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Abstract. Group signatures allow members of a group to anonymously sign on
behalf of the group. Membership is administered by a designated group manager. The
group manager can also reveal the identity of a signer if and when needed to enforce
accountability and deter abuse. For group signatures to be applicable in practice, they
need to support fully dynamic groups, i.e., users may join and leave at any time.
Existing security definitions for fully dynamic group signatures are informal, have
shortcomings, and are mutually incompatible. We fill the gap by providing a formal
rigorous security model for fully dynamic group signatures. Our model is general
and is not tailored towards a specific design paradigm and can therefore, as we
show, be used to argue about the security of different existing constructions following
different design paradigms. Our definitions are stringent and when possible incorporate
protection against maliciously chosen keys. We consider both the case where the group
management and tracing signatures are administered by the same authority, i.e. a
single group manager, and also the case where those roles are administered by two
separate authorities, i.e. a group manager and an opening authority. We also show
that a specialization of our model captures existing models for static and partially
dynamic schemes.
In the process, we identify a subtle gap in the security achieved by group signatures
using revocation lists. We show that in such schemes new members achieve a slightly
weaker notion of traceability. The flexibility of our security model allows to capture
such relaxation of traceability.

Keywords. Group Signatures, Security Definitions.

1 Introduction

Group signatures, put forward by Chaum and van Heyst [CvH91], are a fundamental
cryptographic primitive allowing a member of a group to anonymously sign messages
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on behalf of the group. Group membership is administered by a designated group
manager. In the case of a dispute, the group manager, or a designated opening
authority, has the ability to identify the signer and attribute the signature to her.

In static group signatures [BMW03], the group population is fixed once and for
all during the setup phase. Partially dynamic group signatures [BSZ05, KY06] allow
the enrollment of members in the group at any time but members cannot leave or
be removed from the group once they have joined. In many settings, however, it
is desirable to offer full flexibility in joining and leaving the group, which means
we need fully dynamic group signatures. We address the fundamental question of
defining security for fully dynamic group signatures.

1.1 Background and Related Work

Group Signatures without Revocation. After their introduction, a very prolific line of
research has emerged on group signatures. The first efficient construction of group
signature was given by Ateniese et al. [ACJT00] based on both the Strong-RSA
assumption and the DDH assumption in the random oracle model [BR93]. At that
time, however, the security of group signatures was not very well understood and early
constructions were proven secure via informal arguments using various interpretations
of their requirements.

To rectify this situation, Bellare, Micciancio and Warinschi [BMW03] formalised
the security definitions for static groups where the group population is fixed once
and for all during the setup phase. In their model, the group manager is also granted
the authority of opening signatures and she is assumed to be fully trusted, except
she may leak information to the adversary. Later on, Bellare, Shi and Zhang [BSZ05]
and Kiayias and Yung [KY06] independently provided formal security definitions
for partially dynamic groups, in which new group members can join the group at
any time but cannot leave. The former model, following the suggestion of [CM98],
separates the opening authority from the group manager, while the latter considers
both roles overseen by the group manager. Aside from this, the main difference
between the two models is that in [KY06] the group manager is trusted to give
correct openings without providing proofs of attributions. More recently, Sakai et
al. [SSE+12] extended the security model of partially dynamic groups by including
the notion of opening soundness, which ensures that a valid signature only traces to
one user.

Numerous efficient constructions secure in the above models have been suggested
both in the random oracle model [ACJT00, CL04, NS04, FI05, FY04, KY05, DP06,
BCN+10, LLNW16, LLM+16, DS18] and in the standard model [ACHdM05, Gro06,
BW06, Gro07, BW07, AFG+16].

Group Signatures with Revocation. Since revocation is an essential feature of group
signatures, different approaches have been proposed for removing members from the
group. Bresson and Stern [BS01] realize revocation by requiring that the signer proves
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at the time of signing that her group membership credential is not among those
contained in a public revocation list. Along this line, Nakanishi et al. [NFHF09] gave
an efficient scheme in the random oracle model based on revocation lists, offering
constant size as well as signing and verification time. In the standard model, Libert,
Peters and Yung [LPY12b, LPY12a] gave a number of efficient constructions of
group signatures utilizing the subset cover framework [NNL01], originally used in
the context of broadcast encryption, to form revocation lists. Another approach,
followed by [CL02, TX03, CG04, DKNS04, Ngu05], uses cryptographic accumulators
to incorporate revocation of users: accumulators can be used to give a compact
representation of the set of active group members and permit efficient membership
proofs.

Boneh, Boyen and Shacham [BBS04] showed how to incorporate removal of users
in their initially static group scheme by updating both the group public key and
unrevoked members’ signing keys. Song [Son01] also uses key updates to extend
[ACJT00] scheme to support revocation and additionally achieve forward security.

Brickell [Bri04] considered a different approach for revocation known as Verifier-
Local Revocation where the revocation information (i.e. revocation list) is only sent
to the verifiers (as opposed to both verifiers and signers) who can check whether
a particular signature was generated by a revoked member. This approach was
subsequently formalized by Boyen and Shacham [BS04] and used in e.g. [NF05, LV09,
LLNW14]. A similar approach is also used in Direct Anonymous Attestation (DAA)
protocols [BCC04]. Traceable Signatures [KTY04] extend this idea, with a group
manager that can release a trapdoor for each member, enabling their signatures to
be traced back to the individual user. Releasing tracing information for a member,
however, enables the linking of different group signatures by the same revoked
member and this by necessity only provides a more relaxed degree of anonymity.
Other variants of group signatures include linkable group signatures [NFW99] and
group signatures with controlled linkability [HLC+11]. In the former, signatures
by the same group member are publicly linkable, whereas in the latter the role of
the tracing authority is reduced to the ability of deciding whether two signatures
stem from the same (anonymous) member. In this article, our focus is on standard
group signatures with strong anonymity where the opening of one signature does not
allow the identification of another signature by the same member and thus consider
verifier-local revocation and linkable group signatures out of scope.

A generic approach to construct fully dynamic group signatures from accountable
ring signatures is suggested in [BCC+15] and described in [BCC+16a]. Bootle et
al. [BCC+15] also give an efficient instantiation of accountable ring signatures in the
random oracle model based on the DDH assumption. In the standard model, Lai
et al. [LZCS16] give another construction for an accountable ring signature scheme
achieving constant size signatures. Following [BCC+15, BCC+16a], both schemes
can be used to obtain fully dynamic group signature schemes with efficiency similar
to their ring counterpart.
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Security Definitions. The security of static and partially dynamic group signatures
has been rigorously formulated [BMW03, BSZ05, KY06, SSE+12] and they are
now well understood. The security of fully dynamic group signatures is significantly
harder to model though. Nakinishi et al. [NFHF09] defined security of fully dynamic
group signatures in the context of a single group manager that controls group
membership and can trace signatures to individual members, and Libert, Peters
and Yung [LPY12a] defined security of fully dynamic signatures where a separate
opening authority can trace signers. These definitions specifically refer to revocation
lists though while a truly general definition of fully dynamic group signatures
should in principle admit any mechanism for removing group members. Defining
fully dynamic group signatures also leads to subtle questions about when a group
member is activated and when a group signature is valid. The formal definitions
in [NFHF09, LPY12a] do in principle, after a revocation has happened, allow the
“forging” of signatures for previous epochs. This definitional choice is fine if the
application calls for it but implies that existing group signatures become obsolete
over time. We will in contrast aim for high generality in our definitions, specifically
we want the definitions to be flexible so they can be adapted to any explicit policy
that specifies when group members should be considered active and governs validity
duration of group signatures. Both in the literature on partially dynamic group
signatures and fully dynamic group signatures it is commonly assumed key generation
is honest. To maximize the security guarantees our definitions capture strong security
requirements and include, when possible, security against malicious key generation
for the authorities.

Following our initial conference publication [BCC+16a], other works adopted and
extended our security model. Ling et al. [LNWX18] used our model to prove the
security of their fully dynamic group signature scheme, which is the first fully dynamic
construction based on hardness of lattice assumptions. Our model was recently
extended by Backes et al. [BHS18] to include two additional security properties
called join and leave privacy, which capture the privacy of users over the time span
of their group membership status. El Kaafarani et al. [EKKS18] also extended this
security model in order to formalise anonymous reputation systems, which allow a
set of users to review products anonymously.

1.2 Our Contribution

We provide a rigorous security model for fully dynamic group signatures. Despite
not assuming a specific design paradigm, in our original version [BCC+16a] we made
a few implicit assumptions regarding the functioning of group signatures. In this
revision, we take a step further in modelling fully dynamic group signatures by
considerably updating and generalising [BCC+16a]. Our model does not preclude
current design approaches and it offers stringent security properties including the
features listed below.
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• We provide security definitions both for the case of a single group manager and
the case where her role is separated from the opening authority. In both settings
we consider, when possible, malicious key generation for the authorities.

• We define a strong correctness property that holds even if the system is populated
with malicious users; and in the two-authority setting with a malicious opening
authority.

• We define group signatures with respect to an explicit policy for when a user is
considered an active group member and for which epochs a group signature is
considered valid.

• We consider concurrent joining sessions between the users and the group manager.
Existing models restrict the state of the group manager to be compartmentalised
on a per user basis resulting in independent joining sessions, where we generalize
fully to any choice of manager state between messages in the joining process.

• We formalise two additional security properties called opening binding and
opening soundness capturing that signatures cannot be attributed, respectively,
to multiple users, nor to anybody other than the legitimate signer.

To validate our definitions, we show suitable restrictions that relate to the existing
definitions for static [BMW03] and partially dynamic [BSZ05, KY06] group signatures.
We sketch how the schemes [NFHF09, LPY12b] based on revocation lists satisfy our
definitions or can be modified to satisfy them and also show how the accountable
signatures of [BCC+15] yields fully dynamic group signatures following a different
design paradigm.

2 Definitions for Fully Dynamic Group Signatures

Notation. We write x← S for sampling an element x from the set S, where unless
otherwise specified we assume the sampling is uniform at random. We write x← A(a)
for an algorithm A that runs on input a and outputs x. When an algorithm is invoked
several times and keeps state between invocations, we may explicitly refer to the
state stA as an additional input and write x ← A(a; stA). A simple example is a
single invocation of a probabilistic algorithm that may run in two steps where it
first samples randomness r that it stores in its state and then runs the rest of the
algorithm x ← A(a; r) deterministically. We abbreviate deterministic polynomial
time DPT and probabilistic polynomial time PPT.

Algorithms may interact with each other. For algorithms A and B, (x; y) ←
〈A(a);B(b)〉 denotes the the joint execution of A (with input a) and B (with input
b) where at the end A outputs x and B outputs y. Delving into the details of the
interaction, it may take place over several rounds during which the algorithms send
messages to each other and after which they halt and return their outputs. For an
interactive algorithm, a move in the protocol is generated as (out;M ′) ← A(M),
where M is the message just received from the other participant or M = init if this is
the first move in the protocol, and M ′ is the message to send to the other participant.
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We use the convention that when out is empty (out = ε), it means that A intends for
the interaction to continue, but when out is not empty A will send the last message
M ′ (unless empty) and then terminate the interaction with output out. We note that
in the setting of group signatures, the group manager may be involved in multiple
concurrent interactions. The group manager’s state may therefore change between
two rounds in any given joint execution. We write (out;M ′; stA)← A(M ; stA) when
we explicitly want to indicate the state of an algorithm A may be updated.

We use a security parameter λ ∈ N to indicate the desired level of security, with
the intention that the higher it is the more secure the scheme should be. In general
when we refer to polynomial time algorithms we mean that they run in polynomial
time in the security parameter and we therefore often give the security parameter to
algorithms written in unary 1λ. We often refer to an adversary A that is trying to
break the system, and when we define security we usually want the adversary to have
negligible probability of breaking the scheme. A function f : N→ [0; 1] is negligible
in the security parameter λ if f(λ) = λ−ω(1). For two functions, f, g : N→ [0; 1] we
write f(λ) ≈ g(λ) when |f(λ)− g(λ)| is negligible. We may therefore simply write
f(λ) ≈ 0 to indicate a function is negligible, and conversely we will refer to a function
f as being overwhelming when f(λ) ≈ 1.

We use ⊥ as an error symbol. Algorithms do not return ⊥ unless they explicitly
want to indicate an error. Conversely, we use the symbol > to indicate success. We
use ε to denote the empty string. We sometimes abbreviate a set {1, . . . , n} as [n].

2.1 Fully Dynamic Group Signatures

A Fully Dynamic Group Signature (FDGS) scheme involves a set of users who are
potential group members and a group manager GM in charge of issuing and revoking
group membership. The group signature scheme enables group members to sign
messages on behalf of the group in an anoymous way, but in case of abuse the group
manager can revoke the anonymity and open the signature to reveal the signer.

We are interested in the fully dynamic setting where users can join and leave
the group at any time at the discretion of the group manager. In static or partially
dynamic group signatures where members cannot leave it is possible to fix the group
information associated with the group at initialization. For a fully dynamic group,
however, there has to be a way to prevent a revoked member from using her old key
to sign messages. This means the group information associated with the group must
change after revocation. We divide the group information into a permanent group
public key gpk and temporary group information infoτ , associated with an index τ
referred to as an epoch. The group information depicts changes to the group, for
instance, it could include the current members of the group (as in accumulator-based
constructions) or those who have been excluded from the group (as in constructions
based on revocation lists). As in existing models, we assume that anyone can verify
the authenticity of the published group information.
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Unlike existing security models for group signatures that assume trusted key
generation, we separate key generation from trusted parameter setup. This allows us
to define stringent security that protects against adversarial group managers who
might generate their keys maliciously. Our definitions can easily be adapted to work
for the weaker setting where the group manager’s keys are generated honestly as in
existing models.

We give two flavours of our definition. We start by providing a definition where
the roles of opening signatures and administering group membership are overseen by
the same authority and then specialise the definition to the setting where each of
those roles is overseen by a separate authority.

2.2 Syntax

A fully dynamic group signature scheme FDGS involves a group manager GM and
a set of users. Additionally there might be the presence of a trusted third party
that generates some initial parameters the scheme uses. The scheme consists of the
following algorithms and data structures:

• Interactive polynomial time protocol run by GM and a user: Join
• Probabilistic polynomial time algorithms: GSetup, GKGen, UpdateGroup,

Sign, Open
• Deterministic polynomial time algorithms: IsActive, Verify, Judge
• Data structure: Reg.

We will now describe in greater detail the data structure and algorithms and their
usage in a FDGS scheme.

Reg: The registry is a data structure, which is filled as users join the group. The
group manager associates any joining group members with session identifiers
i = 1, 2, 3, . . .. When user i joins, she is able to store a record regi in the registry.
Once a record is stored, it cannot be changed. The group manager will have read
access to the registry and may store the information and use it during opening
when tracing the originator of a signature. We model access to the registry with
the two following algorithms/oracles:
• ReadReg(i): On input a session identifier i, it returns the corresponding entry

in the registry regi. If no record regi is stored, it returns ⊥.
• WriteReg(i,M): On input a session identifier i and a message M , it sets
regi := M . This oracle can only be used once for every identifier i, further
calls with the same session identifier are ignored.

One way to instantiate the registry is with a PKI, which is done explicitly in
e.g. [BSZ05]. The registry Reg can be hosted by GM but require each entry regi
to be signed by the user involved in the i-th instance of the protocol. Whether
one instantiates the registry with a PKI or in a different way is out of scope for
this article as long as it gives us the desired functionality.
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GSetup(1λ)→ param: There may be a trusted third party that runs this algorithm
to generate public parameters param. In case a trusted setup is not required, this
algorithm can be regarded as simply setting param := 1λ.

GKGen(param)→ (outGM; stGM): The group manager uses this algorithm to gener-
ate outGM := (mpk, info0) consisting of the manager’s public key and the initial
group information, and the resulting state stGM of the group manager. The group
public key is gpk := (param,mpk).

Join: To enroll a user as a member, the GM may run the interactive joining protocol
with her. Their respective algorithms are:

• Join
WriteReg(i,·)
User (M ; st) → (out;MGM; st): This algorithm specifies the user’s

execution of the interactive joining protocol with the GM. Given an input
message from the GM and the user’s internal state st it returns a message
for the GM and a new state. In its first call, the algorithm is executed on
initial input (init; gpk). In each instance of the protocol, the user is allowed a
single call to the oracle WriteReg(i, ·) for writing into the registration table an
entry regi corresponding to its identifier i. Joining session i terminates after
at most k(λ) rounds by a call returning (gsk;MGM; st), which includes the
user’s secret key gski := gsk, an optional final message for the issuer including
a termination message done, and the user final state. If it terminates with
gsk = ⊥, the user will consider it as a fail to join, and on failure it will always
be the case that it ends with MGM = (done,⊥). After termination, the user
will ignore all future inputs to JoinUser.

• Join
ReadReg(i)
GM (i,MGM; stGM)→ (outGM;M ; stGM): This algorithm specifies the

GM’s execution in the interactive joining protocol with a user. The GM keeps
track of distinct instances of the protocol using unique identifiers i, which we
without loss of generality assume are numbered 1, 2, 3, etc. The algorithm
receives as input a session identifier i, a message MGM received from the user,
and the GM’s internal state and it returns a message M for the user interacting
in session i and updates the state stGM. The algorithm has access to the oracle
ReadReg(i) to read the entry regi in the registration table Reg. Each joining
session will terminate after at most a polynomial number of rounds. We let
k(λ) be the maximal number of rounds before termination. Termination will
be indicated in the local output outGM of the GM and can be successful (>)
or fail (⊥), and if it fails the output message will be Mi = (done,⊥). After
termination the GM will ignore future calls with the same i.

For conciseness we will often refer to the user involved in the i-th session of the
Join protocol with the manager as user i. Please observe though that the user
may not be aware of her own session identifier i, since she may not be aware of
how many other users are joining or have already joined the group.

UpdateGroup(R; stGM)→ (info; stGM): The group manager runs this algorithm to
update the group information, where the set R consists of session identifiers
associated with users to be revoked. The algorithm returns new public group
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information info and updates the state of GM. The group information info may or
may not depend on the set of newly joined members of the group, which the group
manager records in its internal state. The group information info is intended as
group information pertaining to the group and we will in general assume anybody
may have access to the sequence info0, info1, . . . the group manager creates during
the lifetime of the group signature scheme.

IsActive(i, τ, stGM)→ 1/0: The Join protocol and the UpdateGroup algorithm
describe how an honest GM adds and revokes group members. The exact moment
when a member is activated and able to sign is design specific. In some construc-
tions, group members are implicitly activated after successfully terminating the
Join protocols and may even be able to sign with respect to previous epochs; in
others they are explicitly activated by GM when a new group information infoτ
is published. Consequently, different design choices lead to different time spans
where members are allowed to sign. In order to take into account these differences
in the security definitions without favouring a particular design paradigm, we
use the IsActive procedure, which should be interpreted as the group manager’s
policy for when a member is considered active.
The IsActive algorithm takes as input the state of the group manager, a session
identifier i, and an epoch τ associated with group information infoτ the group
manager has published earlier. We refer to a user as an active member of the
group at epoch τ if and only if the algorithm returns 1. We place the following
constraints on the policies an honest group manager can have for when a user is
active:
• If τ is not associated with any infoτ the group manager has published, the

algorithm returns 0.
• If i is not associated with a joining session where the group manager has

terminated succesfully, the algorithm returns 0.
• If i was revoked when creating infoτ for this epoch or earlier, the algorithm

returns 0.
• If i is associated with a joining session where the group manager ended her

part successfully before infoτ was created, and user i is not revoked at or
before epoch τ , the algorithm returns 1.

Sign(gsk, info,m)→ Σ: Given a user’s group signing key gsk, group information
info, and a message m, the signing algorithm outputs a group signature Σ.6

Verify(gpk, info,m,Σ)→ 1/0: The verification algorithm checks whether Σ is a
valid group signature on m with respect to the group information info and
outputs a bit: 1 for accept and 0 for reject.

Open(gpk, stGM, info,m,Σ)→ (i, π): The opening algorithm receives as input the
group public key gpk, the state of the group manager, some public group infor-

6We note as a special case that the signing algorithm may be such that it completely ignores info,
which potentially may make it faster. This speed advantage is similar to the efficiency the signer
may have in group signatures with verifier-local revocation where only verifiers receive information
about which members are revoked.
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mation info, a message, and a signature. It returns a session identifier i together
with a proof π attributing Σ to user i. If the algorithm is unable to open the
signature to a particular group member, it returns (⊥, π) to indicate that it could
not attribute the signature.

Judge(gpk, info, reg,m,Σ, π)→ 1/0: The judge algorithm checks the validity of a
proof π attributing the signature Σ on m under group information info to a user
with registry record reg. It outputs 1 for accept and 0 for reject.

Separating the Role of Group Manager and Opening Authority. Following
the suggestion of Camenisch and Michels [CM98], Bellare, Shi and Zhang [BSZ05]
separate the group manager role we described above into two parts: a group manager
GM (who they call the Issuer) administrating group membership, and an opening
authority OA (who they call the Opener) capable of tracing the signer of a message.
There are natural settings where such a division of roles may be called for; an
organization may for instance consider group management the task of the human
resources department, and opening signatures the domain of the fraud department.
While the separation of the group manager and opening authority roles complicate
definitions a little, they also have the advantage of permitting more fine-grained
security notion that allow for adversarial behaviour in either the group manager or
the opening authority.

When separating out the role of the opening authority, the syntax of a group
signature scheme changes. Key generation can now be seen as a joint process that
involves both the group manager and the opening authority. Sometimes it may be
desirable to minimize interaction and allow authorities to generate their own keys
independently, but for maximal generality we define key generation as an interactive
protocol between them, where independent key generation is a special case. Another
change is that since the opening algorithm is run by the opening authority it needs
access to read the registry to know who to attribute a given signature to. We describe
these changes below:

GKGen: To generate the group public key the GM and OA may run an interactive
protocol. Their respective algorithms are:

• GKGenGM(MGM; stGM)→ (outGM;MOA; stGM): This algorithm specifies the
GM’s execution in the interactive key generation protocol with the OA. It gets
as input a message MGM received from the OA and the GM’s internal state and
returns an output outGM, a message MOA for the OA and updates the state
to stGM. The state of the group manager is initialised as stGM := param. If
the GM initiates the protocol, the input message is initialised as MGM := init.
In a successful execution of the protocol, the last call of the algorithm returns
a non-empty output value outGM := (mpk, info0) consisting of the GM public
key and the initial group information. After termination, subsequent calls to
the algorithm will be ignored.
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• GKGenOA(MOA; stOA) → (outOA;MGM; stOA): This algorithm specifies the
OA’s execution in the interactive key generation protocol with the GM. It gets
as input a message from the GM and the OA’s internal state and it returns an
output outGM, a message MGM for the GM and updates the state stOA. The
state of the OA is initialised as stOA := param. If the OA initiates the protocol
the input message is initialised as MOA := init. In a successful execution of
the protocol, the last call of the algorithm returns an non-empty output value
outOA := (opk, osk) consisting of the OA’s public and secret keys. Subsequent
calls of the algorithm are ignored.

We denote an entire execution of the key generation protocol as

((mpk, info0; stGM); (opk, osk))← 〈GKGenGM(param); GKGenOA(param)〉

and let gpk := (param,mpk, opk) be the group public key.
OpenReadReg(·)(gpk, osk, info,m,Σ)→ (i, π): The opening algorithm receives as input

the group public key gpk, the opening key osk, group information info, a message,
and a signature. It returns a session identifier i together with a proof π attributing
Σ to user i. If the algorithm is unable to open the signature to a particular group
member, it returns (⊥, π) to indicate that it could not attribute the signature.

Relation Between Definitions with Single and Separate Authorities. Group
signatures with separate and without separate authorities are closely related. Specif-
ically, given a group signature scheme FDGS for separate GM and OA, we can
define a single authority group signature scheme FDGS ′, where the group manager
GM′ first runs the interaction ((mpk, info0; stGM); (opk, osk))← 〈GKGenGM(param);
GKGenOA(param)〉 and returns the manager public key mpk′ := (mpk, opk) and
sets the state to be st′GM := (stGM, osk). Whenever a new user joins the group, GM
has access to an oracle that allows it to read the corresponding record in the registry,
and we imagine GM′ keeps track of these registry entries so it has its own virtual
ReadReg oracle. Whenever GM′ has to run the opening algorithm, it will then just
use osk. All other algorithms in FDGS ′ are defined in the natural way from FDGS.
It is easy to see that this transformation preserves the efficiency of FDGS and we
will in the following argue that security is preserved as well.

2.3 Security Definitions

Definition 1. An FDGS with the syntax in Section 2.2 is a fully dynamic group
signature if it is correct, anonymous, traceable and non-frameable as defined below.

Correctness. Correctness guarantees that an honest user can enrol in the group
and produce signatures that are accepted by the Verify algorithm. We assume in
the correctness definition that GM is honest and willing to enrol the user, since
otherwise it could just refuse membership. However, there may be other users that
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are malicious. We therefore model correctness as an adversarial game, where the
adversary acts on behalf of all other users and want even in this setting that the
honest user can successfully enrol and sign messages. The correctness definition
captures three aspects in this setting:

• An honest user interacting with an honest GM should be able to enroll in at most
k(λ) rounds after which the user terminates successfully with a key gski.

• The group manager should before or in the same round terminate with success
indicator > and activate the user no later than the next update.

• Once activated the user should be able to sign messages.

These three properties should hold as long as the user is not revoked.

In the game ExpCorr
FDGS,A (shown in Figure 1), we grant the adversary A access

to the following oracles, details of which are given in Figure 2. We maintain sev-
eral global counters: h is the index of the joining session initiated by the honest
user, N is the number of users that initiated the Join protocol with the GM, and
τCurrent, τJoin, τRevoke is the current epoch, the epoch during which the user created
her key, τRevoke is the time the user was revoked (if ever), and K is the number of
calls to the AddHU oracle, i.e., the number rounds executed by the honest user in
the Join protocol.

AddHU(): This oracle adds a single honest user to the group. Each call of the oracle
executes the next round of interaction in the Join protocol between the honest
user and the honest group manager. It returns the exchanged messages as well as
the outputs of both parties. Note that the adversary learns the group signing key
of the honest user at the successful conclusion of the interaction.

SndToM(i,MGM): This oracle allows the adversary to add a corrupt user to the
group. The adversary can deviate from the Join protocol by sending arbitrary
messages MGM to the GM. Each oracle call executes the next move of an honest
GM on input message MGM in the i-th instance of the Join protocol. It returns
the GM response message and output.

Update(R): This oracle allows the adversary to update the public group information.
Here R is the set of the group members to be removed from the group. Calling
this oracle triggers a new epoch.

Write(i,M): Given a session identifier and a message M , the oracle sets regi := M .
The oracle can only be used once for every identifier i, further calls to it return
⊥ without producing changes to the registry. It cannot be called on the identifier
corresponding to the joining session initiated by AddHU.

State(): This oracle returns the current GM’s state stGM.

In the correctness definition, we restrict the adversary to enrolling a single honest
user into the group via calling the AddHU oracle. This generalises to the case of
multiple honest users via a standard hybrid argument.
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Experiment: ExpCorr
FDGS,A(λ)

− h := ⊥;N := 0;K := 0; τCurrent := 0; τJoin :=∞; τRevoke :=∞
− param← GSetup(1λ)
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)
− (m, τ)← AAddHU,SndToM,Update,Write,State(gpk, info0)
− If K = k(λ) and τRevoke =∞ and τJoin =∞ return 0
− If h = ⊥ or τ > τCurrent return 1
− If τJoin < τ < τRevoke and IsActive(h, τ, stGM) = 0 return 0
− If IsActive(h, τ, stGM) = 0 return 1
− Σ ← Sign(gskh, infoτ ,m)
− Return Verify(gpk, infoτ ,m,Σ)

Fig. 1. Correctness game.

AddHU()

� If K = k(λ) return ⊥
� K := K + 1
� If h = ⊥:
◦ N := N + 1; h := N
◦ Mh := init; sth := gpk
◦ gskh := ⊥

� (outh;MGM; sth)← Join
WriteReg(h,·)
User (Mh; sth)

� If outh 6= ε:
◦ gskh := outh
◦ τJoin = τCurrent
◦ K = k(λ) // maximal number of rounds

� (outGM;Mh; stGM)← Join
ReadReg(h)
GM (h,MGM; stGM)

� Return (outh,MGM), (outGM,Mh)

State()

� Return stGM

SndToM(i,MGM)

� If i /∈ [N + 1] ∨ i = h return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

Update(R)

� If R 6⊆ [N ] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� If h ∈ R and τRevoke =∞ set τRevoke = τCurrent
� Return infoτCurrent := info

Write(i,M)

� If i = h or regi 6= ⊥ return ⊥
� Set regi := M

Fig. 2. Oracles used in the correctness game.
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Definition 2 (Correctness). An FDGS scheme is correct if for any PPT adver-
sary A

Pr[ExpCorr
FDGS,A(λ) = 1] ≈ 1

If the definition holds also for unbounded adversaries, we say the FDGS scheme is
statistically correct, and if the probability is exactly 1 we say the FDGS scheme is
perfectly correct.

Variations of Correctness. In the correctness definition we give the adversary
access to the state of the group manager. This means even if the honest group
manager’s secret data is leaked, an honest user can still enroll and sign messages as
long as the group manager considers her active. A more relaxed but still reasonable
definition of correctness would be to assume the group manager keeps her state secret.
In this latter case, it is then natural to give the adversary access to an opening oracle
to model that the group manager may sometimes trace a member who produced a
signature.

In the case where there is a separation between the group manager and an
opening authority, we still need the group manager to be honest for correctness to
make sense. However, we may want correctness to hold even in the presence of a
malicious opening authority; since it is the sovereign domain of the group manager
to decide who is an active member and should be able to sign messages. In Fig. 3
we therefore define the correctness game with an adversarial opening authority. It

Experiment: ExpCorr
FDGS,A(λ)

− h := ⊥;N := 0;K := 0; τCurrent := 0; τJoin :=∞; τRevoke :=∞
− param← GSetup(1λ)

−
(

(mpk, info0; stGM); (opk; stA)
)
← 〈GKGenGM(param);A(param)〉

− gpk := (param,mpk, opk)
− (m, τ)← AAddHU,SndToM,Update,Write,State(gpk, info0; stA)
− If K = k(λ) and τRevoke =∞ and τJoin =∞ return 0
− If h = ⊥ or τ > τCurrent return 1
− If τJoin < τ < τRevoke and IsActive(h, τ, stGM) = 0 return 0
− If IsActive(h, τ, stGM) = 0 return 1
− Σ ← Sign(gskh, infoτ ,m)
− Return Verify(gpk, infoτ ,m,Σ)

Fig. 3. Correctness game for separate GM and OA.

is straightforward to see that given a group signature scheme FDGS with separate
GM and OA satisfying correctness, the transformation from Section 2.2 gives a group
signature scheme FDGS ′ with a single group manager that is correct too.

Many definitions of correctness found in the literature [BMW03, BSZ05, KY06]
encompass not just that an honestly generated signature is accepted by the veri-
fication algorithm but also add other requirements such as an honestly generated
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signature should be opened to the honest signer who generated it. In our definition of
correctness we only require that honestly generated signatures are accepted and refer
to other security definitions to handle additional requirements that we consider less
central. In particular, for the property of honestly generated signatures opening to the
correct signer, it is captured by the traceability and opening soundness properties we
later define, and captured in a much stronger sense than usually done in correctness
definitions since we explicitly consider opening soundness in a highly adversarial set-
ting instead of just considering an honest interaction. This leaves a small definitional
gap when considering perfect correctness since traceability and opening soundness
may only hold computationally. However, we find the difference to be insignificant
and have therefore deliberately opted for the minimal and simplest definition of
correctness that only demands honest generated signatures to be accepted.

Anonymity. Group signatures should be anonymous and not reveal the identity of
the group member who produced them. Since the group manager has the ability to
trace signers we must assume the group manager to be honest for anonymity to hold
but some of the other users may be malicious.

In the game ExpAnon−b
FDGS,A (shown in Figure 4), we maintain the following counter

and lists: N is the number of users that initiated the Join protocol with the GM,
H is a list of honest users, and C is a list of challenge signatures obtained from the
challenge oracle. We give the adversary access to the following oracles, details of
which are given in Figure 5

AddHU(i) : This oracle allows the adversary to add honest users to the group by
going through the join protocol one round at a time. The oracle models full
key exposure, both communication and the user’s signing key are leaked to the
adversary.

SndToM(i,MGM) : This oracle allows the adversary to add corrupt users to the group.
The adversary can deviate from the Join protocol by sending arbitrary messages
MGM to the GM. Each oracle call executes the next move of an honest GM on
input message MGM in the i-th instance of the Join protocol. It returns the GM
response message and output.

Chalb(info,m, i0, i1) : This a left-right oracle for defining anonymity. It takes as input
some group information info, a message m, and two honest users i0, i1. It returns
a group signature on the message using key gskib for b ← {0, 1} and the given
group information. It is required that both challenge users are able to sign with
respect to info. The adversary can only call this oracle once.

Open(info,m,Σ) : Returns the session identifier i of the signer who produced signature
Σ on m with respect to info, together with a proof π. The oracle cannot be called
on a signature obtained from the Chalb oracle.

ReadReg(i) : Given a session identifier i, it returns the corresponding entry in the
registry regi.
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Update(R) : Allows the adversary to prompt a group information update and incre-
ment the epoch. Here R is a set of the group members to be revoked from the
group.

Experiment: ExpAnon−b
FDGS,A(λ)

− param← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg,Update(gpk, info0)

Fig. 4. Anonymity game.

AddHU(i)

� If i /∈ [N + 1] return ⊥
� If i = N + 1
◦ H := H ∪ {i}
◦ N := N + 1
◦ Mi := init
◦ sti := gpk
◦ gski := ⊥

� (outi;MGM; sti)← Join
WriteReg(i,·)
User (Mi; sti)

� If outi 6= ε:
◦ gski := outi

� (outGM;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,MGM), (outGM,Mi)

ReadReg(i)

� Return regi

Update(R)

� If R 6⊆ [N ] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent := info

SndToM(i,MGM)

� If i /∈ [N + 1] ∨ i ∈ H return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

Chalb(info,m, i0, i1)

� If {i0, i1} 6⊆ H return ⊥
� Σ0 ← Sign(gski0 , info,m)
� Σ1 ← Sign(gski1 , info,m)
� If Verify(gpk, info,m,Σ0) = 0 return ⊥
� If Verify(gpk, info,m,Σ1) = 0 return ⊥
� C := {(info,m,Σb)}
� Return Σb

Open(info,m,Σ)

� If (info,m,Σ) ∈ C return ⊥
� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return Open(gpk, stGM, info,m,Σ).

Fig. 5. Oracles used in the anonymity game.

The adversary can interact with honest users and join corrupt users. At some
point, the adversary picks two honest members of the group at a chosen epoch, gets
a signature from one of them, and tries to learn which of them has signed a chosen
message. She wins if she can guess which member signed the message. For simplicity,
the adversary is only allowed a single challenge query but a standard hybrid argument
(similar to that used in [BSZ05]) shows this is equivalent to seeing many challenge
signatures. Our definition covers full key exposure attacks by allowing A to learn
the secret keys of all users in the group.

Definition 3 (Anonymity). An FDGS scheme is anonymous if for all PPT
adversaries A the following advantage is negligible

AdvAnon
FDGS,A(λ) :=

∣∣∣Pr[ExpAnon−0
FDGS,A(λ) = 1]− Pr[ExpAnon−1

FDGS,A(λ) = 1]
∣∣∣ .
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Variations of Anonymity. Our definition of anonymity corresponds to what
Bellare et al. [BMW03] call full anonymity. Their usage of full anonymity emphasizes
that anonymity holds even in the presence of an adversary that sees the signing
keys of honest users and has access to an opening oracle. Our definition captures
full anonymity, as the adversary sees not only the signing key of every honest user,
but she also sees the entire joining transcript. Full anonymity gives strong security
guarantees since it ensures that even if a user’s secret key is leaked her past or future
signatures still do not reveal her identity.

Group signatures with full anonymity imply the existence of IND-CCA secure
public-key encryption [AW04, CG04]. The anonymity notion therefore has to be
relaxed if we want to build group signatures based on one-way functions as is done
in [CG04]. Such a relaxation can consist in not giving outi to the adversary in the
AddHU oracle but instead give the adversary access to a signing oracle that will allow
it to get signatures from honest users on any message of its choosing.

Boneh, Boyen and Shacham [BBS04] define another relaxed form of anonymity
where the adversary does not have access to the Open oracle. This relaxation is
analogous to the distinction between IND-CPA and IND-CCA secure public-key
encryption, and indeed they refer to the notion as CPA-anonymity.

Let us now consider the case where we separate the roles of managing the group,
GM, and the role of opening signatures, OA. For anonymity to hold, we need the
opening authority to be honest, however, we may desire security against a malicious
group manager. We give the corresponding anonymity game in Fig. 6. Please observe
that the oracles the adversary has access to are different because when the adversary
runs the group manager it can directly manage the joining interaction with honest
users, simulate the enrolment of corrupt users, and compute group information
updates by itself. Therefore we remove the Update,SndToM oracles and replace the
AddHU oracle with an SndToU oracle that lets the adversarially controlled group
manager communicate with an honest user trying to join the group.

Let FDGS be a group signature scheme with separate GM and OA with full
anonymity, and let FDGS ′ be the resulting single authority group signature scheme
resulting from the transformation given in Section 2.2. Then FDGS ′ is anonymous
according to the single authority definition because an FDGS adversary can as a
special case run an honest GM algorithm and simulate everything that happens in
an attack against FDGS ′. In particular, by running GM honestly, it can simulate
the SndToM oracle, and use the SndToU oracle to build a simulated AddHU oracle.

Traceability. Traceability protects the group manager by ensuring that all signa-
tures that are valid for a given epoch can be opened to an active member of the group.
In the traceability game ExpTrace

FDGS,A shown in Figure 8, we maintain a counter N for
the number of users that initiated the Join protocol with the GM and the adversary
A has access to the following oracles, details of which are given in Figure 9.
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Experiment: ExpAnon−b
FDGS,A(λ)

− param← GSetup(1λ);N := 0; C := ∅
−
(

(mpk; stA); (opk, osk)
)
← 〈A(param); GKGenOA(param)〉

− gpk := (param,mpk, opk)
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk; stA)

Fig. 6. Anonymity game for separate GM and OA.

SndToU(i,Mi)

� If i /∈ [N + 1] return ⊥
� If i = N + 1:
◦ N := N + 1
◦ Mi := init
◦ sti := gpk

� (outi;MGM; sti)← Join
WriteReg(i,·)
User (Mi; sti)

� If outi 6= ε ∧ outi 6= ⊥ :
◦ gski := outi

� Return (outi,MGM)

ReadReg(i)

� Return regi

Chalb(info,m, i0, i1)

� If {i0, i1} 6⊆ [N ] return ⊥
� Σ0 ← Sign(gski0 , info,m)
� Σ1 ← Sign(gski1 , info,m)
� If Verify(gpk, info,m,Σ0) = 0 return ⊥
� If Verify(gpk, info,m,Σ1) = 0 return ⊥
� C := {(info,m,Σb)}
� Return Σb

Open(info,m,Σ)

� If (info,m,Σ) ∈ C return ⊥
� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return OpenReadReg(gpk, osk, info,m,Σ)

Fig. 7. Oracles used in the anonymity game for separate GM and OA.

SndToM(i,MGM) : This oracle allows the adversary to add corrupt users to the group.
She can deviate from the Join protocol by sending arbitrary messages MGM to
GM. Each oracle call executes the next move of an honest GM on input message
MGM in the i-th instance of the Join protocol. It returns the GM output and
response message.

Update(R) : This oracle allows the adversary to trigger a group information update
and increment the epoch. Here R is the set of the group members to be removed
from the group.

WriteReg(i,M) : Given a session identifier and a message M , the oracle sets regi := M .
The oracle can only be used once for every identifier i.

Open(info,m,Σ) : Returns the session identifier i of the signer who produced signature
Σ on m with respect to info, together with a proof π.

Definition 4 (Traceability). An FDGS scheme is traceable if for all PPT adver-
saries A, the following advantage is negligible

AdvTrace
FDGS,A(λ) := Pr[ExpTrace

FDGS,A(λ) = 1].

Variations of Traceability. Bellare, Micciancio and Warinschi [BMW03] defined
traceability purely with respect to identifying a signer but did not require a proof
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Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ);N := 0; τCurrent := 0
− (mpk, info0; stGM)← GKGen(param)
− gpk := (param,mpk)

−
(
m,Σ, τ

)
← ASndToM,Update,WriteReg,Open,State(gpk, info0)

− If Verify(gpk, infoτ ,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM, infoτ ,m,Σ)
− If IsActive(i, τ, stGM) = 0 return 1
− If Judge(gpk, infoτ , regi,m,Σ, π) = 0 return 1
− Return 0.

Fig. 8. Traceability game.

SndToM(i,MGM)

� If i /∈ [N + 1] return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

WriteReg(i,M)

� If regi 6= ⊥ return ⊥
� regi := M
� Return >

Update(R)

� If R 6⊆ [N ] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent := info

Open(info,m,Σ)

� If Verify(gpk, info,m,Σ) = 0 return ⊥
� Return Open(gpk, stGM, info,m,Σ)

State()

� Return stGM

Fig. 9. Oracles used in the traceability game.

of correct opening. Bellare, Shi and Zhang [BSZ05] included the use of a proof for
correct opening that can be verified by anybody using the Judge algorithm. If we
trust the group manager instead of requiring a proof of correct opening, the defining
game in Fig. 8 can be simplified by eliminating the proof and the Judge algorithm.

By necessity, the group manager needs to be at least partially trusted since
otherwise it can just enrol some dummy member that can then sign arbitrary
messages and act as a scapegoat. However, we have defined traceability such that
it holds even if the honest group managers secret state is leaked. A reasonable
relaxation of our definitions would be to trust the group manager to keep its state
secret, in which case we would remove the State oracle.

Let us consider the case where we separate the roles of group manager and
opening authority. The opening authority is the primary stakeholder that wants
to ensure signers can be traced. However, we define security strongly by requiring
traceability even in case its secret opening key is leaked. As in the single authority
setting, we still need to have some trust in the group manager to keep track of who
is active in the group and not to enroll dummy members, however, again we opt for
a strong definition of security where its state may be leaked.



20

Experiment: ExpTrace
FDGS,A(λ)

− param← GSetup(1λ);N := 0; τCurrent := 0

−
(

(mpk, info0; stGM); (opk, osk)
)
← 〈GKGenGM(param); GKGenOA(param)〉

− gpk := (param,mpk, opk)

−
(
m,Σ, τ

)
← ASndToM,Update,WriteReg,State(gpk, info0, osk)

− If Verify(gpk, infoτ ,m,Σ) = 0 return 0

− (i, π)← OpenReadReg(gpk, osk, infoτ ,m,Σ)
− If IsActive(i, τ, stGM) = 0 return 1
− If Judge(gpk, infoτ , regi,m,Σ, π) = 0 return 1
− Return 0.

Fig. 10. Traceability game for separate group manager and opening authority.

SndToM(i,MGM)

� If i /∈ [N + 1]: Return ⊥
� If i = N + 1:
◦ N := N + 1

� (outi;Mi; stGM)← Join
ReadReg(i)
GM (i,MGM; stGM)

� Return (outi,Mi)

State
� Return stGM

Update(R)

� If R 6⊆ [N ] return ⊥
� (info; stGM)← UpdateGroup(R; stGM)
� τCurrent := τCurrent + 1
� Return infoτCurrent := info

WriteReg(i,M)

� If regi 6= ⊥ return ⊥
� Return regi := M

Fig. 11. Oracles used in the traceability game for separate GM and OA.

The two games for traceability are very similar, and it is easy to see that the
transformation in Sec. 2.2 of an FDGS for separate GM and OA to a single group
manager scheme FDGS ′ preserves traceability.

Non-Frameability. Non-frameability is a security notion that says even if the rest
of the group as well as the group manager are fully corrupt, they cannot falsely
attribute a signature to an honest member who did not produce it. In the non-
frameability game ExpNon−Frame

FDGS,A shown in Figure 12, we grant the adversary access
to the oracles described below and detailed in Figure 13, and we keep a global list S
of signatures produced by an honest user. Please note that the adversary controls
the group manager and hence session identifiers no longer carry much meaning, the
adversary can pretend the user has any session identifier. Instead without loss of
generality we simply identify the honest user with a generic record reg and require
that only the honest user is able to write in this record.

SndToHU(Mh) : This oracle allows the adversary to interact with a single honest
user in an instance of the join protocol. Each call executes the next move of the
honest user on input a message Mh provided by the adversary (playing the role
of the corrupt group manager) and returns the user response message. The user
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may write a message into the register using oracle Write, which can be accessed
only once by the user and reveals the register entry to the adversary. The user
output outh, i.e., the signing key, is not disclosed to the adversary.

SignHU(info,m) : This oracle is used by the adversary against non-frameability to
obtain signatures from an honest group member h added to the group via
SndToHU calls. It returns a group signature on the message m using key gskh
and group information info.

Experiment: ExpNon−Frame
FDGS,A (λ)

− param← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA)← A(param)
− gpk := (param,mpk)

−
(
m,Σ, π, info

)
← ASndToHU,SignHU(stA)

− If Verify(gpk, info,m,Σ) = 0 return 0
− If (info,m,Σ) ∈ S return 0
− Return Judge(gpk, info, reg,m,Σ, π)

Fig. 12. Non-Frameability game.

SndToHU(Mh)

� If h = ⊥:
◦ h := >:
◦ Mh := init
◦ sth := gpk

� (outh;MGM; sth)← Join
Write(·)
User (Mh; sth)

� If outh 6= ε set gskh := outh
� Return MGM

SignHU(info,m)

� If gskh = ⊥ return ⊥
� Σ ← Sign(gskh, info,m)
� S := S ∪ {(info,m,Σ)}
� Return Σ

Write(M)

� Set reg := M
� Send M to A
� Ignore future calls

Fig. 13. Oracles used in the non-frameability game.

Definition 5 (Non-frameability). An FDGS scheme is non-frameable if for all
PPT adversaries A, the following advantage is negligible

AdvNon−Frame
FDGS,A (λ) := Pr[ExpNon−Frame

FDGS,A (λ) = 1].

In our definition of non-frameability the adversary controls the group manager
during the key generation process. Thus, our definition is stronger than existing
definitions, which only allow the group manager to be corrupted after the group keys
have been honestly generated.

We allow only a single honest user in the group and ask the adversary to frame
her. It can be shown that this implies the more general case involving several honest
users in the group by a standard hybrid argument since the adversary can simulate
the actions of additional honest users.
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Variations of Non-Frameability. While traceability still makes sense without
proofs and the Judge algorithm, non-frameability does not since it is about whether
a corrupt group manager would be able to prove instead of just falsely accusing an
honest user of having signed a message. If we consider the setting with no proofs
and no Judge algorithm, we can therefore completely eliminate the non-frameability
notion from our definitions.

In Fig. 14 we give a variation of the non-frameability game suitable for the setting
where the roles of group manager and opening authority are separated. Since both
are under adversarial control, the game is equivalent to the previous non-frameability
game where the group manager has both roles, so it is easy to see the transformation
from Sec. 2.2 of a two authority FDGS into a single authority FDGS ′ preserves
non-frameability.

Experiment: ExpNon−Frame
FDGS,A (λ)

− param← GSetup(1λ); h := ⊥;S := ∅; gskh := ⊥
− (mpk, opk; stA)← A(param)
− gpk := (param,mpk, opk)

−
(
m,Σ, π, info

)
← ASndToHU,SignHU(stA)

− If Verify(gpk, info,m,Σ) = 0 return 0
− If (info,m,Σ) ∈ S return 0
− Return Judge(gpk, info, reg,m,Σ, π)

Fig. 14. Non-Frameability game for separate GM and OA.

2.4 Additional Security Definitions

In addition to the core security properties correctness, anonymity, traceability and
non-frameability, a group signature scheme may have additional security guarantees.
In the above definitions, the opening provided by either the group manager or the
opening authority can be generally thought as a deterrent against user misbehaviour.
It is not hard, however, to envision applications in which openings could be used
to positive benefit for the users. In such scenarios it may become crucial to prevent
an attacker exploiting the opening mechanism to her own advantage rather than to
elude it.

Opening Binding. Opening binding7 defined by Sakai et al. [SSE+12] in the
context of partially dynamic group signatures guarantees that even if all authorities
and users collude they should not be able to produce a valid signature that can
be selectively attributed to different members. Consider for instance a contest to
find the best stock market analyst. Group signatures are used to sign stock market

7Sakai et al. [SSE+12] refer to this notion as opening soundness.
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predictions by the experts, who should remain anonymous in order not to influence
the markets, and later we use the opening algorithm in order to tally up who is the
best expert. There may be a financial incentive to become the leading expert, so
we could imagine a collusion where an “expert” and a dummy “idiot” enroll and
then collaborate to attribute all correct predictions to the “expert” and all wrong
predictions to the “idiot”.

We describe the opening binding game in Fig. 15, where the goal of the adversary
is to create a signature and two distinct attributions to who signed it. We consider a
strongly adversarial setting, where both the authorities and users may be adversarial
but want the guarantee that each signature must be attributed to a unique record in
the registry.

Definition 6 (Opening Binding). An FDGS scheme is opening binding if for
all PPT adversaries A

AdvOpening−Bind
FDGS,A (λ) := Pr[ExpOpening−Bind

FDGS,A (λ) = 1] ≈ 0.

Experiment: ExpOpening−Bind
FDGS,A (λ)

− param← GSetup(1λ)
− (mpk, info, opk,m,Σ, reg, π, reg′, π′)← A(param)

//This is for separate GM and OA, use opk = ε if only single GM
− gpk := (param,mpk, opk)
− If Verify(gpk, info,m,Σ) = 0 return 0
− If Judge(gpk, info, reg,m,Σ, π) = 0 return 0
− If Judge(gpk, info, reg′,m,Σ, π′) = 0 return 0
− If reg 6= reg′ return 1, else return 0

Fig. 15. Opening binding game.

Opening Soundness. Consider again the example of a competition to determine
who is a the best stock market prediction expert, this time from the perspective of
an honest expert. It would be problematic if the opening of her signature did not
point to herself but instead attributed it to somebody else. The worst-case scenario
here is that dishonest authorities are collaborating with a malicious user to attribute
an honest user’s signature to a malicious user instead.8

We define the opening soundness experiment in Fig. 16, where the adversary
is trying to attribute a signature Σ of an honest user to a different registry. The

8Please observe the subtle difference between opening binding and opening soundness. Opening
binding protects against malicious actors trying to create double-openable signatures, while opening
soundness guarantees an honest signer can indeed have the signature attributed to her. Neither
definition implies the other. It is conceivable one could violate opening binding by creating two
distinct openings of the same valid but maliciously generated signature without violating the
attribution of honest signatures to honest signers. It is also conceivable that honest signatures can
only be opened in one way but with a malicious setup that unique attribution does not point to the
honest signer.
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experiment uses an oracle to enrol and honest user and an oracle that provides an
honestly generated signature described in Fig. 17.

Definition 7 (Opening soundness). An FDGS scheme is opening sound if for
all PPT adversaries A

AdvOpening−Sound
FDGS,A (λ) := Pr[ExpOpening−Sound

FDGS,A (λ) = 1] ≈ 0.

Related notions of opening soundness were previously considered by Kiayias and
Yung [KY06], as a requirement for correctness, and Sakai et al. [SSE+12], under the
name of weak opening soundness. Our definition considers highly adversarial settings
and thus captures a much more stringent notion.

Experiment: ExpOpening−Sound
FDGS,A (λ)

− param← GSetup(1λ); h = ⊥; reg := ⊥; gskh = ⊥;Σ := ⊥
− (mpk, opk; stA)← A(param)

//This is for separate GM and OA, use opk = ε if only single GM
− gpk := (param,mpk, opk)
− (info∗, reg∗,m∗, π∗)← ASndToHU,SignHU(stA)
− If Judge(gpk, info∗, reg∗,m∗, Σ, π∗) = 0 return 0
− If reg 6= reg∗ return 1, else return 0

Fig. 16. Opening soundness game.

SndToHU(Mh)

� If h = ⊥:
◦ h := >:
◦ Mh := init
◦ sth := gpk

� (outh;MGM; sth)← Join
Write(·)
User (Mh; sth)

� If outh 6= ε set gskh := outh
� Return (outh,MGM, sth)

SignHU(info,m)

� Σ ← Sign(gskh, info,m)
� Return Σ
� Ignore future calls

Write(M)

� Set reg := M
� Send M to A
� Ignore future calls

Fig. 17. Oracles used in the opening soundness game.

3 Static and Partially Dynamic Group Signatures

In the previous section, we defined fully dynamic group signatures. Earlier formal defi-
nitions covered static groups, where the membership is fixed at initialization [BMW03],
and partially dynamic groups where new members may enrol but without revoca-
tion [BSZ05, KY06]. We will now discuss how our definitions for fully dynamic group
signatures can be relaxed to the static and partially dynamic settings, and we will
show that aside from minor differences earlier formal definitions of group signatures
can be seen as restrictions of our definitions to special cases.
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3.1 Restriction to Partially Dynamic Signatures

In prior works, the term dynamic group signature refers to the case where new
members may enrol. These definitions do not cover revocation though, the group
can grow but it will never shrink. This partially dynamic setting is simply a special
case of our fully dynamic group signatures, where we never revoke members, i.e., in
all calls to Update we have revocation set R = ∅.

For some designs of group signatures, the group information does not change
as new members are enrolled. This is unlike the fully dynamic setting, where by
necessity the group information must change to prevent revoked signers from using
their current keys to produce valid signatures. When the group information is
immutable, we can eliminate the Update function entirely from our scheme and
remove the corresponding oracle in the security definitions. This in turn means we
only have one epoch τ = 0 and also the IsActive policy now simply says that an
enrolled user is active immediately after the group manager considers her joining
procedure to have ended successfully. Since info0 is generated by GM together with
the manager public key mpk, we can without loss of generality assume info0 = ε.
For the special case of partially dynamic group signatures with immutable group
information, the definitions can therefore be simplified by excluding the epoch τ = 0,
the public group information info0 = ε and the Update procedure.

These notational simplifications lead us to the following syntax for a partially
dynamic group signature scheme with immutable group information:

Reg: Data structure with records regi for joining session identifiers i = 1, 2, 3, . . .
with algorithms/oracles.
• ReadReg(i): Return regi (or ⊥ if no such record exists).
• WriteReg(i,M): Set regi := M and ignore further calls with the same i.

GSetup(1λ)→ param: PPT algorithm generating trusted parameters (or 1λ if there
is no trusted setup).

GKGen(param)→ (mpk; stGM): PPT algorithm for group manager key generation.
The group public key is gpk := (param,mpk).
If we separate the roles of group manager GM and opening authority OA, they
instead run the interactive key generation protocol

((mpk; stGM); (opk, osk))← 〈GKGenGM(param); GKGenOA(param)〉

and let gpk := (param,mpk, opk) be the group public key.
Join: Interactive protocol for enrolling user in group. Defined by PPT algorithms

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM; stGM)→ (outGM;M ; stGM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active.
In the partially dynamic case, the policy is that the user joining in session i is
active if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.
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Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.
Open(gpk, stGM,m,Σ)→ (i, π): PPT opening algorithm.

If we separate the roles of group manager and opening authority, OA instead uses
the opening key osk to run OpenReadReg(·)(gpk, osk,m,Σ)→ (i, π).

Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was cor-
rectly attributed to registry record reg.

The corresponding simplified security experiments for partially dynamic group
signature scheme with immutable group information is given in Fig. 18. We list
the experiments for the single group manager setting, and note in the comments
indicated by // how to adapt them to the separate GM and OA setting. The oracles
are defined exactly as in the case of fully dynamic group signatures and simplified
by excluding the group information info = ε and epochs τ = 0.

Comparison to Bellare, Shi and Zhang [BSZ05]. Bellare, Shi and Zhang [BSZ05]
define partially dynamic group signatures with separate group manager (called Issuer)
and opening authority (called Opener). Their definition is a specific type of partially
dynamic group signature with immutable group information. We will now describe
restrictions to our definition of partially dynamic group signatures that yields a
definition similar to their definition.

Bellare, Shi and Zhang consider a group manager state of the form stGM =
(msk, {stiGM}). The state is therefore compartmentalized to consist of a fixed part
msk, which we call the manager’s secret key, and other parts stiGM that are specific
to the joining sessions. It is assumed joining session states are independent of each
other, which makes it easier to reason about concurrent joins. In particular, since
the joins are independent of each other, we can under the same assumption of
compartmentalized group manager state define correctness in terms of a single
joining session and ignore any concurrent joining sessions.

Bellare, Shi and Zhang assume a trusted key generation procedure. If we assume
keys to be honestly generated, we can combine the trusted parameter generation and
the key generation protocol into a single algorithm, which first runs the parameter
generation and then honestly execute the interactive key generation protocol. So
there is little loss of generality in assuming a single trusted algorithm that generates
all keys.

Taken together, for a partially dynamic group signature scheme with compart-
mentalized group manager state and trusted key generation we can simplify the
syntax and security experiments as described below. A group signature scheme with
compartmentalized group manager state satisfying our definition in Fig. 18 directly
yields a partially dynamic group signature scheme satisfying the definition in Fig. 19
by letting the key generation procedure run the setup algorithm and the interactive
key generation protocol honestly and outputting the resulting keys.

Reg : Data structure with records regi for joining session identifiers i = 1, 2, 3, . . .
with algorithms/oracles.
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Experiment: ExpCorr
PDGS,A(λ)

− param← GSetup(1λ); h := ⊥; N := 0;K := 0
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stGM); (opk; stA)
)
← 〈GKGenGM(param);A(param)〉

// gpk := (param,mpk, opk)
− m← AAddHU,SndToM,Write,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
PDGS,A(λ)

− param← GSetup(1λ);N := 0;H := ∅; C := ∅
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stA); (opk, osk)
)
← 〈A(param); GKGenOA(param)〉

// gpk := (param,mpk, opk)
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

// Return b∗ ← ASndToU,Open,Chalb,ReadReg
(
gpk; stA

)
Experiment: ExpTrace

PDGS,A(λ)

− param← GSetup(1λ);N := 0
− (mpk; stGM)← GKGen(param); gpk := (param,mpk)

//
(

(mpk; stGM); (opk, osk)
)
← 〈GKGenGM(param); GKGenOA(param)〉

// gpk := (param,mpk, opk)
− (m,Σ)← ASndToM,WriteReg,Open,State(gpk)

//
(
m,Σ

)
← ASndToM,WriteReg,State(gpk, osk)

− If Verify(gpk,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM,m,Σ)

// (i, π)← OpenReadReg(gpk, osk,m,Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
PDGS,A (λ)

− param← GSetup(1λ); h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
− (mpk; stA)← A(param); gpk := (param,mpk)

// (mpk, opk; stA)← A(param); gpk := (param,mpk, opk)

−
(
m,Σ, π

)
← ASndToHU,SignHU

(
stA

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, reg,m,Σ, π)

Fig. 18. Security experiments for partially dynamic group signatures.
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• ReadReg(i) : Return regi (or ⊥ if no such record exists).
• WriteReg(i,M) : Set regi := M and ignore further calls with the same i.

GKGen(1λ)→ (gpk,msk, osk): Trusted PPT algorithm for key generation.
Join : Interactive protocol for enrolling user in group. Defined by PPT algorithms.

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM,msk; stiGM)→ (outGM;M ; stiGM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active.
In the partially dynamic case, the policy is that the user joining in session i is
active if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.
Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.
OpenReadReg(·)(gpk, osk,m,Σ)→ (i, π) : PPT opening algorithm.
Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was cor-

rectly attributed to registry record reg.

The matching simplified security experiments are given in Fig. 19. The oracles are
defined exactly as in the previous definitions.

Bellare, Shi and Zhang assume a confidential communication channel between
the group manager and joining users, while we assume an open channel. A scheme
satisfying our security definition will of course also satisfy the weaker security
definition that assumes confidential communication channels. Conversely, the group
manager and user can use public-key cryptography to establish a confidential channel,
so this definitional difference is immaterial. Bellare, Shi and Zhang also consider
a slightly stronger definition of correctness where an honestly generated signature
must always open to identify the signer, which as discussed in Sec. 2.3 is covered in
a computational sense by traceability and therefore in our opinion immaterial.

It can now be seen by direct comparison with [BSZ05] that the experiments in
Fig. 19 yield a security definition very similar to the one given by Bellare, Shi and
Zhang. One remaining difference is that Bellare, Shi and Zhang explicitly include
a public key infrastructure where each user has an identity j ∈ N and generates a
key pair (upk[j], usk[j]), and they consider the registry to be under the jurisdiction
of the group manager. However, as discussed in Section 2.2 we can eliminate this
extra step to simplify definitions and just consider the registry record to be under
control of the user. For concreteness, this can be done by letting the user generate
a key pair (upk, usk) for an sEUF-CMA secure digital signature scheme and create
a signature σ on her intended record together with her identity j and public key
upk[j]. I.e., in Bellare et al. let the record created when she is joining in session i be
reg[i] = (j, upk[j], regi, σ). The user can now send this record to the group manager
when she wants to write to the registry. Since the group manager cannot forge the
user’s signature, this is equivalent to letting the user have one-time write access to
the registry, and given the record index i it is easy to map to the user identity j.
Our definition in Fig. 19 is mostly similar to the definition of Bellare et al. [BSZ05]
modulo this difference.
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Experiment: ExpCorr
BSZ,A(λ)

− (gpk,msk, osk)← GKGen(1λ) ; h := ⊥; N := 0;K := 0
− m← AAddHU,Write(gpk,msk, osk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
BSZ,A (λ)

− (gpk,msk, osk)← GKGen(1λ) ; N := 0;H := ∅; C := ∅
− Return b∗ ← ASndToU,Open,Chalb,ReadReg(gpk,msk)

Experiment: ExpTrace
BSZ,A(λ)

− (gpk,msk, osk)← GKGen(1λ) ; N := 0

−
(
m,Σ

)
← ASndToM,WriteReg(gpk,msk, osk)

− If Verify(gpk,m,Σ) = 0 return 0

− (i, π)← OpenReadReg(gpk, osk,m,Σ)
− If IsActive(i, stGM) = 0 return 1
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
BSZ,A (λ)

− (gpk,msk, osk)← GKGen(1λ) ; h := ⊥; reg = ⊥;S := ∅; gskh := ⊥
−
(
m,Σ, π

)
← ASndToHU,SignHU(gpk,msk, osk)

− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, reg,m,Σ, π)

Fig. 19. Security experiments for partially dynamic group signatures akin to Bellare, Shi and
Zhang [BSZ05].
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Comparison to Kiayias and Yung [KY06]. Kiayias and Yung [KY06] also give
a formal definition of partially dynamic group signatures with immutable group
information. Their definition is in the single authority setting and deviates from our
definition and Bellare, Shi and Zhang [BSZ05] by trusting the group manager to open
honestly and not requiring proofs of correct attribution to a signer. This simplification
is easy to implement given a single authority partially dynamic group signature; the
opening algorithm can simply discard the proof of correct attribution. Kiayias and
Yung assume the key generation process is honest and they also assume the group
manager’s internal state can be compartmentalized as stGM = (msk, {stiGM}), both of
which are special cases of our definition.9 In their mode, opening takes place against
a public record, so we let the opening algorithm have access to the registry, while
it is of course easy to just incorporate it into the state of the group manager. We
present the syntax and security experiments below.

Reg : Data structure with records regi for joining session identifiers i = 1, 2, 3, . . .
with algorithms/oracles.
• ReadReg(i) : Return regi (or ⊥ if no such record exists).
• WriteReg(i,M) : Set regi := M and ignore further calls with the same i.

GKGen(1λ)→ (gpk;msk): PPT algorithm for group manager key generation.
Join : Interactive protocol for enrolling user in group. Defined by PPT algorithms.

• Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st).

• Join
ReadReg(i)
GM (i,MGM,msk; stiGM)→ (outGM;M ; stiGM).

IsActive(i, stGM)→ 1/0 : DPT algorithm defining when user is considered active.
In the partially dynamic case, the policy is that the user joining in session i is
active if and only if the group manager terminated with success symbol >.

Sign(gsk,m)→ Σ: PPT signing algorithm.
Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.
OpenReadReg(gpk,msk,m,Σ)→ i: DPT opening algorithm.

The matching security experiments are given in Fig. 20. The oracles are defined
exactly as in the previous definitions.

The security definition given in Fig. 20 is close to the security definition given by
Kiayias and Yung. There are some immaterial differences, such as allowing arbitrary
identifier i versus numbering them consecutively, and their specifying that the registry
must have entries of a specific form corresponding to the joining transcript. There
is one significant difference in the anonymity experiment. Here Kiayias and Yung
require indistinguishability of two signers as long as the keys are consistent with
the protocol, i.e., could plausibly have been generated. We on the other hand, just
require indistinguishability for honestly generated keys. In our opinion, the stronger
anonymity notion of Kiayias and Yung is overkill; it is reasonable to assume honest
signers will follow the protocol and therefore our anonymity experiment suffices to
protect them. Aside from this difference, inspection reveals that there are mainly

9Kiayias and Yung use very different notation. What they call ‘state’ is what we call ‘registry’.
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Experiment: ExpCorr
KY,A(λ)

− (gpk,msk)← GKGen(1λ) ; h := ⊥; N := 0;K := 0
− m← AAddHU,SndToM,WriteReg,State(gpk)
− If K = k(λ) and IsActive(h, stGM) = 0 return 0
− If IsActive(h, stGM) = 0 return 1
− Σ ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
KY,A (λ)

− (gpk,msk)← GKGen(1λ); N := 0;H := ∅; C := ∅
− Return b∗ ← AAddHU,SndToM,Open,Chalb,ReadReg(gpk)

Experiment: ExpTrace
KY,A(λ)

− (gpk,msk)← GKGen(1λ)
− (m,Σ)← ASndToM,WriteReg,Open,State(gpk)
− If Verify(gpk,m,Σ) = 0 return 0

− i← OpenReadReg(gpk,msk,m,Σ)
− If IsActive(i, stGM) = 0 return 1, else return 0

Experiment: ExpNon−Frame
KY,A (λ)

− (gpk,msk)← GKGen(1λ) ; h := ⊥;S := ∅
−
(
m,Σ

)
← ASndToHU,SignHU(gpk,msk)

− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0

− If OpenReadReg(gpk,msk,m,Σ) = h return 1, else return 0

Fig. 20. Security experiments for partially dynamic group signatures akin to Kiayias and
Yung [KY06].
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notational and terminological differences between our security definition in Fig. 20
and Kiayias and Yung [KY06].

3.2 Restriction to Static Group Signatures

In static group signatures, the set of group members is fixed from the start and
never changes. This means the setup procedure is different, since it includes the key
generation for all the group members, so strictly speaking static group signatures
are not just a definitional restriction of dynamic group signatures but a distinct
definition altogether. However, we can easily convert a dynamic group signature into
a static one by incorporating the join procedure for the users into the key generation
process and then at the end hand them their secret keys.

In our definition of static group signatures, we will replace the group manager
key generation with a trusted combined key generation protocol that also generates
keys for the group members. Since the set of group members is static, there is no
management operations taking place so the sole purpose of the group manager is to
be able to open group signatures and identify the signer. We therefore only consider
the single authority setting. Also, since membership does not change, the group
information does not need to change either and we only have a single epoch, so
we can without loss of generality fix info0 = ε and τ = 0 and omit them from
the definition. We can also eliminate reference to the IsActive procedure since all
group members are automatically considered active. Finally, since enrolment of users
takes place during setup we can only get non-frameability if the registry is honestly
generated. This means that in all the security experiments, we must assume trusted
key generation, and therefore we can incorporate the trusted parameters generation
into the key generation procedure.

With these changes in mind we get the following security experiments for static
group signatures, where N is an arbitrary polynomially bounded function of the
security parameter.

Reg: Data structure with records regi for members numbered i = 1, 2, 3, . . . , N .
• ReadReg(i): Return regi (or ⊥ if no such record exists).
• WriteReg(i,M): Set regi := M and ignore further calls with the same i.

GKGenWriteReg(1λ, N)→ (gpk, gsk1, . . . , gskN ; stGM): PPT algorithm for group man-
ager key generation, which depends on the number of desired group members N .
Returns the group public key, secret keys for the users, writes registry entries
reg1, . . . , regN , and sets the state of the group manager (which can be interpreted
as a group manager secret key).

Sign(gsk,m)→ Σ: PPT signing algorithm.

Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.

Open(gpk, stGM,m,Σ)→ (i, π): PPT opening algorithm.

Judge(gpk, reg,m,Σ, π)→ 1/0: DPT algorithm determining if signature was cor-
rectly attributed to registry record reg.
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The matching simplified security experiments for static group signature scheme and
oracle Keys are given in Fig. 21. The remaining oracles are defined exactly as in
the case of fully dynamic group signatures and simplified by excluding the group
information info = ε and epochs τ = 0.

Experiment: ExpCorr
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− (h,m)← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N ] return 1
− Σ ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− Return b∗ ← AOpen,Chalb,ReadReg(gpk, gsk1, . . . , gskN )

Experiment: ExpTrace
SGS,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)
− (m,Σ)← AReadReg(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk,m,Σ) = 0 return 0
− (i, π)← Open(gpk, stGM,m,Σ)
− If Judge(gpk, regi,m,Σ, π) = 0 return 1
− Return 0

Experiment: ExpNon−Frame
SGS,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM)← GKGenWriteReg(1λ, N)

−
(
m,Σ, π

)
← AReadReg,Keys,SignHU

(
gpk, stGM

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− Return Judge(gpk, regh,m,Σ, π)

Oracle: Keys(h)

� If h /∈ [N ] return ⊥
� Return {gski}i 6=h and ignore future calls

Fig. 21. Security experiments for static group signatures.

Comparison to static group signature definitions in [BMW03] Bellare,
Micciancio and Warinschi [BMW03] gave a formal definition of static group signatures
where group membership is fixed at the beginning of the protocol. Their definition
does not include proof of correct opening, they just require the group manager to
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identify the signer. This can be seen as a special case of our static group signature
scheme, where we omit the Judge algorithm and simply trust the judgment of the
group manager. We still need the core properties of traceability, i.e., we can open
all valid signatures to one of the members, and still want from non-frameability
that a signature will not be opened to a member who did not sign it. We present
the simplified definition of static group signatures in Fig. 22 and the syntax below.
Oracle are defined as for the previous definitions. Bellare et al. [BMW03] combine
the traceability and non-frameability notions into a combined notion they call full-
traceability. It is not hard to see though that the definition given in Fig. 22 is almost
equivalent to their security definition for static group signatures.

GKGen(1λ, N)→ (gpk, gsk1, . . . , gskN ; stGM): PPT algorithm for group manager
key generation, which depends on the number of desired group members N .
Returns the group public key, secret keys for the users, and sets the state of the
group manager (which can be interpreted as a group manager secret key).

Sign(gsk,m)→ Σ: PPT signing algorithm
Verify(gpk,m,Σ)→ 1/0: DPT verification algorithm.
Open(gpk, stGM,m,Σ)→ i: DPT opening algorithm.

If we have a static group signature scheme with proofs of correct opening satisfying
the definition in Fig. 21, then it is easy to convert it into a similar group signature
without proofs of correct opening satisfying the definition in Fig. 22. The group
key generation algorithm can include registry record regi in the secret signing key
gski and the group manager state stGM may include the entire registry (we could in
principle instead include the registry information in the group public key, but this
might lead to an undesirable increase in the size of gpk). When the Open algorithm
is called, it runs the original opening algorithm to get (i, π), verifies the proof using
the Judge algorithm, and returns i. It follows from the security definitions in Fig. 21
that this simple modification leads to a static group signature scheme without proof
of correct opening that satisfies the definitions in Fig. 22.

4 On the Security of Some Existing Schemes

In this section we look at existing constructions of fully dynamic group signatures
and discuss their security in our model. Different design paradigms can use the
group information in different ways. For example, the manager can use the group
information to store the list of the active members, include an accumulator, or
provide lists of the users that have been revoked. The way the group information is
used can also affect the timespan users are considered active, i.e. the set of epochs
in which users are entitled to sign. In our model this is tailored by specifying the
IsActive policy, which spells out the conditions governing the activation of a user.
We can thus compare different constructions based on their IsActive policy.

In [BCC+15] Bootle et al. gave a generic construction of group signatures from
accountable ring signatures. We start by showing that their generic construction
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Experiment: ExpCorr
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− (h,m)← A(gpk, gsk1, . . . , gskN , stGM)
− If h /∈ [N ] return 1
− Σ ← Sign(gskh,m)
− Return Verify(gpk,m,Σ)

Experiment: ExpAnon−b
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− Return b∗ ← AOpen,Chalb(gpk, gsk1, . . . , gskN )

Experiment: ExpTrace
BMW,A,N (λ)

− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)
− (m,Σ)← A(gpk, gsk1, . . . , gskN , stGM)
− If Verify(gpk,m,Σ) = 0 return 0
− i← Open(gpk, stGM,m,Σ)
− If i /∈ [N ] return 1
− Return 0

Experiment: ExpNon−Frame
BMW,A,N (λ)

− S = ∅, h = ⊥
− (gpk, gsk1, . . . , gskN ; stGM)← GKGen(1λ, N)

−
(
m,Σ

)
← AKeys,SignHU

(
gpk, stGM

)
− If Verify(gpk,m,Σ) = 0 return 0
− If (m,Σ) ∈ S return 0
− If Open(gpk, stGM,m,Σ) = h return 1, else return 0

Fig. 22. Security experiments for static group signatures akin to Bellare, Micciancio and Warin-
schi [BMW03].
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is secure in the stronger variant of our model, namely with respect to separate
authorities and adversarial key generation. We then look at some constructions
based on revocation lists [LPY12b, LPY12a, NFHF09]. These implicitly use a weaker
IsActive policy than allowed by the model, and thus achieve a slightly weaker notion
of traceability. While the small definitional gap may not necessarily constitute an
issue for the applications, we show that small changes to the constructions allow for
stronger policies.

4.1 Bootle et al. Scheme [BCC+15]

Bootle et al. [BCC+15] gave a generic construction of accountable ring signatures,
where every signature can be traced back to a user in the ring. Differently from
group signatures, accountable ring signatures lack appointed authorities. Instead
signers choose their designated opening authority at the time of signing. Bootle
et al. [BCC+15] outlined how to obtain fully dynamic group signatures (with a
single authority) from accountable ring signatures. In addition, they gave an efficient
instantiation in the random oracle model based on the DDH assumption. Their
instantiation yields signatures of logarithmic size (in the size of the ring), while signing
is quasi-linear, and signature verification requires a linear number of operations.
Bootle et al. [BCC+15] instantiation is in some settings more efficient than existing
group signature schemes based on standard assumptions.

In their generic construction each user has a secret key and an associated verifi-
cation key. To sign, users first encrypt their verification key. Then, via a membership
proof, they provide a signature of knowledge showing that the verification key belongs
to the ring, and that they know the corresponding secret key. We now reproduce
their definitions and prove their construction is secure in our two authority model. To
do that, we take the liberty of fleshing out some group management specific details
that [BCC+15] did not fully specify, e.g. a two-party joining protocol. Other designs
are also possible, and we will discuss the key points after the security proof.

Accountable Ring Signatures. Bootle et al. [BCC+15] define an accountable
ring signature scheme over a PPT setup ARSSetup as a tuple of polynomial time
algorithms (ARSOKGen,ARSUKGen,ARSSign,ARSV fy,ARSOpen,ARSJudge).

ARSSetup(1
λ): Given the security parameter, produces public parameters pp used

(sometimes implicitly) by the rest of the scheme. The public parameters define
key spaces PK,DK, V K, SK with efficient algorithms for sampling and deciding
membership.

ARSOKGen(pp): Given the public parameters pp, produces a public key pk ∈ PK
and secret key dk ∈ DK for an opener. Without loss of generality, we assume dk
defines pk deterministically and write pk = ARSOKGen(pp, dk) when computing
pk from dk.
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ARSUKGen(pp): Given the public parameters pp, produces a verification key vk ∈ V K
and a secret signing key sk ∈ SK for a user. We can assume sk deterministically
determines vk and write vk = ARSUKGen(pp, sk) when computing vk from sk.

ARSSign(pk, sk,R,m): Given an opener’s public key, a message, a ring (i.e. a set
of verification keys) and a secret key, produces a ring signature σ. The algo-
rithm returns the error symbol ⊥ if pk /∈ PK,R 6⊂ V K, sk /∈ SK or vk =
ARSUKGen(pp, sk) /∈ R.

ARSV fy(pk,R,m, σ): Given an opener’s public key, a message, a ring and a signature,
returns 1 if accepting the signature and 0 otherwise. We assume the algorithm
always returns 0 if pk /∈ PK or R 6⊂ V K.

ARSOpen(dk,R,m, σ): Given a message, a ring, a ring signature and an opener’s secret
key, returns a verification key vk and a proof ψ that the owner of vk produced the
signature. If dk /∈ DK or σ is not a valid signature using pk = ARSOKGen(pp, dk),
the algorithm returns ⊥.

ARSJudge(pk,R, vk,m, σ, ψ): Given an opener’s public key, a message, a ring, a
signature, a verification key and a proof, returns 1 if accepting the proof and 0
otherwise. We assume the algorithm returns 0 if σ is invalid or vk /∈ R.

Accountable ring signatures should be correct, anonymous, traceable, fully un-
forgeable and tracing sound. We recall [BCC+15] definitions of all these properties
below.

Definition 8 (Correctness). An accountable ring signature scheme is correct if
for any PPT adversary A

Pr

 pp← ARSSetup(1
λ); (vk, sk)← ARSUKGen(pp);

(pk,R,m)← A(pp, sk);σ ← ARSSign(pk, sk,R,m) :
If pk ∈ PK,R ⊂ V K, vk ∈ R then ARSV fy(pk,R,m, σ) = 1

 ≈ 1.

Anonymity ensures that a signature does not reveal the identity of the ring member
who produced it without the opener explicitly wanting to open the particular signature.
The definition below implies anonymity against full key exposure attacks [BKM09]
as in the game the adversary is allowed to choose the secret signing keys of the users.

Definition 9 (Anonymity). An accountable ring signature scheme is anonymous
if for any PPT adversary A

Pr

[
pp← ARSSetup(1

λ); b← {0, 1}; (pk, dk)← ARSOKGen(pp) :
AChalb,Open(pp, pk) = b

]
≈ 1

2
.

• Chalb: is an oracle that the adversary can only call once. On query (R,m, sk0, sk1)
it runs σ0 ← ARSSign(pk, sk0, R,m); σ1 ← ARSSign(pk, sk1, R,m). If σ0 6= ⊥ and
σ1 6= ⊥ it returns σb, otherwise it returns ⊥.
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• Open: is an oracle that on a query (R,m, σ) returns ARSOpen(dk,R,m, σ). If σ
was obtained by calling Chalb on (R,m, ·, ·), the oracle returns ⊥.

Traceability ensures that the specified opener can always identify the ring member
who produced a signature and that she is able to produce a valid proof for her decision.

Definition 10 (Traceability). An accountable ring signature scheme is traceable
if for any PPT adversary A

Pr

 pp← ARSSetup(1
λ); (dk,R,m, σ)← A(pp);

pk ← ARSOKGen(pp, dk); (vk, ψ)← ARSOpen(dk,R,m, σ) :
ARSV fy(pk,R,m, σ) = 1 ∧ ARSJudge(pk,R, vk,m, σ, ψ) = 0

 ≈ 0.

Full unforgeability ensures that an adversary, who may control the opener, can
neither falsely accuse an honest user of producing a ring signature nor forge ring
signatures on behalf of an honest ring. The former should hold even when all other
users in the ring are corrupt.

Definition 11 (Full Unforgeability). An accountable ring signature scheme is
fully unforgeable if for any PPT adversary A

Pr



pp← ARSSetup(1
λ); (pk, vk,R,m, σ, ψ)← AUKGen,Sign,RevealU(pp) :(

vk ∈ QUKGen \QRevealU ∧ (pk, vk,R,m, σ) /∈ QSign

∧ ARSJudge(pk,R, vk,m, σ, ψ) = 1
)

∨
(
R ⊂ QUKGen \QRevealU ∧ (pk, ·, R,m, σ) /∈ QSign

∧ ARSV fy(pk,R,m, σ) = 1
)


≈ 0.

• UKGen: runs (vk, sk) ← ARSUKGen(pp) and returns vk. QUKGen is the set of
verification keys vk that have been generated by this oracle.

• Sign: is an oracle that on query (pk, vk,R,m) checks if vk ∈ R ∩ QUKGen, in
which case returns σ ← ARSSign(pk, sk,R,m). QSign contains the queries and
responses (pk, vk,R,m, σ).

• RevealU: is an oracle that when queried on vk ∈ QUKGen returns the corre-
sponding signing key sk. QRevealU is the list of verification keys vk for which the
corresponding signing key has been revealed.

Tracing soundness is analogous to our opening binding definition for group
signatures and ensures that a signature cannot trace to two different users in the
ring. Namely, only one person can be identified as the signer even when all users as
well as the opener are fully corrupt.

Definition 12 (Tracing Soundness). An accountable ring signature scheme sat-
isfies tracing soundness if for any PPT adversary A

Pr

[
pp← ARSSetup(1

λ); (pk,R,m, σ, vk1, ψ1, vk2, ψ2)← A(pp) :
∀i ∈ {1, 2}, ARSJudge(pk,R, vki,m, σ, ψi) = 1 ∧ vk1 6= vk2

]
≈ 0.
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Security in Our Model. Next we show that [BCC+15] construction of a fully
dynamic group signature scheme obtained from an accountable ring signature is
secure in our security model with separate authorities. We note that [BCC+15] does
not fully specify the construction, e.g. it does not specify the registration protocol and
only consider a single authority. Therefore the construction described in Figure 23 is
not unique and alternatives are possible.

A user initiates a joining session with the group manager by generating a key pair
(vk, sk), using ARSUKGen, and then adds the verification key vk into the registry.
The manager reads the registry entry and checks if the same key had already been
registered, in which case the joining fails. We do not spell out the details of the
registry, but we assume users can write once into the registry and that the manager
can read the content of it. We recall that a registry offering these features can be
instantiated with a PKI and thus we abstract it out to simplify the construction.

The group manager stores the outcome of all the joining sessions as well as
the lists Iτ of active users at each epoch. To activate new members, the manager
keeps a list of users that have joined in the current epoch and updates the group
information info, which triggers a new epoch. The information of the group info
consists of the verification keys of all active members. A group signature consist of
an accountable ring signature using the current information info as the ring, and the
opening authority public key as the opener’s key. Our construction of a fully dynamic
group signature from an accountable ring signature is presented in Figure 23.

Theorem 1. The generic group signature scheme construction from accountable
ring signatures of Figure 23 satisfies our separate authority definitions for a secure,
fully-dynamic group signature scheme, and is additionally opening binding.

Proof. We will use a similar proof strategy for all properties: we will assume the
existence of an adversary A against the corresponding property of the group signature
scheme. We will then show how to build an adversary B that uses A to break the
same property of the accountable ring signature.

For correctness, let B be the adversary in the correctness experiment of Definition
8. The adversary receives pp and the secret key sk of the target user. Given pp the
adversary B provides param to A and let her pick the public key opk for the opening
authority of the group signature, while B plays the role of the honest group manager
in the game of Figure 3. The adversary B generates the initial group information
info0 and provides it to A. When simulating AddHU for A, B uses the secret key sk
for the challenge user; note that vk can be efficiently obtained given sk. The oracle
calls to SndToM,Update,Write, State used by A are also simulateable by B which
keeps the internal state of the group manager. Once A returns a message and epoch
pair (m, τ), B retrieves the group information infoτ , consisting of the public keys of
active group members at epoch τ , and returns (opk,m, infoτ ). We observe that A
only wins the game of Figure 3 when either the registration protocol fails to complete
successfully for the target user, or the target user is flagged as inactive even though
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GSetup(1λ)→ param

� Return pp← ARSSetup(1
λ)

GKGen
� GKGenOA(init; param)→ (outOA;MGM)

◦ (opk, osk)← ARSOKGen(param)
◦ Return ((opk, osk); done)

� GKGenGM(init; param)→ (outGM;MOA; stGM)

◦ info0 := ∅;L := ∅; Inew := ∅; I0 := ∅
◦ Return ((param, info0); done; (L, Inew, I0))

gpk := (param, opk)

Join

� Join
WriteReg(i,·)
User (M ; st)→ (out;MGM; st)

◦ If M = init:
� (vk, sk)← ARSUKGen(param)
� Call WriteReg on input vk
� Return (ε; init; sk)
◦ If M = (done,⊥):
� gsk := ⊥
◦ If M = (done,>):
� gsk := st
◦ Return (gsk; done; st)

� Join
ReadReg(i)
GM (i, init; stGM)→ (outGM;M ; stGM)

◦ Parse stGM as (L, Inew, I0, . . . , Iτ )
◦ If (i, ·) ∈ L return (ε; done; stGM)
◦ vk := ReadReg(i)
◦ If (∃ j < i s.t. (j, vk) ∈ L) ∨ vk /∈ V K:
� L := L ∪ {(i,⊥)}
� Return (⊥; (done,⊥); stGM)
◦ L := L ∪ {(i, vk)}
◦ Inew := Inew ∪ {i}
◦ Return (>; (done,>); (L, Inew, I0, . . . , Iτ ))

UpdateGroup(R; stGM)→ (info; stGM)
� Parse stGM as (L, Inew, I0, . . . , Iτ )
� Iτ+1 := (Iτ \ R) ∪ Inew
� infoτ+1 := {vki : (i, vki) ∈ L ∧ i ∈ Iτ+1 ∧ vki 6= ⊥}
� Return (infoτ+1; (L, ∅, I0, . . . , Iτ+1))

Sign(gsk, info,m)→ Σ
� Return Σ ← ARSSign(opk, gsk, info,m)

Verify(gpk, info,m,Σ)→ 1/0
� Return ARSV fy(opk, info,m,Σ)

OpenReadReg(gpk, osk, info,m,Σ)→ (i, π)
� (vk, π)← ARSOpen(osk, info,m,Σ).
� If vk 6= ReadReg(j) for all j, return (⊥, π)
� i := min{j : vk = ReadReg(j)}
� Return (i, π)

Judge(gpk, info, reg,m,Σ, π)→ 1/0
� Return ARSJudge(opk, info, reg,m,Σ, π)

IsActive(i, τ, stGM)→ 1/0
� Parse stGM as (L, Inew, I0, . . . , Iτ ′)
� If τ /∈ N ∨ τ > τ ′ return 0
� If ((i, vk) ∈ L ∧ i ∈ Iτ ∧ vk 6= ⊥) return 1
� Return 0

Fig. 23. Construction of a fully dynamic group signature from an accountable ring signature
[BCC+15] .
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she has joined and is not revoked, or if the produced signature fails to verify. The
registration of the target user fails only in case A already successfully registered
the same verification key vk in a previous session. Since vk is not exposed to A
before AddHU is called, this corresponds to guessing the target key vk. Assuming
the key space V K is large enough this only happens with small probability and we
can thus assume the target user to successfully complete the joining protocol. When
B updates the group information, the target user verification key is included in info
until explicitly removed by another update. The verification key can only be removed
either by revoking the target user or if the adversary adds another group member
with the same vk and then requests to revoke her. However, registering the same
verification key in a later session of the joining protocol would cause the new session
to fail. The remaining winning condition of A in the game of Figure 3 is captured by
the the last line of Definition 8.

For anonymity, we follow the same strategy: the adversary B plays the game of
Definition 9 and obtains the public parameters pp and a public key pk. Then he
proceeds to simulate the key generation protocol for the group signature (Figure
6): he lets A to generate the group manager public key and sets pk as the opening
public key of the opening authority. Note that the key generation protocol in Figure
23 consists of each authority independently producing and announcing their own
keys. This implies that pk is sufficient for B to simulate the protocol. Finally, B
needs to simulate A’s oracle calls. For the challenge and opening oracles, this is done
by using his own oracles, whereas for SndToU,ReadReg it can simply answer directly.
We note that B will correctly guess the challenge if and only if A is correct as well.

For traceability, B starts by receiving pp and internally running both sides of
the key generation protocol. He then starts the group signature traceability game of
Figure 10 and calls A. As B plays the role of the group manager in A’s game, he can
directly reply to her oracle queries. To complete the proof, we examine when A wins
her game: it must be the case that user i is inactive or that the Judge algorithm
fails. In the accountable ring signature definition the first case folds into the second:
i being inactive implies vki /∈ R which will explicitly cause the judging algorithm
to fail. In either case, A succeeding in the game of Figure 10 implies B succeeding
according to Definition 10.

For non-frameability, let B play in the full unforgeability game of Definition
11. The adversary B receives pp and initialises A in the game of Figure 14, which
generates the group public key gpk. B uses his oracles UKGen and Sign to respond
to the queries of the SndToHU and SignHU, respectively. Adversary B forwards A’s
output together with the opener public key and the honest user verification key. A
wining output by A in her game will cause B to win via the first branch on his own
game: note that B does not make use of his RevealU oracle and that A does not
output a user identity since she only includes a single honest user in the group.

Reduction for opening binding is near-trivial from tracing soundness: B simply
passes the setup parameters and converts the output of A into a ring. We complete
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the proof by pointing out that under the accountable ring signatures definitions
ARSJudge implies correct verification.

Alternative Constructions. The accountable ring signature of [BCC+15, BCC+16a]
describes how one can construct dynamic group signatures from accountable ring
signatures but it omits the group management details. To amend this, we specified a
simple joining protocol but other options are possible. Furthermore, our protocol
assumes the existence of an ideal register which could be instantiated in different
ways. We do point out however, that for the traceability proof to go through, it is
necessary that the manager should not accept keys that have already being registered.
At the same time, it is important that the registry needs to be robust enough, such
that attempts to modifying or copying entries will fail. The former is captured by our
idealization of the registry, which we recall can be realised with a PKI. The latter is
accomplished by considering valid only the first occurrence of a key in the registry,
and ignoring all later occurrences as the group manager should have rejected the
corresponding joining sessions.

4.2 Constructions Based on Revocation Lists

A common approach for designing efficient fully dynamic group signatures is by using
revocation lists. Users interacts with the manager to obtain a certificate for their
group membership. The group information, periodically updated by the manager,
consists of a revocation list which stores information about the revoked users. To
sign, users have to show they hold a valid certificate and that they are not part
of the set of revoked users. Examples of efficient schemes following this approach
include the ones of Libert et al. [LPY12b, LPY12a] and Nakanishi et al. [NFHF09].

In these constructions, a user is considered authorized to sign until the manager
explicitly includes her in the revocation list. However, this means that a user can
also sign with respect to old epochs, including those predating her joining to the
group. As the user was not yet part of the group at that time, it raises the question
to whether this represent an issue for the security of the scheme.

At first glance, this is the dual of a well known issue with many revocation
systems. If a user is revoked and anonymity is maintained, the revoked user is able to
produce back-dated signatures that still verify. The difference here is that while the
revoked user was authorized to be part of the group for the epoch in question, in the
situation described above, however, the signing user was in fact not part of the group
at that time. If the adversary is able to block the opening of this signature (e.g. via
legal action), its existence would implicitly frame the group’s past membership as
the signature would be attributed to them.

The issue resides mainly on the interpretation one gives to the epochs in the
lifespan of the scheme. Namely, whether epochs reference the state of the group at
the time the corresponding group information was created. Our model does not opt
for a specific choice, as different design paradigms may have different takes on this.
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To capture different options, our model includes the IsActive algorithm for spelling
out the conditions that makes a user active. This helps to clear potential ambiguities
a construction may have regarding the timespan users are allowed to sign. Moreover,
it also enables to compare the security achieved by different schemes based on how
strong is their underlying IsActive policy.

The IsActive policy has to satisfy some necessary requirements, imposed by our
model, which ensure the definitions capture the intended security notions. One of
these requirements is that, if user i is associated with a joining session where the
group manager ended her part successfully before infoτ was created, and user i is not
revoked at or before epoch τ , the algorithm returns 1. However, the policy does not
impose a specific outcome in case the joining session terminates after the infoτ was
created, which could then be set equal to either 0 or 1. For example, we can include
the following condition into the policy

• If i is associated with a joining session where the group manager completed her
part after infoτ was created, the algorithm returns 0.

Observe that this requirement is achieved by the policy of the construction in Figure
23. On the other hand, this policy may be too strict for constructions following
the revocation list approach, as members can typically sign with respect to epochs
predating their enrolment into the group. The violation of the above condition
translates into a trivial attack against traceability: an adversary can simply enrol a
user and then return a signature by this user with respect to an epoch predating her
joining epoch. If the signature is valid, this represent a breach of traceability because
the user is not regarded as active with respect to that epoch. We notice that in
case such a policy was adopted, constructions such as [LPY12b, LPY12a, NFHF09]
would be all susceptible to this attack. For such constructions we can then replace
the above condition with the following one, which was implicitly assumed in their
respective models

• If i is associated with a joining session where the group manager completed her
part successfully after infoτ was created, and user i is not revoked at or before
epoch τ , the algorithm returns 1.

Note that the IsActive algorithm receives as input the internal state of the group
manager, thus the outcome of the policy can depend on whether the joining session
for user i has currently terminated. This enables to capture the instant activation of
certificate based constructions, i.e users become active as soon as they successfully
terminate the join protocol, without requiring further action from the group manager.

Given the above trivial attack, it seems that [LPY12b, LPY12a, NFHF09] can
only achieve a slightly weaker notion of traceability than the construction given in
Figure 23. Whether the difference on the two notions is substantial may depend
on the intended applications of the primitive. In the following we briefly recall the
[LPY12b, LPY12a, NFHF09] constructions and suggest some simple modifications
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to prevent the above trivial attack, which allow them to achieve traceability with
respect to a stronger policy.

Libert et al. Scheme [LPY12a]. In [LPY12a], users are assigned leaves of a
complete binary tree and given a membership certificate containing a unique tag
identifying the user, and a commitment to the path from the root to the user’s leaf
in the tree. Note that the certificate is not bound to the epoch at which the user
joined the group. In fact, users joining does not change infoτ or the epoch τ itself.

Revocation is based on the subset difference method [NNL01], using disjoint
sets Ski,ui for i = 1, . . . ,m which cover non-revoked users. Sets are represented by
two nodes, a node ki and one of its descendants node ui, and cover all leaves of
the sub-tree rooted at node ki which are not leaves of the sub-tree rooted at ui.
Revocations trigger a new epoch and the update of infoτ with a new cover.

To sign, the group member anonymously proves that she holds a membership
certificate, and that the node indicated by the certificate belongs to one of those sets.
More precisely, the user proves that her leaf is a descendant of node ki but not a
descendant of node ui for some i ∈ [m].

Since user certificates are not bound to epochs and leaves are covered until
their corresponding users are revoked, members are able to produce valid signatures
with respect to revocation lists pre-existing their joining of the group. Therefore
the construction is susceptible to the previous trivial attack against traceability. A
similar argument also applies to the variant of the scheme given in [LPY12b].

A possible countermeasure against this is to regard unassigned leaves as revoked
until they are assigned. In this way the revocation list is used to store the current
state of the group at a certain epoch. This is simple to do as the scheme bounds the
maximum number of users. We do however need to re-examine the number of subsets
in the revocation list required to express this, as the 2|R| − 1 bound for |R| revoked
users may now seem impractical. If we assume leaves are allocated sequentially to
users, we can bound the number of subsets by 2|R1| + log(|N \ R2|) where R2 is
the set of leaves pending allocation, R1 is the set of leaves allocated to users who
were later revoked, and N the set of all leaves. Thus, our fix is only marginally more
expensive than the base system and much more efficient than a naive analysis would
indicate.

Nakanishi et al. Scheme [NFHF09]. The scheme of Nakanishi et al. [NFHF09]
is another certificate-based scheme in the random oracle model. It achieves constant
time for both signing and signature verification, relative to the size of the group and
the number of revoked users.

A user’s group membership certificate consists of a signature on (x, ID) produced
by the group manager, where x is a secret owned by the user and ID is a unique
integer the manager assigned to her. The group manager can revoke users by issuing
revocation lists infoτ . Each list consists of a sequence of open integer intervals



45

(Ri, Ri+1) signed by the manager, whose endpoints are all the revoked ID’s. At each
epoch τ , a signer fetches the current infoτ and proves, as part of the signature, that
her ID is contained in one interval of the revocation list. If the ID lies between two
revoked users’ identities, it means it is not an endpoint and so she has not been
revoked.

As for the previous scheme, verifiers only know of revoked members, not active
ones and, similarly to [LPY12a], the time of joining is not taken into account. This
allows users to sign with respect to any epoch prior to joining the group.

The scheme could be easily immunized against the trivial attack against trace-
ability. A first solution, as for [LPY12a], is to initialize the revocation list with all
ID’s of users that have not joined the group yet. When the manager assigns an ID
to a new user, he updates reg and the revocation list infoτ . This way, the signature
size is not affected. On the other hand, revocation lists are now proportional to the
size of the maximum number of users, instead of the number of revoked users.

An alternative countermeasure requires the group manager to include the joining
epochs in the certificates by signing (x, ID, τjoin), where x is a secret owned by user
ID and τjoin is the joining epoch. A signer then needs to include in the signature
a proof that τjoin is not greater than the signing epoch. To realize the latter, one
can use membership proof techniques from [TS06, CCS08] which are already used
in the original scheme for proving that the ID lies in an interval (Ri, Ri+1). This
would increase the cost of signing and verifying by only a constant factor. The new
membership proof would require the group manager to provide signatures for every
elapsed epoch, which could then be included in infoτ along with the revocation list.
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