct, we establish that the online part of the NLinFE ciphertext is succinct.

5.1 Security.

Next, we argue that the above scheme is secure. We have that for every key query gi, i ∈ [Q], it
holds that gT

i (z0 − z1) = εi. Then, we claim:

Theorem 5.1. The noisy linear FE scheme NLinFE satisfies (ε,Q) Noisy-AD-IND security as per
Definiton 3.2.

Proof. We argue via a sequence of hybrids.

Hybrid 0. This is the real world with message z0. The challenge CT encrypts y0 = (z0‖µ‖δ).
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Hybrid 1. In this world, we generate the challenge CT for the message y0 = (z0‖µ‖δ̂ + δ) where
δ floods δ̂. For the keys, we set γ = δ̂.

Hybrid 2. In this world, the noise in the Q keys changes to γ = δ̂ + ε.

Hybrid 3. In this world, we change the message in the challenge CT to y1 = (z1‖µ+ 1‖δ).

Hybrid 4. In this world, we rewrite the message in the challenge CT as y1 = (z1‖µ‖δ). This is
the real world with message z1.

Indistinguishability of Hybrids. It is evident that Hybrids 0 and 1 are statistically
indistinguishable, since δ floods δ̂. By the same argument, Hybrid 1 and 2 are statistically
indistinguishable since δ̂ floods ε and Hybrid 3 and Hybrid 4 are statistically indistinguishable since
µ is distributed indistinguishably from µ + 1. The chief transition that must be argued is that
between Hybrids 2 and 3, which we argue now.

Claim 5.2. If the exact linear scheme is AD-IND secure, then Hybrids 2 and 3 are indistinguishable.

Proof. Given an adversary A who can distinguish between Hybrids 2 and 3, we will construct an
adversary B who will break the security of the exact linear scheme. B plays the AD-IND game with
the LinFE challenger, denoted by C.

1. The LinFE challenger C outputs the public key PK, which B forwards to A.

2. A requests a key gi for i ∈ [`1], where `1 ≤ Q. B chooses γi as in the real world and requests
a key for ĝi = (g‖γi‖ei) to the LinFE challenger C. The challenger returns LinFE.SK(ĝi) which
B gives A.

3. A outputs two challenges z0, z1 ∈ Zwp1 . B checks that gT
i (z0 − z1) = εi ≤ ε for all queries gi

requested so far. If this condition does not hold, output ⊥ and abort.

4. B chooses δ̂i = γi − εi for i ∈ [`1]. The remaining δ̂`1+1 . . . δ̂Q it chooses as in the real world.

Next, it constructs ŷ0 = (z0‖µ‖δ̂) and ŷ1 = (z1‖µ + 1‖0) and returns these to the LinFE
challenger C as the challenge messages.

5. A may request more keys gi so that gT
i (z0 − z1) = εi. B chooses γi = δ̂i + εi and requests a

key for ĝi = (g‖γi‖ei) to the LinFE challenger. The challenger returns LinFE.SK(ĝi), which B
gives A.

6. C outputs the challenge ciphertext CT(ŷb). B adds noise δ (permitted due to ciphertext
malleability, see Section 2.3) to the last Q coordinates and returns this to A as the challenge
CT. Thus, A sees an encryption of either y0 = (z0‖µ‖δ̂ + δ) or y1 = (z1‖µ+ 1‖δ).

7. When A outputs a guess for bit b, B outputs the same.
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Observe that the query ĝi is an admissible query for the LinFE challenger because:

ĝT
i ŷ0 = gT

i z0 + µ · γi + δ̂i

ĝT
i ŷ1 = gT

i z1 + µ · γi + γi

= gT
i z0 − εi + µ · γi + δ̂i + εi

= gT
i z0 + µ · γi + δ̂i

= ĝT
i ŷ0

If the LinFE challenger C returns an encryption of ŷ0, then A sees an encryption of y0 =
(z0‖µ‖δ̂ + δ), otherwise it sees an encryption of y1 = (z1‖µ+ 1‖δ). In the former case we obtain
the distribution of Hybrid 2, in the latter case of Hybrid 3.

Hence, we argued that for Q (for Q > w) queries, our noisy linear FE scheme satisfies (ε,Q)
Noisy-AD-IND security as per Definiton 3.2.

6 Functional Encryption for Degree 4 Polynomials

In this section, we extend our construction for quadratic polynomials to degree 4 polynomials.
The main observation in this section is that the quadratic scheme presented in Section 4 enables
the decryptor to compute level 2 ciphertexts c2 encoding degree 2 monomials that have the same
structure as level 1 ciphertexts c1 that encode the message. Hence, the quadratic scheme can be
applied again to level 2 ciphertexts resulting in level 4 ciphertexts that encode monomials of degree
4.

We show that the propagation of computation down the circuit is efficient, so that given w
messages x1, . . . , xw, the encryptor may provide O(w) ciphertext components which enable the
decryptor to construct level 4 ciphertexts c4 of degree 4 monomials in x1, . . . , xw. However, as
discussed in Section 4, releasing a key to decrypt these ciphertexts directly is insecure, and the key
generator must force addition of a fresh noise term (provided by the encryptor) to each decryption
equation. Thus, to support q function keys, the encryptor must provide q noise terms in the
encryption. This results in a non-succinct data-independent ciphertext component of size O(w4).
Details follow.

Technical Overview. Let us recall the main idea in the quadratic FE construction. We have:

c1
i = u1

i · s1 + 2 · µ1
i + xi ∈ Rp1

c1
j = u1

j · s1 + 2 · µ1
j + xj ∈ Rp1

Above the superscript denotes the level of the circuit and subscript denotes the component within
the ciphertext, thus c1

i denotes the ith component of level 1 ciphertext. We call c1
i as the “Regev

encryption” of message xi, using public label u1
i , secret s1 and noise 2 · µ1

i . In what follows, the
precise value of the label and noise in a Regev encryption will be unimportant, so to ease notation
we let:

xi = c1
i , , L xi = u1

i , N xi = 2 · µ1
i
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Now, we may write:
c1
i = xi = L xi · s1 + N xi + xi (6.1)

Note that by additive homomorphism of the components of a given ciphertext, it will hold that

xi + xj = xi + xj

As mentioned previously, the decryption equation can be written as

xixj ≈ cicj + uiuj(s
2
1)− uj(cis1)− ui(cjs1) ∈ Rp1 (6.2)

Now, if we use the Linear FE scheme so that:

CT = LinFE.Enc(s2
1, c1s1, . . . , cws1)

SKij = LinFE.KeyGen(uiuj ,−0−, ui,−0−, uj ,−0−)

then, LinFE.Dec(SKij ,CT) yields the term uiuj(s
2
1)− uj(cis1)− ui(cjs1) by correctness. Since the

term cicj can be computed directly by the decryptor, she may recover the right hand side of Equation
6.2, which lets her obtain xixj as desired. Since the scheme LinFE enables computing linear functions
on encrypted messages, it suffices to compute LinFE ciphertext components that encode monomials,
which may be combined to produce arbitrary polynomials.

We are ready to describe the extension to degree 4 polynomials. Let yk denote level 2 plaintexts,
namely yk = xixj for some i, j ≤ w. Using our new notation and invoking additive homomorphism
of LinFE ciphertext components as well as malleability, our level 2 ciphertext may be written as:

c2
k = yk = c1

i c
1
j + u1

iu
1
j (s

2
1)− u1

j (c
1
i s1)− u1

i (c
1
js1) ∈ Rp2 (6.3)

= c1
i c

1
j + u1

iu
1
j s

2
1 − u1

j c
1
i s1 − u1

i c
1
js1 (6.4)

In the above, note that c1
i c

1
j ∈ Rp1 and this term is a message added to the ciphertext

u1
iu

1
j (s

2
1)− u1

j (c
1
i s1)− u1

i (c
1
js1) . Additionally, by additive homomorphism of the ciphertext

components (see Section 2.3),

u2
k

def
= L yk = u1

iu
1
jL s2

1 − u1
jL c1

i s1 − u1
i L c1

js1 ∈ Rp2 (6.5)

N yk = u1
iu

1
jN s2

1 − u1
jN c1

i s1 − u1
iN c1

js1 ∈ Rp2 (6.6)

Note that even though u1
i are chosen uniformly in Rp1 , they do not blow up the noise in the

above equation since the above noise is relative to the larger ring Rp2 . Thus, we have established:

Lemma 6.1. Level 2 ciphertext c2
k may be computed using level 1 ciphertexts xi = c1

i as well as

advice s2
1 and c1

i s1 .

Preserving ciphertext structure. The key point is that our level 2 ciphertext has the exact
same structure as a level 1 ciphertext, namely it is a Regev ciphertext using some secret s2, some
label and noise as computed in equations 6.5. Thus, for k ∈ [w2], we may write

c2
k = L yk · s2 + N yk + yk (6.7)
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To extend to degree 4 polynomials, we may now apply the quadratic method to level 2 ciphertexts
as follows. Let t ∈ [w4] index a monomial of degree 4, which is the product of two degree 2 monomials
yk and y`. Then,

c4
t = yky` = c2

kc
2
` + u2

ku
2
` (s

2
2)− u2

` (c
2
ks2)− u2

k(c
2
`s2) ∈ Rp3 (6.8)

= c2
kc

2
` + u2

ku
2
` s

2
2 − u2

` c
2
ks2 − u2

k c
2
`s2 (6.9)

By correctness of quadratic FE, the decryptor can compute c2
k correctly for k ∈ [w2]. By the

above equation, it suffices for the encryptor to provide s2
2 and c2

ks2 for k ∈ [w2]. However, the

encryptor cannot provide the latter term directly and preserve succinctness of the online component
of the ciphertext. This is because level 2 ciphertext c2

k contains the quadratic term c1
i c

1
j as shown

by Equation 6.3.

To get around this, note that:

c2
ks2 =

(
c1
i c

1
j + u1

iu
1
j s

2
1 − u1

j c
1
i s1 − u1

i c
1
js1

)
· s2

= c1
i c

1
js2 + u1

iu
1
j s

2
1 s2 − u1

j c
1
i s1 s2 − u1

i c
1
js1 s2

= c1
i c

1
js2 + u1

iu
1
j s2

1 s2 − u1
j c1

i s1 s2 − u1
i c1

js1 s2

Now, the encryptor may provide s2
1 s2 , c1

i s1 s2 for i ∈ [w], while maintaining succinctness of

the ciphertext, since these terms do not grow quadratically, i.e. these depend only on the depth

not the width of the circuit. But the term c1
i c

1
js2 may not be provided by the encryptor directly,

since it would negate succinctness of the ciphertext. Hence, the encryptor is required to provide

efficient advice to compute c1
i c

1
js2 .

Fortunately, c1
i c

1
js2 can be seen as a quadratic term in zi = c1

i and zj = c1
j · s2, and to use the

quadratic scheme to compute an encryption of the product, we have by Lemma 6.1 that we are

required to compute zi , zj (under some secret s3, say) along with zi s3 and zj s3 , which

translates to c1
i , c1

j · s2 and advice c1
i · s3 , c1

i · s2 · s3 .

We let

di
def
= c1

i , hj
def
= c1

j · s2 ,∈ Rp3 and d̂i
def
= c1

i · s3 , ĥj
def
= c1

j · s2 · s3 ∈ Rp4

Then, c1
i c

1
j · s2 = dihj + L c1

i L c1
j · s2 s2

3 − L c1
i ĥj − L c1

j · s2 d̂i ∈ Rp4 (6.10)
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Thus, we have:

c2
ks2 = c1

i c
1
js2 + u1

iu
1
j s2

1 s2 − u1
j c1

i s1 s2 − u1
i c1

js1 s2

=
{
dihj + L c1

i L c1
j · s2 s2

3 − L c1
i ĥj − L c1

j · s2 d̂i

}
(6.11)

+ u1
iu

1
j s2

1 s2 − u1
j c1

i s1 s2 − u1
i c1

js1 s2

We may write c2
ks2 = dihj +

∑
m∈[const·w]

H3
mC

4
m (6.12)

where H3
m ∈ Rp3 is a publicly computable linear coefficient, C4

m is a ciphertext component in Rp4
and di, hj ∈ Rp3 serve as messages for (the ciphertext constructed via) linear combinations of C4

m.
Now, it holds that:

c4
t = c2

kc
2
` + L yk L y` s2

2 − L y` c2
ks2 − L yk c2

`s2

= c2
kc

2
` + L yk L y` s2

2 − L y`

{
dihj +

∑
m

H3
mC

4
m

}
− L yk

{
di′hj′ +

∑
m

H ′
3
mC

4
m

}
(6.13)

Letting C4
0 = s2

2 , and denoting the terms dihj , di′hj′ ∈ Rp3 by C3
m we may write:

c4
t = c2

kc
2
` +

∑
m

H2
mC

3
m +

∑
m′

Ĥ3
m′C

4
m′ (6.14)

Note that the terms C3
m may be computed as a product of di, hj which are provided directly by the

encryptor and acts as the message for
∑

m′ Ĥ
3
m′C

4
m′ . We invoke LinFE to compute the decryption of∑

m′ Ĥ
3
m′C

4
m′ , where m′ ∈ [0, const · w].

Analyzing Ciphertext Structure. As discussed, to compute level 4 ciphertexts, the encryptor
must provide for i ∈ [w]:

1. To compute c2
k ∈ Rp2 : Provide Regev ciphertexts c1

i = xi ∈ Rp1 using secret s1 and c1
i · s1 ,

s2
1 ∈ Rp2 using secret s2. This is exactly as the quadratic scheme in Section 4.

2. To compute c2
ks2 using secret s4:

(a) di = c1
i , hj = c1

j · s2 using secret s3 to avoid circularity since the message contains s2

(b) c1
i · s3 , c1

i · s2 · s3 using secret s4 to avoid circularity since the message contains s3.

Together, these are used to compute c1
i c

1
js2 ∈ Rp4 using secret s4 as in Equation 6.10.

(c) s2
1 s2 and c1

i s1 s2 in Rp3 using secret s4.
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3. s2
2 and s2

3 in Rp4 using secret s4.

By Equations 6.13, 6.14 these suffice to compute level 4 ciphertext c4
` = L Z` · s4 + N Z` + Z`

where Z` is level 4 plaintext. Adding up the above terms, we see that the data dependent component
of the ciphertext has size O(w). Thus, the online component of the ciphertext is succinct.

We note that, to ensure security, the linear equation (in secret terms) represented by equation 6.14
must be computed using noisy linear FE exactly as in Section 4. Recall that using noisy FE ensures
that fresh, large noise is added to the linear equation so as to maintain security. Following the proof
strategy exactly as in Section 4, we achieve the notion of semi-adaptive indistinguishability based
security. In Appendix F.1, we discuss how this can be upgraded to adaptive indistinguishability based
security, which in turn implies non-adaptive simulation based security for the present functionality
[O’N10].

7 Putting it together : Bounded Collusion FE for all circuits

In this section, we describe how to put together the pieces from the previous sections to build a
bounded collusion FE scheme for all circuits, denoted by BddFE.

7.1 Bootstrapping Functional Encryption

Gorbunov et al. [GVW12] show that q query FE for degree three polynomials can be bootstrapped
to q query FE for all circuits. At a high level, their approach can be summarized as follows. Let
C be a family of polynomial sized circuits. Let C ∈ C and let x be some input. Let C̃(x, R) be a
randomized encoding of C that is computable by a constant depth circuit with respect to inputs x
and R. Then consider a new family of circuits G defined by:

GC,∆(x, R1, . . . , RS) = C̃
(
x; ⊕

a∈∆
Ra

)
Note that GC,∆(·, ·) is computable by a degree three polynomial, one for each output bit. Given an
FE scheme for G, one may construct a scheme for C by having the decryptor first recover the output
of GC,∆(x, R1, . . . , RS) and then applying the decoder for the randomized encoding to recover C(x).
Since our construction from Section 6 is capable of evaluating degree 3 polynomials, it suffices for
bootstrapping, to yield q-query online-offline FE for all circuits.

Our construction for bounded collusion FE, BddFE, follows the blueprint described in [ALS16],
but we recap it here for completeness. As in [GVW12, ALS16], let (S, v,m) be parameters to the
construction. Let ∆i for i ∈ [q] be a uniformly random subset of S of size v. To support q queries,
the key generator identifies the set ∆i ⊆ S with query i. If v = O(λ) and S = O(λ · q2) then the

sets ∆i are cover free with high probability as shown by [GVW12]. Let L
def
= (`3 + S ·m).

BddFE.Setup(1λ, 1`): Upon input the security parameter λ and the message space {0, 1}`, invoke
(mpk,msk) = PolyFE.Setup(1λ, 1L) and output it.

BddFE.KeyGen(msk, C)): Upon input the master secret key and a circuit C, do:

1. Choose a uniformly random subset ∆ ⊆ S of size v.
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2. Express C(x) by GC,∆(x, R1, . . . , RS), which in turn can be expressed as a sequence of
degree 3 polynomials P1, . . . , Pk, where k ∈ poly(λ).

3. Set BddFE.SKC = {SKi = PolyFE.KeyGen(PolyFE.msk, Pi)}i∈[k] and output it.

BddFE.Enc(x,mpk): Upon input the public key and the input x, do:

1. Choose R1, . . . , RS ← {0, 1}m, where m is the size of the random input in the randomized
encoding.

2. Set CTx = PolyFE.Enc(PolyFE.mpk,x, R1, . . . , Rs) and output it.

BddFE.Dec(mpk,CTx,SKC): Upon input a ciphertext CTx for vector x, and a secret key SKC for
circuit C, do the following:

1. Compute GC,∆(x, R1, . . . , RS) = PolyFE.Dec(CTx,SKC).

2. Run the Decoder for the randomized encoding to recover C(x) from GC,∆(x, R1, . . . , RS).

Correctness follows immediately from the correctness of PolyFE and the correctness of randomized
encodings. The proof of security is analogous to [ALS16], as the only difference between the bounded
collusion FE in [ALS16] and our work is the construction of PolyFE. For completeness, we recap the
argument in Appendix F. The BddFE ciphertext inherits its decomposability and online succinctness
from the PolyFE ciphertext. For details, please see Appendix F.

8 Conclusions

We presented a new construction of Functional Encryption for bounded collusions. Apart from
enjoying useful structural properties, our ciphertext size degrades quadratically with the number of
queries which improves the ciphertext size of [GVW12], which degrades as O(q4).

We believe that our techniques are even more interesting than our final result, since the online
succinctness of the ciphertext has intriguing implications. Our scheme shows that techniques
from fully homomorphic encryption may be used to propagate computation efficiently down the
circuit even for functional encryption. In more detail, our scheme achieves succinct FE for degree 4
polynomials functionally – the encryptor can provide a succinct ciphertext for x, the key generator
can provide a key SKP for any degree 4 polynomial P in x, and the decryptor can compute on CTx

to obtain a ciphertext corresponding to CTP (x), apply the key SKP to learn P (x).

As mentioned before, the above strategy is insecure, and to achieve security we must artificially
add noise to the decryption equation computed by every key. This forces the encryptor to provide a
separate noise term for each possible key, which is added into the decryption equation, creating the
dependence of the ciphertext size on the number of requested keys. This is why our scheme ends up
with a large ciphertext, divided into a succinct data dependent component and a non-succinct data
independent component.

Evidently, the most pressing open question is whether the noise which must be added to each
decryption equation may be encoded succinctly. This does not seem impossible, since as noted
by [Agr16a], the noise that must be added to each equation is not required to be independent;
that is, it can be correlated across queries. However, how to exploit this correlation while relying
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only on LWE/Ring-LWE is a pressing open question, and one with important consequences, as
recent work has shown that functional encryption for constant degree polynomials is sufficient for
indistinguishability obfuscation [LV16].

Acknowledgements. We thank Damien Stehlé and Chris Peikert for helpful discussions.
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[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In
IMA Int. Conf., pages 360–363, 2001.

27



[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques: Advances in Cryptology, EUROCRYPT ’02,
2002.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013. http://eprint.iacr.org/.

[GGH+13c] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-
based encryption for circuits from multilinear maps. In CRYPTO, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Theory of Cryptography - 12th Theory of Cryptography Conference,
TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages 498–527,
2015.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. In IACR Cryptology ePrint Archive, volume 2014,
page 666, 2014.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC, pages 555–564, 2013.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the learning with errors assumption. In ITCS, 2010.

[GLW12] Shafi Goldwasser, Allison Lewko, and David Wilson. Bounded-collusion ibe from key
homomorphism. In Theory of Cryptography, Lecture Notes in Computer Science, 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In ACM Conference
on Computer and Communications Security, pages 89–98, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions from multiparty computation. In CRYPTO, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute based encryption
for circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from lwe. In CRYPTO, 2015.

28

http://eprint.iacr.org/


[HJ15] Y. Hu and H. Jia. Cryptanalysis of GGH map. Cryptology ePrint Archive: Report
2015/301, 2015.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J
Malozemoff. Amortizing garbled circuits. In International Cryptology Conference,
pages 458–475. Springer, 2014.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In EUROCRYPT, pages
146–162, 2008.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and
Brent Waters. Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption. In EUROCRYPT, pages 62–91, 2010.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, volume 6110, 2010.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation in the
online/offline and batch settings. In International Cryptology Conference, pages 476–494.
Springer, 2014.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like
assumptions on constant-degree graded encodings. In FOCS, 2016.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing (SICOMP), 37(1):267–302, 2007.
extended abstract in FOCS 2004.

[MSZ] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over ggh13. Eprint 2016/147.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010. http://eprint.iacr.org/.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J.ACM, 56(6), 2009. extended abstract in STOC’05.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: Functional encryption
with public keys. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS ’10, 2010.

[SW] Amit Sahai and Brent Waters. Functional encryption:beyond public key cryptography.
Power Point Presentation, 2008. http://userweb.cs.utexas.edu/bwaters/presentations/
files/functional.ppt.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
2005.

[Wat12] Brent Waters. Functional encryption for regular languages. In Crypto, 2012.

29

http://eprint.iacr.org/


Appendix

A Previous Constructions for Bounded Collusion FE

In this section, we discuss previous constructions for Bounded Collusion FE.

A.1 The GVW12 Construction

In this section we sketch the GVW scheme and discuss why it is unsuitable for the applications
discussed in Section 1. The scheme can be summarized as follows.

• The first ingredient they need is a single key FE scheme for all circuits. A construction for
this was provided by Sahai and Seyalioglu in [SS10].

• Next, the single FE scheme is generalized to a q query scheme for NC1 circuits. This
gerenalization is fairly complex, we provide an outline here. At a high level, they run N
copies of the single key scheme, where N = O(q4). The encryptor encrypts the views of the
BGW MPC protocol for N parties, computing some functionality related to C. They rely on
the fact that BGW is non-interactive when used to compute bounded degree functions. To
generate a secret key, KeyGen chooses a random subset of the single query FE keys, where the
parameters are set so that the subsets have small pairwise intersections. This subset of keys
enables the decryptor to recover sufficiently many shares of C(x) which allows him to recover
C(x). [GVW12] argue that an attacker with q keys only learns a share xi when two subsets
of keys intersect, but since the subsets were chosen to have small pairwise intersections, this
does not occur often enough to recover enough shares of x. Finally, by the security of secret
sharing, x remains hidden.

• As the last step they “bootstrap” the q query FE for NC1 to q query FE for all circuits using
computational randomized encodings [AIK06]. They must additionally use cover free sets to
ensure that fresh randomness is used for each randomized encoding.

Thus, to encrypt a message x, the encryptor must secret share it into N = O(q4) shares, and
encrypt each one with the one query FE. Since they use Shamir secret sharing with polynomial of
degree t and t = O(q2), note that at most O(q2) shares can be generated offline, since t+ 1 points
will determine the polynomial. Hence O(q4) shares must be generated in the online phase. This
results in an online encryption time that degrades as O(q4).

A.2 The ALS16 construction

[ALS16] provide a conceptually simpler way to build q-query Functional Encryption for all circuits.
Their construction replaces steps 1 and 2 described above with a inner product modulo p FE scheme,
and then uses step 3 as in [GVW12]. Thus, the construction of single key FE in step 1 by Sahai
and Seyalioglu, and the nontrivial “MPC in the head” of step 2 can both be replaced by the simple
abstraction of an inner product FE scheme. For step 3, observe that the bootstrapping theorem of
[GVW12] provides a method to bootstrap an FE for NC1 that handles q queries to an FE for all
polynomial-size circuits that is also secure against q queries. The bootstrapping relies on the result
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of Applebaum et al. [AIK06, Theorem 4.11] which states that every polynomial time computable
function f admits a perfectly correct computational randomized encoding of degree 3.

In more detail, let C be a family of polynomial-size circuits. Let C ∈ C and let x be some input.
Let C̃(x,R) be a randomized encoding of C that is computable by a constant depth circuit with
respect to inputs x and R. Then consider a new family of circuits G defined by:

GC,∆(x,R1, . . . , RS) =

{
C̃
(
x; ⊕

a∈∆
Ra

)
: C ∈ C, ∆ ⊆ [S]

}
,

for some sufficiently large S (quadratic in the number of queries q). As observed in [GVW12],
circuit GC,∆(·, ·) is computable by a constant degree polynomial (one for each output bit). Given an
FE scheme for G, one may construct a scheme for C by having the decryptor first recover the output
of GC,∆(x,R1, . . . , RS) and then applying the decoder for the randomized encoding to recover C(x).

However, to support q queries the decryptor must compute q randomized encodings, each of
which needs fresh randomness. This is handled by hardcoding S random elements in the ciphertext
and using random subsets ∆ ⊆ [S] (which are cover-free with overwhelming probability) to compute
fresh randomness ⊕

a∈∆
Ra for every query. [ALS16] observe that bootstrapping only requires support

for the particular circuit class G described above. This circuit class, being computable by degree 3
polynomials, may be supported by a linear FE scheme, via linearization of the degree 3 polynomials.

Putting it together, the encryptor encrypts all degree 3 monomials in the inputs R1, . . . , RS
and x1, . . . , x`. Note that this ciphertext is polynomial in size. Now, for a given circuit C, the
keygen algorithm samples some ∆ ⊆ [S] and computes the symbolic degree 3 polynomials which
must be released to the decryptor. It then provides the linear FE keys to compute the same. By
correctness and security of Linear FE as well as the randomizing polynomial construction, the
decryptor learns C(x) and nothing else.

Note that in this construction the challenge of supporting multiplication is sidestepped by merely
having the encryptor encrypt each monomial xixj separately so that the FE need only support
addition. This “brute force” approach incurs several disadvantages. For instance, decomposability
is lost – even though the ciphertext can be decomposed into |x|2 components, any input bit x1

(say) must feature in |x| ciphertext components x1x2, . . . , x1xw, where w = |x|. This makes the
scheme inapplicable for all applications involving distributed data, where a centre or a sensor device
knows a bit xi but is oblivious to the other bits. Additionally, the scheme is not online-offline, since
all the ciphertext components depend on the data, hence the entire encryption operation must
be performed after the data becomes available. For applications where a centre or sensor must
transmit data-dependent ciphertext after the data is observed, this incurs a significant cost in terms
of bandwidth. Indeed, the work performed by the sensor device in computing the data dependent
ciphertext becomes proportional to the size of the function being computed on the data, which may
be infeasible for weak devices.

A.3 Other Related Work

Recently, following our work, [Agr16b] provided a new construction of bounded key functional
encryption relying on the subexponential LWE assumption. Our construction relies on the standard
(not subexponential) LWE assumption. Additionally, while [Agr16b] achieves overall succinct
ciphertexts, the security game for the bounded collusion setting is quite restrictive: the attacker
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must announce all the queries Ci where Ci(x) = 1 before receiving a single secret key and before
requesting any keys such that Ci(x) = 0. Inspired from our work, [Agr16b] uses a similar technique
to force the decryptor to add noise artificially to the decryption equation so as to achieve security.
Thus, the results in [Agr16b] and the present work are incomparable.

Another approach to obtain bounded collusion FE is to compile the single key FE of Goldwasser
et al [GKP+13] with the compiler of [GVW12] to support Q queries. Again, this approach yields
succinct CTs but the CT grows as O(q4) rather than O(q2) as in our scheme, and must rely on
subexponential LWE rather than standard LWE.

B Preliminaries

In this section we describe some preliminaries.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q and we represent
Zq as integers in (−q/2, q/2]. We let Zn×mq denote the set of n×m matrices with entries in Zq. We
use bold capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. x) to denote vectors
that are components of our encryption scheme, and arrows (e.g. ~v) to denote vectors that represent
attributes or predicates. The notation AT denotes the transpose of the matrix A. When we say a
matrix defined over Zq has full rank, we mean that it has full rank modulo each prime factor of q.

If A1 is an n×m matrix and A2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′)
matrix formed by concatenating A1 and A2. If x1 is a length m vector and x2 is a length m′ vector,
then we let [x1|x2] denote the length (m+m′) vector formed by concatenating x1 and x2. However,
when doing matrix-vector multiplication we always view vectors as column vectors.

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote a
negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use poly(n)
to denote a polynomial function of n. We say an event occurs with overwhelming probability if its
probability is 1− negl(n). The function lg x is the base 2 logarithm of x. The notation bxe denotes
the nearest integer to x, rounding towards 0 for half-integers.

B.1 Lattice Preliminaries

An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is a linearly
independent set of vectors whose span is Λ.

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any
positive parameter σ ∈ R>0, let ρσ,c(x) := Exp

(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn

with center c and parameter σ. Let ρσ,c(L) :=
∑

x∈L ρσ,c(x) be the discrete integral of ρσ,c over
L, and let DL,σ,c be the discrete Gaussian distribution over L with center c and parameter σ.

Specifically, for all y ∈ L, we have DL,σ,c(y) =
ρσ,c(y)
ρσ,c(L) . For notational convenience, ρσ,0 and DL,σ,0

are abbreviated as ρσ and DL,σ, respectively.

The following lemma gives a bound on the length of vectors sampled from a discrete Gaussian.
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Lemma B.1 ([MR07, Lemma 4.4]). Let Λ be an n-dimensional lattice, let T be a basis for Λ, and
suppose σ ≥ ‖T‖GS · ω(

√
log n). Then for any c ∈ Rn we have

Pr
[
‖x− c‖ > σ

√
n : x

R← DΛ,σ,c

]
≤ negl(n)

Lemma B.2 (Flooding Lemma). [GKPV10] Let n ∈ N. For any real σ = ω(
√

log n), and any
c ∈ Zn,

SD(DZn,σ, DZn,σ,c) ≤ ‖c‖/σ

B.2 Hardness Assumptions

Our constructions can be based on the hardness of LWE or Ring LWE, defined below.

Learning With Errors. The Learning with Errors problem, or LWE, is the problem of determining
a secret vector over Fq given a polynomial number of “noisy” inner products. The decision variant
is to distinguish such samples from random. More formally, we define the (average-case) problem as
follows:

Definition B.3 ([Reg09]). Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability distribution
on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq ×Zq obtained by choosing a vector
a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and outputting (a, 〈a, r〉+ e).

The decision LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number of
samples that are either (all) from Ar,χ or (all) uniformly random in Znq × Zq, output 0 if the former
holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithms A, the
probability that A solves the decision-LWE problem (over r and A’s random coins) is negligibly
close to 1/2 as a function of n.

Ring Learning with Errors. Let R = Z[x]/(φ) where φ = xn + 1 and n is a power of 2. Let

Rq
def
= R/qR where q is a large prime satisfying q = 1 mod 2n. The ring learning with errors

assumption, denoted by RLWE, [LPR10] is analogous to the standard LWE assumption introduced
by Regev [Reg09]. Let χ be a probability distribution on Rq. For s ∈ Rq, let As,χ be the probability
distribution on Rq × Rq obtained by choosing an element a ∈ Rq uniformly at random, choosing
e← χ and outputting (a, a · s+ e).

Definition B.4 (Ring Learning With Errors - RLWEφ,q,χ). The decision R-LWEφ,q,χ problem is: for
s← Rq, given a poly(n) number of samples that are either (all) from As,χ or (all) uniformly random
in Rq ×Rq, output 0 if the former holds and 1 if the latter holds.

Theorem B.5 ([LPR10]). Let r ≥ ω(
√

log n) be a real number and let R, q be as above. Then,
there is a randomized reduction from 2ω(logn) · (q/r) approximate RSVP to RLWEφ,q,χ where χ is the
discrete Gaussian distribution with parameter r. The reduction runs in time poly(n, q).

B.3 Simulation Based Definition of Security against Bounded Collusions

In this section, we define simulation based security for bounded collusions, as in [GVW12, Defn 3.1].
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Definition B.6 (q-NA-SIM- and q-AD-SIM- Security). Let F be a functional encryption scheme
for a circuit family C. For every p.p.t. adversary A = (A1, A2) and a p.p.t. simulator Sim, consider
the following two experiments:

ExprealF ,A(1λ): ExpidealF ,Sim(1λ):

1: (PK,MSK)← FE.Setup(1λ)

2: (x, st) ←AFE.Keygen(MSK,·)
1 (PK)

3: CT← FE.Enc(PK, x)

4: α ← A
O(MSK,·)
2 (PK,CT, st)

5: Output (x, α)

1: PK← FE.Setup(1λ)

2: (x, st)←AFE.Keygen(MSK,·)
1 (PK)

Let V def
= (Ci, Ci(x),SKi)i∈[q]

3: CT, st′ ← Sim(PK,V, 1|x|)
4: α← A

O′(MSK,st′,·)
2 (PK,CT, st)

5: Output (x, α)

Above, Ci denote the queries made by the adversary. We distinguish between two cases of the above
experiment:

1. The adaptive experiment, where:

• the oracle O(MSK, ·) = FE.Keygen(MSK, ·) and

• the oracle O′(MSK, st′, ·) is the simulator, namely SimUx(MSK,st′,·)(·) and Ux(C) = C(x)
for any C ∈ C.

The simulator algorithm is stateful in that after each invocation, it updates the state st′ which
is carried over to its next invocation. We call a stateful simulator algorithm Sim admissible if,
on each input C, Sim makes just a single query to its oracle Ux(·) on C itself.

The functional encryption scheme F is then said to be q query simulation-secure for one
message against adaptive adversaries (q-AD-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2) that makes at
most q queries, the following two distributions are computationally indistinguishable:{

ExprealF ,A(1λ)

}
λ∈N

c
≈
{
ExpidealF ,Sim(1λ)

}
λ∈N

2. The non-adaptive experiment, where the oracles O(MSK, ·) and O′(MSK, st, ·) are both the
“empty oracles” that return nothing.

The functional encryption scheme F is then said to be q query simulation-secure for one
message against non-adaptive adversaries (q-NA-SIM-secure, for short) if there is an admissible
stateful p.p.t. simulator Sim such that for every p.p.t. adversary A = (A1, A2) that makes at
most q queries, the two distributions above are computationally indistinguishable.

C Construction from Standard LWE

In this section, we briefly discuss how the scheme presented in Section 4 can be modified to rely
on standard LWE rather than ring LWE. The modification is straightforward: instead of requiring
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NLinFE to compute a noisy linear function over a polynomial ring, we now compute a noisy linear
function over a field Zq.

In more detail, the message carrier (for a vector x ∈ Zwp0 in the encrypt algorithm is now a
vector:

c = UTs1 + p · µ + x ∈ Zwq .

Here, U = (ui) ∈ Zn×wq , s1 ← Znq and µ ∈ Zw is appropriately sampled noise.

Let us examine what we require for correctness.

Let 1 ≤ j ≤ i ≤ w. By definition

xi + p · µi = ci − 〈ui; s1〉,
xj + p · µj = cj − 〈uj ; s1〉.

Letting µij = xiµj + xjµi + µiµj , we have

xixj + p · µij = cicj − ci〈uj ; s1〉 − cj〈ui; s1〉+ 〈ui; s1〉〈uj ; s1〉,

which equals

cicj −
∑
k∈[n]

∑
τ∈[T ]

ujkτ (2τ cis
1
k)−

∑
k∈[n]

∑
τ∈[T ]

uikτ (2τ cjs
1
k) +

∑
k,`∈[n]

∑
τ∈[T ]

(uikuj`)τ (2τs1
ks

1
` ). (C.1)

Clearly

−
∑
k∈[n]

∑
τ∈[T ]

ujkτ (2τ cis
1
k)−

∑
k∈[n]

∑
τ∈[T ]

uikτ (2τ cjs
1
k) +

∑
k,`∈[n]

∑
τ∈[T ]

(uikuj`)τ (2τs1
ks

1
` ). (C.2)

is a linear equation which can be computed by the noisy linear inner product scheme NLinFE.

In more detail, NLinFE encrypt algorithm encrypts messages {2τ cis1
k ∈ Zq} and {2τs1

ks
1
` ∈ Zq}

for k, ` ∈ [n], τ ∈ [log q], i ∈ [w] while the key generator provides a key corresponding to vector(
0, (uikuj`)τ ,0,−uikτ , 0, −ujkτ 0

)
so that the equation C.2 may be computed. The remaining details are easily translated from the
ring to the standard setting by carefully replacing ring products by field inner products.

D Decomposable Functional Encryption for Circuits

In this section, we recap the notion of decomposable functional encryption (DFE) as defined in
[AS16]. Decomposable functional encryption is analogous to the notion of decomposable randomized
encodings [AIK14]. Intuitively, decomposability requires that the public key PK and the ciphertext
CTx of a functional encryption scheme be decomposable into components PKi and CTi for i ∈ [|x|],
where CTi depends on a single deterministic bit xi and the public key component PKi. In addition,
the ciphertext may contain components that are independent of the message and depend only on
the randomness.

Formally, let x ∈ {0, 1}k. A functional encryption scheme is said to be decomposable if there
exists a deterministic function E : P × {0, 1} ×R1 ×R2 → C such that:
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1. The public key may be interpreted as PK = (PK1, . . . ,PKk,PKindpt) where PKi ∈ P for i ∈ [k].
The component PKindpt ∈ Pj for some j ∈ N.

2. The ciphertext may be interpreted as CTx = (CT1, . . . ,CTk,CTindpt), where

CTi = E (PKi, xi, r, r̂i) ∀i ∈ [k] and CTindpt = E (PKindpt, r, r̂)

Here r ∈ R1 is common randomness used by all components of the encryption. Apart from
the common randomness r, each CTi may additionally make use of independent randomness
r̂i ∈ R2.

We note that if a scheme is decomposable “bit by bit”, i.e. into k components for inputs of size k, it
is also decomposable into components corresponding to any partition of the interval [k]. Thus, we
may decompose the public key and ciphertext into any i ≤ k components of length ki each, such that∑
ki = k. We will sometimes use Ē(y) to denote the tuple of function values obtained by applying

E to each component of a vector, i.e. Ē(PK,y, r)
def
=
(
E(PK1, y1, r, r̂1), . . . , E(PKk, yk, r, r̂k)

)
, where

|y| = k. We assume that given the security parameter, the spaces P, R1, R2, C are fixed, and the
length of the message |x| can be any polynomial.

Most known constructions of functional encryption are already decomposable, but this property
was formalised and exploited in [AS16].

E Making KeyGen stateless for Noisy Linear FE

We note that the keygen algorithm can be made stateless by using standard tricks, as in [GVW12,
Section 6]. To see this, let us examine how noise is added in the above system at present. The
encryptor provides encryptions of Q noise terms δ and for i ∈ [Q], the key generator appends the ith

key vector gi with a Q sized unit vector ei. As a result, decryption of the ith key with the ciphertext
results in an additional term δTei = δi, which gets added to the legitimate decryption value gz

i .
Thus, to ensure that a fresh noise term δi is added for each decryption equation, the key generator
must keep track of how many keys it has issued in the past (or receive this information as input).

Cover free sets offer a natural tool to deal with this issue, and this technique was used towards a
similar end in [GVW12]. The idea is to choose Q′ > Q and have the encryptor provide encryptions
of Q′ noise values in place of Q. The key generator is modified to be stateless and randomly pick a
Q′ sized binary vector of weight v in place of ei. Now the decryption computes a random subset
sum of Q′ noise terms for every key, which for appropriate setting of Q′ and v guarantees that each
decryption equation has at least one fresh noise term. It is shown in [GVW12] that Q′ = Q2 and
v = λ suffices.

The careful reader might notice that the summands in this case are discrete Gaussians and a
random subset of discrete Gaussians does not yield the original distribution. However, fortunately
this is not an issue, since the cover free property implies that every decryption equation has at
least one freshly sampled discrete Gaussian that is not used in any other equation. This suffices for
security.

We also note that though the general construction of linear FE for inner products modulo a
prime by [ALS16] is stateful, as noted by the authors of [ALS16], this is only for the most general
adversary and does not apply to our setting. For our setting, the function queries to the underlying
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Linear FE are linearly independent allowing for a stateless keygen, due to the fact that each query
vector contains at least one unique index which is nonzero in that vector alone, and zero for all
other query vectors. This is ensured by the use of cover free sets in the construction. We refer to
[ALS16] for more details, as this issue is discussed at length there.

F Security of the Construction in Section 7

In this section, we argue that the construction described in Section 7 is secure. First, we argue
that scheme achieves semi-adaptive IND based security as defined in Section 2. The proof follows
easily from the security of randomized encodings and the semi-adaptive IND security of the PolyFE
scheme.

Let us assume that the randomized encodings are secure. Then, given an attacker A who breaks
the security of the BddFE, we construct an attacker B who breaks the security of PolyFE as follows.
B does the following:

1. B obtains the public key PK from the PolyFE challenger and returns this to A.

2. A outputs challenges x0,x1. B chooses the randomness R = R1, . . . , RS and returns (x0,R)
and (x1,R) as the challenge messages to the PolyFE challenger.

3. The PolyFE challenger returns the challenge CT, which B returns to A.

4. B picks ∆1, . . . ,∆q ⊆ S randomly, of size v each. When A makes a query for a circuit Ci,
where i ∈ [Q], B converts it to a tuple of degree 3 polynomials GCi,∆i(·) and sends these to
the challenger. It forwards the challenger’s response to A.

5. When A outputs a bit, B does the same.

Note that by security of randomized encodings, B is an admissible adversary. If B is admissible,
then the advantage of B is exactly the advantage of A.

Ciphertext Structure. We note that the BddFE ciphertext is a PolyFE ciphertext for the message
vector (x, R1, . . . , RS). Since the PolyFE ciphertext is decomposable, and online-succinct, the same
features are inherited by the BddFE ciphertext.

Distributed Data Applications. Note that since BddFE CT is decomposable and online succinct,
k parties holding k pieces of data x1, . . . , xk can share a PRF seed to generate the common randomness
required to tie together the components of a decomposable FE scheme (see Appendix D). Given
this seed, they can independently encode their individual inputs xi to construct CTi and upload
these to a common server. We note that the data independent offline component CTindpt may be
generated by a designated party with a high bandwidth upload link, or by the server itself.

F.1 Achieving simulation based security

Above, we argued that the scheme BddFE achieves semi-adaptive IND based security. Other
bounded collusion schemes such as [GVW12, ALS16, Agr16b] achieve simulation based security
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6 NA-SIM [O’N10, GVW12], i.e. (poly,poly, 0) SIM security, where the adversary can request a
polynomial number of pre-challenge keys, ask for polynomially sized challenge ciphertexts but may
not request post-challenge keys. The definition is provided in Appendix B.3.

The proof for BddFE inherits semi-adaptive IND security from the semi-adaptive IND security
of the quadratic FE scheme provided in Section 4. This is because, for our proof technique, it is
necessary for the simulator to program the function keys after seeing the challenge CT. Hence,
the proof strategy described in Section 4 does not support pre-challenge CT queries. Agrawal et
al. [ALS16] show that adaptive IND of PolyFE implies non-adaptive simulation based security of
PolyFE and hence BddFE. Hence, if we could upgrade the security of PolyFE to adaptive rather than
semi-adaptive IND, our final scheme BddFE would also achieve NA-SIM.

In this section, we describe how we can achieve adaptive IND in Section 4 by enhancing the
proof suitably. For simplicity, consider a single pre-challenge query, say for monomial xixj . The
pre-challenge key is constructed by the simulator as in the real system and the challenge ciphertext
is modified, as described below.

To support one pre-challenge query, the message dimension w + 2 in the ciphertext is expanded
to w + 3 as follows: the ciphertext is modified to contain NLinFE.CT(s2

1, c1s1, . . . , cws1, 0, 0)
(note the additional 0 in the end of the message). In the simulation, we are required to
insert the corrective term fij into the decryption equation. We may do this by switching to
NLinFE.CT(t0, . . . tw, 0, fij) in the simulation. The key for monomial xixj is the NLinFE key for the
vector (uiuj , 0....0,−ui, 0...0,−uj , 0...0, fij , 1).

By the proof of Claim 4.3, the key for monomial xixj decrypts the two ciphertexts to
approximately the same value, as required by NLinFE. However, we introduced an additional
slot to support the pre-challenge query, and to support Q pre-challenge key queries, the above
ciphertext will contain Q additional slots, increasing the ciphertext size by an additive factor of Q.

The above blowup does not change the asymptotic size of the ciphertext. Additionally, this
blowup can in fact be avoided: since the construction of NLinFE (see Section 5) anyway inserts Q
slots in the LinFE CT to support Q keys, the same slots can be reused for the above mechanism.
We defer details to the full version of this work.

Assuming the underlying scheme PolyFE to be non-adaptive simulation secure, i.e. NA-SIM, we
get a final security notion of NA-SIM, i.e. (poly,poly, 0)-SIM for BddFE which means the adversary
may make an unbounded number of pre-challenge queries, ask for an unbounded number of challenge
ciphertexts but may not make any post-challenge key queries. While the construction of [GVW12]
supports the stronger AD-SIM security in addition to NA-SIM, this notion can only be achieved
for a scheme that supports a single ciphertext. We consider the model of a single ciphertext and
bounded number of keys overly restrictive, and do not attempt to achieve this notion. This is also
the approach taken by [GKP+13].

G Handling arbitrary challenge messages

In this section, we discuss how to generalise the proof in Section 4.2 to handle arbitrary challenge
messages. This can be done in a manner analogous to the proofs in [ABCP15, ALS16]. At a high

6We note that [GVW12] achieve adaptive simulation based security but due to the impossibility of [BSW11], this
notion is only achieved for an FE scheme that produces a single ciphertext. Since this setting is quite restrictive, we
restrict our attention to non-adaptive simulation security.
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level, we design B to be a low norm basis that contains x0 − x1 as the last basis vector bw and
the remaining basis vectors orthogonal to it. The challenger constructs the public parameters, and
the ciphertext c, b along this basis. Along this basis, it holds that the adversary only queries for a
monomial involving xbw iff x0[bi]x0[bw] = x1[bi]x1[bw] = 0. That is, along this basis, the above
restriction on the proof holds. To convert this to an arbitrary basis, the challenger applies a change
of basis transformation, which, by the construction of [ALS16], is low norm.
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