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Abstract. Secure communications between mobile subscribers and their
associated operator networks require mutual authentication and key deri-
vation protocols. The 3GPP standard provides the AKA protocol for just
this purpose. Its structure is generic, to be instantiated with a set of seven
cryptographic algorithms. The currently-used proposal instantiates these
by means of a set of AES-based algorithms called MILENAGE; as an al-
ternative, the ETSI SAGE committee submitted the TUAK algorithms,
which rely on a truncation of the internal permutation of Keccak.
In this paper, we provide a formal security analysis of the AKA pro-
tocol in its complete three-party setting. We formulate requirements
with respect to both Man-in-the-Middle (MiM) adversaries, i.e. key-
indistinguishability and impersonation security, and to local untrusted
serving networks, denoted “servers”, namely state-confidentiality and
soundness. We prove that the unmodified AKA protocol attains these
properties as long as servers cannot be corrupted. Furthermore, adding
a unique server identifier suffices to guarantee all the security statements
even in in the presence of corrupted servers. We use a modular proof ap-
proach: the first step is to prove the security of (modified and unmodified)
AKA with generic cryptographic algorithms that can be represented as
a unitary pseudorandom function –PRF– keyed either with the client’s
secret key or with the operator key. A second step proceeds to show that
TUAK and MILENAGE guarantee this type of pseudorandomness, though
the guarantee for MILENAGE requires a stronger assumption. Our paper
provides (to our knowledge) the first complete, rigorous analysis of the
original AKA protocol and these two instantiations. We stress that such
an analysis is important for any protocol deployed in real-life scenarios.
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1 Introduction

A secure, symmetric, authenticated key-exchange (or key-agreement) protocol is
usually built in two phases. During the first phase, the parties authenticate each
other and exchange some master key. This master key is then used to derive
one or multiple secret keys, as well as other useful values. In a second phase,



these derived keys are used to construct a secure channel between the parties,
allowing them to exchange data while providing confidentiality, integrity, and
data authentication.

In this paper, we focus on the Authentication and Key Agreement protocol
(AKA) used in 3G and 4G networks, more specifically the 3G UMTS AKA (Uni-
versal Mobile Telecommunications System) and 4G EPS AKA (Evolved Packet
System) protocol. The AKA protocol is used in a greater context in the 3rd Gen-
eration Partnership Project (3GPP), which aims to develop the specifications for
next generation mobile systems. The Technical Specifications 33 (TS 33) and 35
(TS 35) cover the security and privacy aspects of the new system, from both
an architectural and a security algorithm standpoint. The greater context in
which this protocol is meant to be used makes a thorough security analysis im-
perative. We note that the protocol does not exactly follow classical symmetric
key-agreement designs; for instance, one of its peculiarities is that, while clients
(also called subscribers), are each associated with an individual secret key, all
clients serviced by the same operators also share this operator’s key (which is
nevertheless never stored in clear on the client machines).

In this paper we focus on the provable security of this protocol. Our analysis
closely follows its specifications, notably the set of seven functions which gener-
ate the cryptographic output necessary to attain security in the AKA protocol. In
the original seven-algorithm proposal called MILENAGE [1], these functions relied
on AES encryption. As an alternative to MILENAGE, another set of algorithms
called TUAK [2] was proposed, the latter relying on a truncation of Keccak’s in-
ternal permutation. The winner of the SHA-3 hash function competition, Keccak
relies on the sponge construction [10], thus offering both higher performance, in
hardware and software, than AES, and resistance to many generic attacks. While
the TUAK algorithms, designed by the ETSI SAGE group, inherit Keccak’s supe-
rior performance, they do not use the Keccak permutation in a usual, black box
way. Instead the internal permutation is truncated, then used in a cascade, which
makes it non-trivial to analyze. We cannot simply use the same assumptions for
the truncated version as we would for the original permutation, either. Our anal-
ysis of the key security, as well as client- and respecticaly server-impersonation
resistance of the protocol concerns both the classical MILENAGE-based version,
and the one using TUAK.

Related Work. Bellare and Rogaway first proposed a security model for au-
thentication and key exchange mechanisms in [15], also in a symmetric setting.
By assuming only the existence of pseudo-random functions, they propose con-
structions and prove their security in the model. Their framework was later
extended with the contribution of Pointcheval [14]. In addition [16] proposes a
definition of security of key-exchange protocols relying on an ”ideal third party”
approach. A further model for generic session-oriented protocols was proposed
in [17] and extended in [23]. Although we use Bellare, Pointcheval, and Rog-
away methodologies in our analysis, we cannot simply “import” their model, as
we explain in more detail below.
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Few papers give a security proof for the AKA protocol, especially when in-
stantiated with MILENAGE. The closest results to a security proof – see below –
use automated (formal) verification. While this approach has many advantages,
and an automated proof is a good first step towards a thorough security anal-
ysis, one important disadvantage is that automated verification does not give
an exact reduction to the security of the underlying primitives; thus, the proof
statement is not easy to quantify, making it hard to approximate the tightness of
the proof and the size of the parameters. In this sense, our results are stronger.

As far as we know, only two papers clearly focus on the mutual authentica-
tion and key-secrecy properties of AKA. A first one [18] points out some problems
with using sequence numbers and outlines a corrupted-network redirection at-
tack, but does not attempt a security proof. Note that the AKA protocol is à
priori designed with the assumption that the operator trusts the network; the
network attack described by [18] falls outside the scope of our paper as we do not
consider how networks and operators implement the protocol. Furthermore, note
that adding a simple network-specific constant in the computation of the MAC
algorithms should prevent such attacks. By removing the sequence number, the
same authors propose a stateless variant called AP-AKA, with a security proof
based on Shoup’s formal model [25].

A second paper [7] refers to the authentication and key security of AKA,
but focuses mainly on client privacy. They attempt to do an automated verifi-
cation proof for the AKA protocol, using ProVerif [8]; however, they are only
able to assess a modified version, which randomizes the sequence number. Since
this modification is fundamental, their results cannot be applied to the original
protocol. In order to better model the true sequence number updates in the
protocol, we have used an extension of ProVerif called StatVerif [20], which was
proposed by Arapinis et al. to handle automatic verification for protocols with
global state. We were, however, unable to use this tool towards giving a formal
security proof for AKA, as we discuss in Appendix F.1.

While Gilbert provides an out-of-context security proof for the MILENAGE
algorithms [13], showing they operate as a kind of counter mode in deriving
key materials (MILENAGE runs AES multiple times as a one block to many
blocks expansion function), it is unclear whether the proved indistinguishablilty
properties are strictly useful to guarantee the security of the full AKA protocol.
By contrast, we begin by analyzing the security of the AKA scheme, and are
able to show that the security statements hold when it is instantiated both with
MILENAGE and with TUAK.

Our contributions. In this paper we give the first full and rigorous crypto-
graphic security analysis of the AKA protocol, specifically with respect to key-
secrecy and mutual authentication (for a MiM adversary) and key-confidentiality
and soundness (for a malicious server adversary). This result is all the more
significant since even fifteen years after its proposal, the security of the AKA
protocol is not well understood, in spite of its importance in the future of mobile
communications. Not only has no formal cryptographic proof ever been given for
the AKA scheme, but even the automated verification results in the literature
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only concern modifications of the original scheme. This is mostly due to the fact
that the AKA construction is stateful and that its mutual authentication guar-
antee is asymmetric in the sense that it offers more client-impersonation than
server-impersonation resistance. We note that a formal cryptographic analysis
of AKA is also essential in order to understand how far the properties of the
underlying primitives (MILENAGE or TUAK) guarantee the security of the full
protocol.

Though AKA may seem to be a typical – if stateful – symmetric key agree-
ment protocol, its design is convoluted and includes several unusual features.
The sequence numbers provide state to the protocol, and are tied to a resyn-
chronization procedure. The server authentication step allows an unorthodox
kind of relay attack, which permits a degree of server impersonation. Further-
more, clients registered with the same operator share that operator’s key skOp,
though not their individual client keys. An interesting fact regarding the op-
erator key is that it is never stored in clear in the client’s SIM card. Finally,
clients and servers may become desynchronized, and the resynchronization pro-
cedure does introduce a further protocol step. Due to these features, we cannot
use a classical Bellare-Rogaway [15] or Bellare-Pointcheval-Rogaway [14] model
for our analysis, though we employ a modified version of it. Our model is ro-
bust with respect to multiple clients, multiple operators, and different types of
corruptions, and we consider re-synchronizations.

We prove two different, strong results. We first prove the security of the AKA
protocol assuming the pseudorandomness of a generic PRF called G, which out-
puts the session keys and the authentication material. Thus, this first result is
more generic than analyzing the individual TUAK- and MILENAGE-based ver-
sions of the protocol; in fact, what we show is that any instantiation of the
protocol which can be modeled in this way will retain the same security proper-
ties.

Our second strong result is to show that the TUAK and MILENAGE algo-
rithms can be viewed as an instantiation of the generic pseudorandom function
G (in the case of MILENAGE in fact we use two generic functions, but which
are alternated). This is non-trivial, since the AKA protocol employs seven algo-
rithms which use related input. We show how to generalize the algorithms to
one, resp. two functions, and we rely on the fact that the output is independent
in order to prove key secrecy and mutual authentication. The consequence is
that the AKA construction attains these properties when instantiated both with
TUAK and with MILENAGE.

Our results indicate, in a nutshell, that:

– The protocol (in which the (MILENAGE or TUAK) cryptographic functions
are replaced by a function G) offers key-secrecy – the property that session
keys are indistinguishable from random – if G is a pseudo-random function.
We note that a PRF assumption is also used by [22] to prove the security
of the TLS key derivation. There is a fine subtlety in the quantification of
the attacks, which have to take into account the number of instances of the
two parties, but also the number of resynchronizations per instance. While
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in our security model we take into account the fact that operator keys are
not leaked by corruptions (since they are not stored in clear on the SIM card
and are hard to retrieve), we also prove the same security guarantee even if
the operator keys leak1.

– We prove that the protocol guarantees a stronger degree of impersonation
resistance for clients than for servers. This can be done by modelling the
notion of time into our security game and distinguishing between online and
offline relays. We show a clear separation between the client- and server-
impersonation models by describing a concrete server impersonation attack
against the AKA protocol, relying on offline relays. Thus, while AKA is client-
impersonation-resistant with respect to adversaries which may do offline re-
lays, it does not attain the same degree of server-impersonation resistance.
We model both properties and show that the security of the protocol can be
reduced to the PRF assumption for the function G.

– Alternatively, we also prove client- and impersonation-security in a more
classical model, which does not feature time. For this model, however, we
are not able to fully capture the stronger client-impersonation guarantee,
and thus we only prove a weaker one, equivalent to the server-impersonation
statement.

– We prove that the MILENAGE algorithms used by AKA offer indeed the
property we require, namely pseudorandomness under the well-known as-
sumption that the Advanced Standard Encryption is a good pseudo-random
function [9]. Note that a such assumption is also used to prove the different
modes of operations based on AES.

– We also prove that the TUAK algorithms offer the same pseudorandomness
property, under the well-known assumption that the internal fKeccak permu-
tation is a good permutation, which implies that a truncated keyed version
of this permutation is a good pseudo-random function [9]. This assumption
is reasonable since the indifferentiability proof of the Sponge construction re-
lies on the same assumption [10]. Note that the TUAK algorithms employed
by the AKA protocol are constructed as a non-orthodox cascade of two iter-
ations of the Keccak permutation, which is done in an unusual way, unlike
the construction used in the Duplex mode of operation in order to construct
authenticated cipher [11].

While the result of this paper is mostly a positive one (the protocol can be
proved secure), there are a few problematic points that we discuss in our Lessons
Learned section. A specific feature of AKA is the use of a sequence number,
which is updated at each successful authentication of the other party, and which
can be resynchronized if necessary. This sequence number enters as input in
computing the server authentication string, and acts the part of the client’s
randomness (since it changes regularly). While it permits server authentication,
the sequence number represents a long-term state variable, and the updating

1 In fact, paradoxically, leaking the operator keys makes our proofs easier; otherwise,
it is tricky to simulate consistent operator keys for clients other than the target
client, but who share the same operator as the latter.
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mechanism does not provide as much entropy as choosing a random number.
The sequence number also permits sessions to be related to each other in a
specific way, which is captured in our model by the notion of freshness. Another
problematic point is sharing the operator key between all the clients of a same
operator. Though the key is not saved in clear, we need to consider the corruption
of the operator keys.

Finally we note that, in practice, the user answers to the initial identification
request by sending (in clear) either its International Mobile Subscriber Identity
IMSI or a Permanent Mobile Subscriber Identity TMSI. As specified in some
studies as [21], using these values cannot guarantee confidentiality, nor user
privacy. In particular this yields a server-impersonation vulnerability, which we
use as a separating counterexample between the models for the client- and server-
impersonation resistance. We note that one easy way to mitigate our separating
counterexample would be to generate a pseudorandom UID value, possibly by
using public key encryption mechanisms (only the server would need to certify
the key in this scenario).

We discuss several such protocol issues in Section 6.

2 The AKA protocol

2.1 Notations

Notation. Throughout the rest of the document, we will consider for a bitstring
x, |x| for the bit-size of x and bxci..j for the bitstring from position i to j of
the initial bitstring x. If f is a function, then y ← f(x) means that the y is the

output of f when run on input x. Therefore, y
$← {0, 1}n means that the value y

is chosen uniformly in the set {0, 1}n. For bit strings x and y, we denote x‖y the
concatenation between x and y. We denote ⊕ the bitwise exclusive-or operation.
For one bit b, we write bn to denote a n-bit string composed of a concatenation
of n bits b. Therefore, we denote λ the empty message. Finally, we denote ∗ the
value suggesting that the entity sends no messages and λ the value suggesting
that the entity receives no messages.

2.2 Description of the AKA protocol

In mobile telecommunications, 3G networks use a variant of AKA which is fully
depicted in Figure 6. Once the protocol is run, the client and server output session
keys (CK, IK), which are then used to secure future message-exchanges. The same
protocol serves as the backbone of the 4G LTE protocol, with the following
differences. First, the client is identified by means of a different identifier called a
GUTI (more details in [6]), as opposed to the tuple of permanent and temporary
identifiers we describe below. For the purposes of our analysis, however, the
nomenclature that is used in such networks is not relevant. A more significant
difference is the fact that instead of using CK and IK as session keys, the client
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and server use a key that is derived from these two keys, by means of a key
derivation function KDF2 and only this latter is shared with the server. In terms
of security, this would make our security statements also depend on the security
of the key-derivation function KDF.

This protocol features two main active actors: the client (in 3GPP terminol-
ogy ME/USIM) and the server (denoted VLR). The third, only selectively-active
party is the operator (denoted HLR). The tripartite setup of AKA was meant for
roaming, in which case the server providing the mobile coverage is not the client’s
operator, and may be subject to different legislation and vulnerabilities than the
latter. Thus, although the server is trusted to provide services across a secure
channel, it must not learn long-term sensitive information about either clients
or their home operators. Using the server as a mere proxy would be an ideal
solution; however, the server/operator communication is (financially) expensive.

Section 3 describes in detail the setup of the three parties. Clients C and
operators Op require both the client’s secret key skC and the operator’s secret
key skOp

3. The client and operator also keep track of sequence numbers SqnC

(resp. SqnOp,C), ideally kept close to each another and updated after each suc-
cessful authentication. The updating procedure is quite simple and predictable,
e.g. incrementing the counter by a fixed value. If the two values are too far apart,
the client initializes a re-synchronization procedure. The three parties: clients,
servers, and operators, also know the client’s permanent identifier IMSI. Clients
and servers moreover keep track of tuples (IMSI, TMSI, LAI), the last two values
forming a unique temporary identifier, which is updated at every session.

The AKA protocol, depicted in Figure 6, proceeds in several subparts. The
first two protocol exchanges are between the client C and the server S over an
insecure channel and they make up the user identification step. At the end of
this phase, the server will associate C with an identifier, either the permanent
International Mobile Subscriber Identity IMSI or a tuple consisting of a Tem-
porary Mobile Subscriber Identity TMSI and the Local Area Identifier LAI of
the server that issued the latest TMSI. The exact way the identification pro-
ceeds is vital to the client’s privacy; however, in this paper we focus only on
the security of AKA and associate each client with a unique user ID UID per
client. We explain this approach in more detail at the end of this section. Once
the server can associate the client with an identifier UID, it proceeds either to
the authentication vector generation step (detailed in the set 1© of instructions
in Fig. 6), or to the authenticated key-exchange part (detailed in instruction
sets 2©- 4©). The former of these is run by the server and the operator of the
client C over a secure channel, and it provides the server S with authentica-
tion and key-exchange material for a batch of AKA sessions with C; whenever
S runs out of AKE material, it re-runs the vector generation step. For each

2 To be more precise, this key is usually denoted as Kasme, and is computed as follows:
Kasme = KDF(CK‖IK, IDSN, Sqn ⊕ AK, const), with IDSN the identity of the serving
operator network.

3 Technically speaking, the client never stores this value in clear; instead it uses a
pseudorandom value TopC computed from the client and operator keys.
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Client Server Operator
(skC, skOp,SqnC) (skC, skOp,SqnOp,C)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→
Auth. vectors request

−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res
−−−−−−−−−−−−→

4©
Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:
CK← F3(skC, skOp,R

{i}),
IK← F4(skC, skOp,R

{i}),
Set Res := F2(skC, skOp,R

{i}).
Update SqnC := Sqn{i}.

Else re-synchronization

———————————–
2©: Store {AV{i}}ni=1.

Choose AV{i} one by one in
order.
Then it sends the related
challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← F1(skC, skOp,R

{i}, Sqn{i},AMF),

Mac
{i}
C ← F2(skC, skOp,R

{i}),
CK{i} ← F3(skC, skOp,R

{i}),
IK{i} ← F4(skC, skOp,R

{i}),
AK{i} ← F5(skC, skOp,R

{i}),

Autn{i} ← (Sqn{i} ⊕ AK{i}),AMF,Mac
{i}
S .

AV{i} := R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 1. The AKA Procedure.

session, Op prepares an authentication vector AV consisting of: a fresh random
value R; a server-authentication string MacS (authenticating R and the value
SqnOp,C); a client-authentication string MacC (authenticating R only); the ses-
sion keys CK and IK; and a one-time-pad encryption of SqnOp,C with a pseu-
dorandom string AK. The values MacS,MacC,CK, IK,AK are output by cryp-
tographic algorithms denoted F1, . . . ,F5 respectively. The AKA protocol also
provides the client with the algorithms F∗1 ,F∗5 for re-synchronization. All algo-
rithms take as input the client’s secret key skC, the operator’s key skOp and the
random value R; in addition, F1 and F∗1 also use the operator’s and resp. the
client’s sequence number. The server is given a batch of vectors of the form:
AV = (R,CK, IK,MacS,MacC,AMF,AK ⊕ SqnOp,C), in which AMF is a public
authentication management field managed by the operator.

The authenticated-key-exchange step allows clients and servers to mutually
authenticate and compute session keys over an insecure channel. The server
chooses the next AV from the latest batch, using the random R and the string
Autn = (SqnOp,C⊕AK)‖AMF‖MacS as a challenge. The client uses R to compute
AK and recover SqnOp,C. If the received MacS verifies and SqnOp,C is within a
predefined distance ∆ of SqnC, then C computes (CK, IK) and the value MacC,
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sending this last value to S. If the two sequence numbers are too far apart, then
C forces a re-synchronization, which we describe below. If no re-synchronization
is needed, the client updates SqnC to SqnOp,C, and S verifies the received au-
thentication value with respect to the MacC sent by Op. If MacC verifies, then S
sends an acknowledgement to Op and runs the TMSI re-allocation.

If SqnOp,C is too far from SqnC, an optional re-synchronization is run by all
three parties. The client uses SqnC to compute values Mac∗S and AK∗ ⊕ SqnC as
the operator did, using the session R, but algorithms F∗1 and F∗5 rather than F1

and F5. If Mac∗S verifies, Op resets SqnOp,C to SqnC and sends to S another batch
of AV as before. The protocol restarts.

Finally, following any successful key-establishment, the server and the client
go through the TMSI re-allocation step. The server sends an (unauthenticated)
encryption of a new, randomly chosen TMSI value (which is unique per server)
to the client C, using the key CK the parties agreed on. Encryption is done by
means of the A5/3 algorithm [5], run in cipher mode. The new TMSI value,
called TMSInew, is only permanently saved by S if acknowledged by the client;
else, both values TMSInew and the old TMSIold are retained and can be used in
the next authentication procedure.

Identities and reallocation. In our security analysis, we stick close to the
original AKA protocol. However, one simplification we make throughout this
paper is associating each prover with a single, unique UID, which we consider
public. In practice, this identifier is the user’s IMSI, which can be requested by
servers in case a TMSI value is not traceable to an IMSI. From the point of view
of security, any attack initiated by mismatching TMSI values (i.e. replacing one
value by another) is equivalent to doing the same thing with IMSI values.

Another important part of the AKA protocol that we abstract in this analysis
is the TMSI reallocation. If the TMSI system were flawless (a newly-allocated
TMSI is reliable and non-modifiable by an active MiM), then we could prove a
stronger degree of server impersonation than in our current model. As we discuss
in Section 3, an active MiM can inject false TMSI values, which make servers
request an IMSI value; if the MiM reuses this value, it can use a type of offline
relay to impersonate the server. In particular, the use of the TMSI is undone by
the back door allowing servers to demand the IMSI; simultaneously, insecurities
in using TMSIs translate to the identification by IMSI.

3 Security model

3.1 Notations

Notation. Throughout the rest of the document, we will consider for a bitstring
x, |x| for the bit-size of x and bxci..j for the bitstring from position i to j of
the initial bitstring x. If f is a function, then y ← f(x) means that the y is the

output of f when run on input x. Therefore, y
$← {0, 1}n means that the value y

is chosen uniformly in the set {0, 1}n. For bit strings x and y, we denote x‖y the
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concatenation between x and y. We denote ⊕ the bitwise exclusive-or operation.
For one bit b, we write bn to denote a n-bit string composed of a concatenation
of n bits b. Therefore, we denote λ the empty message. Finally, we denote ∗ the
value suggesting that the entity sends no messages and λ the value suggesting
that the entity receives no messages.

3.2 Key-indistinguishability and impersonation

The security goals of the AKA protocol are: the secrecy of the established sessions
keys against both passive and active MiM adversaries, as well as mutual authen-
tication. In particular, this protocol cannot guarantee (perfect) strong secrecy, as
it uses symmetric long-term keys, which, once compromised, can also endanger
past session keys. We formalize these goals in terms of three properties: key-
indistinguishability, client-impersonation resistance, and server-impersonation
resistance.

As mentioned in Section 1, these notions cannot be trivially proved in the
Bellare-Rogaway model variations, e.g. [15,14]. Indeed, we need to propose a
new model to take into account sequence numbers, resynchronizations, and a
possible Man-in-the-Middle server-impersonation attack. Note that, even if this
implies an imperfect mutual authentication, it has no impact on the secrecy
(indistinguishability from random) of the sessions keys.

We split the guarantee of mutual authentication, which implies client and
server impersonation resistance, into two properties. This is because the AKA
protocol offers different degrees of security with respect to impersonation attacks
for clients and for servers.

Setup and participants. We consider a set P of honest participants, which
are either mobile clients C of the type ME/USIM subscribing to operators Op,
or servers S. A participant is generically denoted as P. In all security games,
the operators Op are black-box algorithms within the server S. We assume the
existence of nC clients, nS servers and nOp operators. If the operators are con-
tained within the servers, we assume that all copies of the same operator are
synchronized at all times.

Each client C is associated with a unique identifier UID, two long term static
secret keys skUID (subscriber key), and skOp (operator key) which is common to
all clients subscribing to a specific operator, and a long-term state stUID

4. In
particular, we consider multiple operators, with the restriction that each user
may only be registered to a single operator5. In our model, we also assume for
simplicity that the key space of all operators is identical, noting that neither the
key-indistinguishability, nor the mutual authentication properties are affected

4 The latter consists in practice of a sequence number SqnUID, which is updated at
each successful authenticated key exchange.

5 We note that this seems to extend naturally to a case in which a single client may
be registered with multiple operators, as long as the key-generation process for each
operator is such that the registration of a single client to two operators is equivalent
to representing a two-operator-client as two independent clients.
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by the way operators choose their keys (the security of both the key exchange
and the authentication properties rely just on the key length); the variation in
the key space does, however, affect user privacy. Each operator is assumed to
contain skUID included in a database of tuples (UID, skUID, skOp, stOp,UID), each
tuple corresponding to a single user of this operator. The last entry stOp,UID of
each tuple denotes the long term state of the operator associated with that user
– which may in fact differ from the state of the user itself. For the AKA protocol,
the state is in fact a sequence number, associated with each client. Moreover, the
servers do not contain any secret information of the operator or the subscriber.

In our model, each participant may run concurrent key-agreement executions
of the protocol Π. We denote the j-th execution of the protocol by the party P
as Pj . We tacitly associate each instance Pi with a session ID sid, a partner ID
pid (consisting either of one or of multiple elements), and an accept/reject bit
accept. As explained more in detail in Section 4, the partner ID is set to either
the server or to a user identifier UID, whereas the session ID includes three
values: the user ID given by the client (thus tacitly also the key associated with
that UID), the randomness generated by the server, and the sequence number
used for the authentication. Finally, the accept/reject bit is initialized to 0 and
turns to 1 at the successful termination of the key-agreement protocol. We call
this “terminating in an accepting state”. In the absence of an adversary, the
protocol is always run between a client C and a server S. For the AKA protocol,
it is the server which begins the protocol by means of an ID request, and can thus
be called its initiator, whereas the mobile client is the respondent. A successful
termination of the protocol yields, for each party, a session key K (which for the
AKA protocol consists of two keys), the session identifier sid, and the partner
identifier pid of the party identified as the interlocutor. In AKA the client is
authenticated by means of a challenge-response type of query, where the response
is computed as a pseudo-random function of the key and (a part of) the challenge.
The server is equally authenticated by means of an authentication string, also a
pseudo-random function of the key, the challenge, and the long-term state that
the server associates with that client. In particular, the challenge strings sent by
the server are authenticated.

The notion of key-indistinguishability refers to the session keys calculated as
a result of the key-exchange protocol (rather than to the long-term keys held by
each party), requiring that they be indistinguishable from random bitstrings of
equal length. The adversary MiM A can access instances of honest parties by
means of oracles acting as interfaces; furthermore, A can schedule message deliv-
eries, send tampered messages, or interact arbitrarily with any party, by means
of the oracles below. We note that in the key-indistinguishability model the ad-
versary may also know the long-term state (in our case, the sequence number) of
both users and the server. This will also be the case in the impersonation games.
Since the state is updated in a probabilistic way, we give the adversary a means
of always learning the updated state of a party without necessarily corrupting
it (the latter may rule out certain interactions due to notions of freshness, see
below). Corruption is allowed and implied the related party is considered as ad-
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versarially controlled. We use the same fundamental model, with similar oracles,
also for the definitions of client and server impersonation.

We consider a finite (and public) list of nOp operators Op1, . . .OpnOp
, for

which the keys skOp1
, . . . skOpnOp

are generated independently and uniformly at

random Sop.

Oracles. The adversary interacts with the system by means of the following
oracles, in addition to a function G, which we model as a PRF.

– CreateCl(Op)→ (UID, stUID): This oracle creates a client with unique identi-
fier UID. Then the client’s secret key skUID and the sequence number SqnUID.
The tuples (UID, skUID, skOp,SqnUID) are associated with the client UID and
with the corresponding operator Op (i.e. each “copy” of Op in each server
does this). The operator sets stOp,UID := SqnUID and then keeps track of
stOp,UID. The adversary is given UID and stUID.

– NewInstance(P) → (Pj ,m): this oracle instantiates the new instance Pj , of
party P, which is either a client or a server. Furthermore, the oracle also
outputs a message m, which is either the first message in an honest protocol
session (if P is a server) or ⊥ (if P is a client). The state st of this party
is initiated to be the current state of P, and it is initiated with the current
value of TMSI, LAI.

– Execute(P, i,P′, j)→ τ : creates (fresh) instances Pi of a server P and P′j of a
client, then runs the protocol between them. The adversary A receives the
transcript of the protocol.

– Send(P, i,m) → m′: simulates sending message m to instance Pi of P. The
output is a response message m′ (which is set to ⊥ in case of an error or an
abort).

– Reveal(P,i) → {K,⊥}: if the party has not terminated in an accepting state,
this oracle outputs ⊥; else, it outputs the session keys computed by instance
Pi.

– Corrupt(P)→ skP: if P is a client, this oracle returns the long-term client key
skP, but not skOp (in this we keep faithful to the implementation of the pro-
tocol, which protects the key even from the user himself). If P is corrupted,
then this party (and all its instances, past, present, or future), are considered
to be adversarially controlled. If P is a server, then this oracle returns the
identifier Si, giving the adversary access to a special oracle OpAccess.

– OpAccess(S,C) → m: for a corrupted server S, this oracle gives the adver-
sary one access to the server’s local copy of all the operators, in particular
returning the message that the operator Op would have output to the server
on input a client C.

– StReveal(C, i, bitS) → x: for a client P, if bitS = 0, then this oracle reveals
the current state of Ci; else, if bitS = 1, then the oracle returns the state the
operator stores for C.

– TestK.Sec(P,i)→ K̂: this oracle is initialized with a secret random bit b. It re-
turns ⊥ if the instance Pi is unfresh or if it has not terminated in an accepting
state (with a session key K). If b = 0, then the oracle returns K̂ := K, else it
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returns K̂ := K′, which is a value drawn uniformly at random from the same
space as K. We assume that the adversary makes a single TestK.Sec query (a
standard hybrid argument can extend the notion to multiple queries). We
may assume that the adversary makes only a single TestK.Sec() query since
we can extend our model to the multi-query scenario by a standard hybrid
argument.

We allow the adversaries to learn whether instances have terminated and
whether they have accepted or rejected their partners. Indeed, the adversary
can always use Send queries to verify the status of a session. Though we do not
model the precise error messages received by the two parties on abort, this seems
to have no effect on the key-indistinguishability and impersonation properties
of the two parties respectively. We also assume that the adversary will learn
the session and partner identifiers for any session in which the instance has
terminated in an accepting state.

Correctness and Partners. Each instance of each party keeps track of a ses-
sion ID string, denoted sid. For the AKA protocol, this value consists of a triple
of values: a user ID UID (corresponding to a single client C), a session-specific
random value, and the sequence number used for the authentication step. We
describe this in more detail in Section 4. We define partners as party instances
that share the same session ID. More formally:

Definition 1. [Partners.] Two instances Pi and P′j are partnered if the fol-
lowing statements hold:

(i) One of the parties is a user and the other is the server.
(ii) The two instances terminate in an accepting state.
(iii) The instances share the same sid.

In this case, the partner ID of some party P denotes its (intended) partner.

We define the correctness of the protocol as follows.

Definition 2. [Correctness.] An execution of the protocol Π between two in-
stances is correct if the execution is untampered with and if the following condi-
tions hold:

(i) The two conversing instances share the same sid, i.e. they are partnered.
(ii) The both instances output the same session key(s) K.
(iii) The partner identifiers pid of the instances are correct, i.e they corre-
sponds to the both conversing entities.

We consider two classes of adversaries, weak and strong, depending on whether
the adversary may corrupt servers or not. We model three requirements with re-
spect to MiM adversaries.

Key-indistinguishability. For the property of key-indistinguishability, i.e. the
guarantee that the session keys of honest sessions are indistinguishable from
random, we could consider two types of models. The simpler of these gives the
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adversary the ability of recovering the secret key of the operator, which consid-
erably eases the simulation in our proof. However, we note that the operator
keys are not easy to recovery by a client in real-world implementations, as they
are never stored on the SIM card6. Thus, a more realistic model is the one we
present above, in which only the client key is recovered upon corruption. We
give the alternative security model in the Appendix.

The key-indistinguishability game is played as follows. First the challenger
generates the keys of all the nOp operators and gives black-box access to the
server S. The adversary is then allowed to query any of the oracles above. We
implicitly assume that the TestK.Sec oracle keeps state and, once it is queried
a first time, it will return ⊥ on all subsequent queries (we only allow a single
query). However, we do allow the adversary to interact with other oracles after
the TestK.Sec query as well.

Eventually, the adversary A outputs a bit d, which is a guess for the bit b used
internally in the TestK.Sec oracle. The adversary wins if and only if: b = d and
A has queried a fresh instance to the TestK.Sec oracle. We consider the following
definition of a fresh instance for the key-indistinguishability. We note that this
notion is classical in symmetric-key protocols.

Definition 3. [Freshness: Key-indistinguishability.] An instance Pi is fresh
if neither this instance, nor a partner of Pi is adversarially-controlled, i.e has
not been corrupted, and the following queries were not previously executed:

(i) Reveal(.), either on the instance Pi, or on of its partners.

(ii) Corrupt(.) on any instance, either of P, or of their partners.

The advantage of A in winning the key-indistinguishability game is defined
as:

AdvK.Ind
Π (A) := |Pr[A wins]− 1/2|.

We quantify the adversary’s maximal advantage as a function of her resources
which are the running time t, the number qexec of instantiated party instances,
and the maximum number of allowed resynchronization attempts qres per instan-
tiated instance.

Definition 4. [Weak/Strong Key-Indistinguishability.] A key-agreement
protocol Π is (t, qexec, qres, qG , ε)-weakly key-indistinguishable (resp. (t, qexec, qres,
qs, qOp, qG , ε)-strongly-key-indistinguishable) if no adversary running in time t,
creating at most qexec party instances with at most qres resynchronizations per
instance, (corrupting at most qs servers and making at most qOp OpAccess queries
per operator per corrupted server for strong security), and making at most qG

queries to function G, has an advantage AdvK.Ind
Π (A) > ε.

6 Instead, what is stored in the SIM card is an intermediate value, obtained after a
first Keccak truncated permutation; thus the operator key is easy to use, but hard
to recover.
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Client impersonation resistance. Though the AKA protocol claims to pro-
vide mutual authentication, its design introduces a vulnerability, leading to
a subtle difference between the degree of client-impersonation resistance and
server -impersonation resistance. In fact, as detailed in the paragraph below, the
protocol allows the adversary to do a type of Man-in-the-Middle attack which
resembles, but is not quite the same as, a relay attack.

We have two choices in modeling the client and server impersonation guaran-
tees. The classical Bellare-Rogaway model, using the notion of freshness, cannot
differentiate well between client- and server-impersonation resistance. A conse-
quence is that we would only be able to prove a weaker client-impersonation
guarantee than the one provided by the protocol. In our full version we also
outline these notions and the respective proofs, see the Appendix.

The alternative is to give a more acurate model, which features time and can
capture the difference between online and offline relays. This is the strategy we
use here. In a style akin to the distance-bounding model of Dürholz et al. [24],
we introduce a time variable with positive integer values, denoted clock, which
increments by 1 both when a Send query is sent by the adversary, and when
an honest party responds to this query. Running the Execute query increments
clock by 1 for each implicit Send and for each implicit response step. For client
impersonation, the only attacks we rule out are online relay attacks, which are
(somewhat simplistically) depicted in Figure 2. In particular, we need to propose
a more subtle definition of a fresh instance as follows:

Definition 5. [Freshness: C.Imp resistance.] An instance Si, with session
ID sid and partner ID pid, is fresh if: neither this instance nor a partner of Si is
adversarially-controlled; and there exists no instance Cj sharing session sid with
the partner pid = Si (the related transcript is denoted as (m,m′,m′′)) such that
the following events occur::

(i) The message m is sent by the adversary A to Si via a Send(m) query at
time clock = k, yielding message m′ at time clock = k + 1.

(ii) The message m′ is sent by A to Cj via a Send(m′) query at time clock =
k′ > k + 1, yielding message m′′ at time clock = k′ + 1.

(iii) The message m′′ is sent by A to Si via a Send(m′′) query at time clock =
k′′ > k′ + 1.

We note that the messages need not be exactly sequential (i.e. the adversary
could query other oracles in different sessions before returning to session sid).
Furthermore, the notion of freshness only refers to relays with respect to the
partner client pid. We do not restrict the adversary from forwarding received
messages to other server or client instances.

The goal of a client-impersonation adversary is to make a fresh server instance
terminate in an accepting state. In this case, the Test oracle is not used. More
formally, the game begins by generating the operator keys as before; then the
adversary A gains access to all the oracles except TestK.Sec. When A stops, she
wins if there exists an instance Si that ends in an accepting state and is fresh
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Send(m′′)
−−−−−−−−→

online relay no relay offline relay
(pure relays) (different messages) (out of order)

Fig. 2. Examples of Online and Offline relays.

as described above. The advantage of the adversary is defined as her success
probability, i.e.

AdvC.Imp
Π (A) := Pr[A wins].

Definition 6. [Weak/Strong Client-Impersonation security.]
A key-agreement protocol Π is (t, qexec, qres, qG , ε)-weak-client-impersonation-secure
(resp. (t, qexec, qres, qs, qOp, qG , ε)-strong-client-impersonation secure) if no adver-
sary running in time t, creating at most qexec party instances with at most
qres resynchronizations per instance, (corrupting at most qs servers and mak-
ing at most qOp OpAccess queries per operator per corrupted server for strong
security), and making at most qG queries to the function G, has an advantage

AdvC.Imp
Π (A) ≥ ε.

Server impersonation resistance. As we explain in more detail in Section 6, it
is possible to impersonate a server even if we rule out online relays. In particular,
an adversary performs an offline (out of order) relay, as described in the third
scenario of Figure 2. This is because the client’s first message is the user id,
which is always sent in clear (thus known to adversaries). This enables A to
obtain, in a first session with the server, the server’s authenticated challenge
for a particular client UID, which it can replay to UID, in a separate (later)
session. In essence, the adversary is relaying the messages, but this happens in
two different, non-concurrent executions. This indicates a gap between the client
impersonation and the server impersonation guarantees for the AKA protocol.

Our server-impersonation model rules out both offline and online relays, re-
defining freshness as follows:

Definition 7. [Freshness: S.Imp resistance.] An instance Ci, with session
ID sid and partner ID pid, is fresh if: neither this instance nor a partner of Ci
is adversarially-controlled; and there exists no instance Sj with session sid and
partner pid = Ci (the transcript of sid is denoted as (m,m′,m′′)) such that the
following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message
m′.
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(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message
m′′.
(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.

The game is played as in the client impersonation case. When the adversary
A stops, she wins if there exists a fresh instance Ci that ends in an accepting
state. The advantage of the adversary is defined as its success probability, i.e.

AdvS.Imp
Π (A) := Pr[A wins].

Definition 8. [Weak/Strong Server-Impersonation security.]
A key-agreement protocol Π is (t, qexec, qres, qG , ε)-weak-server-impersonation-secure
(resp. (t, qexec, qres, qs, qOp, qG , ε)-strong-server-impersonation secure) if no adver-
sary running in time t, creating at most qexec party instances with at most
qres resynchronizations per instance, (corrupting at most qs servers and mak-
ing at most qOp OpAccess queries per operator per corrupted server for strong
security), and making at most qG queries to the function G, has an advantage

AdvS.Imp
Π (A) ≥ ε.

3.3 Security w.r.t servers.

In this section, we consider a new adversary where she is a malicious but legit-
imate server S. Indeed, a such context requires that (malicious) server cannot
learn any secret data of the subscriber or operator, i.e the subscriber key skC,
operator key skOp and the two related internal states. Moreover, the server must
not be able to make a client accept the server’s authentication (thus completing
the key-derivation process), unless they are explicitly given authenticating infor-
mation by a legitimate operator. We formalize these goals in terms of two new
properties: key-confidentiality and soundness. This model is really similar as the
previous one, and is based on the same participants which includes the adversary.
For both properties, the adversary uses the UReg,NewInstance, Execute, Send,
Reveal, StReveal oracles as described in the previous model. We additionally add
two new oracles (including a new Corrupt oracle) as noted below:

– Corrupt(P)→ S: if P is a client, behave as before in the previous model. If P is
an operator, returns skOp and the list of tuples S = (UID, skUID, stUID, stOp,C)
for all clients C subscribing with that operator.

– OpAccess(C)→ m: this oracle gives the adversary one access to the server’s
local copy of all the operators, in particular returning the message m that
the operator Op would have output to the server on input a client C.

Unlike key-indistinguishability, which guarantees that session keys are in-
distinguishable from random with respect to MiM adversaries, the property of
key confidentiality demands that long-term client keys remain confidential with
respect to malicious servers

This game begins by generating the material for nOp operators and nC clients.
The adversary can then interact arbitrarily with these entities by using the
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oracles above. At the end of the game, the adversary must output a tuple:
(Pi, sk∗UID, sk∗Op, st∗UID, st∗Op,UID) such that UID is the long-term identifier of P and
Pi is a fresh instance of P in the sense formalized below. The adversary wins
if at least one of the values: sk∗UID, sk∗Op, st∗UID, st∗Op,UID is respectively equal to
skUID, skOp, stUID, stOp,UID, the real secret values of the fresh instance Pi.

Definition 9. [Freshness: St.Conf] An instance Pi is fresh if neither this in-
stance, nor a partner of Pi is adversarially-controlled (its long-term key skP has
not been corrupted) and the following queries were not previously executed:

(i) StReveal(.) on any instance of P.

(ii) Corrupt(.) on any instance of P or on the operator Op to which P sub-
scribes.

The advantage of the adversary is defined as:

AdvSt.Conf
Π (A) := Pr[A wins].

Definition 10. [State-confidentiality.] A key-agreement protocol Π is (t, qexec,
qres, qOp, qG , ε)-state-confidential if no adversary running in time t, creating at
most qexec party instances with at most qres resynchronizations per instance,
making at most qOp OpAccess queries and qG queries to G, has an advantage

AdvSt.Conf
Π (A) ≥ ε.

In the Soundness game, we demand that no server is able to make a fresh
client instance terminate in an accepting state without help from the operator.
This game resembles impersonation-security; however, this time the adversary
is a legitimate server (not a MiM) and it has access to operators. The adversary
may interact with oracles in the soundness game arbitrarily, but we only allow
a maximum number of qOp queries to the OpAccess oracle per client.

The adversary wins if there exist (qOp + 1) fresh client instances of a given
client which terminated in an accepting state. Freshness is defined similarly as
in the impersonation game with the same restriction due to the offline replays
attacks:

Definition 11. [Freshness: soundness resistance.] An instance Ci, with
session ID sid and partner ID pid, is fresh if: neither this instance, a partner of
Ci nor their related operator Op is adversarially-controlled ;and there exists no
instance Sj with session sid and partner pid = Ci (the transcript of sid is denoted
as (m,m′,m′′)) such that the following events occur:

(i) The message m is sent by A to Sj via a Send(m) query yielding message
m′.

(ii) The message m′ is sent by A to Ci via a Send(m′) query yielding message
m′′.

(iii) The message m′′ is sent by A to Sj via a Send(m′′) query.
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The advantage of the adversary is defined as:

AdvSound
Π (A) := Pr[A wins].

Definition 12. [Soundness.] A key-agreement protocol Π is (t, qexec, qres, qOp,
qG , ε)-server-sound if no adversary running in time t, creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to any operator Op and at most qG queries to the function G, has an
advantage AdvSound

Π (A) ≥ ε.

4 Security of the AKA protocol

In this section, we focus on the current, unmodified version of the AKA protocol
with respect to the five properties formalized in Section 3.

In particular, parties P (clients C and servers S) run sessions of the protocol,
thus creating party instances denoted Pi. An instance is said to finish in an
accepting state if and only if it auhenticates its partner. Each instance keeps
track of a partner- and a session-ID.

The partner ID pid of an accepting client instance Ci is S (this reflects the lack
of server identifiers); server instances Si, have a pid corresponding to a unique
UID. The session ID sid of each instance consists of: UID, R, and the value Sqn
that is agreed upon during the session. In the absence of resynchronization, the
session ID is (UID,R,SqnOp,C). During re-synchronization, the operator updates
SqnOp,C to the client’s SqnC; this update is taken into account in the sid. Any
two partners (same sid) with accepting states compute session keys (CK‖IK).

A Unitary Function G. We analyse the security of AKA in two steps. First,
we reduce the security of AKA to the security (pseudorandomness) of an inter-
mediate, unitary function G. This function models the suite of seven algorithms
used in AKA; each algorithm is a specific call to G. For the state-confidentiality
property we also need to assume the pseudorandomness of the related unitary
function G∗, which is the same as G, but we key it with the operator key skOp

rather than the client key sk. Thus, this first step gives a sufficient condition
to provide AKA security for any suite of algorithms intended to be used within
it. As a second step (showed in the full version), we prove that both current
proposals for AKA, i.e. TUAK and MILENAGE, guarantee this property.

We note that the pseudorandomness of the unitary function G implies the
pseudorandomness of each of the sub-algorithms; however, it is a strictly stronger
property, which is necessary because e.g. the session keys CK and IK, computed
by two different algorithms on the same input, must be independent.

4.1 Provable Security Guarantees

The existing AKA protocol only attains the weaker versions of key-indistinguisha-
bility, client-, and server-impersonation resistance. The protocol also guarantees
state-confidentiality and soundness with respect to malicious servers.
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Denote by Π the AKA protocol described in Section 2.2, but in which the
calls to the internal cryptographic functions F1, . . . ,F5,F∗1 ,F∗5 are replaced by
calls to the function G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n, in which
κ is a security parameter, d is a positive integer strictly larger than the size
of the operator key, and t indicates the block size of an underlying pseudo-
random permutation. Each input space is specified according the considered
instantiations (MILENAGE or TUAK)detailed above.

We denote by SC := {0, 1}κ the key-space for the client keys and by SOp :=
{0, 1}e, the key space for operator keys, for some specified e < d (in practice
e = 256). Our system features nC clients, nS servers and nOp operators.

MILENAGE and TUAK as G. In appendix F, we prove that both the calls to
the instantiations (see Appendix E) MILENAGE and TUAK algorithms can be
modeled as the unitary function G that we use for our proofs. The last step
in our proof is to show that both algorithm suites exhibit the PRF property
we require for G, when instantiated with the key skC and with the operator
key skOp (for the key-confidentiality). However, as opposed to TUAK (whose
symmetric design allows a lot more leeway), the MILENAGE algorithms require
a stronger assumption to prove the PRF property when G is used with key skOp

(see Appendix F)

Security statements.
We proceed to give the five security statements with the respect to the

AKA protocol, in the following order: first, the notion of weak-key-secrecy, then
strong-client-, and weak-server-impersonation resistance, soundness with respect
to servers, and finally the state-confidentiality, which requires an additional as-
sumption. We include proofs for these properties in Appendix D.

Theorem 1. [W.K.Ind-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the AKA proto-
col specified in section 4. Consider a (t, qexec, qres, qG)-adversary A against the
W.K.Ind-security of the protocol Π, running in time t and creating at most qexec

party instances with at most qres resynchronizations per instance, and mak-
ing qG queries to the function G. Denote the advantage of this adversary as
AdvW.K.Ind

Π (A). Then there exists a (t′ ≈ O(t), q′ = qG + qexec(2 + qres))-prf-
adversary A′ on G such that:

AdvW.K.Ind
Π (A) ≤ nC ·

(
q2exec

2|R|
+ Advprf

G (A′)
)
.

Thus, we show that this result holds (in fact with a simpler proof) even if
operator key corruptions are possible. This is an important, as it shows that
even if an adversary knows all the operator keys, it is still unable to distinguish
real session keys from random ones. This is also the case for the client- and
server-impersonation statements below.

Theorem 2. [S.C.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the AKA protocol
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specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG)-adversary A against
the S.C.Imp-security of the protocol Π, running in time t and creating at most
qexec party instances with at most qres resynchronizations per instance, corrupting
at most qs servers and making at most qOp OpAccess queries per operator per
corrupted server and making qG queries to the function G. Denote the advantage

of this adversary as AdvS.C.Imp
Π (A). Then there exists a (t′ ≈ O(t), q′ = 5 · qOp ·

qs + qG + qexec(qres + 2))-prf-adversary A′ on G such that:

AdvS.C.Imp
Π (AG0

) ≤ nC ·
(

2 · Advprf
G (A′) +

(qexec + qs · qOp)2

2|R|
+
qexec · qres

2|Res| +
1

2κ

)
.

Theorem 3. [W.S.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π our protocol speci-
fied in section 4. Consider a (t, qexec, qres, qG)-adversary A against the W.S.Imp-
security of the protocol Π, running in time t, creating at most qexec party in-
stances, running at most qres re-synchronizations per each instance, and making
at most qG queries to the function G. Denote the advantage of this adversary as

AdvW.S.Imp
Π (A). Then there exists a (t′ ≈ t, q = qexec · (qres +2)+qG)-adversary A’

with an advantage Advprf
G (A′) of winning against the pseudorandomness of the

function G, such that:

AdvW.S.Imp
Π (A) ≤ nC ·

(
Advprf

G (A′) +
qexec · qres

2|MacS|
+

1

2κ

)
.

Theorem 4. [Sound-security.] Let G : {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t →
{0, 1}n be our specified function in section 4 and Π the protocol specified in
section 4. Consider a (t, qexec, qres, qOp, qG , ε)-server-sound-adversary A against
the soundness of the protocol Π, running in time t, creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to any operator Op and at most qG queries to the function G. Denote
the advantage of this adversary as AdvSound

Π (A). Then there exists a (t′ ≈ t, q′ =

5·qOp +qG+qexec(2+qres))-adversary A′ with an advantage Advprf
G (A′) of winning

against the pseudorandomness of the function G, such that:

AdvSound
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
qexec · qres

2|MacS|
+

1

2κ

)
.

Theorem 5. [St.Conf-resistance.] Let G and G∗ be our specified functions
specified in section 4 and Π our fixed variant of the AKA protocol specified in
section 4. Consider a (t, qexec, qres, qOp, qG , qG∗)-adversary A against the St.Conf-
security of the protocol Π, running in time t and creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to oracle OpAccess and making qG (resp. qG∗) queries to the function

G (resp. G∗). Denote the advantage of this adversary as AdvSt.Conf
Π (A). Then

there exist a (t′ ≈ O(t), q′ = qG + qexec(5 + qres))-prf-adversary A1 on G and
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(t′ ≈ O(t), q′ = qG∗)-prf-adversary A2 on G∗ a such that:

AdvSt.Conf
Π (A) ≤ nC ·

(
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn| + Advprf
G (A1) + Advprf

G∗(A2)

)
.

4.2 Vulnerabilities of the AKA protocol

In the three-party mobile setting, the server is authenticated by the client if it
presents credentials (authentication vectors) generated by the client’s operator.
The properties of state-confidentiality and soundness, which the AKA protocol
guarantees, indicate that servers cannot learn the client’s long-term data, and
that they cannot authenticate without the operator-generated data.

However, Zhang [18] and Zhang and Fang [19] pointed out that once a server
is corrupted, it can obtain legitimate authentication data from the client’s op-
erator, and then use this data to set up a False Base Station (FBS), which can
lead to a malicious, unauthorised server authenticating to the client. As a result,
the AKA protocol does not guarantee strong key-indistinguishability, nor strong
server-impersonation resistance.

C S∗ Op C A S
Identification−−−−−−−−−−−−−→ Identification−−−−−−−−−−−−−→

AV1, . . .AVn−−−−−−−−−−−−−→
AVk+1←−−−−−−−−−−−−−

Use AV1←−−−−−−−−−−−−−
Respk+1←−−−−−−−−−−−−−

. . . . . . . . .
Use AVk←−−−−−−−−−−−−−

Fig. 3. The attack of Zhang and Fang. On the left hand side, the client is in the
vulnerable network, interacting with the server S∗. The server uses up authentication
vectors AV1, . . .AKk. Then, the server S∗ is corrupted, and the adversary A learns
AVk+1, . . . ,AVn, which it uses in a second attack phase (on the right).

The main attack strategy is also depicted in Figure 3. In a first step, the client
C is assumed to be in the LAI corresponding to a server S∗, which will later be
corrupted. The server receives a batch of authentication vectors (AV1, . . . ,AVn),
using some of them (vectors AV1, . . . ,AVk) to provide service to that client (and
learn what services this client has provided, etc.). Subsequently, the client moves
to a different LAI, outside the corrupted network’s area. The adversary A has
corrupted the server S∗ and learned the remaining vectors AVk+1, . . . ,AVn; this
adversary then uses this authentication data to authenticate to the client, in
its new location. This immediately breaks the server-impersonation guarantee.
Moreover, since authentication vectors also contain the short-term session keys,
key-indistinguishability is breached, too. This attack is particularly dangerous
since a single server corruption can affect a very large number of clients. More-
over, server corruption is easily practiced in totalitarian regimes, in which mobile
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providers are subject to the state, and partial data is furthermore likely to be
leaked upon using backdoored algorithms.

This attack does not, however, affect client-impersonation resistance, since
the server cannot use an authentication vector from the server to respond to
a freshly-generated authentication challenge (the random value for the two au-
thentication vectors is different).

5 Additional Security with few modifications

The main reason server-corruption attacks are effective is that servers associ-
ated with a specific geographic area (like a country, a region, etc.) can re-use
authentication vectors given by the operator in a different geographic area, im-
personating the legitimate server associated with that area. This vulnerability,
however, is easily fixed as long as the client’s device is aware of its geographical
location. Our solution is to add a unique server identifier, denoted IdS, to the
input of each of the cryptographic functions, thus making any leftover authen-
tication tokens un-replayable in the wrong area. We stress that this is a minor
modification to the protocol, as servers are already associated with a unique LAI
identifier. We also show in Appendix E how to include IdS in the computation
of each of the cryptographic algorithms. We present our modified protocol in
Figure 4.

Instructions:

Client Server Operator

3©: Compute AK using R{i}.

Recover Sqn{i} (from AK).
Check MacS value.

If Sqn{i} ∈ (SqnC, SqnC +∆):
Compute:

CK← Upd F3(skC, skOp,R
{i}, IdS) ,

IK← Upd F4(skC, skOp,R
{i}, IdS) ,

Set Res := Upd F2(skC, skOp,R
{i}, IdS) .

Update SqnC := Sqn{i}.
Else re-synchronization

———————————–
2©: Store {AV{i}}ni=1.

Choose AV{i} one by one in
order.
Then, it forges and sends
the related challenge.
———————————–
4©: Res

?
= MacC.

1©: For each i = 1, . . . , n, compute:

Generate R{i}. Compute: Sqn{i} ← inc(SqnOp,C)

Mac
{i}
S ← Upd F1(skC, skOp,R

{i}, Sqn{i},AMF, IdS) ,

Mac
{i}
C ← Upd F2(skC, skOp,R

{i}, IdS) ,

CK{i} ← Upd F3(skC, skOp,R
{i}, IdS) ,

IK{i} ← Upd F4(skC, skOp,R
{i}, IdS) ,

AK{i} ← Upd F5(skC, skOp,R
{i}, IdS) ,

Autn{i} ← (Sqn{i} ⊕ AK),AMF,MacS.

AV{i} := (R{i},CK{i}, IK{i},Autn{i},Mac
{i}
C , with

SqnOp,C = Sqn{i}.
End For.

Fig. 4. The modified instructions of the fixed AKA Procedure.

Security of the modified AKA protocol. This modification still (trivially)
preserves the properties of strong client-impersonation resistance, soundness,
and state confidentiality. However, the modification yields in addition strong
key-indistinguishability and server-impersonation resistance, as we detail below.
The proofs are detailed in Appendix D.

Theorem 6. [S.K.Ind-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the fixed AKA proto-
col specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG)-adversary A against
the S.K.Ind-security of the protocol Π, running in time t and creating at most
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qexec party instances with at most qres resynchronizations per instance, corrupting
at most qs servers, making at most qOp queries per operator per corrupted server
and making qG queries to the function G. Denote the advantage of this adversary
as AdvS.K.Ind

Π (A). Then there exists a (t′ ≈ O(t), q′ = 5 ·qOp +qG +qexec(qres +2))-
prf-adversary A′ on G such that:

AdvS.K.Ind
Π (A) ≤ nC ·

(
(qexec + qs · qOp)2

2|R|
+ 2 · Advprf

G (A′)
)
.

Theorem 7. [S.S.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π our fixed variant of
the AKA protocol specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG , ε)-
adversary A against the S.S.Imp-security of the protocol Π, running in time
t and creating at most qexec party instances with at most qres resynchroniza-
tions per instance, corrupting at most qs servers, making at most qOp queries
per operator per corrupted server and making qG queries to the function G.

Denote the advantage of this adversary as AdvS.S.Imp
Π (A). Then there exists a

(t′ ≈ O(t), q′ = 5 ·qs ·qOp +qG +qexec(2+qres))-prf-adversary A′ on G such that:

AdvS.S.Imp
Π (AG0

) ≤ nC ·
(
qexec · qres

2|MacS|
+

1

2κ
+ 2 · Advprf

G (A′)
)
.

Each of the two bounds above depend linearly on the number of clients nC;
while this number can be as large as, potentially, six billion, the size of the
secret keys (128 or 256 bits) and of the random value (128 bits) can still make
the bound negligible. The linear factor nC, however, highlights the importance
of using authentication strings longer than 128 bits for authentication.

6 Impact

The AKA protocol was designed for 3G networks, and is currently used to se-
curely provide service to mobile clients on 3G/4G networks (the latter is done
by using AKA together with the LTE protocol). As a standardized, and highly
used protocol, AKA is likely to become one of the main building blocks securing
5G communications. Despite its significance, the security of the AKA protocol is
not well-understood to date. Several previous results indicate privacy flaws and
propose quite radical modifications which are claimed to provide better privacy.
In this paper, we have focused on the actual security guarantees of the unmod-
ified AKA protocol, and we showed that a small modification which is easily
incorporated in the design of AKA can provide much stronger security (i.e. with
respect to corruptions).

Since it is used in 3G and 4G communications, the AKA protocol is subject to
constraints dictated by its usage (in a three-party environment, rather than two
parties, as usually featured in typical AKE scenarios) and by hardware restric-
tions (e.g. the inability of SIM cards to generate randomness). The three-party
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scenario makes usual cryptographic models such as BPR hard to use, since secu-
rity must also be defined with respect to the semi-trusted servers. The somewhat
unorthodox and counter-intuitive design of AKA (from a cryptographic point of
view) makes the analysis of its security difficult in that known results on AKE
cannot be applied in a straightforward way.

Our analysis follows the design of AKA closely, and we analyse security in
a strong model, which allows corruptions of both clients and servers. We show
that the small modification of introducing a server-specific identifier in the cryp-
tographic functions mitigates the consequences of server corruptions as detailed
by Zhang [18]. We also show how to incorporate this modification in TUAK and
MILENAGE. We prove security by relying on a classical assumption (pseudo-
randomness) of a unitary function G, and we show that both the TUAK and
MILENAGE algorithm-suites can be proved to behave as such a function. This
gives, for any suite of algorithms with appropriate input/output domains, a suf-
ficient condition to ensure the security of AKA.

A limitation of our analysis is that we consider only the security of AKA,
rather than its privacy. This is partly because existing results already show that
AKA does not guarantee a very strong degree of privacy. Moreover, as we show
in this paper, the security of this protocol (with respect to key-establishment,
authentication, and trust with respect to servers) is a vast topic, which has not
been previous studied. An interesting direction for future research would be a
thorough privacy analysis of AKA and modifying this protocol such that it is
still implementable in current conditions, while providing better privacy.
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randomness extractor and applications to TLS. In Proceedings of the 2008 ACM
Symposium on Information, Computer and Communications Security, ASIACCS,
pages 21–32, 2008.

23. Ran Canetti and Hugo Krawczyk. Universally Composable Notions of Key Ex-
change and Secure Channels. In L. R. Knudsen, editor, Advances in Cryptology -
EUROCRYPT 2002, International Conference on the Theory and Applications of
Cryptographic Techniques, volume 2332 of LNCS, pages 337–351, 2002.

24. Ulrich Dürholz and Marc Fischlin and Michael Kasper and Cristina Onete. A
Formal Approach to Distance Bounding RFID Protocols. In Proceedings of the
14th Information Security Conference ISC 2011, volume 7001 of LNCS, pages 47–
62. Springer, 2011.

25. Victor Shoup. On Formal Models for Secure Key Exchange. IACR Cryptology
ePrint Archive, 1999:12, 1999.

A Security notions

A.1 Security notions

The security notions can be proved under known or chosen message attacks,
denoted respectively kma and cma. In this paper, we define all the security
notions under the chosen messages attacks.

Pseudo-random function. A pseudo-random function (prf) is a family of func-
tions with the property that the input-output behavior of a random instance of
the family is computationally indistinguishable from that of a random function.
This property is defined in terms of the following security game Gprf :

1. The challenger Cprf
f chooses a bit b ∈ {0, 1}. If b = 0, it assigns f to a random

function Rand : {0, 1}d → {0, 1}n. Else if b = 1, it chooses a key K ∈ {0, 1}κ
and assigns f to the function f(K, .).

2. The adversary A sends one by one q messages xi ∈ {0, 1}d to the challenger
and receives f(xi).

3. Finally, A outputs a guess d of the bit b to the Cprf
f .

We can evaluate the prf-advantage of an adversary against f, denoted Advprf
f (A)

as follows, for a random function denoted Rand : {0, 1}d → {0, 1}n:

Advprf
f (A) =

∣∣Pr[A → 1|f $← F (K, .),K
$← {0, 1}κ]

−Pr[A → 1|f $← Rand]
∣∣,

Definition 13. ([Pseudo-Random Function.]) A family f of functions from
{0, 1}κ × {0, 1}d to {0, 1}n is said to be (t, q)-prf-secure if any adversary A
running in time t and making at most q queries to its challenger Cprf

f , cannot
distinguish f from a random function Rand with a non-negligible advantage.
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B The AP-AKA variant [18]

Protocol description. In 2003, Zhang proposed a variant of AKA he called AP-
AKA, which we depict in Figure 5 (although we use a syntax closer to our own
variant, to facilitate a comparison). Instead of the suite of seven cryptographic
algorithms specified for the AKA protocol, Zhang only uses three independent
functions F,G,H, which are all keyed with a key K. The authors do not specify
what this key is in the AKA scenario, but considering the design of this protocol,
it must be a function of the two keys skC and skOp. We assume K = skC||skOp in
this case. For the security of the protocol, G must be a pseudorandom function
(PRF), while F and H must be unforgeable MACs.

Client Server Operator
(K) (K)

User identity request

←−−−−−−−−−−−−
User identity answer

−−−−−−−−−−−−→
Rfresh

←−−−−−−−−−−−−
RC,Mac2=FK(Rfresh||RC||IdS)

−−−−−−−−−−−−→
Auth response

UID,Rfresh,RC,Mac2
−−−−−−−−−−−−→

1©
Auth. vectors

{AV{i}}ni=1

←−−−−−−−−−−−−
2©

Auth challenge

R{i}‖Autn{i}

←−−−−−−−−−−−−

3©
Auth response

Res
−−−−−−−−−−−−→

4©
Instructions:

Client Server Operator

3©: Recover R{i}, and Autn{i}.

If R
{i}
C was used before by S: abort.

Else: Find 1 ≤ i ≤ n s.t. R
{i}
C = HK(i‖RC)

If no such i exists: abort;
Else: check MacS for i,R{i}, R

{i}
C (or abort)

Compute Res = FK(R{i})
Compute: (CK‖IK) = GK(R{i}).

——————————
2©: Store {AV{i}}ni=1.

Choose next AV{i}, send
related challenge

——————————
4©: Res

?
= MacC.

1©: Check Mac2 w.r.t. Rfresh, RC.
If failure, send reject notice to S and abort;
Else: for i = 1, . . . , n, compute:
MacC = FK(R{i})
(CK‖IK) = GK(R{i})

R
{i}
C = HK(i‖RC)

MacS = FK(R{i}‖i‖R{i}C )

Autn{i} ← i‖R{i}C ‖MacS.
AV{i} := (R{i},CK, IK,Autn{i},MacC).
End For.

Fig. 5. The AP-AKA Variant.

We first describe this protocol. The procedure begins by the same identifi-
cation phase as the regular AKA procedure shown in Section 2.2. Namely, the
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server sends an identification request, to which the client responds with either the
permanent identifier IMSI or with a tuple consisting of the temporary identifier
TMSI and the local area identifier LAI of the server that issued the TMSI.

The first modification made with respect to the classical AKA is extending
the authentication vector request phase, which takes place between two parties
in the original scheme, to three parties. The server/client communication takes
place across an insecure channel, wheras the channel between the server and the
operator is secure. Zhang [18] adds a message-exchange to the protocol every
time the server needs fresh authentication vectors. This exchange is a typical
challenge-response authentication: the server sends a fresh nonce Rfresh, and the
client generates a fresh RC, computing a MAC (namely the function F ) keyed
with the key K, on input the concatenation of Rfresh, RC, and a unique server
identifier IdS. The authentication vectors are similar to those in the original AKA,
but they implicitly rely on the client’s random value RC and on fresh randomness
R{i} generated by the operator for i = 1, . . . , n (here n is the batch size). An

initial step is to generate numbers R
{i}
C for i = 1, . . . , n; these are generated by

using the MAC function H on input i and RC. The server authentication string
MacS is computed as the function F on input the operator’s randomness R{i},

the current index i, and a nonce R
{i}
C generated from RC. The values i, R

{i}
C ,

and MacS are grouped as Autn{i} for each i. Each authentication vector AV{i}

consists of: the randomness R{i}, the authentication string Autn{i}, the session
keys (CK, IK) which are derived as a result of the PRF G, keyed with K, on
input the randomness R{i}, and the expected client-authentication string MacC.
Finally, a batch of n authentication vectors are sent to the server.

The remainder of the protocol proceeds analogously to the original AKA pro-
cedure, with the modifications imposed by the way the authentication vectors
are generated. In particular, upon receiving the randomness R{i} and the authen-

tication string Autn{i}, the client verifies, in order: (1) that it has never received

the same string R
{i}
C ; (2) that this value is consistent with the randomness RC;

(3) that the authentication MacS is correct with respect to this randomness. If
any of these verifications fail, the client aborts. Else, it computes the session
keys and its own authentication string Res, sending the latter to the server.

Stateful vs. Stateless. Zhang presented his variant as eliminating “dynamic
states”. We note that, while his work ensured that no sequence number is nec-
essary, the protocol is not entirely stateless. In particular, the client must keep

track of a list, which is dynamically updated, of already seen randomness R
{i}
C

for a given nonce RC. Although this makes the protocol stateful, it does eliminate
the need to resynchronize the state of the two parties.

Security Problems. A first problem is the fact that the three functions F ,

G, and H use the same key. In particular, the values MacS, MacC, and R
{i}
C ,

which are computed using the key K, are sent across an insecure channel. Since
F and H are MACs, the confidentiality of the key K is not fully guaranteed;
thus the guarantee of pseudorandomness of G is not sufficient to guarantee the
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indistinguishability from random of the keys CK, IK. This weakness is remedied
if all three functions are assumed to have pseudorandom output.

A more serious problem is a network-corruption attack, which is harder to
prevent, and which originates in these two facts: (1) the new procedure to request
authentication vectors originates from the server, not from the client (indeed,
the client is not aware of whether the server still has pertinent authentication
tokens or not); (2) the network-specific identifier IdS is only used in the Mac2
value. In particular, the attack proceeds as follows:

1. The client C arrives in a vulnerable area (for which the server S∗ will be cor-
rupted). This server is authorized to request authentication tokens from the
operator and does so. Then, S∗ may use several such tokens with the client
(but not all). We assume that there will be at least a single authentication
vector AV which was not used. The adversary A then corrupts the server S∗,
thereby also retrieving the vector AV.

2. The client leaves the vulnerable area to enter a non-vulnerable one (with
an honest server S). The adversary A acts as a Man-in-the-Middle (MiM)
between C and S. It blocks the message Rfresh and any other message sent
by S, sending instead R,Autn from the authentication vector AV.

3. The verifications on the client side pass as long as the client still retains its
past value RC. This is not specified exactly in the original paper [18], but
considering that it is the server that initiates this exchange, it is likely that
the client will not automatically replace RC unless prompted by the server.

A possible countermeasure to this vulnerability is to ensure that once the
client is aware of having moved from the area associated with S∗, it discards the
old RC and aborts unless it is asked to generate a new one.

Practical Aspects. The protocol presented by Zhang [18] is not fully speci-
fied, but it does not follow closely the practical constraints of mobile networks.
The protocol forces a lot of complexity on the client, which has to verify the

uniqueness of the nonce R
{i}
C , to search exhaustively for the correct index which

gives an (honestly generated) R
{i}
C , and to generate the randomness RC. Since

R
{i}
C is generated given the secret key K, it must be computed securely: it is not

possible to delegate this computation to the phone (which is a more powerful,
but untrusted tool). We reiterate that the rationale of the initial AKA design
was that the client’s SIM card could not generate its own randomness.

Another concern is the lack of specificity with respect to the client and op-
erator keys, which are replaced by the generic key K. The fact that this key is
used in MAC functions exposes the keys to attackers, as explained in the first
attack above. In our results, we prove that for both TUAK and MILENAGE the
seven cryptographic algorithms are PRFs with respect to both the client and
the operator keys; this is a much stronger result. The same lack of specificity
affects the keys CK, IK, which are generically denoted as a secret key SK in the
paper of Zhang. We note that the latter is a more sounder cryptographic design,
since in the AKA protocol, the two keys are output by different PRFs, but on
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the same input. In particular, a stronger property is required than merely the
pseudorandomness of the two concerned algorithms: the two values must be in-
dependent even for adversarially-controlled input. We show that this is the case
for MILENAGE and TUAK, nonetheless.

C Full protocol description

In the AKA protocol [3,4], mutual client-backend authentication is provided us-
ing Message Authentication Codes (MAC) computed by three of the TUAK al-
gorithms, while the secret keys are derived from a random value and a shared
secret key with a key derivation function (KDF), by means of the rest of the
TUAK functions.

The basic framework is a challenge-response stateful protocol between two
main actors: the HLR (Home Location Register) and the ME/USIM (Mobile
Equipment/User Subscriber Identity Module). This protocol needs an interme-
diate entity, the VLR (Visited Location Register), as specified in Section ??. Both
the ME/USIM and the HLR keep track of counters, denoted respectively SqnC

and SqnHLR; these sequence numbers are meant to provide entropy and enable
network authentication (from HLR to ME/USIM). Technically, one can view the
user’s sequence number as an increasing counter, while the latter keeps track of
the highest authenticated counter the user has accepted.

The AKA protocol uses a set of seven functions: F1, F2, F3, F4, F5, F∗1 ,
F∗5 . The first two are used to authenticate a MAC answer, proving that both
participants know the same subscriber key skC and the same operator key skOp.
Algorithm F1 is called the network authentication function. As its name implies,
it allows the subscriber to authenticate the network. Furthermore, this function
provides the data integrity used to derive keys (in particular authenticating the
random, session-specific value R). Algorithm F2 is called the subscriber authen-
tication function, and it allows the network to authenticate the subscriber C by
proving that the entity owns the subscriber key skC and the operator key skOp.

The following three algorithms, F3, . . . ,F5, are used as key derivation func-
tions, outputting respectively a cipher key (CK), an integrity key (IK), and an
anonymity key (AK), all derived on input the subscriber key skC, the operator
key skOp, and the session-specific random value R. Notice that the master key
skC is only known by HLR and ME/USIM, but not by the intermediate entity
VLR.

The last key, AK, is used to mask the sequence number Sqn, but it is not part
of the session keys. Its function is to blind the value of Sqn since the latter may
leak some information about the subscriber. In order to ensure that no long-
term desynchronization occurs, the AKA protocol provides a re-synchronization
procedure between the two participants, in which the user forces a new sequence
number on the backend server, using the F∗1 and F∗5 to authenticate this value
much in the same way that the terminal has authenticated its own sequence
number and random value. Figure 6 details the challenge-response of AKA pro-
cedure.
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The operator key. Subscribers to the same operator all share the operator’s
own secret key, in practice a 256-bit integer. This value is not directly stored on
the phone, but rather an intermediate value, obtained by running the internal
Keccak permutation on input skOp and several constants, is embedded in the
SIM card. Thus, whereas this value enters in all future runs of the cryptographic
algorithms, it is never stored in clear on the user’s mobile.

ME/USIM VLR HLR
(skC, skOp, stC = SqnC) (skC, skOp, stS,C = SqnHLR)

UID Request

←−−−−−−−−−−−−−
UID

−−−−−−−−−−−−−−→
IMSI

−−−−−−−−−→
Generate (R{1}, ...,R{n}).
Denote: keys := skC‖skOp.
For each i = 1, . . . , n, compute:

MacS ← F1(keys,R{i}, Sqn{i},AMF),
MacC ← F2(keys,R{i}),
CK← F3(keys,R{i}),
IK← F4(keys,R{i}),
AK← F5(keys,R{i}),
Autn{i} ← (Sqn{i} ⊕ AK)‖AMF‖MacS,

Sqn{i} ←
{

SqnHLR if i = 1

Sqn{i−1} + + else

Set AV{i} := (R{i},CK, IK,Autn{i},MacC).
End for.

{AV{i}}ni=1

←−−−−−−−−−−
Store {AV{i}}ni=1

Choose AV{i}.

R{i}‖Autn{i}

←−−−−−−−−−−−−−
Compute AK using R{i}.
Recover Sqn{i} (from AK).
Check MacS value.
Check validity of Sqn{i}.

If Sqn{i} in range:
Compute: IK,CK;
Set Res := F2(skOp, skC,R

{i}).
Update stC := Sqn{i}.

Else re-synchronization
Res

−−−−−−−−−−−−−→
Res

?
= MacC

Generate authen-
tication response

ARsp
ARsp

−−−−−−−−−−−−−→
Update: SqnHLR ← Sqn{n}.

Fig. 6. The AKA Procedure.

IMSI, TMSI, UID. Globally, the procedure starts when the user equipment
switches on. To identify the ME/USIM to the VLR, the mobile equipment receives
a user equipment request and responds to the VLR, in clear text, with a UID. This
value can be either an IMSI (International Mobile Subscriber Identify) or a TMSI
(Temporary Mobile Subscriber Identity) which is a value exchanged between
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the VLR and the subscriber during a previous session where both entities are
mutually authenticated.

These TMSI are exchanged in order to guarantee the uniqueness of the user
equipment request during following sessions. In practice, the IMSI is used either
for the first session or when the serving network cannot retrieve the IMSI from
the temporary identity. Then, the VLR forwards the IMSI of the subscriber to
the HLR.

Challenge-Response. After receiving the IMSI, the HLR generates a fresh se-
quence number Sqn and an unpredictable variable R. By using the subscriber’s
key skC and the corresponding operator key skOp, it then generates a list of n
unique authentication vectors AV composed of five strings: R, MacC, CK, IK,
Autn. For every authentication vector, the sequence number is updated. The up-
date procedure depends on the chosen method. The specifications feature a first
method which does not take into account the notion of time, and which basi-
cally increments by 1 the most significant 32-first value of the sequence number.
A second and third subsequent methods feature a time-based sequence number
update based on a clock giving universal time [4]. The authentication vector is
generated as follows:

MacS ← F1(skC, skOp,R,Sqn,AMF),

MacC ← F2(skC, skOp,R),

CK← F3(skC, skOp,R),

IK← F4(skC, skOp,R),

AK← F5(skC, skOp,R),

Autn← (Sqn ⊕ AK)‖AMF‖MacS,

where MacS is the message authentication code of the network by the subscriber,
MacC is the message authentication code of the subscriber by the network and
AMF the authentication and key management field (which is a known, public
constant).

The HLR sends the list of the authentication vectors AV to the VLR. This
list may also contain only a single authentication vector. Upon the reception
and storage of these vectors, when the VLR initiates an authentication and key
agreement, it selects the next authentication vector from the ordered array and
stores MacC and the session keys CK and IK. Then, it forwards (R, Autn) to
ME/USIM.

The ME/USIM verifies the freshness of the received authentication token.
To this end, it recovers the sequence number by computing the anonymity key
AK which in its own turn depends on three values: skC , skOp, and the received
R. Then, the user verifies the received MacS computing F1(skC , skOp, R, Sqn
, AMF) with the received value R and the Sqn. If they are different, the user
sends authentication failure message back to the VLR and the user abandons
the procedure. In case the execution is not aborted, the ME/USIM verifies if the
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received Sqn value is in a correct range relatively to a stored value SqnC
7. If the

Sqn is out of range, the user sends a synchronization failure message back to the
VLR, which triggers a re-synchronization procedure, depicted further in Figure 7.

The MacS value does not only ensure integrity, but also the authentication
of the network by ME/USIM. If the two previous verifications are successful i.e
if the received authentication token is fresh, the network is authenticated by the
ME/USIM. Then, the ME/USIM computes CK, IK and Res← F2(skC, skOp,R). To
improve efficiency, Res, CK, and IK could also be computed earlier, at the same
time that AK is computed. Finally, the user sends Res to VLR. If Res = MacC, the
VLR successfully authenticates the ME/USIM. Otherwise, the VLR will initiate an
authentication failure report procedure with the HLR. Note that the verification
of the sequence number by the ME/USIM will cause the rejection of any attempt
to re-use an authentication token more than once.

Re-synchronizing. The re-synchronization procedure is used when the sub-
scriber detects that the received sequence number is not in the correct range, but
that it has been correctly authenticated. The single goal of this procedure is the
re-initialization of the sequence number, and does not imply immediately any
mutual authentication or key agreement (rather it triggers a new authentication
attempt).

Indeed, the ME/USIM sends an synchronization failure message, consisting of
a parameter Auts, with

Auts = (SqnC ⊕ AK∗)‖Mac∗

where the key is computed as Mac∗ = F∗1 (skOp, skC,R,SqnC,AMF) and AK∗ =
F∗5 (skOp, skC,R) .

The F∗1 algorithm is a MAC function with the additional property that no
valuable information can be inferred from Mac∗ (in particular this function acts
as a PRF). Though similar to F1, the F∗1 algorithm is designed so that the
value Auts cannot be replayed relying on the output of F1. Furthermore, the
anonymity key generated by the client in the resynchronization is obtained via
the F∗5 algorithm rather than by F5, even if the same random value R is used.

Upon receiving a re-synchronization failure message, the VLR does not im-
mediately send a new user authentication request to the ME/USIM, but rather
notifies the HLR of the re-synchronization failure, sending the parameter Auts
and the session-specific R. When the HLR receives this answer, it creates a new
batch of authentication vectors. Depending on whether the retrieved, authen-
ticated Sqn indicates that the HLR’s sequence number is out of range or not,
the backend server either starts from the last authenticated sequence number,
or updates the latter to the user’s sequence number.

More precisely, the HLR retrieves the SqnC by computing F∗5 (skC, skOp,R)⊕
bAutsc48. Then, it verifies if the incremented SqnHLR is in the correct range
relatively to SqnC. If the SqnHLR verifies this property, it sends a new list of
authentication data vectors initiated with SqnHLR else HLR verifies the value of

7 The sequence number Sqn is considered to be in the correct range relatively to SqnC

if and only if Sqn ∈ (SqnC, SqnC +∆), where ∆ is defined by the operator.
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Mac∗İf this step is successful, it resets the value of SqnHLR to SqnHLR := SqnC

and sends a new list of authentication data vectors initiated with this updated
SqnHLR. This list may also contain only a single authentication vector. Figure 7
details this re-synchronization procedure.

ME/USIM VLR HLR

R‖Autn

←−−−−−−−
– Compute the value AK with the value R.
– Recover Sqn with AK.
– Check if the received MacS is correct.
– Check if Sqn is in the correct range related to the

stored SqnC.
– Re-synchronization Procedure:
• Compute AK∗ ← F∗5 (skOp, skC,R) and

Mac∗ ← F∗1 (skOp, skC,R, SqnC,AMF).
• Forge Auts = (SqnC ⊕ AK∗)‖Mac∗).

Auts

−−−−−−−→
Add the R value.

R‖Auts

−−−−−−−−−−→
– Compute the value AK∗ with the

value R.
– Recover SqnC with AK∗.
– Check if the incremented SqnHLR

is in the correct range related to
SqnC.

– If it is not the case and if only
the received Mac∗ is correct, then
SqnHLR ← SqnC. Otherwise, it
aborts the procedure.

– It sends a new list of authenti-
cation data vectors initiated with
SqnHLR.

R{i}‖Autn{i}

←−−−−−−−−−−

Fig. 7. The re-synchronization procedure of AKA protocol.

C.1 The TUAK algorithms

TUAK [2] is a set of algorithms based on a truncation of the internal permutation
function of Keccak; however, for efficiency reasons, only one or two iterations of
the internal TUAK permutation are used. The goal of the TUAK functions is to
provide secure authentication and key-exchange in the AKA protocol. In partic-
ular the TUAK functions F1 (respectively F∗1 ) and F2 must provide authentica-
tion, while F3, F4, and F5 (respectively F∗5 ) are used to derive the session keys
used to attain confidentiality, integrity, and anonymity.

The seven functions are parametrized by:

– Inputs: skOp a 256-bit long term operator key, a 128-bit random value R, a
48-bit sequence number Sqn, and a 16-bit authentication field management
string AMF chosen by the operator (the last two values are only used for the
MAC generation). Note that all subscribers to the same operator will share
that operator’s key skOp.

– A subscriber key skC shared out of band between the HLR and ME/USIM
allows to initialize the value Key:
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• If |skC| = 128 bits, then Key← skC[127..0]‖0128.
• If |skC| = 256 bits, then Key← skC[255..0].

– Several public constants:
• AN: a fixed 56-bit value 0x5455414B312E30.
• Inst and Inst’ are fixed binary variables of 8 bits, specified in [2], which

depend on the functions and the output sizes.

The generation of MAC’s or derived key starts similarly by initializing a value
TopC . To do so, one applies a first fKeccak permutation on a 1600-bit state Val1
as follows:

Val1 = skOp‖Inst‖AN‖0192‖Key‖Pad‖1‖0512,

where Pad is a bitstring output by a padding function. The value TopC corre-
sponds to the first 256 bits of this output.

At this point, the behavior of the functions F1 and F∗1 diverges from that of
the other functions. To generate the MAC value of F1 and F∗1 , we take as input
Sqn, AMF and R, three values chosen by the operator, and some constants. After
the generation of TopC , we initialize a second state, namely,

Val2 = TopC‖Inst′‖AN‖R‖AMF‖Sqn‖Key‖Pad‖1‖0512.

Then, one applies the TUAK permutation on Val2, using only the first 64
bits to compute MacS. To generate the session keys and run F2, one initializes
a second state for this function, namely,

Val2 = TopC‖Inst′‖AN‖R‖063‖Key‖Pad‖1‖0512.

Then, the TUAK permutation is applied on Val2 yielding Out, which in turn
is used to compute the response MacC and the session keys:

MacC = bOutc|`|−1..0, ` ∈ {16, 32, 64, 128},
CK = bOutc256..384 and |CK| = 128,

IK = bOutc512..640 and |IK| = 128,

AK = bOutc768..816 and |AK| = 48.

This is also depicted in Figure 8.
The way the output of the functions is truncated and used is the reason why

TUAK is called a multi-output function. This is one of TUAK’s chief differences
from MILENAGE and has a no-negligible impact on its efficiency, as it saves a
few calls of the internal function. However, this multi-output property can be
an issue for the security of the master key, since during one session we can have
as many as four calls to the same function with similar inputs (and a different
truncation). Having different chunks of the same 1600-bit state (called Out in
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Fig. 8. TUAK diagram.

our description) can lead to recovering the long-term key skC by the reversibility
of the TUAK permutation. The concatenation of all the different chunks used per
session totals at most only 432 out of the 1600 output bits. Thus, though having
multiple outputs can be hazardous in general, the Keccak-based construction of
TUAK allows this without compromising the long-term parameters.

C.2 MILENAGE Algorithms

Milenage algorithms: MILENAGE [1] is a set of algorithms which aims to
achieve authentication and key generation properties. As opposed to TUAK
which is based on Keccak’s internal permutation, the MILENAGE algorithms
are based on the Advanced Standard Protocol (AES).

The functions F∗1 and F∗2 must provide authentication while the functions
F∗3 , F∗4 and F∗5 are used to derive key material in order to achieve confidentiality,
integrity and anonymity. The different parameters of these functions are:

– Inputs: skOp a 128-bit long term credential key that is fixed by the operator,
a 128-bit random value R , a 48-bit sequence number Sqn and a 16-bit
authentication field management AMF chosen by the operator (the last two
values are only used for the MAC generation). We denote that the subscriber
key skOp is a private key shared by all the subscriber of the same operator.
Consequently, we do not consider skOp as a private key.

– A 128-bit subscriber key skC shared out of band between the HLR and
ME/USIM.

– Five 128-bit constants c1,c2,c3,c4,c5 which are Xored onto intermediate vari-
ables and are defined as follows:
• c1[i] = 0,∀i ∈ {0, 127}.
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• c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
• c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
• c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
• c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.

– Five integers r1,r2,r3,r4,r5 in the range {0, 127} which define amounts by
which intermediate variables are cyclically rotated and are defined as follows:
r1 = 64; r2 = 0; r3 = 32; r4 = 64; r5 = 96.

The generation of MAC’s or derived key starts similarly by initializing a
value TopC . To do so, one applies a first called of the well-known function AES
on inputs the operator and subscriber keys such as:

TopC = skOp ⊕ AESskC
(skOp)

. We recall that, AESK(M) denotes the result of applying the Advanced Encryp-
tion Standard encryption algorithm to the 128-bit value M under the 128-bit key
K. Then, we compute the following values taking as input Sqn, R, AMF and oth-
ers constants:

– Temp = AESskC
(R ⊕ TopC),

– Out1 = AESskC
(Temp⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF)⊕ c1)⊕ TopC ,

– Out2 = AESskC
(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC ,

– Out3 = AESskC
(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

– Out4 = AESskC
(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,

– Out5 = AESskC
(Rotr5(Temp⊕ TopC , r5)⊕ c5)⊕ TopC .

All the outputs of the MILENAGE algorithms are computed as follows:

– Output F1: MacC = bOut1c0..63,
– Output F∗1 : Mac∗ = bOut1c64..127,
– Output F2: MacS = bOut2c64..127,
– Output F3: CK = Out3,
– Output F4: IK = Out4,
– Output F5: AK = bOut2c0..47,
– Output F∗5 : AK∗ = bOut5c0..47,

This is also described in figure 9

D Full Proofs

Theorem 8. [W.K.Ind-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the AKA proto-
col specified in section 4. Consider a (t, qexec, qres, qG)-adversary A against the
W.K.Ind-security of the protocol Π, running in time t and creating at most qexec

party instances with at most qres resynchronizations per instance, and mak-
ing qG queries to the function G. Denote the advantage of this adversary as
AdvW.K.Ind

Π (A). Then there exists a (t′ ≈ O(t), q′ = qG + qexec(2 + qres))-prf-
adversary A′ on G such that:

AdvW.K.Ind
Π (A) ≤ nC ·

(
q2exec

2|R|
+ Advprf

G (A′)
)
.
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Fig. 9. MILENAGE diagram.

Proof. Our proof has the following hops.

Game G0: This game works as the W.K.Ind-game stipulated in our security
model 3. The goal of the adversary AG0

is to distinguish, for a fresh instance
that ends in an accepting state, the fresh session keys from random ones.

Game G1: We modify G0 to only consider the new query Corrupt(P, type)
but keeping the same goal. We note that this new query permits to consider the
corruption of the key operator independently to the corruption of the subscriber
keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S
(else, if the oracle takes as input P = S, then it behaves as usual calling the
oracle OpAccess). The output of the oracle depends on the value type ∈
{sub, op, all}. If type = sub, then the returned value is skP. If type = op,
then the oracle returns skOp. Then, for type = all, we return the both values
skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present, or
future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning
w.p. εA, the same adversary wins the game G0 w.p. at least εA (this is trivial
since in game G1, A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client
(any future CreateCl calls for a client would be answered with an error symbol ⊥).
The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client and chooses a bit b ∈ {0, 1}. We process
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as follows: for any adversary AG1
winning the game G1 with a no-negligible

success probability εAG1
. we propose to construct an adversary AG2

winning the
game G2 with a black-box access to the adversary AG1 .

Adversary AG2
begins by choosing a single client C. For every user registra-

tion request that AG1
sends to its challenger, AG2

responds as follows: if the
registered client is C, then it forwards the exact CreateCl query that AG1 makes
to its own CreateCl oracle. Else, if AG1 registers any client C∗ 6= C, AG2 sim-
ulates the registration, generating skC∗ and SqnC∗ , returning the latter value.
Adversary AG2

also generates nOp − 1 operator keys, and associates them with
the clients as follows: the target client C is associated with the same operator
given as input by AG1

to the CreateCl query (thus with the operator key skOp

generated by the challenger of game G2). Let this target operator be denoted as
Op. Adversary AG2 queries Corrupt(C, op) and stores skOp.

We distinguish between two types of other clients. For all other clients C∗

which are registered by AG1 with an operator Op∗ 6= Op, adversary AG2 asso-
ciates Op∗ with one of its generated keys rskOp∗ . Recall that, since adversary AG1

plays the game in the presence of nOp operators, there are nOp − 1 keys which
will be used this way. We call all clients C∗ 6= C registered by AG0

with the
target operator Op the brothers of the target client C. Adversary AG2

associates
each brother of C with the corrupted key skOp it learns from its challenger.

In the rest of the simulation, whenever AG1
makes a query to an instance

of some party C∗, not a brother of C, the adversary AG2
simulates the response

using the values skC∗ , rskOp∗ , and the current value of Sqn. For the brothers of
C, the simulation is done with skC∗ , skOp, and the current Sqn. For the target
client C, any queries are forwarded by AG2 to its challenger.

Any corruption or reveal queries are dealt with in a similar way. Note that
AG2

cannot query Corrupt to its adversary (this is a condition of freshness). The
simulation is thus perfect up to the Test query.

In the Test query, AG1
chooses a fresh session and sends it to AG2

(acting as
a challenger). Note that AG2

will be able to test whether this instance is fresh,
as freshness is defined in terms of AG1 ’s queries. If AG1 queries Test with a client
other than the target client C, then AG2 aborts the simulation, tests a random,
fresh instance of the client C (creating one if necessary), and guesses the bit
d, winning with probability at least 1

2 . Else, if AG1 queried a fresh instance of
C, AG2

forwards this choice to its challenger and receives the challenger’s input.
The adversary AG2

forwards the input of the challenger to AG1
and then receives

A’s output d, which will be AG2
’s own response to its own challenger.

Denote by E1 the event that adversary tests C in game G1, while Ē1 denotes
the event that AG1

chooses to test C∗ 6= C.
It holds that:

Pr[AG2
wins] = Pr[AG2

wins | E1] · Pr[E1] + Pr[AG2
wins | Ē1] · Pr[Ē1]

≥ 1

nC
Pr[AG1

wins] +
1

2
·
(
1− 1

nC

)
≥ 1

nC
Pr[AG0

wins] +
1

2
·
(
1− 1

nC

)
.
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Note that adversary AG2
makes one extra query with respect to AG1

, since
we need to learn the key of the target operator.

Game G3: We modify G2 to ensure that the random values sampled by
honest server instances are always unique.

This gives us a security loss (related to the respective collisions between the
R in two different instances) of

∣∣Pr[AG2
wins]− Pr[AG3

wins]
∣∣ ≤ q2exec

2|R|
.

Game G4: We modify G3 to replace outputs of the internal cryptographic
functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). We argue that the security
loss is precisely the advantage of the adversary A against the pseudorandomness
of function G. Note that the total number of queries to the related functions are
at most 2 G per honest instance(thus totaling at most qG +qexec(2+qres) queries
to the function G).

∣∣Pr[AG3
wins]− Pr[AG4

wins]
∣∣ ≤ Advprf

G (A).

Winning G4: At this point, the adversary plays a game in the presence of
a single client C. The goal of this adversary is to distinguish a random session
key to a fresh session key. But, in game G4, queries to G return truly random,
consistent values. In this case, the adversary can do no better than guessing.
Thus, we have:

Pr[AG4
wins] =

1

2
.

Security statement: This yields the following result:

1

nC
· Pr[AG0

wins] +
1

2
· (1− 1

nC
) ≤ q2exec

2|R|
+ Advprf

G (A)

⇔ 1

nC
· AdvW.K.Ind

Π (AG0
) ≤ q2exec

2|R|
+ Advprf

G (A)

⇔ AdvW.K.Ind
Π (AG0

) ≤ nC · (
q2exec

2|R|
+ Advprf

G (A′)).

This concludes the proof.

Theorem 9. [S.C.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the AKA protocol
specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG)-adversary A against
the S.C.Imp-security of the protocol Π, running in time t and creating at most
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qexec party instances with at most qres resynchronizations per instance, corrupting
at most qs servers and making at most qOp OpAccess queries per operator per
corrupted server and making qG queries to the function G. Denote the advantage

of this adversary as AdvS.C.Imp
Π (A). Then there exists a (t′ ≈ O(t), q′ = 5 · qOp ·

qs + qG + qexec(qres + 2))-prf-adversary A′ on G such that:

AdvS.C.Imp
Π (AG0

) ≤ nC ·
(

2 · Advprf
G (A′) +

(qexec + qs · qOp)2

2|R|
+
qexec · qres

2|Res| +
1

2κ

)
.

Proof. Game G0: This game works as the S.C.Imp-game: When the adversary
A stops, it is said to win if there exists an instance Si that ends in an accepting
state with session and partner ID sid and pid such that: (a) pid is not adversarially
controlled (its long-term key skpid has not been corrupted), (b) no other instance
Ci exists for pid = Si that ends in an accepting state, such that the both entities
have the same session ID sid.

Game G1: This game works as the previous game G0 but including the
new query Corrupt(P, type), i.e with the presence of operator keys corruption (as
detailed in the previous proof). The reduction from the game G0 to the game
G1 is the as 6. As before, it holds that:

Pr[AG0wins] ≤ Pr[AG1wins].

Game G2: We modify G1 to only interact with a single client (any future
CreateCl calls for a client would be answered with an error symbol ⊥). The
challenger only generates a single operator key, which is associated with the
operator chosen for the registered client. As indicated before, the security loss is
given by:

Pr[AG1wins] ≤ nC · Pr[AG2wins].

Game G3: We modify G2 to ensure that the random values sampled by any
authentication challenge are always unique.

This gives us a security loss (related to the collisions between the R in two
different instances) of

∣∣Pr[AG2wins]− Pr[AG3wins]
∣∣ ≤ (qexec + qs · qOp)2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to only
interact with only one server. The benefices lost is the ability to obtain some
authentication challenges from corrupted servers. We recall that the challenge
is split in five parts: a random value, a masked version of the fresh sequence
number (an one-time-pad based on an anonymity key generated by the function
G), two mac computed with the function G and both session keys. Moreover,
we note that all the call of the function G take in input a specific value of the
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related server, denoted IdS. Corrupted servers permit to obtain challenges based
on the fresh sequence number but different random and server identifier values.
So the related security loss is given by the collision on two outputs of the same
function G with two different inputs (the only differences between both inputs
are at least the value of the network identifier) and by the indistinguishability of
the function G which are guaranteed by the pseudorandomness of G. We recall
that the Test Phase of the game can be only focus on a fresh server which is or
was never corrupted. This give us a security loss∣∣Pr[AG4wins]− Pr[AG3wins]

∣∣ ≤ Advprf
G (A).

Game G5: We modify G4 to replace outputs to calls to all the internal
cryptographic functions by truly random, but consistent values (they are inde-
pendent of the input, but the same input gives the same output). As detailed in
the key-secrecy, we obtain:

∣∣Pr[AG4
wins]− Pr[AG5

wins]
∣∣ ≤ Advprf

G (A).

Winning G5: At this point, the adversary plays a game with a single
client. A server instance Si only accepts AG5

, if this latter can generate a fresh
an authentication response Res for some session sid. Assume that this happens
against accepting instance Si of the server, for some target session sid. Note
that the value Res computed by Ci is purely random, but consistent. Thus,
the adversary has three options for each of these values: (a) forwarding a value
already received from the honest client for the same input values of which skC

is unknown; (b) guessing the key skC; or (c) guessing the value. The first option
yields no result, since it implies there exists a previous client instance with the
same session id sid as the client.

The second option happens with a probability of 2−|skC|. The third option oc-
curs with a probability of 2−|Res| per session (with or without resynchronization)
per client, thus a total of qexec · 2−|Res|. Thus,

Pr[AG5
wins] = 2−|skC| + qexec · qres · (2−|Res|).

Security statement: This yields the following result:

AdvS.C.Imp
Π (AG0

) ≤ nC · (2 · Advprf
G (A′) +

(qexec + qs · qOp)2

2|R|
+
qexec · qres

2|Res| +
1

2|skC|
).

Theorem 10. [W.S.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π our protocol speci-
fied in section 4. Consider a (t, qexec, qres, qG)-adversary A against the W.S.Imp-
security of the protocol Π, running in time t, creating at most qexec party in-
stances, running at most qres re-synchronizations per each instance, and making
at most qG queries to the function G. Denote the advantage of this adversary as

AdvW.S.Imp
Π (A). Then there exists a (t′ ≈ t, q = qexec · (qres +2)+qG)-adversary A’

43



with an advantage Advprf
G (A′) of winning against the pseudorandomness of the

function G, such that:

AdvW.S.Imp
Π (A) ≤ nC ·

(
Advprf

G (A′) +
qexec · qres

2|MacS|
+

1

2κ

)
.

Proof. We prove this statement in three steps, similarly to the previous W.K.Ind
proof. We recall that the adversary cannot corrupt the server.

Game G0: This game works as the S.Imp-game stipulated in section 3.

Game G1: This game works as the previous game G0 but including the
new query Corrupt(P, type). This game is the same as the game G0 in the proof
of the weak key-indistinguishability theorem. As before, it holds that:

Pr[AG0wins] ≤ Pr[AG1wins].

Note that adversary AG1 makes no extra query.
Game G2: We modify G1 to only allow interactions with a single client.

The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client.

As indicated before the security loss is given by:

Pr[AG1wins] ≤ nC · Pr[AG2wins].

Game G3: We modify G2 to replace outputs to calls to the function G by
truly random, but consistent values (they are independent of the input, but the
same input gives the same output). As before, it holds that:∣∣Pr[AG2

wins]− Pr[AG3
wins]

∣∣ ≤ Advprf
G (A′).

Winning G3: At this point, the adversary plays a game against a sin-
gle client C, which only accepts AG3

, if MacS is verified for some session sid.
Assume that this happens against accepting instance Ci of the target client,
for some target session sid. Note that the MAC value MacS computed by Ci
is purely random, but consistent. Thus, the adversary has three options: (a)
forwarding a value already received from the honest server for the same input
values R,Sqn, skOp, skC, of which skC is unknown; (b) guessing the key skC; or
(c) guessing the vector. The former option yields no result, since it implies a
server instance with the same session id sid as the client. The second option
happens with a probability of 2−|skC|. The third option occurs with a probability
of 2−|MacS| per session (which is to say per instance and per re-synchronization),
thus a total of qexec · qres2

−|MacS|.
Thus,
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Pr[AG3
wins] = 2−|skC| + qexec · qres · 2−|MacS|.

Security statement: This yields the following result:

AdvW.S.Imp
Π (AG0) ≤ nC ·

(
2−|skC| + qexec · qres · 2−|MacS| + Advprf

G (A′)
)
.

Theorem 11. [St.Conf-resistance.] Let G and G∗ be our specified functions
specified in section 4 and Π our fixed variant of the AKA protocol specified in
section 4. Consider a (t, qexec, qres, qOp, qG , qG∗)-adversary A against the St.Conf-
security of the protocol Π, running in time t and creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to oracle OpAccess and making qG (resp. qG∗) queries to the function

G (resp. G∗). Denote the advantage of this adversary as AdvSt.Conf
Π (A). Then

there exist a (t′ ≈ O(t), q′ = qG + qexec(5 + qres))-prf-adversary A1 on G and
(t′ ≈ O(t), q′ = qG∗)-prf-adversary A2 on G∗ a such that:

AdvSt.Conf
Π (A) ≤ nC ·

(
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn| + Advprf
G (A1) + Advprf

G∗(A2)

)
.

Proof. Our proof has the following hops.

Game G0: This game works as the St.Conf-game stipulated in our security
model. The goal of the adversary AG0 is to recover at least one secret value, i.e
the subscriber key skC, my operator key skOp or the subscriber sequence number
SqnC for a fresh instance.

Game G1: We modify G0 to only allow interactions with one operator. The
challenger related to the game G1 only generates a single operator key, which
is associated with the operator chosen for the registered client. We proceed as
follows: for any adversary AG0 winning the game G0 with a no-negligible success
probability εAG0 . we propose to construct an adversary AG1 winning the game
G1 with a black-box access to the adversary AG0

.
Adversary AG1

begins by choosing a single operator Op. It generates nOp− 1
operator keys, denoted rskOp∗ . Then, for every user registration request that AG0

sends to its challenger, AG1 responds as follows: if the request CreateCl(.) takes in
input the operator Op, then it forwards the same query to its own oracle. Else, if
AG0

sends a registration request based on any operator Op∗ 6= Op, AG1
simulates

the registration, generating a subscriber key skC∗ and a sequence number SqnC∗ ,
returning the latter value. Moreover, each new client registered with the operator
Op (resp. any Op∗) is associated with the related operator key skOp(resp. rskOp∗).

We distinguish between two types of clients: we denote C∗ the clients which
are registered with an operator Op∗ 6= Op, and C the ones with the operator Op.

In the rest of the simulation, whenever AG0
makes a query to an instance of

some party C∗ (from any operator except Op), the adversary AG1
simulates the

response using the values skC∗ , rskOp∗ , and the current value of SqnC∗ . For the
other clients, the query is forwarded by AG1 to its own challenger.
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Any corruption or reveal queries are dealt with in a similar way. Note that
AG1

cannot query Corrupt to its adversary (this is a condition of freshness). The
simulation is thus perfect up to the Test query.

In the Test query, AG0 chooses a fresh instance and sends it to AG1 (acting as
a challenger). Note that AG1

will be able to test whether this instance is fresh, as
freshness is defined in terms of AG0

’s queries. If AG0
queries an instance C∗i for

the Test query ,then AG1
aborts the simulation, tests a random tuple about any

fresh instance of the client C (creating one if necessary), winning with probability
1

2|skC|
+ 1

2|skOp|
+ 1

2|SqnC|
+ 1

2|SqnOp,C|
. Else, if AG0 sends a tuple of a fresh instance

of Ci, AG1
forwards this choice to its challenger and receives the challenger’s

output which contains the result of this game.
Denote by E1 the event that adversary AG0 tests an instance Ci (from the

chosen operator Op), while Ē1 denotes the event that AG0 chooses to test C∗i .
It holds that:

Pr[AG1
wins] = Pr[AG1

wins | E1] · Pr[E1] +

Pr[AG1
wins | Ē1] · Pr[Ē1]

≥ 1

nOp
Pr[AG0wins] +

(
1− 1

nOp

)
·

(
1

2|skC|
+

1

2|skOp|
+

2

2|Sqn|
).

That implies:
Pr[AG0

wins] ≤ nOp · Pr[AG1
wins].

Game G2: We modify G1 to only allow interactions with a single client (any
future CreateCl(Op) calls for a client would be answered with an error symbol
⊥). We recall that the two adversaries AG1

and AG2
interact with clients from

a single operator key, denoted Op, which is associated with the operator key
skOp. We proceed as follows: for any adversary AG1 winning the game G2 with
a no-negligible success probability εAG1

. we propose to construct an adversary
AG2

winning the game G2 with a black-box access to the adversary AG1
.

Adversary AG2
begins by choosing a single client C. For every user registra-

tion request that AG1
sends to its challenger, AG2

responds as follows: for a new
client C∗ 6= C it generates skC∗ and SqnC∗ , returning the latter value.

In the rest of the simulation, whenever AG1 makes a query to an instance of
some party C∗, the adversary AG2

simulates the response using the oracle of the
function G∗ and the values skC∗ and the current value of SqnC∗ . For the target
client C, any queries are forwarded by AG2

to its challenger. Any corruption
or reveal queries are dealt with in a similar way. Note that AG2 cannot query
Corrupt to its adversary (this is a condition of freshness). The simulation is thus
perfect up to the Test query.

In the Test query, AG1
chooses a fresh instance and sends it to AG2

(acting as
a challenger). Note that AG2

will be able to test whether this instance is fresh,
as freshness is defined in terms of AG1

’s queries. If AG1
queries Test with a client

other than the target client C, then AG2 aborts the simulation, tests a random
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tuple as the previous reduction. Else, if AG1
queried a fresh instance of C, AG2

forwards this choice to its challenger and receives the challenger’s which contains
the result of this game. It holds that:

Pr[AG1
wins] ≤ nC,Op · Pr[AG2

wins].

, with at most nC,Op clients by operator.
Game G3: We modify G2 to replace outputs of the internal cryptographic

functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). We argue that the security
loss is precisely the advantage of the adversary A against the pseudorandomness
of functions G and G∗. Note that the total number of queries to the related
functions are at most qG + qexec(5 + qres) queries to the function G.∣∣Pr[AG3

wins]− Pr[AG2
wins]

∣∣ ≤ Advprf
G (A) + Advprf

G∗(A).

Winning Game G3: At this point, the adversary plays a game with an
uncorruptible single client Ci in a protocol including truly but consistent values.
She wins if she can output a tuple (Ci, sk∗C, sk∗Op,SqnC

∗,SqnOp,C
∗) such as at least

one of these values corresponds to the real related secret value of the instance Ci.
Thus, the adversary has only one choice to win this game: guessing each value.
So the probability that the adversary AG3 wins is as follows:

Pr[AG3
wins] =

1

2|skC|
+

1

2|skOp|
+

2

2|Sqn| .

Theorem 12. [Sound-security.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function in section 4 and Π the protocol specified in
section 4. Consider a (t, qexec, qres, qOp, qG , ε)-server-sound-adversary A against
the soundness of the protocol Π, running in time t, creating at most qexec party
instances with at most qres resynchronizations per instance, making at most qOp

queries to any operator Op and at most qG queries to the function G. Denote
the advantage of this adversary as AdvSound

Π (A). Then there exist a (t′ ≈ t, q′ =

5·qOp +qG+qexec(2+qres))-adversary A′ with an advantage Advprf
G (A′) of winning

against the pseudorandomness of the function G, such that:

AdvSound
Π (A) ≤ nC ·

(
2 · Advprf

G (A′) +
qexec · qres

2|MacS|+|Sqn| +
1

2κ

)
.

Proof. Game G0: This game works as the game Sound-game stipulated in our
security model. The goal of this adversary AG0

is similar as the S.Imp-game but
with a different adversary; indeed in the S.Imp-game is a MiM adversary and in
the Sound-game, we have a legitimate-but-malicious server-adversary.

Game G1: We consider the game G1 as the S.S.Imp-game (as previously
detailed) but including the specific query Corrupt(P, type), i.e with the presence
of operator keys corruption. We have used a such query in some previous security
proofs. We proceed to show that, for any adversary AG0

winning the game G0

with an advantage AdvSound
Π (AG0

), there exists an adversary AG1
with black-box
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access to the adversary AG0
wins game G1. Both adversaries play her related

game with oracles. The following oracles are similar in the two games: Send,
CreateCl, Init, Execute, Reveal, and StReveal. So for each query related to these
oracles from the adversary AG0 , the adversary AG1 forwards these queries to its
own challenger and sends to AG0

the related answers. Now focus on the two last
oracles which can be used by the adversary AG0

: OpAccess and Corrupt.
At first, we recall that the OpAccess in the game G0 takes in input a client

identifier and outputs, for our protocol, an authentication vector composed by
the tuple AV = (R,Autn,MacC,CK, IK). To simulate the answer of the oracle
OpAccess(Ci), the AG1

uses the query Execute(S,Ci) (with the server related to
the legitimate-but-malicious adversary) and Reveal(C, i).

Now, focus on the simulation of the Corrupt answer. We recall that we have
two possible inputs: a client or an operator. In the Corrupt oracle takes in input a
client, the adversaryAG1

uses its own Corrupt oracle to obtain the related answer.
If the input is an operator, AG1 needs to forge the following values: the operator
key skOp, and for each client of this operator the tuple (UID, skUID, stOp,C). To
simulate a such answer, AG1

uses its specific Corrupt(C) and StReveal(C, i, 1) for
each client Cof this operator.

So at this point, the adversaryAG1 can simulate any query from the adversary
AG0

. At the end of the simulation, the adversary AG1
replays the impersonation’s

attempt from the adversary AG0
. Thus, we have:

Pr[AG0
wins] = Pr[AG1

wins].

Winning game G1: This game follows the game G1 described in the reduction
proof of the theorem S.S.Imp. Thus, we have :

AdvS.S.Imp
Π (AG1

) ≤ nC · (2 · Advprf
G (A′) +

qexec · qres

2|MacS|
+

1

2κ
).

Theorem 13. [S.K.Ind-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π the fixed AKA
protocol specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG)-adversary A
against the S.K.Ind-security of the protocol Π, running in time t and creat-
ing at most qexec party instances with at most qres resynchronizations per in-
stance, corrupting at most qs servers and making at most qOp OpAccess queries
per operator per corrupted server and making qG queries to the function G.
Denote the advantage of this adversary as AdvS.K.Ind

Π (A). Then there exists a
(t′ ≈ O(t), q′ = 5 · qs · qOp + qG + qexec(qres + 2))-prf-adversary A′ on G such that:

AdvS.K.Ind
Π (A) ≤ nC ·

(
(qexec + qs · qOp)2

2|R|
+ 2 · Advprf

G (A′)
)
.

Proof. Our proof has the following hops.

Game G0: This game works as the S.K.Ind-game stipulated in our security
model 3.
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Game G1: We modify G0 to only consider the new query Corrupt(P, type)
but keeping the same goal. We note that this new query permits to consider the
corruption of the key operator independently to the corruption of the subscriber
keys. This new query behaves as follows:

Corrupt(P, type): yields to the adversary the long-term keys of party P 6= S
(else, if the oracle takes as input P = S, then it behaves as usual calling the
oracle OpAccess). The output of the oracle depends on the value type ∈
{sub, op, all}. If type = sub, then the returned value is skP. If type = op,
then the oracle returns skOp. Then, for type = all, we return the both values
skP, skOp. If type ∈ {sub, all}, then P (and all its instances, past, present, or
future), are considered to be adversarially controlled.

We argue that given any adversary A playing the game G1 and winning
w.p. εA, the same adversary wins the game G0 w.p. at least εA (this is trivial
since in game G1, A has more information).

Pr[A wins G0] ≤ Pr[A wins G1].

Game G2: We modify G1 to only allow interactions with a single client.
The challenger generates only a single operator key, which is associated with the
operator chosen for the registered client. As indicated before, the security loss is
given by:

Pr[AG2wins] ≥ 1

nC
Pr[AG0wins] +

1

2
·
(
1− 1

nC

)
.

Game G3: We modify G2 to ensure that the random value sampled by
honest server instances is always unique.

This gives us a security loss (related to the respective collisions between the
R in two different instances) of

∣∣Pr[AG2
wins]− Pr[AG3

wins]
∣∣ ≤ (qexec + qs · qOp)2

2|R|
.

Game G4: This game behaves as the game G3 with the restriction to
only interact with only one server. The benefices loss is the ability to obtain
some authentication challenges from uncorrupted servers. Such authentication
challenges can be either to give information about the used sequence number
and the long term keys or to forge a fresh challenge replaying some parts of
these challenges. We recall that the challenge is split in five parts: a random
value, a masked version of the fresh sequence number (an one-time-pad based
on an anonymity key generated by the function G), two mac computed with
the function G and both session keys. Moreover, we note that all the call of the
function G takes in input a specific value of the related server IdS. Thus, the two
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session keys can not directly reuse since the random value Rand is never reuse
(see previous reduction). So, except when we obtain a collision, the session keys
will be always different in each session.

So the related security loss is given by the collision on two outputs of the
same function G with two different inputs (the only differences between the both
inputs are at least the value of the network identifier) and by the indistinguisha-
bility of the function G which are both guaranteed by the pseudorandomness of
G. We recall that the Test Phase of the game can be only focus on a network
which is or was never corrupted. This give us a security loss∣∣Pr[AG4wins]− Pr[AG3wins]

∣∣ ≤ Advprf
G (A).

Game G5: We modify G4 to replace outputs of the internal cryptographic
functions by truly random, but consistent values (they are independent of the
input, but the same input gives the same output). As indicated before, the
security loss is given by:

∣∣Pr[AG4wins]− Pr[AG5wins]
∣∣ ≤ Advprf

G (A).

Winning G5: At this point, the adversary plays a game in the presence of
a single client C. The goal of this adversary is to distinguish a random session
key to a fresh session key. But, in game G5, queries to G return truly random,
consistent values. In this case, the adversary can do no better than guessing.
Thus, we have:

Pr[AG5wins] =
1

2
.

Security statement: This yields the following result:

AdvS.K.Ind
Π (AG0

) ≤ nC ·
(

(qexec + qs · qOp)2

2|R|
+ 2 · Advprf

G (A)

)
.

This concludes the proof.

Theorem 14. [S.S.Imp-resistance.] Let G : {0, 1}κ×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}n be our specified function specified in section 4 and Π our fixed variant
of the AKA protocol specified in section 4. Consider a (t, qexec, qres, qs, qOp, qG , ε)-
adversary A against the S.S.Imp-security of the protocol Π, running in time t
and creating at most qexec party instances with at most qres resynchronizations
per instance, corrupting at most qs servers and making at most qOp OpAccess
queries per operator per corrupted server and making qG queries to the function

G. Denote the advantage of this adversary as AdvS.S.Imp
Π (A). Then there exists a

(t′ ≈ O(t), q′ = 5 ·qs ·qOp +qG +qexec(2+qres))-prf-adversary A′ on G such that:
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such that:

AdvS.S.Imp
Π (AG0) ≤ nC ·

(
qexec + qres

2|MacS|
+

1

2κ
+ 2 · Advprf

G (A′)
)
.

Proof. Game G0: This game works as the S.S.Imp-game detailed in the section
3.

Game G1: This game works as the previous game G0 but including the
new query Corrupt(P, type), i.e with the presence of operator keys corruption.
The reduction from the game G0 to the game G1 is the same as the security
proof of the theorem 6. As before, it holds that:

Pr[AG0
wins] ≤ Pr[AG1

wins].

Note that adversary AG1
makes no extra query.

Game G2: We modify G1 to only interact with a single client (any future
CreateCl calls would be answered with an error symbol ⊥). The challenger only
generates a single operator key, which is associated with the operator chosen for
the registered client. As indicated before, the security loss is given by:

Pr[AG1
wins] ≤ nC · Pr[AG2

wins].

Game G3: This game behaves as the game G2 with the restriction to only
interact with only one server. The benefices loss is the ability to obtain some
authentication challenges from uncorrupted servers. As detailed in the proof
of the strong key-indistinguishability, the related security loss is given by the
pseudorandomness of the function G. We recall that the Test Phase of the game
can be only focus on a network which is or was never corrupted. This give us a
security loss ∣∣Pr[AG2

wins]− Pr[AG3
wins]

∣∣ ≤ Advprf
G (A).

Game G4: We modify G3 to replace outputs to calls to all the internal
cryptographic functions by truly random, but consistent values (they are inde-
pendent of the input, but the same input gives the same output). As detailed in
the key-secrecy, we obtain:

∣∣Pr[AG3
wins]− Pr[AG4

wins]
∣∣ ≤ Advprf

G (A).

Winning G4: At this point, the adversary plays a game with a single
client Ci, which only accepts AG4

, if the authentication challenge is verified for
some session sid. Assume that this happens against accepting instance Ci of
the target client, for some target session sid. Note that the MAC value MacS

computed by Ci is purely random, but consistent. Thus, the adversary has three
options: (a) forwarding a value already received from a honest server for the
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same input values R; IdS; Sqn; skOp; skC, of which skC is unknown; (b) guessing
the key skC; or (c) guessing the response. The first option yields no result since
there are no collision between the transcript of two different servers since all the
servers have a different server identifier IdS. The second option happens with a
probability of 2−|skC|. The third option occurs with a probability of 2−|MacS| per
session (which is to say per instance and per re-synchronization), thus a total of
qexec · qres · 2−|MacS|. Thus,

Pr[AG4
wins] = 2−|skC| + qexec · qres · 2−|MacS|.

Security statement: This yields the following result:

AdvS.S.Imp
Π (AG0

) ≤ nC ·
(
qexec · qres

2|MacS|
+

1

2κ
+ 2 · Advprf

G (A′)
)
.

E Updated TUAK and MILENAGE

In our variant, we modified the inputs of the internal cryptographic algorithms
to include the new value IdS. Thus, we need to provide an update of these algo-
rithms. As specified previously, the AKA protocol can be based on two different
sets of algorithms: TUAK and MILENAGE. To preserve backwards compatibility,
we propose to keep and update these two sets.

The seven internal cryptographic functions used in the AKA protocol takes
in inputs the following values:

– keys: the couple of 128-bit (or 256-bit) keys: the subscriber key skC and the
operator key skOp.

– Sqn (for the functions Upd F1 and Upd F∗1): a 48-bit sequence number.
– AMF (except for the functions Upd F1 and Upd F∗1): a 16-bit authentication

field management.
– R: a 128-bit random value.
– IdS: a 128-bit (public) value characterizing the visited network.

We note that the functions Upd F1 and Upd F∗1 behave differently because
they consider the sequence number in inputs.

Update of the MILENAGE algorithms: MILENAGE is the original set of
algorithms which is currently implemented as detailed the specification 35.206
[1].

In order to ensure a stronger degree of security, we also modify the MILENAGE
algorithms to output 128-bit MAC and session keys CK and IK.

Based on the Advanced Encryption Standard (AES), these functions compute
firstly both values TopC and Temp as follows:

TopC = skOp ⊕ AESskC
(skOp),Temp = AESskC

(R ⊕ TopC ⊕ IdS).

The outputs of the MILENAGE algorithms are computed as follows:
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Fig. 10. Updated MILENAGE.

– Output Upd F1: MacC = AESskC
(Temp ⊕ Rotr1(Sqn‖AMF‖Sqn‖AMF) ⊕

c1)⊕ TopC ,
– Output Upd F∗1: Mac∗ = AESskC

(Temp⊕Rotr6(Sqn‖AMF‖Sqn‖AMF)⊕c6)⊕
TopC ,

– Output Upd F2: MacS = AESskC
(Rotr2(Temp⊕ TopC)⊕ c2)⊕ TopC

– Output Upd F3: CK = AESskC
(Rotr3(Temp⊕ TopC)⊕ c3)⊕ TopC ,

– Output Upd F4: IK = AESskC
(Rotr4(Temp⊕ TopC)⊕ c4)⊕ TopC ,

– Output Upd F5: AK = bAESskC
(Rotr5(Temp⊕TopC , r5)⊕ c5)⊕TopCc0..47,

– Output Upd F∗5: AK∗ = bAESskC
(Rotr5(Temp⊕TopC , r5)⊕c5)⊕TopCc80..127,

with the five integers r1 = 0, r2 = 16, r3 = 32, r4 = 64, r5 = 80 and r6 = 96 in the
range {0, 127}, which define the number of positions the intermediate variables
are cyclically rotated by the right, and the five 128-bit constants ci such as:

– c1[i] = 0,∀i ∈ {0, 127}.
– c2[i] = 0,∀i ∈ {0, 127}, except that c2[127] = 1.
– c3[i] = 0,∀i ∈ {0, 127}, except that c3[126] = 1.
– c4[i] = 0,∀i ∈ {0, 127}, except that c4[125] = 1.
– c5[i] = 0,∀i ∈ {0, 127}, except that c5[124] = 1.
– c6[i] = 0,∀i ∈ {0, 127}, except that c6[123] = 1.

This is also described in Figure 10.

Update of the TUAK algorithms: TUAK is an alternative set of algo-
rithms to MILENAGE based on the internal permutation of Keccak [12]. The
specification TS 35.231 [2] details the internal algorithms of this set. We up-
date these algorithms by only modifying the inputs of the second permutation.
We recall that in this instantiation, the functions Upd F∗1 and Upd F∗5, used
for the resynchronization procedure, behave in the same way but use different
values Inst’, Inst.
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We first compute the value TopC as follows:

TopC = bfKeccak(skOp‖Inst ‖AN‖0192‖Key‖Pad‖1‖0512)c1..256.

We note that the values AN, Inst’, Inst, Pad are the same as used in the original
TUAK algorithms and Key the (padded) subscriber key.

At this point, the behavior of the functions Upd F1 (resp. Upd F∗1) diverges
from the other functions. Generating the related output, we compute the value
Val1 and for the others ones, we compute the value Val2 which differ including
the 128-bit value IdS and the smaller paging value Pad.

Val1 = fKeccak(TopC‖Inst′‖AN‖R‖064‖Key‖IdS‖Pad‖10512),

Val2 = fKeccak(TopC‖Inst′‖AN‖R‖AMF‖Sqn‖Key‖IdS‖Pad‖10512).

Then, we obtain the output of the seven functions truncating the related value
as follows:

– Output Upd F1: MacS = bVal2c0..127,
– Output Upd F2: MacC = bVal1c0..127,
– Output Upd F3: CK = bVal1c256..383,
– Output Upd F4: IK = bVal1c512..639,
– Output Upd F5: AK = bVal1c768..815.

This is also depicted in Figure 11.

Fig. 11. Updated TUAK.

We note that the multi-output property is, as in the original version, not an
issue for the security of the master key, since during one session we can have
as many as four calls to the same function with similar inputs (and a different
truncation).

F Security of TUAK and MILENAGE

In this section, we prove the pseudorandomness of both versions (classic and
updated) of TUAK and MILENAGE algorithms.
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The security of (classic and updated) TUAK. In order to prove the prf-
security of the (classic and updated) TUAK algorithms, we assume that the
truncated keyed internal Keccak permutation is a good pseudorandom function.
We propose two generic constructions to model the TUAK algorithms: a first
one, denoted Gtuak when the secret is based on the subscriber key skC and a
second one, denoted G∗tuak when is only based on the operator key.

It is worth noting that the construction of the TUAK functions is reminiscent
of the Merkle-Damg̊ard construction, where the output of the function f is an
input of the next iteration of the function f. This is in contradiction with the
Sponge construction used in the hash function Keccak given the internal permu-
tation fKeccak. So we precise that this security proof does not directly imply an
innovation on the Keccak construction.

We model the truncated keyed internal permutation of Keccak by the function
f and f∗:

f(K,x‖y, i, j) = bfKeccak(x‖K‖y)ci..j ,
f∗(K∗, x∗‖y∗, i, j) = bfKeccak(K∗‖x∗‖y∗)ci..j ,

with x ∈ {0, 1}512, K,K∗ ∈ {0, 1}κ, y ∈ {0, 1}1088−κ, x∗ ∈ {0, 1}512+κ, y∗ ∈
{0, 1}1088 and i, j ∈ {0, 1}t with log2(t − 1) < 1600 ≤ log2(t). We note that
∀K,x, x∗, y, y∗, i, j such as x = K∗‖x∗ and y∗ = K‖y, we have f(K,x‖y, i, j) =
f∗(K∗, x∗‖y∗, i, j). The input x (resp. x∗) can be viewed as the chaining vari-
able of the cascade construction of Gtuak given f (resp. f∗), y (resp. y∗) is an
auxiliary input of the function, and i and j define the size of the truncation.
The construction Gtuak and G∗tuak act as a generalization of the specific TUAK
algorithms:

F1(skOp, skC,R,Sqn,AMF) = Gtuak(skC, inp1, 0, 127) = G∗tuak(skOp, inp∗1, 0, 127),

F∗1 (skOp, skC,R,Sqn,AMF) = Gtuak(skC, inp2, 0, 127) = G∗tuak(skOp, inp∗2, 0, 127),

F2(skOp, skC,R) = Gtuak(skC, inp3, 0, 127) = G∗tuak(skOp, inp∗3, 0, 127),

F3(skOp, skC,R) = Gtuak(skC, inp3, 256, 383) = G∗tuak(skOp, inp∗3, 256, 383),

F4(skOp, skC,R) = Gtuak(skC, inp3, 512, 639) = G∗tuak(skOp, inp∗3, 512, 639),

F5(skOp, skC,R) = Gtuak(skC, inp3, 768, 815) = G∗tuak(skOp, inp∗3, 768, 815),

F∗5 (skOp, skC,R) = Gtuak(skC, inp4, 768, 815) = G∗tuak(skOp, inp∗4, 768, 815),

with:
inp1 = skOp‖cst1‖cst5,, inp2 = skOp‖cst1‖cst5,
inp3 = skOp‖cst3‖cst5,, inp4 = skOp‖cst4‖cst5,
inp∗1 = cst1‖keys‖cst5,, inp∗2 = cst1‖keys‖cst5,
inp∗3 = cst3‖keys‖cst5,, inp∗4 = cst4‖keys‖cst5,
cst1 = Inst‖AN‖0192‖(Inst′‖AN‖R‖AMF‖Sqn),

cst2 = Inst‖AN‖0192‖(Inst(2)‖AN‖R‖AMF‖Sqn),
cst3 = Inst‖AN‖0192‖(Inst′‖AN‖R‖064),

cst4 = Inst‖AN‖0192‖(Inst(3)‖AN‖R‖064),
cst5 = Pad‖1‖0192,
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We define the cascade construction Gtuak based on the function f as follows:

Gtuak(K, val, i, j) = f(K, f(K, val1‖val3, 0, 256)‖val2‖val3, i, j),

G∗tuak(K∗, val∗, i, j) = f∗(f∗, val∗1‖val∗3, 0, 256), val∗2‖val∗3, i, j),

with Gtuak and G∗tuak from {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t to {0, 1}n, val =
(val1‖val2)‖val3 ∈ {0, 1}512 × {0, 1}256 × {0, 1}(832−κ), val∗ = (val∗1‖val∗2)‖val∗3 ∈
{0, 1}256×{0, 1}256×{0, 1}(1088−κ) two known values with n = j−i, d = 1600−κ,
κ = |K| and log2(t−1) < 1600 ≤ log2(t), K a secret value and 0 ≤ i ≤ j ≤ 1600.
The updated TUAK algorithms are generalized as the same way including the
value cst5 = IdS‖Pad‖1‖0192, We express the required security properties of the
generalization Gtuak (resp. G∗tuak) under the prf-security of the function f (resp.
f∗). Since the construction of the two functions, while we cannot prove the latter
property, we can conjecture that the advantage of a prf-adversary would be of
the form:

Advprf
f∗(A) = Advprf

f (A) ≤ c1 ·
t/Tf
2|K|

+ c2 ·
q · t/Tf
21600−m

,

for any adversary A running in time t and making at most q queries at its
challenger. Here, m is the output’s size of our function f and Tf is the time to
do one f computation on the fixed RAM model of computation and c1 and c2

are two constants depending only on this model. In other words, we assume that
the best attacks are either a exhaustive key search or a specific attack on this
construction. This attack uses the fact that the permutation is public and can
be easily inverted. Even if the protocol truncates the permutation, if the output
values are large, and an exhaustive search on the missing bits is performed, it
is possible to invert the permutation and recover the inputs. Since the secret
keys is one of the inputs as well as some known values are also inputs, it is then
possible to determine which guesses of the exhaustive search are correct guess
or incorrect ones. Finally, if the known inputs are shorter than the truncation,
false positives can happen due to collisions and we have to filter the bad guesses.
However, if the number of queries is large enough, it is possible to filter these
bad guesses and uniquely recover the keys.

Pseudorandomness of TUAK algorithms. We begin by reducing the prf-
security of Gtuak to the prf-security of the function f. This implies the prf-security
of each TUAK algorithm. Recall that our main assumption is that the function
f is prf-secure if the Keccak permutation is a good random permutation.

Theorem 15. [prf-security for G∗tuak.] Let G∗tuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×
{0, 1}t×{0, 1}t → {0, 1}n and f∗ : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}m be the two functions specified above. Consider a (t, q)-adversary A against
the prf-security of the function G∗tuak, running in time t and making at most q

queries to its challenger. Denote the advantage of this adversary as Advprf
G∗tuak

(A).

Then there exists a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Advprf
f∗(A′)
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of winning against the pseudorandomness of f∗ such that:

Advprf
G∗tuak

(A) = Advprf
f∗(A

′),

Theorem 16. [prf-security for Gtuak.] Let Gtuak : {0, 1}κ×{0, 1}e×{0, 1}d−e×
{0, 1}t×{0, 1}t → {0, 1}n and f : {0, 1}κ×{0, 1}e×{0, 1}d×{0, 1}t×{0, 1}t →
{0, 1}m be the two functions specified above. Consider a (t, q)-adversary A against
the prf-security of the function Gtuak, running in time t and making at most q
queries to its challenger. Denote the advantage of this adversary as Advprf

Gtuak
(A).

Then there exist a (t′ ≈ 2·t, q′ = 2·q)-adversary A’ with an advantage Advprf
f (A′)

of winning against the pseudorandomness of f such that:

Advprf
Gtuak

(A) = Advprf
f (A′).

The security of (classic and updated) MILENAGE.

In order to prove the prf-security of the MILENAGE algorithms, we assume
that the AES permutation is a good pseudo-random function.

We model the AES algorithm by the function f and a keyed version of a
classic Davies-Meyer by the function f∗:

f(K,x) = AESK(x), f∗(K,x) = K ⊕ AESx(K),

with x ∈ {0, 1}128, K ∈ {0, 1}κ. Contrary to the TUAK algorithms, the
MILENAGE algorithms have not the same behavior. Let the construction Gmil1

(resp. G∗mil1), the generalization of the functions F1 and F∗1 and Gmil2 (resp.
G∗mil2) the generalization of the functions F2, F3, F4, F5, F∗5 which are keyed
with the subscriber key skC (resp. with the operator key skOp):

F1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp1, 0, 63) = G∗mil1(skOp, inp∗1, 0, 63),

F∗1 (skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp2, 64, 127) = G∗mil1(skOp, inp∗2, 64, 127),

F2(skOp, skC,R) = Gmil2(skC, inp2, 64, 127) = G∗mil2(skOp, inp∗2, 64, 127),

F3(skOp, skC,R) = Gmil2(skC, inp3, 0, 127) = G∗mil2(skOp, inp∗3, 0, 127),

F4(skOp, skC,R) = Gmil2(skC, inp4, 0, 127) = G∗mil2(skOp, inp∗4, 0, 127),

F5(skOp, skC,R) = Gmil2(skC, inp2, 0, 47) = G∗mil2(skOp, inp∗2, 0, 47),

F∗5 (skOp, skC,R) = Gmil2(skC, inp5, 0, 47) = G∗mil2(skOp, inp∗5, 0, 47),

with:
inp1 = skOp‖R‖(Sqn‖AMF)‖c1‖r1‖0128, inp∗1 = skC‖R‖(Sqn‖AMF)‖c1‖r1‖0128,
∀i ∈ {2, ..., 5}, inpi = skOp‖R‖ci‖ri‖0128, inp∗i = skC‖R‖ci‖ri‖0128.

For the updated MILENAGE algorithms, we use the same constructions Gmil1

and Gmil2 as follows:
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Upd F1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp1, 0, 127) = G∗mil1(skOp, inp∗1, 0, 127),

Upd F∗1(skOp, skC,R,Sqn,AMF) = Gmil1(skC, inp6, 0, 127) = G∗mil1(skOp, inp∗6, 0, 127),

Upd F2(skOp, skC,R) = Gmil2(skC, inp2, 0, 127) = G∗mil2(skOp, inp∗2, 0, 127),

Upd F3(skOp, skC,R) = Gmil2(skC, inp3, 0, 127) = G∗mil2(skOp, inp∗3, 0, 127),

Upd F4(skOp, skC,R) = Gmil2(skC, inp4, 0, 127) = G∗mil2(skOp, inp∗4, 0, 127),

Upd F5(skOp, skC,R) = Gmil2(skC, inp5, 0, 47) = G∗mil2(skOp, inp∗5, 0, 47),

Upd F∗5(skOp, skC,R) = Gmil2(skC, inp5, 80, 47) = G∗mil2(skOp, inp∗5, 80, 47),

with:
inp1 = skOp‖R‖(Sqn‖AMF)‖c1‖r1‖IdS, inp∗1 = skC‖R‖(Sqn‖AMF)‖c1‖r1‖IdS,
∀i ∈ {2, ..., 6}, inpi = skOp‖R‖ci‖ri‖IdS, inp∗i = skC‖R‖ci‖ri‖IdS.

Then, these both constructions are constructed as follows:

Gmil1(K, val(1), a, b) = bTopC ⊕ f(K, val4 ⊕ f(K,TopC ⊕ val2 ⊕ val6)⊕
Rotval5

(TopC ⊕ (val3‖val3)))ca..b,
Gmil2(K, val(2), a, b) = bTopC ⊕ f(K, val4⊕

Rotval5
(TopC ⊕ f(K,TopC ⊕ val2 ⊕ val6)))ca..b,

G∗mil1(K∗, val∗(1), a, b) = bTopC ⊕ f(val∗1, val∗4 ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)⊕
Rotval∗5

(TopC ⊕ (val∗3‖val∗3)))ca..b,
G∗mil2(K∗, val∗(2), a, b) = bTopC ⊕ f(val∗1, val∗4⊕

Rotval∗5
(TopC ⊕ f(val∗1,TopC ⊕ val∗2 ⊕ val∗6)))ca..b,

with Gmil1 (resp. G∗mil1): {0, 1}κ × {0, 1}d1 × {0, 1}t × {0, 1}t → {0, 1}n, Gmil2

(resp. G∗mil2): {0, 1}κ × {0, 1}d2 × {0, 1}t × {0, 1}t → {0, 1}n, val(1) = val1‖ val2‖
val3‖ val4‖ val5‖|val6, val(2) = val1‖ val2‖ val4‖ val5‖val6, val1,val2, val4, val6 ∈
{0, 1}128,val3 ∈ {0, 1}64, val5 ∈ {0, 1}7, and val∗(1) = val∗1‖ val∗2‖ val∗3‖ val∗4‖ val∗5
‖val∗6, val(2)∗ = val∗1‖ val∗2‖ val∗4‖ val∗5 ‖val∗6, val∗1,val∗2, val∗4, val∗6 ∈ {0, 1}128,val∗3 ∈
{0, 1}64, val∗5 ∈ {0, 1}7 and TopC = val1 ⊕ f(K, val1) = K∗ ⊕ f∗(val∗1,K

∗).
We express the security property of the generalizations Gmil1 and Gmil2 (resp.

G∗mil1 and G∗mil2) under the prf-security of the function f (resp. f∗). While we
cannot prove the latter property, we can conjecture that the advantage of a
prf-adversary would be of the form:

Advprf
f (A) ≤ c1 ·

t/Tf
2128

+ c2 ·
q2

2128
,

for any adversary A running in time t and making at most q queries at its
challenger. Here, m is the output’s size of our function f and Tf is the time to
do one f computation on the fixed RAM model of computation and c1 and c2

are two constants depending only on this model. In other words, we assume that
the best attacks are either a exhaustive key search or a linear cryptanalysis. We
also conjecture that the advantage of a prf-adversary on f∗ is negligible.
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Pseudorandomness of MILENAGE algorithms. We begin by reducing the
prf-security of Gmil1 and Gmil2 to the prf-security of the function f. This implies
the prf-security of each MILENAGE algorithm.

Theorem 17. [prf-security for Gmil1 and Gmil2]
Let Gmil1 (resp. Gmil2): {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f :
{0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider
a (t, q)-adversary A against the prf-security of the function Gmil1 (resp. Gmil2),
running in time t and making at most q queries to its challenger. Denote the ad-
vantage of this adversary as Advprf

Gmil1
(A). Then there exists a (t′ ≈ 3 ·t, q′ = 3 ·q)-

adversary A’ with an advantage Advprf
f (A′) of winning against the pseudoran-

domness of f such that:

Advprf
Gmil1

(A) = Advprf
f (A′)(= Advprf

Gmil2
(A)).

Theorem 18. [prf-security for G∗mil1 and G∗mil2]
Let G∗mil1 (resp G∗mil2): {0, 1}κ × {0, 1}d × {0, 1}t × {0, 1}t → {0, 1}n and f∗ :
{0, 1}κ × {0, 1}128 → {0, 1}128 be the two functions specified above. Consider
a (t, q)-adversary A against the prf-security of the function G∗mil1 (resp. G∗mil2),
running in time t and making at most q queries to its challenger. Denote the
advantage of this adversary as Advprf

G∗mil1
(A) (resp. Advprf

G∗mil2
(A)). Then there exists

a (t′ ≈ O(t), q′ = q)-adversary A’ with an advantage Advprf
f∗(A′) of winning

against the pseudorandomness of f∗ such that:

Advprf
G∗mil1

(A) = Advprf
f∗(A

′)(= Advprf
G∗mil2

(A)).

F.1 Formal Analysis of the AKA Protocol

ProVerif is an automatic protocol verifier in the Dolev-Yao formal model; it han-
dles protocols represented by Horn clauses and can prove that they have various
security properties (including key secrecy, indistinguability, and (mutual) au-
thentication). ProVerif can analyze a wide range of asymmetric and symmetric
stateless protocols, and can run an unbounded number of sessions of an AKE
protocol with an unbounded message space, thanks to some well-chosen approx-
imations.

As a consequence, while it can also give some false negatives (attacks which do
not always translate to our model), if the verifier outputs a security proof, then
the latter carries over automatically. When such a proof cannot be generated, the
tool tries to propose an execution trace, i.e. a specific attack, which “breaks” the
desired property. Cryptographic primitives are modeled as generic functions and
reduction rules. Indeed, for example, the symmetric encryption algorithms are
modeled by func senc \ 2 and the reduction reduc sdec(k, senc(k, m)), where
senc and sdec are respectively symmetric encryption and decryption, models
the property that the plaintext m can be retrieved from the ciphertext and the
private key k.
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The syntax of the ProVerif calculus processes is given by the following gram-
mar: P, Q, R ::= plain processes

0 null process

P|Q parallel composition

!P replication

new n; P name restriction

if M = N then P else Q conditional

in(M, x); P message input

out(M, N); P message output.

The null process signifies inaction, while P|Q represents the parallel execution of
P and Q. The replication !P of a process P behaves as the parallel execution of an
unbounded number of copies of P. The restriction new n; P creates a new name n

whose scope is restricted to the process P, and it then runs P. The message input
in(M, x); P (respectively the message output out(M, x); P)) describes a process that
receives (respectively sends) a message x from the channel M and after behaves
as P. The conditional checks the equality between N and M and behaves as P if
the answer is true; otherwise Q is executed. See [8] for more details. We used
the ProVerif tool to analyze the mutual authentication and the key derivation
security of the real AKA protocol. This analysis is clearly different to the stateless
feature of the variant studied by Arapinis and al. [7]. Indeed, the latter swaps
the sequence number of AKA protocol for a random value. Usually, the stateful
feature of AKA protocol is incompatible with ProVerif8.

Despite its restriction to stateless protocols, we nonetheless try to adapt the
behavior of the ProVerif calculus to obtain some results on AKA. ProVerif does
not keep any trace between several sessions. Thus, we have implemented (by
duplication) the code of each session in each process for as many as sessions
as there are, hardcoding the sequence number. Since we cannot duplicate an
unbounded number of sessions, we have to restrict the verifier to bound this
number. This leaves us unable to apply the replication of the process. While both
security notions (authentication and key derivation) are modelled by different
injective correspondence properties, they are always proved under a replication.
So, ProVerif cannot give any efficient result about AKA protocol.

As an alternative, we used a verifier of stateful processes, called StatVerif.
The latter is an extension of the ProVerif process calculus constructed for explicit
state; its goal is to bridge the gap, and handle stateful protocols. We report the
most relevant parts of the StatVerif scripts used for the verification of the AKA
protocol. We omit the declaration of constants, functions, and restriction rules,
and report only the code of the both process.

Unfortunately, for unknown reasons, the sequence is incremented ad infini-
tum. So, StatVerif does not give some exploitable results.

8 This could explain the stateless consideration of [7].
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Mobile Client Process: Server process:
1: let processA= 1: let processB=
2: out(c, UID); 2: lock(state);
3: lock(state); 3: read state as xState;
4: read state as xState; 4: let next = incr(xState) in

5: let next = incr(xState) in 5: unlock(state);
6: unlock(state); 6: in(c,= UID);
7: in(c, (rand, m2, m3)); 7:new rb;
8: let f3a = prf1(Kab, rand) in 8: let f3 = prf1(Kab, rb) in

9: let f5a = prf3(Kab, rand) in 9: let f5 = prf3(Kab, rb) in

10: let xxstate = sdec(m2, f5a) in 10: let chiff = senc(next, f5) in

11: if xxstate = next then 11: let mac = mac1((rb, next), Kab) in

12: let (= rand,= next) = checkmac1(m3, Kab) in 12: out(c, (rb, chiff, mac));
13: let Ks = f3a in 13: in(c, res);
14: out(c, mac2(rand, Kab)); 14: if res = mac2(rb, Kab) then

15: 0. 15: let Ks = f3in

——————————— 16: lock(state);
Global Process: 17: state := next;
1: process 18: unlock(state);
2: (!(processA)|!(processB)) 19: 0.

Fig. 12. AKA Procedure in StatVerif:
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