
NIZKs with an Untrusted CRS: Security in the Face of

Parameter Subversion

Mihir Bellare1 Georg Fuchsbauer2 Alessandra Scafuro3

February 2016

Abstract

Motivated by the subversion of “trusted” public parameters in mass-surveillance activities,
this paper studies the security of NIZKs in the presence of a maliciously chosen common reference
string. We provide definitions for subversion soundness, subversion witness indistinguishability
and subversion zero knowledge. We then provide both negative and positive results, show-
ing that certain combinations of goals are unachievable but giving protocols to achieve other
combinations.

1 Department of Computer Science & Engineering, University of California San Diego, USA. Email: mihir

@eng.ucsd.edu. URL: cseweb.ucsd.edu/~mihir/. Supported in part by NSF grant CNS-1228890, NSF grant CNS-
1526801, ERC Project ERCC FP7/615074 and a gift from Microsoft corporation. This work was done in part
while visiting the Simons Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-1523467.

2 Inria, Ecole Normale Supérieure, CNRS and PSL Research University, Paris, France. Email: georg.fuchsbauer
@ens.fr. URL: http://www.di.ens.fr/~fuchsbau/.

3Computer Science Departments, Boston University and Northeastern University. Email: scafuro@bu.edu. URL:
http://cs-people.bu.edu/scafuro/. Supported in part by NSF grants CNS-1347350, CNS-1413964, CNS-1012798
and CNS-1414119. This work was done in part while visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
CNS-1523467.

1

Contents

1 Introduction 3

2 Notation 8

3 Security of NIZKs under CRS subversion 8
3.1 NP relations and NI systems . 8
3.2 Notions for honest CRS: SND, WI and ZK . 9
3.3 Notions for subverted CRS: S-SND, S-WI and S-ZK 9
3.4 2-move protocols . 11

4 Negative result: ZK and S-SND are not compatible 11

5 Positive results 14
5.1 Soundness and subversion ZK . 14
5.2 Subversion SND and subversion WI . 23
5.3 Soundness, ZK and subversion WI . 24

A Relation of NI systems to 2-move protocols 28

B Additional details for the proof of Theorem 5.2 29

C Proof sketch for Theorem 5.1 31

D Complete relations 32

2

1 Introduction

The summer of 2013 brought shocking news of mass surveillance being conducted by the NSA and
its counter-parts in other countries. The documents revealed new ways in which the adversary
compromises security, ways not covered by standard models and definitions in cryptography. This
opens up a new research agenda, namely to formalize security goals that defend against these novel
attacks, and study the achievability of these goals. This agenda is being pursued along several
fronts. The front we pursue here is parameter subversion, namely the compromise of security by
the malicious creation of supposedly trusted public parameters for cryptographic systems. The
representative example is the Dual EC random number generator (RNG).

Dual EC. Dual EC is an NSA-designed, elliptic-curve based RNG, standardized as NIST SP
800-90 and ANSI X9.82. BLN [12] say that its story is “one of the most interesting in modern
cryptography.” The RNG includes two points P,Q on an elliptic curve that function as public
parameters for the algorithm. At the Crypto 2007 rump session, Shumow and Ferguson noted that
anyone who knew the discrete logarithm of P to base Q, meaning a scalar s such that P = sQ, could
predict generator outputs. In a Wired Magazine article the same year, Schneier warned against
Dual EC because it “just might contain a backdoor for the NSA.” The NSA’s response was that
they had “generated P,Q in a secure, classified way.” But the Snowden revelations (documents
from project Bullrun and SIGINT) show that Dual EC was part of a systematic NSA effort to
subvert standards. And in 2014, CNEGLRBMSF [21] showed the practical effectiveness of the
subversion by demonstrating how the backdoor could be exploited to break TLS.

Two things are remarkable. The first is that the “trusted” public parameters were in fact sub-
verted. The second is the effort put into ensuring that the subverted parameters were standardized
and used. NSA-based pressure and lobbying not only lead to Dual EC remaining a US standard but
even to its being in an international standard, ISO 18031:2005. In 2013 Reuters reported that the
NSA paid RSA corporation $10 million to make Dual EC the default method for random number
generation in their BSafe library.

Cryptography resistant to parameter subversion. The lesson to take away is that a cryp-
tographic system that relies on public parameters assumed to have been honestly generated, say by
some “trusted” party, is at great practical risk from the possibility that the parameters were in fact
maliciously generated with intent to subvert security of their use. We suggest that in response we
should develop cryptography that is resistant to parameter subversion. This means that it should
provide its usual security with trusted parameters, but retain as much security as possible when
the parameters are maliciously generated.

Parameters arise in many places in cryptography, but a prominent one that springs to mind
are non-interactive zero-knowledge (NIZK) systems, where the common reference string (CRS) is
assumed to be honestly generated. NIZKs are not only important in their own right but used in a
wide variety of applications, so their security under parameter subversion has far-reaching effects.
This paper provides a treatment of resistance to parameter subversion for NIZKs, with definitions,
negative results and positive results.

NIZKs. Non-interactive zero-knowledge systems originate with BFM [15] and BDMP [14] and
have since seen an explosion in constructions and applications. The Groth-Sahai framework for
efficient NIZKs [40] is widely utilized and we are seeing not only efficient NIZKs but also their
implementation in systems [40, 35, 10, 28, 11]. Structure-preserving cryptography [1, 2, 36] was
developed to allow these NIZKs to be used for efficient applications.

The NIZK model postulates a common reference string (CRS) that has been honestly generated
according to some distribution. The pragmatics of how this is done receives little explicit attention.

3

Some early works talk of using digits of π and others speak whimsically of “a random string in
the sky,” but for the most part the understanding is that a trusted party will generate, and make
public, the CRS. In light of the above, however, we must be concerned that the CRS is in fact
maliciously generated. This is the issue addressed by our work.

An immediate avenue of attack that may come to mind is the following. NIZKs require for
security that there is a simulator that generates a simulated CRS (indistinguishable from the
honest one) together with a trapdoor allowing the simulator to generate proofs without knowing
the witness. What if the subvertor generates the CRS via the simulator, so that it knows the
trapdoor? Since this CRS is indistinguishable from an honestly generated one, the subversion will
not be detected. Now, what does the subvertor gain? This seems to depend on the particular
system and its properties. For example, the subvertor may be able to generate proofs of false
statements and violate soundness. In some cases the trapdoor permits extraction of witnesses
from honest proofs, in which case the subvertor would be able to violate zero knowledge. What
we see here is that features built into the standard notions and constructions of NIZKs turn out
to be potential liabilities in the face of subversion. Put another way, current NIZKs have the
possibility of subversion effectively built into the security requirement because the simulator works
by “subverting” the CRS.

Two remarks with regard to the above. (1) First, if it is unclear what is going on, or what
conclusion to draw, there is a good reason, namely that we are trying to think or talk about what
subversion does in the absence of a clear understanding of the subversion-resistance goal, effectively
jumping the gun. To be able to effectively assess security we first need precise definitions of the new
goal(s) underlying resistance to CRS subversion. Providing such definitions is the first contribution
of this paper. (2) Second, while the above discussion may lead one to be pessimistic, we will see
that in fact a surprising amount of security can be retained even under a maliciously generated
CRS.

NIZK security, now. To discuss the new goals in subversion-resistant NIZKs we first back up
to recall the standard goals in the current model where the CRS is trusted and assumed honestly
generated. We distinguish three standard goals for a non-interactive (NI) system Π relative to an
NP relation R defining the language L(R) ∈ NP. The formalizations are recalled in Section 3.

SND: (Soundness) It is hard for an adversary, given an honestly generated crs, to find an x 6∈ L(R)
together with a valid proof π (meaning one that the verification algorithm Π.V accepts) for x
relative to crs.

WI: (Witness indistinguishability) Assuming crs is honestly generated, an adversary can’t tell
under which of two valid witnesses an honest proof (meaning one generated by the prover algorithm
Π.P under crs) for an instance x was created, and moreover this holds even for multiple, adaptively
chosen instances depending on crs.

ZK: (Zero-knowledge) There is a simulator Π.Sim.crs returning a simulated CRS crs0 and associated
trapdoor std, and an accomplice simulator Π.Sim.pf taking an instance x ∈ L(R) and std and
returning a proof, such that an adversary given crsb cannot tell whether a proof it receives was
created honestly (with the honest prover algorithm, an honest crs1 and a witness; the b = 1 case)
or via Π.Sim.pf (the b = 0 case). Moreover this holds even for multiple, adaptively chosen instances
depending on crsb.

NIZK security under subversion. The key change in our model is that the adversary gen-
erates the CRS. It can retain, via its coins r, some kind of “backdoor” related to this CRS. In
Section 3 we formalize the following goals:

4

Standard Subversion resistant
Achievable?

SND ZK WI S-SND S-ZK S-WI

N • • 7 Thm. 4.2

P1 • • • • • 3 Thm. 5.2

P2 • • • • 3 Thm. 5.5

P3 • • • • 3 Thm. 5.6

S-SND S-ZK S-WI

SND ZK WI

? ? ?

-

-

Figure 1: Left: Achievability chart showing our negative result N and positive results P1, P2,
P3. In a row we refer to simultaneously achieving all selected notions. Right: Relations.

S-SND: (Subversion soundness) It is hard for the adversary to generate a (malicious) CRS crs
together with an instance x 6∈ L(R) and a valid proof π for x relative to crs. (The goal of the
subvertor here is to create a CRS that allows it to give proofs of false statements.)

S-WI: (Subversion witness indistinguishability) Even if the adversary creates crs maliciously and
retains the corresponding coins r, it can’t tell under which of two valid witnesses an honest proof
(meaning one generated by the prover algorithm Π.P under the subverted crs) for an instance x
was created, and moreover this holds even for multiple, adaptively chosen instances depending on
crs.

S-ZK: (Subversion zero knowledge) For any adversary X creating a malicious CRS crs1 using coins
r1, there is a simulator S.crs returning not only a simulated CRS crs0 and associated trapdoor std
but also simulated coins r0, and an accomplice simulator S.pf taking an instance x ∈ L(R) and std
and returning a proof, such that an adversary A given crsb, rb cannot tell whether a proof it receives
was created honestly (with the honest prover algorithm, crs1 and a witness; the b = 1 case) or via
S.pf (the b = 0 case). Moreover this holds even for multiple, adaptively chosen instances depending
on crsb, rb.

The right side of Figure 1 may help situate the notions. It shows the obvious relations: S-X implies
X, that ZK implies WI and that S-ZK implies S-WI.

Achievability. Is subversion resistance achievable? This question first needs to be meaningfully
posed. The subversion-resistance goals are easy to achieve in isolation. For example, S-SND is
achieved for any NP relation by having the prover send the witness, but this is not ZK. S-ZK is
achieved by having the prover send the empty string as the proof and having the verifier always
accept, but this is not SND. Such trivial constructions are un-interesting. The interesting question
is whether meaningful combinations of the goals are simultaneously achievable. A pragmatic view-
point is that we already have systems achieving SND+WI+ZK. We want to “upgrade” these to get
some resistance to subversion. While retaining SND, WI and ZK, what can be added from the list
S-SND, S-WI, S-ZK? Can we have them all? Are things so bad that we can have none? We will
be able to completely categorize what is achievable and what is not and will see that the truth is
somewhere between these extremes and on the whole the news is perhaps more positive than we
might have expected. Our core results are summarized in the table on the left side of Figure 1.
In any row, we are considering simultaneously achieving the notions indicated by the bullets. The
last column indicates whether or not it is possible. We now discuss these results, beginning with
the negative result of the first row.

Negative result. We first ask whether we can achieve S-SND (soundness for a malicious CRS)
while retaining what we have now, namely SND, WI and ZK. Result N (the first row of Figure 1)

5

indicates that we cannot. It says that there is no NI system that achieves both ZK and S-SND.
(More precisely, it is only possible for trivial NP-relations, i.e., where verifiers can check if x ∈ L(R)
themselves.) We stress that ZK here is the standard notion where the CRS is honest. We are not
asking for S-ZK but only to retain ZK. The proof of Theorem 4.2 establishing this uses the paradigm
of GO [32] of using the simulator to break soundness.

Positive results. Figure 1 lists three positive results that we discuss in turn:

P1: The most desirable target is S-ZK. By result N we cannot get it in combination with S-SND.
The next best thing would be to get it in combination with SND. We show in Theorem 5.2 that this
is possible. Since S-ZK implies all of ZK, S-WI and WI, this yields result P1 of the table of Figure 1,
showing we can simultaneously achieve all notions but S-SND. Theorem 5.2 is based on a knowledge-
of-exponent assumption (KEA) in a group equipped with a bilinear map. The assumption is
certainly strong, but (1) this is to be expected since our goal implies certain forms of 2-move
interactive ZK that have themselves only been achieved under extractability assumptions [13], (2)
similar assumptions have been made before [35], and (3) unlike other knowledge assumptions [13],
our assumption is not ruled out assuming indistinguishability obfuscation. See the overview at the
start of Section 5.1 for a high-level description of the ideas of our construction.

P2: The question left open by P1 is whether there is some meaningful way to achieve S-SND. (It
is the one item missing in row P1.) We know from result N that we cannot do this in combination
with ZK. Result P2 of the table of Figure 1 says that we can do the best possible given this
limitation. Namely we can simultaneously achieve both S-SND and S-WI (and thus SND and
WI). Theorem 5.5 establishing this is under a standard assumption, namely the decision-linear
assumption (DLin). It follows easily from the existence of a SND and WI NI system with trivial
CRS under DLin [38] and the observation (Lemma 5.4) that any such system is obviously also
S-SND and S-WI.

P3: Result P3 of the Figure 1 represents “hedging.” The system has the desired properties (SND,
WI, ZK) under an honest CRS. When the CRS is maliciously chosen, it does not break completely;
it retains witness indistinguishability in the form of S-WI. In practice this offers quite a bit of
protection. Our hedging construction combines a PRG with a zap. (Recall that the latter is a
2-move witness-indistinguishable interactive protocol [27].)

Result P3 may seem redundant; isn’t it implied by P1? (Indeed it selects a strict subset of the
notions selected by P1.) The difference is that while P1 uses strong (extractability) assumptions,
P3 is established in Theorem 5.6 under the minimal assumption that some SND+WI+ZK NI
system exists. That is, our hedging adds no extra assumptions. This is because a zap can be built
from any SND+ZK NI system [27].

Discussion and related work. There is a natural connection between NI systems and 2-
move interactive protocols in which NI system Π corresponds to the protocol 2MV in which the
verifier first sends the CRS and the prover sends the proof in the second move (cf. Figure 14).
We can then think of the following correspondence of notions for Π and 2MV: S-WI ↔ ZAP;
ZK↔ honest-verifier ZK; S-ZK↔ Full (cheating verifier) ZK. This analogy provides intuition and
insight and opens up connections we exploit for both positive and negative results, but one must
be wary that the analogy is not fully accurate. ZK for Π is not identical to honest-verifier ZK
for 2MV. In particular the simulation requirement for ZK for Π is stronger because the simulated
CRS (first move in 2MV) must be produced upfront without knowing the instance, and then the
simulator must be able to adaptively produce simulated proofs for multiple instances.

S-ZK for Π is similarly not the same as (full) ZK for 2MV. The connection is further complicated

6

by there being many variant notions of ZK for 2-move protocols. The Π notions imply some of
these, but do not imply others. One thing on which the connection gives perspective is the difficulty
of achieving S-ZK. Many forms of 2-move ZK are impossible [32, 4]. This does not make S-ZK
impossible because S-ZK does not imply these particular forms of interactive ZK. (Indeed the
definition of S-ZK was chosen to make this true.) A form of 2-move ZK has been achieved by
BCPR [13] using extractability assumptions. This form of 2-move ZK is implied by S-ZK (but not
vice-versa), indicating that it would be hard to achieve S-ZK without extractability assumptions.
The strength of the assumptions we need for result P1 is thus expected. For more details on the
relation between NI systems and 2-move protocols see Appendix A.

The broad question we have asked is, which combinations of the six notions SND, WI, ZK,
S-SND, S-WI, S-ZK are simultaneously achievable? Figure 1 looks at four combinations. But there
are in principle 26 combinations about which one could ask. In Table 1 in Appendix D we go
systematically over all combinations and evaluate achievability. We are able to give the answer in
all cases. Briefly, Figure 1 covers the interesting cases, which is why we have focused on those for
the body of the paper, and other cases are dealt with relatively easily in Appendix D.

Resistance of NIZKs to parameter subversion may not be of immediate practical relevance
but we believe it is an important long-term consideration for this technology. The foundational
tradition has always had as its stated goal to model and capture realistic, practical attacks and
then investigate theoretically whether or not security can be achieved. Parameter subversion is
such a realistic attack not previously considered, and it leads us to revisit the foundations of
NIZKs to bring it into the picture. We are seeing large efforts in the creation of efficient NIZKs and
their implementation in systems towards eventual applications [40, 35, 10, 28, 11, 9]. For security,
parameter subversion must be kept in mind from the start.

We have been selective rather than exhaustive with regard to which notions to consider in this
setting, focusing on the basic soundness, witness indistinguishability and zero knowledge. There are
many other notions in this area that could be considered including robustness, simulation soundness
and extractability [23, 34, 37, 25] but it seems fairly apparent that these stronger notions will be
subject to commensurately strong negative results with regard to security under CRS subversion.
For example, extractability asks that the simulator can create a CRS such that, with a trapdoor it
withholds, it can extract the witness from a valid proof. But if so, a subvertor can create the CRS
like the simulator so that it has the trapdoor and can also extract the witness.

A standard suggestion to protect against CRS subversion is to generate the CRS via a multi-
party computation protocol so that no particular party controls the outcome. This is pursued in [9].
The effectiveness and practicality of this solution are not very clear. What parties would perform
this task, and why can we trust any of them? The Snowden revelations indicate for example that
corporations cooperate with the NSA toward subversion, either willingly or due to court orders.
NIZKs with built-in resistance to subversion, as we define and achieve, provide greater protection.

One might note that in some applications, such as the use of NIZKs for signatures [5, 20, 25]
and IND-CCA encryption [42, 26], the user can pick their own CRS and be confident of its quality.
However this blows up key sizes and increases system complexity. It would be more convenient if
there were a single, global CRS, in which case resistance to subversion matters.

CPs [19] study UC-secure computation in a model where the CRS is drawn from a distribution
that is adversarially chosen subject to several restrictions, including that it has high min-entropy
and is efficiently sampleable via an algorithm known to the simulator. They do not consider NIZKs,
and in their model the CRS is not chosen fully maliciously, with no restrictions, as in our model.

Algorithm-substitution attacks, studied in [7, 3], are another form of subversion. They go
back to the broader framework of kleptography [47, 48]. Back-doored blockciphers were studied
in [45, 43, 44]. DGGJR [24] provide a formal treatment of back-dooring of PRGs in response to

7

the Dual EC debacle.

2 Notation

The empty string is denoted by ε. If x is a (binary) string then |x| is its length. If S is a finite set
then |S| denotes its size and s←$ S denotes picking an element uniformly from S and assigning it
to s. We denote by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for “polynomial time”,
whether for randomized or deterministic algorithms. By y ← A(x1, . . . ; r) we denote the opera-
tion of running algorithm A on inputs x1, . . . and coins r and letting y denote the output. By
y←$A(x1, . . .), we denote the operation of letting y ← A(x1, . . . ; r) for random r. We denote by
[A(x1, . . .)] the set of points that have positive probability of being output by A on inputs x1,
Adversaries are algorithms. Complexity is uniform throughout: scheme algorithms and adversaries
are Turing Machines, not circuit families.

For our security definitions and some proofs we use the code-based game playing framework
of [8]. A game G (e.g. Figure 2) usually depends on some scheme and executes one or more
adversaries. It defines oracles for the adversaries as procedures. The game eventually returns a
boolean. We let Pr[G] denote the probability that G returns true.

3 Security of NIZKs under CRS subversion

We start by recalling and discussing standard notions of NIZK security in the setting used until
now where the CRS is trusted. Then we turn to formulating new notions of NIZK security in the
setting where the CRS is subverted. We start with the syntax.

3.1 NP relations and NI systems

NP relations. Proofs pertain to membership in an NP language defined by an NP relation,
and we begin with the latter. Suppose R : {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗ we let
R(x) = {w : R(x,w) = true } be the witness set of x. We say that R is an NP relation if it is
PT and there is a polynomial R.wl : N→ N called the maximum witness length such that every w
in R(x) has length at most R.wl(|x|) for all x ∈ {0, 1}∗. We let L(R) = {x : R(x) 6= ∅ } be the
language associated to R. The fact that R is an NP relation means that L(R) ∈ NP. We now go
on to security properties, first giving formal definitions and then discussions.

NI systems. A non-interactive (NI) system specifies the syntax of the proof system. We can
then consider various security attributes, including soundness, zero knowledge and witness in-
distinguishability. Formally, a NI system Π for R specifies the following PT algorithms. Via
crs←$ Π.Pg(1λ) one generates a common reference string crs. Via π←$ Π.P(1λ, crs, x, w) the hon-
est prover, given x and w ∈ R(x), generates a proof π that x ∈ L(R). Via d ← Π.V(1λ, crs, x, π) a
verifier can produce a decision d ∈ {true, false} indicating whether π is a valid proof that x ∈ L(R).
We require (perfect) completeness, namely Π.V(1λ, crs, x,Π.P(1λ, crs, x, w)) = true for all λ ∈ N,
all crs ∈ [Π.Pg(λ)], all x ∈ L(R) and all w ∈ R(x). We also require that Π.V returns false if any of
its arguments is ⊥.

8

3.2 Notions for honest CRS: SND, WI and ZK

Soundness. Soundness asks that it be hard to create a valid proof for x 6∈ L(R). Formally, we say
that Π is sound for R, abbreviated SND, if Advsnd

Π,R,A(·) is negligible for all PT adversaries A, where

Advsnd
Π,R,A(λ) = Pr[SNDΠ,R,A(λ)] and game SND is specified in Figure 2. This is a computational

soundness requirement as opposed to a statistical one, as is sufficient for applications.

WI. This notion [29] requires that a PT adversary, which chooses two witnesses, cannot tell which
one was used to create a proof. Formally, we say that Π is witness-indistinguishable (WI) for R, if
Advwi

Π,R,A(·) is negligible for all PT adversaries A, where Advwi
Π,R,A(λ) = 2 Pr[WIΠ,R,A(λ)] − 1 and

game WI is specified in Figure 2. In this game, an adversary A can request a proof for x under
one of two witnesses w0, w1. It is returned an honestly generated proof under wb where b is the
challenge bit. It can adaptively request and obtain many such proofs before outputting a guess b′

for b. The game returns true if this guess is correct.

ZK. We say that Π is zero-knowledge for R, abbreviated ZK, if Π specifies additional PT algo-
rithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,R,A(·) is negligible for all PT adversaries A, where

Advzk
Π,R,A(λ) = 2 Pr[ZKΠ,R,A(λ)]− 1 and game ZK is specified in Figure 2. Adversary A can adap-

tively request proofs by suppling an instance and a valid witness for it. The proof is produced
either by the honest prover using the witness, or by the proof simulator Π.Sim.pf using a trapdoor
std. The adversary outputs a guess b′ as to whether the proofs were real or simulated.

Discussion. The classical definitions of soundness and zero knowledge for proof systems [33]
were in what we will call the complexity-theoretic style. The soundness condition said that for all
x 6∈ L(R), the probability that a dishonest prover could convince the honest verifier to accept was
low. Zero knowledge, similarly, looked at distributions associated to a fixed x ∈ L(R) and then at
ensembles over x. The first definition for NIZK was similar [14]. But over time, NIZK definitions
have adapted to what we call a cryptographic style [23, 39]. This is the style we use because it seems
more prevalent now and it works better for applications. Here x is not quantified but chosen by an
adversary. The definitions directly capture proofs for multiple, related statements. All adversaries
are PT, meaning all metrics are computational.

One consequence of the complexity-theoretic style was a need for non-uniform complexity for
adversaries and assumptions [33, 31]. Goldreich [30] made a case for uniform complexity. The cryp-
tographic style we adopt is in this vein, and in our setting all complexity (adversaries, algorithms,
assumptions) is uniform.

3.3 Notions for subverted CRS: S-SND, S-WI and S-ZK

A core assumption in NIZKs is that the CRS is honestly generated. In light of subversion of
parameters in other contexts as part of the mass-surveillance revelations, we ask what would happen
if the CRS were maliciously generated. We will define subversion-resistance analogues S-SND, S-WI
and S-ZK of the SND, WI, ZK goals above. The key difference is that the CRS is selected by an
adversary rather than via the CRS-generation algorithm Π.Pg prescribed by Π.

Subversion soundness. Subversion soundness asks that if a subvertor creates a CRS in any way
it likes, it will still be unable to prove false statements under that CRS. Formally, we say that Π
is subversion-sound for R, abbreviated S-SND, if Advs-snd

Π,R,A(·) is negligible for all PT adversaries

A, where Advs-snd
Π,R,A(λ) = Pr[S-SNDΠ,R,A(λ)] and game S-SND is specified in Figure 2. Compared

to the honest-CRS game SND to the left of it, the adversary now not only generates x and π, but
itself supplies crs, modeling a malicious choice of the latter.

9

Game SNDΠ,R,A(λ)

crs←$ Π.Pg(1λ)

(x, π)←$ A(1λ, crs)

Return (x 6∈ L(R) ∧ Π.V(1λ, crs, x, π))

Game S-SNDΠ,R,A(λ)

(crs, x, π)←$ A(1λ)

Return (x 6∈ L(R) and Π.V(1λ, crs, x, π))

Game WIΠ,R,A(λ)

b←$ {0, 1}
crs←$ Π.Pg(1λ)

b′←$ AProve(1λ, crs)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then Return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game S-WIΠ,R,A(λ)

b←$ {0, 1}
(crs, st)←$ A(1λ)

b′←$ AProve(1λ, crs, st)

Return (b = b′)

Prove(x,w0, w1)

If R(x,w0) = false or R(x,w1) = false

then Return ⊥
π←$ Π.P(1λ, crs, x, wb)

Return π

Game ZKΠ,R,A(λ)

b←$ {0, 1}
crs1←$ Π.Pg(1λ)

(crs0, std)←$ Π.Sim.crs(1λ)

b′←$ AProve(1λ, crsb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then Return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ Π.Sim.pf(1λ, crs0, std, x)

Return π

Game S-ZKΠ,R,X,S,A(λ)

b←$ {0, 1}
r1←$ {0, 1}X.rl(λ) ; crs1 ← X(1λ; r1)

(crs0, r0, std)←$ S.crs(1λ)

b′←$ AProve(1λ, crsb, rb)

Return (b = b′)

Prove(x,w)

If R(x,w) = false then Return ⊥
If b = 1 then π←$ Π.P(1λ, crs1, x, w)

Else π←$ S.pf(1λ, crs0, std, x)

Return π

Figure 2: Games defining standard (left) and subversion (right) security of NI system Π. Top to
bottom: Soundness, witness indistinguishability, zero knowledge.

Subversion WI. Subversion WI asks that if a subvertor creates a CRS in any way it likes then
it will still be unable to tell which of two witnesses was used to create a proof, even given both
witnesses. Formally, we say that Π is subversion witness-indistinguishable (abbreviated S-WI) for
R if Advs-wi

Π,R,A(·) is negligible for all PT adversaries A, where Advs-wi
Π,R,A(λ) = 2 Pr[S-WIΠ,R,A(λ)]−1

and game S-WI is specified in Figure 2. Compared to the honest-CRS game WI, the CRS crs is now
generated by the adversary in a first stage, along with state information st passed to the adversary
in its second stage. In the latter, via its Prove oracle, it adaptively obtains proofs for instances
of its choice under a challenge witness, and outputs a guess b′ for the challenge b. The state can
contain the coins of A or any trapdoor associated to crs that A chooses to put there, and it can use
this in its second-stage distinguishing task.

Subversion ZK. Subversion ZK asks that for any CRS subvertor X creating a CRS in any way
it likes there is a simulator able to produce the full view of the CRS subvertor, including its coins
and proofs corresponding to adaptively chosen instances, without knowing the witnesses. Formally,
a simulator S for X specifies PT algorithms S.crs and S.pf. Now consider game S-ZK of Figure 2
associated to Π,R,X,S and an adversary A. We let Advs-zk

Π,R,X,S,A(λ) = 2 Pr[S-ZKΠ,R,X,S,A(λ)] − 1.

10

We say that Π is subversion zero-knowledge (abbreviated S-ZK) for R if for all PT CRS subvertors
X there is a PT simulator S such that for all PT A the function Advs-zk

Π,R,X,S,A(·) is negligible.

In this game, if the challenge bit b is 1 then the CRS crs1 is generated via X with the coins r1
made explicit. Otherwise, if b = 0, the first stage S.crs of the simulator is run to produce simulated
versions crs0, r0 not only of the CRS but also of the coins of X. Alongside, S.crs produces a
simulation trapdoor std as in ZK to allow its second stage to simulate proofs. Now, A gets to
request its Prove oracle for proofs of instances of its choice. If b = 1, these are produced by the
honest prover with the given witness; but if b = 0, they are produced via the second stage S.pf of
the simulator using the simulation trapdoor std and no witness. Adversary A produces its guess b′

and wins of b′ = b.

The definition reflects that X here is like a cheating verifier in classical ZK [33]. The simulator
thus needs to produce its coins as well as the transcript of its interaction with its oracle. But also,
to reflect the ZK requirement of non-interactive systems above, more is required, namely that the
simulator must first produce the simulated CRS and coins, and then, in its second stage, be able
to produce simulated proofs. The definition is thus quite demanding. Note that the simulator can
depend (in a non-blackbox way) on X, but not on A. The latter is important to ensure that S-ZK
implies ZK.

3.4 2-move protocols

We will have many occasions to refer to and use 2-move interactive protocols, so we fix a syntax
for them. A 2-move protocol 2MV for NP relation R specifies PT algorithms 2MV.V, 2MV.P,
2MV.D. Via (m1, st)←$ 2MV.V(1λ, x) the honest verifier generates the first move message m1

on input x, retaining associated state information st. Via m2←$ 2MV.P(1λ, x, w,m1) the honest
prover generates a reply computed from x, a witness w ∈ R(x) and the first move message m1.
Deterministic decision algorithm 2MV.D takes x,m1,m2, st and returns a boolean decision. Security
notions will be discussed as needed. The relation of NI systems to 2-move protocols is discussed in
Appendix A.

4 Negative result: ZK and S-SND are not compatible

All the different forms of subversion security (S-SND, S-WI, S-ZK) are easy to achieve in isolation,
meaning if nothing else is required. For example sending the witness as the proof achieves S-SND
(but this is not ZK). Having the verification algorithm always accept and sending the empty string
as the proof achieves S-ZK (but this is not SND). These kinds of results are not interesting. We
want to study the simultaneous achievability of meaningful combinations of the notions, meaning
some kind of soundness together with some kind of zero knowledge or witness indistinguishability.

We already have NI systems that are SND+ZK and we do not want to degrade this. If now the
CRS is subverted, what more can we have without losing the initial properties? The first question
we ask is, can we up the ante for soundness, meaning add S-SND? That is, we want subversion
soundness while retaining ZK. We will show that this is not possible.

An impossibility result in this domain means no NI system satisfying the conditions exists
unless the relation R is trivial. Roughly, trivial means that the verification algorithm can decide
membership in L(R) on its own. Impossibility results of this type begin with Goldreich and Oren
(GO) [32]. Their definition of R being trivial was simple, namely that it is in BPP. This will not
suffice here, so we begin with a more precise definition of relation triviality and an explanation of
why it is needed.

11

Game DECIG,R,M(λ)

(x,w)←$ IG(1λ); d1 ← R(x,w)

If (x ∈ L(R) and d1 = false) then return false

d0←$ M(1λ, x) ; return (d0 6= d1)

Figure 3: Game defining language triviality

Relation triviality. The definition of a relation R being trivial if L(R) ∈ BPP works when
the formulations of ZK and soundness being used are in the complexity-theoretic style, meaning
the conditions refer to universally quantified inputs. As discussed in Section 3.2 however, our
formulations, following modern treatments of NI systems in the literature, are in the cryptographic
style, which is better suited for applications. Here the only instances that come into play are
those that can be generated by PT algorithms, and the only positive instances that come into play
are those generated with witnesses. In this setting, BPP will not work as a definition of triviality
because membership in standard complexity classes like BPP refers to arbitrary inputs, not merely
ones that one can generate in PT. For our purposes we thus give a definition of a language (actually
an NP relation) being trivial, which can be seen as defining a cryptographic version of BPP.

Let R be an NP relation. An instance generator is a PT algorithm that on input 1λ returns
a pair (x,w). Here x is a challenge instance that may or may not be in L(R), and w should be in
R(x) if x ∈ L(R). Let M be an algorithm (decision procedure) taking 1λ, x and returning a boolean
representing whether or not it thinks x is in L(R). Consider game DEC of Figure 3 associated to
IG,R,M and let Advdec

IG,R,M(λ) = Pr[DECIG,R,M(λ)]. We say that algorithm M decides R if for every

PT IG the function Advdec
IG,R,M(·) is negligible. We say that R is trivial if there is a PT algorithm M

that decides R. Intuitively, in game DEC, think of IG as an adversary trying to make M fail. The
game returns true when IG succeeds, meaning M returns the wrong decision. A technical point is
that if IG generates a positive instance x, the game forces it to lose if the witness w is not valid.
Thus we are asking that M is able to decide membership in PT for instances that can be efficiently
generated with valid witnesses if the instance is positive. But this does not mean it can decide
membership on all instances. Thus if L(R) ∈ BPP then R is certainly trivial, but the converse
need not be true.

The following proposition formally states the result that motivates this definition, namely that
for trivial relations, achieving all goals is itself trivial:

Proposition 4.1 Let R be a trivial NP-relation. Then there is a NI system Π for R that is S-SND,
S-ZK and S-WI.

Proof: Let M be a PT algorithm that decides R. Let Π.Pg return the empty string ε. Let Π.P
return ε as the proof. Let Π.V(1λ, crs, x, π) return M(1λ, x). Given A we can construct IG such
that Advs-snd

Π,R,A(·) ≤ Advdec
IG,R,M(·), which establishes S-SND. S-ZK is trivial since an honest proof is

always the empty string, and S-WI is implied by S-ZK. We omit the details.

Prop. 4.1 validates our triviality definition and shows why it is needed. Now we turn to the
interesting question, namely what happens for non-trivial relations.

Result. We show that ZK and subversion soundness (S-SND) cannot co-exist, meaning only
trivial relations will have NI systems with both attributes. We stress that we are not asking here
for subversion ZK but just plain ZK.

12

Games G0, G1

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

(crs, std)←$ Π.Sim.crs(1λ)

π←$ Π.Sim.pf(1λ, crs, std, x)

d0 ← Π.V(1λ, crs, x, π)

b← ((x 6∈ L(R)) ∧ (d0 = true))

b← ((d1 = true) ∧ (d0 = false))

Return b

Game G2

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

crs←$ Π.Pg(1λ)

π←$ Π.P(1λ, crs, x, w)

d0 ← Π.V(1λ, crs, x, π)

b← ((d1 = true) ∧ (d0 = false))

Return b

Figure 4: Games for proof of Theorem 4.2

Theorem 4.2 Let Π be a NI system satisfying zero knowledge (ZK) and subversion soundness
(S-SND) for an NP relation R. Then R is trivial.

The proof follows the basic paradigm of GO [32]. We use the simulator to build a cheating prover
that violates soundness. In our case this works if soundness holds relative to a simulated CRS, but
S-SND guarantees this.

Proof of Theorem 4.2: Define the following decision procedure M:

Algorithm M(1λ, x)

(crs0, std0)←$ Π.Sim.crs(1λ); π←$ Π.Sim.pf(1λ, crs0, std0, x)
Return Π.V(1λ, crs0, x, π)

Thus, to decide if x ∈ L(R), algorithm M runs the simulator to get a simulated CRS and simulation
trapdoor, uses the latter to generate a simulated proof, and decides that x ∈ L(R) if this proof is
valid. Let IG be any PT instance generator. We will show below that Advdec

IG,R,M(·) is negligible.
This shows that R is trivial.

To show Advdec
IG,R,M(·) is negligible, below we will define PT adversaries A,B such that

Advdec
IG,R,M(λ) ≤ Advzk

Π,R,A(λ) + Advs-snd
Π,R,B(λ) (1)

for all λ ∈ N. By assumption, Π satisfies ZK and S-SND for R, so the functions Advzk
Π,R,A(·) and

Advs-snd
Π,R,B(·) are both negligible. Thus Eq. (1) implies that Advdec

IG,R,M(·) is negligible, as desired.

Consider games G0,G1,G2 of Figure 4. Game G0 is defined ignoring the box, while game G1

includes it. Games G0 and G1 split up the decision process depending on whether or not x ∈ L(R).
Game G2 switches to a real CRS and proofs, which it can do since the instance generator provided
a witness.

Game DEC returns true if d1 = true and d0 = false; if d1 = false and d0 = true we must also have
x /∈ L(R), which however implies d1 = false. We thus have

Advdec
IG,R,M(λ) = Pr[G0] + Pr[G1] = Pr[G0] + Pr[G2] + (Pr[G1]− Pr[G2]) . (2)

Notice that by completeness of Π we have

Pr[G2] = 0 . (3)

Now we specify the adversaries A,B as follows:

13

Adversary AProve(1λ, crs)

(x,w)←$ IG(1λ) ; d1 ← R(x,w)

π←$ Prove(x,w) ; d0 ← Π.V(1λ, crs, x, π)

If ((d1 = true) ∧ (d0 = false)) then return b′ ← 0

Else return b′ ← 1

Adversary B(1λ)

(x,w)←$ IG(1λ)

(crs, std)←$ Π.Sim.crs(1λ)

π←$ Π.Sim.pf(1λ, crs, std, x)

Return (crs, x, π)

Then we have

Pr[G0] ≤ Advs-snd
Π,R,B(λ) (4)

Pr[G1]− Pr[G2] ≤ Advzk
Π,R,A(λ) . (5)

Putting together Eqs. (2), (3), (4) and (5) we get Eq. (1).

5 Positive results

We already have NI systems that are SND+ZK, or SND+WI. We ask, if the CRS is subverted,
what more can we have without losing the initial properties?

Can we add S-ZK? In Sect. 5.1 we answer positively to this question (result P1), showing a
protocol that is SND+ZK+S-ZK under a knowledge-of-exponent assumption (KEA) in a group
equipped with a bilinear map. In light of negative result N, this is the best we can achieve if we
want to retain the ZK property in presence of CRS subversion.

Can we add S-SND? In light of N, we know that we cannot have S-SND and any form of ZK
together. The best we can achieve while retaining S-SND is S-WI. In Sect. 5.2 we show that there
exist NI systems that are S-SND+S-WI (result P2).

Result P1 provides S-ZK but requires KEA. A natural question is, if we relax the requirement
of S-ZK and aim to retain S-WI, can we achieve it from weaker assumptions? In Sect. 5.3 we show
that there exists a NI system that is SND, ZK and S-WI under the weaker assumption that one-way
functions and zaps exist.

5.1 Soundness and subversion ZK

Overview. To achieve S-ZK, a simulator must be able to simulate proofs under a CRS output by
a subvertor. As opposed to ZK, the simulator thus cannot embed a trapdoor in the CRS, nor can it
extract one from the subvertor by rewinding, as there is no interaction with it. We will instead rely
on a knowledge assumption, stating that an algorithm can only produce a certain output if it knows
underlying information. This is formalized by requiring that there exists an extractor that extracts
the information from the algorithm. We will use this information as the simulation trapdoor, which
we can extract from a subvertor computing a CRS. For soundness, a minimal requirement is that
it is hard for the adversary to obtain the trapdoor from an honestly generated CRS.

The knowledge-of-exponent assumption (KEA) for a group G, generated by g, states that from
any algorithm which given a random element h←$ G returns a pair of the form (gs, hs) one can
efficiently extract s. A possible approach for a NI system is to define the CRS as a pair (gs, hs), for
random s, and define a proof for x ∈ L to prove that either x ∈ L or one knows the value s in the
CRS. By extracting s, the simulator in the S-ZK game can simulate proofs, while the adversary in
the soundness game must supposedly use a witness for x, since it does not know s.

There are two problems with this approach: who chooses the group G and who chooses the
element h used to prove knowledge of s? We address the first problem by letting the group G be
part of the scheme specification. As for the choice of h, it cannot be chosen at CRS setup, since

14

if the subvertor knows η = logg h, it can produce a CRS without knowing s by randomly picking
S←$ G and setting S′ ← Sη. Fixing h and letting it also be also part of the scheme description
is problematic, since again, what guarantees that the subvertor does not know its logarithm and
thereby break KEA? We overcome this problem by defining a new type of KEA, stating that in
order to produce elements (h = gη, gs, hs), one has to either know s or η. As tuples of this form
are Diffie-Hellman tuples, we call the assumption DH-KEA.

We define a CRS as a tuple (gs0 , gs1 , gs0s1), and let a proof for a statement x prove that either
there is a witness for x or one knows s0 or s1. We prove knowledge by adding a ciphertext C, and
use a perfectly sound witness-indistinguishable NI proof ζ with trivial CRS (a.k.a. a non-interactive
zap) to prove that either x ∈ L or C encrypts s0 or s1. (Using linear encryption for C and the
NI system by GOS [38], both IND-CPA of C, as well as WI of ζ, follow from the decision-linear
assumption (Dlin) [16].)

The sketched scheme is ZK since by encrypting the trapdoor s0 (or s1) proofs can be simulated,
and by IND-CPA of C and WI of ζ they are indistinguishable from real ones. But we defined the
CRS to allow even more: by DH-KEA, from a CRS subvertor we can extract either s0 or s1, which
should yield S-ZK. Not quite, since the subvertor could simply output random group elements
(S0, S1, S2), from which we cannot extract. Since the GOS NI system requires a bilinear group, we
can use its pairing to check CRS well-formedness. The prove (and verification) algorithm can then
reject a malformed CRS, which together with simulatability under a well-formed CRS yields S-ZK.

Soundness intuitively holds because, by soundness of ζ, a proof for a wrong statement must
contain an encryption of s0 or s1, which should be infeasible to obtain from an honestly generated
CRS if computing discrete logarithms (DL) is hard. (Given a DL challenge S, one can randomly
set S0 or S1 to S and with probability 1

2 , the proof contains an encryption of logS.) To formally
prove soundness, the reduction must recover s from C. We could include in the CRS a public key
under which C is to be encrypted: the reduction sets up the CRS, knows the decryption key and
can obtain s. Alas, this would break S-ZK: an adversary that created the CRS could also decrypt
C and thereby distinguish real proofs from simulated ones.

We therefore include the linear-encryption key pk = (gu, gv) in the proof rather than the CRS.
But how would the soundness reduction then retrieve s? Could we use KEA again? Since we can
only extract one of two possible logarithms, we do the following. The proof contains two public
keys pk0 = (gu0 , gv0) and pk1 = (gu1 , gv1) and s is encrypted under both of them. Additionally, the
proof contains elements gu0u1 , gu0v1 , gv0u1 , gv0v1 , whose consistency can be verified via the pairing.
By DH-KEA, there exists an extractor which from (gu0 , gu1 , gu0u1) extracts either u0 or u1, another
extractor that from (gu0 , gv1 , gu0v1) extracts u0 or v1, and so on. Together these four extractors
either yield (u0, v0) or (u1, v1), thus one of the secret keys corresponding to pk0 and pk1. This way
the soundness reduction can extract the value s encrypted in a proof for a false statement. At the
same time we show that S-ZK still holds.

In our actual scheme we use the CDH assumption (defined below and implied by DLin) instead
of DL. The reason is that CDH solutions are group elements, which can be efficiently encrypted
using linear encryption. The trapdoor is then solution to a CDH instance in the CRS. Besides
14 group elements, the most costly component of our proofs is the GOS NI proof ζ. It uses a
circuit representation of the NP relation R and shows that (a) either R(x,w) for some w, or (b) the
simulation trapdoor was encrypted (see Eq. (6)). The GOS system [38] was further developed by
Groth and Sahai [40] yielding very efficient proofs for algebraic statements, and we could replace
GOS by GS. As the clause (b) that we added has precisely this algebraic form, the overhead for
turning a proof that is merely WI into one that is S-ZK would be quite modest.

Discussion. Our scheme specification includes the bilinear group, so one might ask whether we

15

Game KEdGG,M,E(λ)

(p,G,GT , e, g)← dGG(1λ)

h0, h1←$ G; r←$ {0, 1}M.rl(λ)

(S0, S1, S2)←M(1λ, h0, h1; r)

s←$ E(1λ, h0, h1, r)

Return
(
e(S0, S1) = e(g, S2) ∧ gs 6= S0 ∧ gs 6= S1

)

Game CDHdGG,A(λ)

(p,G,GT , e, g)← dGG(1λ)

s, t←$ Zp; C←$ A(1λ, gs, gt)

Return (C = gst)

Game DLindGG,A(λ)

b←$ {0, 1}; (p,G,GT , e, g)← dGG(1λ)

u, v, s, t, ξ←$ Zp; b′←$ A(1λ, gu, gv, gus, gvt, gs+t+b·ξ)

Return (b = b′)

Figure 5: Games defining the knowledge-of-exponent assumption (left), the CDH assumption (top
right) and the DLin assumption (bottom right)

have not just shifted the subversion risk from the CRS to the choice of the group. Since the
group generation algorithm is deterministic and public, anyone can run the algorithm to re-obtain
the group; moreover, different entities can implement it independently if they think that some
standardized implementation was subverted, as a check.

With the CRS, the situation is different. There is no easy way to check that it was properly
generated, at least without compromising security. Perhaps a vocabulary that speaks to this is
that the group is reproducible, whereas the CRS is not. Someone is trusted to produce it and one
cannot easily check that they did it honestly.

Still, one must ask whether the algorithms used allow embedding of backdoors. Here we must
look at the specific algorithms. Thus, while one could use a bilinear group in which the discrete-log
problem is easy, leading to an insecure scheme, we know it is possible to publicly specify good
algorithms. The specifications, given for example in research papers, may be used by anyone to
re-produce the results of the algorithms with some faith that there are no backdoors, in the case
(as here) that these algorithms are deterministic.

Speaking broadly, we cannot (and do not claim to) prevent all possible subversion. This is not
possible. Our goal is to put in defenses that make the most obvious paths harder, one of which is
subversion of the CRS.

Bilinear groups. Our construction is based on bilinear groups for which we introduce a new
type of knowledge-of-exponent assumption. A bilinear-group generator GGen is a PT algorithm that
takes input a security parameter 1λ and outputs a description of a bilinear group (p,G,GT , e, g),
where p is a prime of length λ, G and GT are groups of order p, g generates G and e : G×G→ GT

is a bilinear map that is non-degenerate (i.e. 〈e(g, g)〉 = GT).
While in the cryptographic literature bilinear groups are often assumed to be probabilistically

generated, real-world pairing-based schemes are defined for groups that are fixed for every λ. We
reflect this by defining the group generator as a deterministic PT algorithm dGG. An advantage
of doing so is that every entity in the scheme can compute the group from the security parameter
and no party must be trusted with generating the group.

KEA. The knowledge-of-exponent assumption (KEA) [22, 41, 6] in a group G states that an
algorithm M that is given two random generators g, h of G and outputs (gc, hc) must know c. This
is formalized by requiring that there exists an extractor for M which when given M’s coins outputs
c. Generalizations of KEA were used in the bilinear-group setting in [35]. We introduce a new
type of KEA in bilinear groups, which we call DH-KEA, where we assume that if M outputs a
Diffie-Hellman (DH) tuple gs, gt, gst then it must either know s or t. This should also be the case
when M is given two additional random generators h0, h1. We note that while an adversary may

16

produce one group element without knowing its discrete logarithm by hashing into the elliptic curve
[17, 46, 18], it seems hard to produce a DH tuple without knowing at least one of the logarithms.

Formally, let Advke
dGG,M,E(λ) = Pr[KEdGG,M,E(λ)], where game KE is defined in Figure 5. The

DH-KEA assumption holds for dGG if for every PT M there exists a PT E s.t. Advke
dGG,M,E(·) is

negligible.

We note that due to deterministic group generation the assumption does not hold for non-
uniform machines M, as their advice for inputs 1λ could simply be a DH tuple (S0, S1, S2) w.r.t. the
group output by dGG(1λ). However, we follow Goldreich [30] and only consider uniform machines.
As a sanity check, we show that DH-KEA holds in the generic-group model. To reflect hashing
into elliptic curves, we provide the adversary with an additional generic operation: it can create
new group elements without knowing their discrete log. In Appendix C we show the following.

Theorem 5.1 DH-KEA, as defined above, holds in the generic-group model with hashing into the
group.

CDH. The computational Diffie-Hellman assumption in a group G states that given gs and gt

for a random s, t, it should be hard to compute gst. Formally, the CDH assumption holds for dGG
if Advcdh

dGG,A(·) is negligible for all PT adversary A, where Advcdh
dGG,A(λ) = Pr[CDHdGG,A(λ)] and

game CDH is specified in Figure 5.

DLin. The decision linear assumption [16] in a group G states that given (gu, gv, gus, gvt) for
random u, v, s, t, the element gs+t is indistinguishable from a random group element. Formally,
the DLin assumption holds for dGG if Advdlin

dGG,A(·) is negligible for all PT adversaries A, where

Advdlin
dGG,A(λ) = 2 Pr[DLindGG,A(λ)]− 1 and game DLin is defined in Figure 5.

We will make use of the fact that DLin is self-reducible. This means that given a tuple
(U, V, S, T,X) one can produce a new tuple (U ′, V ′, S′, T ′, X ′) so that if the original tuple was linear
then the new tuple is so too, but with fresh u, v, s and t; if X is random then (U ′, V ′, S′, T ′, X ′) are
all independently random as well. In particular, consider the following algorithm that takes input
a DLin challenge (U, V, S, T,X) ∈ G5.

Algorithm Rnd(1λ, (U, V, S, T,X))

(p,G,GT , e, g)← dGG(1λ); z, a, b, c, d←$ Zp
U ′ ← Uc; V ′ ← V d; S′ ← SczUca; T ′ ← T dzV db; X ′ ← Xzgagb

Return (U ′, V ′, S′, T ′, X ′)

Let s, t, ξ be such that S = U s, T = V t, X = gξ. Define s′ := sz + a and t′ := tz + b and note
that they are both uniformly random. We have S′ = (U ′)s

′
, T ′ = (V ′)t

′
and X ′ = gξz+a+b =

g(ξ−s−t)z+sz+tz+a+b = g(ξ−s−t)z+s
′+t′ . Thus, if the original challenge was a linear tuple (i.e., ξ =

s + t) then the new tuple is also linear with new randomness uc, vd, s′, t′, whereas otherwise (i.e.,
ξ − s− t 6= 0) U ′, V ′, S′, T ′ and X ′ are independently random.

The scheme. Our S-ZK scheme is based on a bilinear-group generator dGG, for which we define
linear commitments to messages M ∈ G as follows:

Ln.C(M ; (~u,~t))

Return ~C = (gu0 , gu1 , gu0t0 , gu1t1 , gt0+t1 ·M)

Ln.D(~u, (C2, C3, C4))

Return M ← C4 · C−1/u0
2 · C−1/u1

3

Commitments are hiding under DLin. Since (C2, C3, C4) is a linear encryption under public key
(C0, C1), the logarithms of the latter let one recover the message via Ln.D.

17

Π.Pg(1λ)

(p,G,GT , e, g)← dGG(1λ)

t, s0, s1←$ Zp; h← gt

S0 ← gs0 ; S1 ← gs1 ; S2 ← gs0s1

Return crs ← (S0, S1, S2, h)

Π.V
(
1λ, (S0, S1, S2, h), x, π

)
(p,G,GT , e, g, h1, h2)← dGG(1λ)

Parse (~C0, ~C1, ~D0, ~D1, ζ)← π

If e(S0, S1) 6= e(g, S2) then return false

For i, j = 0, 1:

If e(C0,i, C1,j) 6= e(g,Di,j), return false

Return Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Π.P(1λ, (S0, S1, S2, h), x, w)

If R(x,w) = false then return ⊥
(p,G,GT , e, g)← dGG(1λ)

If e(S0, S1) 6= e(g, S2), return ⊥
C0,0, . . . , C0,4, C1,2, C1,3, C1,4←$ G
u0, u1←$ Zp
C1,0 ← gu0 ; C1,1 ← gu1

For i, j = 0, 1: Di,j ← C
uj

0,i

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 6: NIZK scheme Π[R, dGG] satisfying SND and S-ZK

We also use a statistically sound NI system with trivial CRS (also called “non-interactive zap”
by GOS [38]) Z = (Z.P,Z.V) for the following relation:

(6)RZ((x, S0, S1, h, ~C0, ~C1), ((w, (s, ~u0, ~u1,~t0,~t1)))

If R(x,w) = 1, return 1

If (gs=S0 or gs=S1), ~C0 = Ln.C(hs; (~u0,~t0)) and ~C1 = Ln.C(hs; (~u1,~t1)), return 1

Return 0

The NI proof system Z can for example be instantiated by the construction from [38], which does
not require a CRS, is perfectly sound and WI under the DLin assumption. Our NIZK system
Π[R, dGG] is given in Figure 6.

Theorem 5.2 Let R be an NP relation and let dGG be a bilinear-group generator. Then Π[R, dGG],
defined in Figure 6, satisfies (1) soundness under DH-KEA and CDH; and (2) subversion zero
knowledge under DH-KEA and DLin.

We start with some intuition before giving the proof.

Soundness. Assume an adversary A outputs a proof π = (~C0, ~C1, ~D0, ~D1, ζ) for a false statement.
Since there does not exist a witness w, by statistical soundness of the proof ζ, RZ must return
1 in the second line in Eq. (6), meaning ~C0 and ~C1 are commitments to either hlogS0 or hlogS1 ;
intuitively, the adversary has thus broken the CDH assumption either for challenge (S0, h) or (S1, h).

To make this formal, we construct an algorithm B that on input (gs, h) outputs hs with prob-
ability close to 1

2 . We first construct four machines Mi,j , 0 ≤ i, j ≤ 1 that are given given (S, h),
set Sb ← S for a random b, complete this to a CRS, on which they run A; when A returns π, Mi,j

outputs (C0,i, C1,j , Di,j). By DH-KEA there exist four extractors Ei,j which on input (S, h) and
Mi,j ’s coins (which include A’s coins) return either u0,i = logC0,i or u1,j = logC1,j .

Using M0,0, . . . ,M1,1, we define B: given a CDH challenge (S, h), it picks coins r̄ and uses r̄ to
pick b←$ {0, 1}, s′←$ Zp and coins r for A; it sets Sb ← S, S1−b ← gs

′
and S2 ← Ss

′
and runs A on

input (S0, S1, S2, h) and coins r to get π containing (~C0, ~C1); it then runs all Ei,j on input (S, h, r̄),
which each returns either u0,i = logC0,i or u1,j = logC1,j . This implies that for some i, B obtains
both ui,0 and ui,1. Using this, B recovers T ← Ln.D((ui,0, ui,1), (Ci,2, Ci,3, Ci,4)), which it outputs.

18

Game SNDΠ,R,A(λ)

(p,G,GT , e, g)← dGG(1λ); t, s0, s1←$ Zp
h← gt; S0 ← gs0 ; S1 ← gs1 ; S2 ← gs0s1

(x, (~C0, ~C1, ~D0, ~D1, ζ))←$ A(1λ, (S0, S1, S2, h))

Return true if all of the following hold:

– x 6∈ L(R)

– e(S0, S1) = e(g, S2)

– For all i, j = 0, 1 : e(C0,i, C1,j) = e(g,Di,j)

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Return false

Algorithm Mi,j(1
λ, S, h; (b, s′, r))

(p,G,GT , e, g, h1, h2)← dGG(1λ)

Sb ← S; S1−b ← gs
′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))

← A(1λ, (S0, S1, S2, h); r)

Return (C0,i, C1,j , Di,j)

Figure 7: Soundness game for Π[R, dGG] and algorithm Mi,j

By soundness of ζ, we have either T = hlogS0 or T = hlogS1 . Since A has no information on where
the challenge S was embedded, B solves CDH with probability 1

2 .

Subversion zero knowledge. By DH-KEA, for every X that outputs a CRS of the form (gs0 , gs1 , gs0s1 , h)
there exists an algorithm E that extracts either s0 or s1. To show S-ZK we first construct a sim-
ulator S. Its first part S.crs picks r, runs crs ← X(1λ, r) and sets s←$ E(1λ, r) if crs is correctly
formed and s ← ⊥ otherwise, and outputs crs, r and the trapdoor std ← s. It is immediate that
crs1 output by X on coins r1 is indistinguishable from crs0, r0 output by S.crs.

We next construct a proof simulator S.pf for statements x under crs = (S0, S1, S2, h) using
trapdoor s. Like Π.P it returns ⊥ if crs is not correctly formed. It chooses ~u0,~t0, ~u1,~t1 and defines
~C0 and ~C1 as commitments to hs and computes the corresponding elements Di,j ← gu0,iu1,j . Since

either gs = S0 or gs = S1, S.pf has thus a witness for the statement (x, S0, S1, h, ~C0, ~C1) ∈ RZ ,
which it uses to compute a proof ζ. The simulator outputs π ← (~C0, ~C1, ~D0, ~D1, ζ), which we now
argue is indistinguishable from a proof output by Π.P under DLin by a series of game hops.

We first note that when constructing ζ, instead of witness (s, ~u0, ~u1,~t0,~t1) we could use w; this
is indistinguishable under WI, which for the GOS system follows from DLin. In the next game hop,
we replace ~C0 by a random quintuple and construct the Di,j ’s as in Π.P; this is indistinguishable

under DLin. In the final game hop we replace ~C1 by a random quintuple. This is also reduced to
DLin using the fact that we can compute the Di,j ’s using the logarithms of ~C0. The result is a
proof π that is distributed like one output by Π.P.

Proof of Theorem 5.2: Soundness. Let A be a PT adversary breaking soundness. We write
out the game and define four algorithms Mi,j for 0 ≤ i, j ≤ 1 in Figure 7.

By the DH-KEA assumption (defined by game KE in Figure 5) applied to each Mi,j , there exist PT
extractors Ei,j which with with overwhelming probability extract either logC0,i or logC1,j , that is,

For all 0 ≤ i, j ≤ 1 : Advke
dGG,Mi,j ,Ei,j (·) is negligible . (7)

Consider games G1, G2, G3 and G4 in Figure 8, where games G1 and G3 ignore the boxes in its
description, while G2 and G4 include the boxes.

Game G1 differs from SNDΠ,R,A in how the CRS is computed. As the CRS is distributed identically
in both games, we have

Pr[SNDΠ,R,A(λ)] = Pr[G1(λ)] . (8)

Since G1 and G2 only differ when for some i, j: C0,i 6= gvi,j and C1,j 6= gvi,j , while e(C0,i, C1,j) =

19

Game G1 and G2

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G
b←$ {0, 1}; s′←$ Zp
Sb ← S; S1−b ← gs

′
; S2 ← Ss

′

r←$ {0, 1}A.rl(λ)

(x, (~C0, ~C1, ~D0, ~D1, ζ))← A(1λ, (S0, S1, S2); r)

For i, j = 0, 1:

vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

Return true if the following hold:

– x 6∈ L(R)

– e(S0, S1) = e(g, S2)

– For all i, j = 0, 1:

e(C0,i, C1,j) = e(g,Di,j)

C0,i = gvi,j or C1,j = gvi,j

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

Return false

Games G3 and G4

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G; b←$ {0, 1}; s′←$ Zp
Sb ← S; S1−b ← gs

′
; S2 ← Ss

′

r←$ {0, 1}A.rl(λ)

(x, (~C0, ~C1, ~D0, ~D1, ζ)) ← A(1λ, (S0, S1, S2); r)

For i, j = 0, 1: vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

If (∃ j : C0,0 = gv0,j) and (∃ j : C0,1 = gv1,j) (I)

T ← Ln.D((v0,j , v1,j), (C0,2, C0,3, C0,4))

If (∃ i : C1,0 = gvi,0) and (∃ i : C1,1 = gvi,1) (II)

T ← Ln.D((vi,0, vi,1), (C1,2, C1,3, C1,4))

Else return false (III)

Return true if the following hold:

– x 6∈ L(R) and e(S0, S1) = e(g, S2)

– For all i, j = 0, 1:

e(C0,i, C1,j) = e(g,Di,j)

– Z.V((x, S0, S1, h, ~C0, ~C1), ζ)

– e(S0, h) = e(g, T) or e(S1, h) = e(g, T)

Return false

Figure 8: Hybrid games in the proof of soundness of Π[R, dGG]

e(g,Di,j) (that is, Ei,j failed), we have

Pr[G1(λ)]− Pr[G2(λ)] ≤
∑1

i,j=0 Pr[KEdGG,Mi,j ,Ei,j (λ)] . (9)

We now argue that whenever G2 returns true then so does G3. The differences are the box in G2

and lines (I), (II) and (III) in G3. Suppose G2 returns true. Then we have (1a) gv0,0 = C0,0 or
(1b) gv0,0 = C1,0; (2a) gv1,0 = C0,1 or (2b) gv1,0 = C1,0; and (3a) gv1,1 = C0,1 or (3b) gv1,1 = C1,1.
Suppose we have (1a): if (2a) holds then clause (I) in G3 is satisfied; otherwise (2b) must hold. If
(3a) holds then again (I) in G3 is satisfied; if (3b) holds then, since we have (2b), clause (II) in G3

is satisfied. Case (1b) is dealt with analogously. We thus obtain:

Pr[G3] ≥ Pr[G2] . (10)

Game G4 returns false if T is not of the expected form. Games G3 and G4 thus differ when (a1) the
logarithms of (C0,0, C0,1) or (a2) those of (C1,0, C1,1) were extracted (otherwise both games return

false), moreover (b) x 6∈ L(R) and (c) Z.V((x, S0, S1, h, ~C0, ~C1), ζ), while (d) (gt 6= S0 and gt 6= S1),
with t such that T = ht. Suppose (e) there exist (s, ~u0, ~u1,~t0,~t1) such that:

gs = S0 ∨ gs = S1 , (11)

~C0 = Ln.C(hs; (~u0,~t0)) and ~C1 = Ln.C(hs; (~u1,~t1)) . (12)

If (a1) holds then by correctness of linear encryption and Eq. (12), we get that the result of
decryption T satisfies T = hs. This, together with Eq. (11) however contradicts (d). Analogously,
we get a contradiction if we have (a2). Therefore, (e) does not hold, and together with (b) this yields
(x, S0, S1, h, ~C0, ~C1) /∈ L(RZ), as defined in Eq. (6). Together with (c), this contradicts soundness
of Z.

20

Algorithm S.crs(1λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ)

(S0, S1, S2, h)← X(1λ; r)

If e(S0, S1) = e(g, S2)

then s←$ EX′(1λ, r)

Else s← ⊥
Return ((S0, S1, S2, h), r, s)

Algorithm S.pf(1λ, (S0, S1, S2, h), s, x)

(p,G,GT , e, g, h1, h2)← dGG(1λ)

If e(S0, S1) 6= e(g, S2) or s = ⊥ then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

~C0 ← Ln.C(hs; (~u0,~t0)); ~C1 ← Ln.C(hs; (~u1,~t1))

For i, j = 0, 1: Di,j ← gu0,iu1,j

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 9: Simulator for S-ZK

Letting AZ runs the game and output the proof ζ together with its statement (formally defined in
Figure 15 in Appendix B), we have thus shown that

Pr[G3(λ)]− Pr[G4(λ)] ≤ Pr[SNDZ,RZ ,AZ (λ)] . (13)

Finally, note that since A’s view is independent of the bit b, if G4 returns true then e(Sb, h) = e(g, T)
with probability 1

2 . We can thus construct a CDH adversary B (formally specified in Figure 15 in
Appendix B) that given (S, h) simulates G4 and outputs T , which with probability 1

2 Pr[G4(λ)] is
a CDH solution for (S, h), thus

1
2 Pr[G4(λ)] ≤ Pr[CDHdGG,B(λ)] . (14)

Eqs. (8), (9), (10), (13) and (14) together yield

Advsnd
Π,R,A(λ) = Pr[G1(λ)]− Pr[G2(λ)] + Pr[G2(λ)]− Pr[G3(λ)]+

Pr[G3(λ)]− Pr[G4(λ)] + Pr[G4(λ)]

≤
1∑

i,j=0

Advke
dGG,Mi,j ,Ei,j (λ) + Advsnd

Z,RZ ,AZ
(λ) + 2 ·Advcdh

dGG,B(λ) ,

which by Eq. (7), the fact that Z is perfectly sound and assuming CDH is hard yields that
Advsnd

Π,R,A(·) is negligible, as desired.

Subversion zero knowledge. Let X be a CRS subvertor that outputs (~S, h). Define X′(1λ; r)
that runs (~S, h) ← X(1λ; r) and returns ~S. By DH-KEA there exists a PT algorithm EX′ that if
S0 = gs0 , S1 = gs1 and S2 = gs0s1 for some s0, s1 then with overwhelming probability EX′ extracts
s0 or s1, that is,

Advke
dGG,2,X′,EX′

(·) is negligible . (15)

Using EX′ we define a simulator S in Figure 9.

Let A be an arbitrary PT adversary for S-ZK. Writing out game S-ZK for Π,X, S and A, we obtain
the game in Figure 10. (Note that in case b = 1 the values ~C0 = (gu0,0 , gu0,1 , gu0,0t0,0 , gu0,1t0,1 , gt0,0+t0,1·
M0) (and likewise ~C1) are random quintuples, so Π.P is correctly simulated. Moreover note that
line (∗∗) is redundant, as s = ⊥ only if e(S0,0, S0,1) 6= e(g, S0,2); but if so then for b = 0 Prove
returns ⊥ before line (∗∗).)
Observe that r0 and r1 in S-ZKΠ,R,X,S,A are distributed identically and that for a fixed value b ∈
{0, 1} the values r1−b, ~S1−b and h1−b are not used anywhere. We can therefore replace every
occurrence of r0, ~S0, h0 and r1, ~S1, h1 by values r, ~S, h, respectively.

21

Game S-ZKΠ,R,X,S,A(λ)

b←$ {0, 1}
(p,G,GT , e, g)← dGG(1λ)

r1←$ {0, 1}X.rl(λ)

(~S1, h1)← X(1λ; r1)

r0←$ {0, 1}X.rl(λ)

(~S0, h0)← X(1λ; r0)

If e(S0,0, S0,1) = e(g, S0,2)

s←$ EX′(1λ, r0)

Else s← ⊥
b′←$ AProve(1λ, (~Sb, hb), rb)

Return (b′ = b)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(Sb,0, Sb,1) 6= e(g, Sb,2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

If b = 1 then // simulate Π.P

M0,M1←$ G; ~C0 ← Ln.C(M0; (~u0,~t0))
~C1 ← Ln.C(M1; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Else // simulate S.pf

If s = ⊥ then return ⊥ (∗∗)
~C0←Ln.C(hs; (~u0,~t0)); ~C1←Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 10: S-ZK game for Π[R, dGG]

Games G0(λ), G1(λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2): s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return false

Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return (b′ = 1)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Games G2(λ), G3(λ) , G4(λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2): s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return false (∗)
Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return (b′ = 1)

Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))

M0←$ G; ~C0 ← Ln.C(M0; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

M1←$ G; ~C1 ← Ln.C(M1; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 11: Hybrid games in the proof of S-ZK of Π[R, dGG]

In order to show that the cases b = 0 and b = 1 are indistinguishable, we define a sequence of
hybrid games G0, . . . ,G4 given in Figure 11, where G3 includes the first box and only G4 includes
the double box. The first game G0 is game S-ZKΠ,R,X,S,A with the value b fixed to 0, but returning
(b′ = 1) instead of (b′ = 0). We thus have

Pr[G0(λ)] = 1− Pr[S-ZKΠ,R,X,S,A(λ) | b = 0] (16)

Game G1 differs from G0 if and only if EX′ fails to extract s0 or s1 when X outputs a valid CRS,

22

that is, X′ outputs (gs0 , gs1 , gs0s1). We have

Pr[G1(λ)]− Pr[G0(λ)] ≤ Advke
dGG,X′,EX′

(λ) . (17)

We define one more game G5, which is defined as G4 but without the line (∗). Observe that G5 is
actually the original game S-ZKΠ,R,X,S,A with b set to 1, so we have:

Pr[G5(λ)] = Pr[S-ZKΠ,R,X,S,A(λ) | b = 1] . (18)

Since game G4 differs from G5 only when EX′ fails (line (∗)), we have

Pr[G5(λ)]− Pr[G4(λ)] ≤ Advke
dGG,X′,EX′

(λ) . (19)

Game G2 differs from game G1 only in which witness is used to compute ζ; games G2 and G3 differ
in whether ~C0 is an encryption of hs or random; games G3 and G4 differ in the same way for ~C1.
In Appendix B we show the following:

Claim 5.3 There exist adversaries Awi against Z and B,B′ against DLin such that

Pr[G4(λ)]− Pr[G1(λ)] = Advwi
Z,Rz ,Awi

(λ) + Advedlin
dGG,B(λ) + Advedlin

dGG,B′(λ) . (20)

By Eqs. (16) and (18) we have

Advs-zk
Π,R,X,S,A(λ) = Pr[S-ZKΠ,R,X,S,A(λ) | b = 0] + Pr[S-ZKΠ,R,X,S,A(λ) | b = 1]− 1

= Pr[G5(λ)]− Pr[G0(λ)]

= Pr[G5(λ)]− Pr[G4(λ)] + Pr[G4(λ)]− Pr[G1(λ)] + Pr[G1(λ)]− Pr[G0(λ)]

≤ 2 ·Advke
dGG,X′,EX′

(λ) + Advwi
Z,Rz ,Awi

(λ) + Advedlin
dGG,B(λ) + Advedlin

dGG,B′(λ) ,

by Eqs. (17), (19) and (20). By Eq. (15) and assuming DLin (which also implies WI of Z), the
right-hand side is negligible, as desired.

5.2 Subversion SND and subversion WI

In this section we prove result P2: there exists an NI system that is simultaneously SND, WI,
S-SND and S-SWI. We call Π an NI system with trivial CRS if crs = ε and Π.P and Π.V ignore
input crs. In Lemma 5.4 we observe that if such a Π is SND and WI then it is also S-SND and
S-WI. (Intuitively, if the CRS is ignored then there’s no harm in subverting it.) In Theorem 5.5 we
then notice that an NI system with trivial CRS exists [38] which is SND and WI under the DLin
assumption in bilinear groups (defined on p. 17). As in this instantiation the group is chosen by
the prover (rather than fixed as for P1), it needs to be verifiable [38] (that is, one can efficiently
check that it is a bilinear group).

Lemma 5.4 Let R be an NP relation. Let Π be an NI system with trivial CRS for R. If Π is SND
and WI then it is also S-SND and S-WI.

Proof: Let A be an S-SND adversary. We define B against SND: on input (1λ, ε), run (crs, x, π)←$

A(1λ) and return (x, π). Since Π.V(1λ, ε, x, π) = Π.V(1λ, crs, x, π), we have Pr[SNDΠ,R,B(λ)] =
Pr[S-SNDΠ,R,A(λ)]. Thus, if Π is SND, it is S-SND.

Let A be a WI adversary. Define B against S-WI: on input (1λ, ε), run (crs, st)←$ A(1λ); b′←$

AProve(1λ, crs, st) and return b′; forward A’s queries to own oracle (this simulates A’s oracle since

23

Π.Pg(1λ)

σ←$ {0, 1}2λ

m1←$ Z.V(1λ)

Return crs ← (σ,m1)

Π.P(1λ, (σ,m1), x, w)

m2←$ Z.P(1λ,

(σ, x), (⊥, w),m1)

Return π ← m2

Π.V(1λ, (σ,m1), x, π)

Return

Z.D(1λ, (σ, x),m1, π)

Figure 12: NIZK scheme Π[G,Z] satisfying SND, ZK and S-WI

Π.P(1λ, ε, x, wb) = Π.P(1λ, crs, x, wb)). We have Pr[WIΠ,R,B(λ)] = Pr[S-WIΠ,R,A(λ)]. Thus, if Π is
WI, it is S-WI.

Theorem 5.5 Let R be an NP relation. If the decision-linear assumption holds for a verifiable
bilinear group then there exists an NI system Π for R that is S-SND and S-WI.

Proof: Let Π be the NI system presented in [38]. Π is an NI system with trivial CRS satisfying
SND and WI under the DLin assumption. By Lemma 5.4 it follows that Π is also S-SND and S-WI.

5.3 Soundness, ZK and subversion WI

We prove result P3 by presenting an NI system that is SND, ZK, and S-WI.

Zaps. A zap [27] for a relation R is a 2-move protocol (cf. Section 3.4), where the first move is
public-coin and is generated independently of the statement to be proved. Zaps retain soundness
and witness-indistinguishability even if the statements are chosen adaptively after the first-move
m1 is fixed. Consequently, the same m1 can be reused for many proofs. We denote zaps by

m1←$ Z.V(1λ); m2←$ Z.P(1λ, x, w,m1); b← Z.D(x,m1,m2) .

Dwork and Naor [27] show that zaps can be constructed from any NIZK in the shared ran-
dom string model. Concretely, zaps can be based on any family of doubly-enhanced trapdoor
permutations, when the underlying NIZK is instantiated with the system of [29].

The scheme. The CRS of our scheme consists of a random bit string σ of length 2λ and the first
move m1 of a zap. A proof consists of the second move of the zap for statement (x, σ), proving
that either x ∈ L or s is the pre-image of σ under a PRG G. The formal description of Π follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator and let Z be a zap for the following
relation RZ below. Then NI system Π[G,Z] is given in Figure 12.

RZ((σ, x), (s, w))

If σ = G(s) then return 1

If R(x,w) = 1 then return 1; else return 0

Theorem 5.6 Let R be an NP relation. Let G be a length-doubling function and Z be a zap for
relation RZ . If G is pseudorandom and Z is sound and witness-indistinguishable then Π[G,Z] is
SND, ZK and S-WI.

Proof: Soundness of Π follows from the soundness of the zap and the fact that the probability
that a randomly sampled string σ is in the range of the PRG G is negligible. ZK follows as in

24

Game Z-WIZ,RZ ,B(λ)

b←$ {0, 1}
(m1, st)←$ B1(1λ)

b′←$ BWIProve
2 (1λ, st)

Return (b = b′)

WIProve(x̄, w̄0, w̄1)

If (RZ(x̄, w̄0) = false or RZ(x̄, w̄1) = false)

then return ⊥
Return m2 ← Z.P(1λ, x̄, w̄b,m1)

B(1λ)

((σ,m1), st)←$ A(1λ)

Return (m1, (σ, st))

BWIProve
2 (1λ, (σ, st))

Return b′←$ AProve(1λ, (σ,m1), st)

B2’s simulation of oracle Prove(x,w0, w1)

m2 ←WIProve((σ, x), (⊥, w0), (⊥, w1))

Return π ← m2

Figure 13: Game defining WI for zaps (left) and adversary in proof of S-WI of Π

[29]: The ZK simulator picks s←$ {0, 1}λ, sets the CRS to be σ ← G(s) and m1←$ Z.V(1λ).
When the simulator is challenged to prove a theorem x, it has a witness for (σ, x) ∈ RZ and can
therefore compute π←$ Z.P(1λ, (σ, x), (s,⊥),m1). Indistinguishability of the simulated CRS and
proofs follows from the pseudorandomness of G and zap-WI (defined below).

To show S-WI, we prove that from an adversary A winning game S-WIΠ,R,X,A we can construct an
adversary B winning the WI game of the underlying zap for relation RZ . We denote this game by
Z-WIZ,RZ ,B and define it in Figure 13. Note that it reflects the stronger notion of WI where the
verifier can obtain several proofs, for theorems of her choice, computed using the same message m1.

In its first stage B runs A to obtain a CRS consisting of σ and the first message m1 and returns m1.
B then simulates oracle Prove(x,w0, w1) for A by accessing its own oracle WIProve. Figure 13
specifies adversary B. Plugging its description into game Z-WIZ,RZ ,B, we obtain

Game Z-WIZ,RZ ,B(λ)

b←$ {0, 1}
((σ,m1), st)←$ A(1λ)

b′←$ AProve(1λ, (σ,m1), st)

Return (b = b′)

Prove(x,w0, w1))

If RZ((σ, x), (⊥, w0)) = false or

RZ((σ, x), (⊥, w1)) = false then return ⊥
Return m2 ← Z.P(1λ, (σ, x), (⊥, wb),m1)

As this is precisely the description of game S-WIΠ,R,A, we have

Pr[Z-WIZ,RZ ,B(λ)] = Pr[S-WIΠ,R,A(λ)] . (21)

Since Z is zap-WI, 2 Pr[Z-WIZ,RZ ,B(·)]−1 is negligible and thus by Eq. (21) Advs-wi
Π,R,A(·) is negligible,

which proves the theorem.

References

[1] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signatures
and commitments to group elements. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pp. 209–236. Springer, 2010. (Cited on page 3.)

[2] M. Abe, J. Groth, M. Ohkubo, and M. Tibouchi. Structure-preserving signatures from type II pairings.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pp. 390–407.
Springer, 2014. (Cited on page 3.)

[3] G. Ateniese, B. Magri, and D. Venturi. Subversion-resilient signature schemes. In I. Ray, N. Li, and
C. Kruegel:, editors, ACM CCS 15, pages 364–375. ACM, 2015. (Cited on page 7.)

25

[4] B. Barak, Y. Lindell, and S. P. Vadhan. Lower bounds for non-black-box zero knowledge. In 44th
FOCS, pp. 384–393. IEEE Computer Society Press, 2003. (Cited on page 7, 29.)

[5] M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication based
on non-interative zero knowledge proofs. In G. Brassard, editor, CRYPTO’89, volume 435 of LNCS,
pp. 194–211. Springer, 1990. (Cited on page 7.)

[6] M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round zero-knowledge proto-
cols. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pp. 273–289. Springer, 2004. (Cited
on page 16.)

[7] M. Bellare, K. G. Paterson, and P. Rogaway. Security of symmetric encryption against mass surveillance.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1–19.
Springer, 2014. (Cited on page 7.)

[8] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based game-
playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pp. 409–426.
Springer, 2006. (Cited on page 8.)

[9] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, and M. Virza. Secure sampling of public parameters
for succinct zero knowledge proofs. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
287–304. IEEE, 2015. (Cited on page 7.)

[10] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via cycles of elliptic curves.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS, pp. 276–294.
Springer, 2014. (Cited on page 3, 7.)

[11] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge for a Von
Neumann architecture. In 23rd USENIX Security Symposium (USENIX Security 14), pages 781–796,
2014. (Cited on page 3, 7.)

[12] D. J. Bernstein, T. Lange, and R. Niederhagen. Dual EC: A standardized back door. Cryptology ePrint
Archive, Report 2015/767, 2015. (Cited on page 3.)

[13] N. Bitansky, R. Canetti, O. Paneth, and A. Rosen. On the existence of extractable one-way functions.
In D.B. Shmoys, 46th ACM STOC, pp. 505–514. ACM, 2014. (Cited on page 6, 7, 29.)

[14] M. Blum, A. De Santis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM Journal on
Computing, 20(6):1084–1118, 1991. (Cited on page 3, 9.)

[15] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications (extended
abstract). In 20th ACM STOC, pp. 103–112. ACM Press, 1988. (Cited on page 3.)

[16] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004,
volume 3152 of LNCS, pp. 41–55. Springer, 2004. (Cited on page 15, 17.)

[17] D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, ed.,
CRYPTO 2001, volume 2139 of LNCS, pp. 213–229. Springer, 2001. (Cited on page 17.)

[18] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indifferentiable
hashing into ordinary elliptic curves. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS,
pp. 237–254. Springer, 2010. (Cited on page 17.)

[19] R. Canetti, R. Pass, and a. shelat. Cryptography from sunspots: How to use an imperfect reference
string. In 48th FOCS, pp. 249–259. IEEE, 2007. (Cited on page 7.)

[20] M. Chase and A. Lysyanskaya. On signatures of knowledge. In C. Dwork, editor, CRYPTO 2006,
volume 4117 of LNCS, pp. 78–96. Springer, 2006. (Cited on page 7.)

[21] S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh, M. Green, T. Lange, T. Ristenpart,
D. J. Bernstein, J. Maskiewicz, and H. Shacham. On the practical exploitability of Dual EC in TLS
implementations. In USENIX Security, 2014. (Cited on page 3.)

26

[22] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext attacks. In J. Feigen-
baum, editor, CRYPTO’91, volume 576 of LNCS, pp. 445–456. Springer, 1992. (Cited on page 16.)

[23] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero
knowledge. In J. Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pp. 566–598. Springer, 2001.
(Cited on page 7, 9.)

[24] Y. Dodis, C. Ganesh, A. Golovnev, A. Juels, and T. Ristenpart. A formal treatment of backdoored
pseudorandom generators. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pp. 101–126. Springer, 2015. (Cited on page 7.)

[25] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the
presence of key leakage. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pp. 613–631.
Springer, 2010. (Cited on page 7.)

[26] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM Journal on Computing, 30(2):391–
437, 2000. (Cited on page 7.)

[27] C. Dwork and M. Naor. Zaps and their applications. In 41st FOCS, pp. 283–293. IEEE Computer
Society Press, 2000. (Cited on page 6, 24.)

[28] A. Escala and J. Groth. Fine-tuning Groth-Sahai proofs. In H. Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pp. 630–649. Springer, 2014. (Cited on page 3, 7.)

[29] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowledge proofs based on a single
random string (extended abstract). In 31st FOCS, pp. 308–317. IEEE Computer Society Press, 1990.
(Cited on page 9, 24, 25.)

[30] O. Goldreich. A uniform-complexity treatment of encryption and zero-knowledge. Journal of Cryptology,
6(1):21–53, 1993. (Cited on page 9, 17.)

[31] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or all languages
in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729, 1991. (Cited on page 9.)

[32] O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32, 1994. (Cited on page 6, 7, 11, 13, 29.)

[33] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989. (Cited on page 9, 11.)

[34] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In
X. Lai and K. Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pp. 444–459. Springer, 2006.
(Cited on page 7.)

[35] J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In M. Abe, ed., ASI-
ACRYPT 2010, volume 6477 of LNCS, pp. 321–340. Springer, 2010. (Cited on page 3, 6, 7, 16.)

[36] J. Groth. Efficient fully structure-preserving signatures for large messages. In T. Iwata and J. H.
Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pp. 239–259. Springer, 2015. (Cited
on page 3.)

[37] J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pp. 323–341. Springer, 2007. (Cited on page 7.)

[38] J. Groth, R. Ostrovsky, and A. Sahai. Non-interactive zaps and new techniques for NIZK. In C. Dwork,
editor, CRYPTO 2006, volume 4117 of LNCS, pp. 97–111. Springer, 2006. (Cited on page 6, 15, 18, 23,
24.)

[39] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge for NP. In S. Vaudenay,
editor, EUROCRYPT 2006, volume 4004 of LNCS, pp. 339–358. Springer, 2006. (Cited on page 9.)

[40] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart,
editor, EUROCRYPT 2008, volume 4965 of LNCS, pp. 415–432. Springer, 2008. (Cited on page 3, 7,
15.)

27

Prover Verifier

crs←$ Π.Pg(1λ)

crs�

π←$ Π.P(1λ, crs, x, w)
π-

d← Π.V(1λ, crs, x, π)

Figure 14: Two-move protocol associated to a NI system

[41] S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In H. Krawczyk, ed.,
CRYPTO’98, volume 1462 of LNCS, pp. 408–423. Springer, 1998. (Cited on page 16.)

[42] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In
22nd ACM STOC, pp. 427–437. ACM Press, 1990. (Cited on page 7.)

[43] J. Patarin and L. Goubin. Asymmetric cryptography with S-boxes. In Y. Han, T. Okamoto, and
S. Qing, editors, ICICS 97, volume 1334 of LNCS, pp. 369–380. Springer, 1997. (Cited on page 7.)

[44] K. G. Paterson. Imprimitive permutation groups and trapdoors in iterated block ciphers. In L.R.
Knudsen, editor, FSE’99, volume 1636 of LNCS, pp. 201–214. Springer, 1999. (Cited on page 7.)

[45] V. Rijmen and B. Preneel. A family of trapdoor ciphers. In E. Biham, editor, FSE’97, volume 1267 of
LNCS, pages 139–148. Springer, 1997. (Cited on page 7.)

[46] A. Shallue and C. van de Woestijne. Construction of rational points on elliptic curves over finite fields.
In F. Hess, S. Pauli, and M. E. Pohst, editors, ANTS-VII, volume 4076 of LNCS, pp. 510–524. Springer,
2006. (Cited on page 17.)

[47] A. Young and M. Yung. The dark side of “black-box” cryptography, or: Should we trust capstone?
In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103. Springer, 1996. (Cited on
page 7.)

[48] A. Young and M. Yung. Kleptography: Using cryptography against cryptography. In W. Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer, 1997. (Cited on page 7.)

A Relation of NI systems to 2-move protocols

We gave a syntax for two-move protocols in Section 3.4. Completeness, soundness, witness indis-
tinguishability and zero knowledge for such protocols are defined as for any interactive protocols,
with the important remark that for each notion there are actually many variant formalizations.

We can associate a 2-move protocol 2MV = NIto2R[Π] to a NI system Π in a natural way
as shown in Figure 14. The picture shows the behavior of honest parties: the honest verifier runs
Π.Pg to get a crs and sends it in the first move, and the honest prover, who has x and w ∈ R(x),
runs Π.P to get a proof π and sends it back. The honest verifier can take a decision via Π.V. It is
easy from the picture to define the formal algorithms 2MV.P, 2MV.V, 2MV.D that constitute 2MV
as per the syntax above.

The security of Π under subversion is closely connected, but not identical, to certain properties
of the associated 2-move protocol. We can roughly think of the following correspondence of notions
for Π and 2MV: S-WI ↔ ZAP; ZK ↔ honest-verifier ZK; S-ZK ↔ Full (cheating verifier) ZK. In
particular subversion of the CRS in the NI setting can be seen as replacing the honest verifier of
2MV with a cheating one who generates the CRS itself. This connection provides guidance and
intuition but one must be wary that it is not fully accurate in all cases. In particular, full ZK of 2MV

28

Adversary AZ(1λ)

(p,G,GT , e, g)← dGG(1λ)

S, h←$ G
b←$ {0, 1}; s′←$ Zp
Sb ← S; S1 ← gs

′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))←$ A(1λ, (S0, S1, S2))

Return ((x, S0, S1, h, ~C0, ~C1), ζ)

Adversary B(1λ, S, h)

(p,G,GT , e, g)← dGG(1λ)

b←$ {0, 1}; s′←$ Zp; r←$ {0, 1}A.rl(λ)

Sb ← S; S1 ← gs
′
; S2 ← Ss

′

(x, (~C0, ~C1, ~D0, ~D1, ζ))← A(1λ, (S0, S1, S2; r))

For i, j = 0, 1: vi,j ←$ Ei,j(1
λ, S, h, (b, s′, r))

If (∃ j : C0,0 = gv0,j) and (∃ j : C0,1 = gv1,j)

Return Ln.D((v0,j , v1,j), (C0,2, C0,3, C0,4))

If (∃ i : C1,0 = gvi,0) and (∃ i : C1,1 = gvi,1)

Return Ln.D((vi,0, vi,1), (C1,2, C1,3, C1,4))

Return ⊥

Figure 15: Adversaries in the proof of soundness of Π[R, dGG]

does not appear to imply S-ZK of Π under any formalization of the former we know, so we cannot
get a S-ZK Π directly from known results on 2-move protocols. In 2-move ZK, the simulator for a
cheating verifier X gets input x ∈ L(R) and must then produce a triple (r, crs, π) that is distributed
like the view of the cheating verifier X. There are no constraints on how it produces this triple. But
in S-ZK, we ask that the simulator produces crs without knowing x, so that it cannot depend on
a particular instance. Also, once crs is produced, based on an associated trapdoor, the simulator
must be able to produce a simulated proof π for a given instance x, and moreover be able to do
this repeatedly, meaning for many x.

In this sense S-ZK is stronger. Then one may ask about the other direction, namely whether
S-ZK of Π implies ZK of 2MV. This depends on the particular formalization of the latter used,
which enters into understanding the implications of negative results about 2-move ZK. GO [32]
showed that 2-move ZK is impossible (meaning only achievable for trivial languages) if the ZK is
of the auxiliary-input form. This would rule out auxiliary-input S-ZK but it does not rule out
S-ZK as we defined it, where we do not have auxiliary inputs. (One might ask why we do not
and say this weakens the definition. The primary motivation for auxiliary inputs in the interactive
case was to prove that zero knowledge is retained when proving multiple statements by sequential
repetition [32]. But our definition directly requires security for multiple, even adaptively chosen
statements. While lack of auxiliary inputs still reduces composability, it is not to the extent that it
does in interactive ZK.) Other forms of 2-move ZK are ruled out in BLV [4] but none of these rule
out S-ZK. S-ZK does imply some (non-auxiliary-input) forms of 2-move ZK such as used in [13]
with the caveat that both definitions be expressed in the same style (either complexity-theoretic or
cryptographic).

S-SND seems to have no natural analogue in classical notions for interactive protocols. It is
in some sense asking that soundness is maintained in the 2-move protocol 2MV even if the verifier
cheats in its first move. SND+S-WI is implied by zaps.

B Additional details for the proof of Theorem 5.2

In the proof of SND, we constructed adversaries AZ and B, which are formally defined in Figure 15.
In the proof of S-ZK we made the following claim, which we now prove.

Claim B.1 There exist adversaries Awi against WI of scheme Z and B,B′ against DLin such that

Pr[G4(λ)]− Pr[G1(λ)] = Advwi
Z,RZ ,Awi

(λ) + Advedlin
dGG,B(λ) + Advedlin

dGG,B′(λ) .

29

Adversary A
WIProve(·,·,·)
wi (1λ)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2)

s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return ⊥
Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return b′

Simulation of A’s oracle Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
~u0,~t0, ~u1,~t1←$ Z2

p

For i, j = 0, 1: Di,j ← gu0,iu1,j

~C0 ← Ln.C(hs; (~u0,~t0))
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ WIProve((x, S0, S1, h, ~C0, ~C1), (⊥, (s, ~u0, ~u1,~t0,~t1)), ((w,⊥)))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

B(1λ, U0, U1, T0, T1, V)

(p,G,GT , e, g)← dGG(1λ)

r←$ {0, 1}X.rl(λ) ; (~S, h)← X(1λ; r)

If e(S0, S1) = e(g, S2)

s←$ EX′(1λ, r)

If gs 6= S0 and gs 6= S1 return 0

Else s← ⊥
b′←$AProve(1λ, (~S, h), r); return b′

Simulation of A’s oracle Prove(x,w)

If R(x,w) = false then return ⊥
If e(S0, S1) 6= e(g, S2) then return ⊥
(~U ′, ~T ′, V ′)←$ Rnd(1λ, ~U, ~T , V)

~u1,~t1←$ Z2
p

For i, j = 0, 1: Di,j ← U
u1,j

0,i

M0←$ G; C0,0 ← U0; C0,1 ← U1;

C0,2 ← T0; C0,3 ← T1; C0,4 ← V · hs
~C1 ← Ln.C(hs; (~u1,~t1))

ζ←$ Z.P((x, S0, S1, h, ~C0, ~C1), (w,⊥))

Return π ← (~C0, ~C1, ~D0, ~D1, ζ)

Figure 16: Adversaries Awi against WI of Z and B against DLin in the proof of S-ZK of Π[R, dGG]

Proof: Game G2 differs from game G1 only in which witness is used to compute ζ. Consider
adversary Awi against witness indistinguishability in Figure 16. Note that Awi always calls its
WIProve oracle with two valid witnesses when simulating Prove(x,w): if e(S0, S1) 6= e(g, S2)
then Prove returns ⊥ and otherwise gs = S0 or gs = S1 (if not, Awi would have returned ⊥
before running A); moreover, if R(x,w) = false then Prove returns ⊥. When b = 0 in game
WIZ,RZ ,Awi

then Awi simulates G1 and Awi wins when A outputs 0, that is, when A loses G1. When
b = 1 then Awi simulates G2 and wins when A outputs 1 (and thus wins G2). When gs 6= S0
and gs 6= S1 then Awi returns ⊥ in which case games WI, G1 and G2 all return false. We have
Pr[WIZ,RZ ,Awi

| b = 0] = 1− Pr[G1(λ)] and Pr[WIZ,RZ ,Awi
| b = 1] = Pr[G2(λ)]. Together this yields

Pr[G2(λ)]− Pr[G1(λ)] = Advwi
Z,RZ ,Awi

(λ) . (22)

Game G3 differs from G2 in whether ~C0 is random or an encryption of hs. Consider B for game
EDLin in Figure 16, which makes use of the algorithm Rnd for self-randomizability. If B receives
a linear tuple (b = 0 in EDLin) then it simulates G2 and outputs 0 if gs 6= S0 and gs 6= S1, or
if A outputs 0, which are the events in which G2 returns false. We have thus Pr[DLindGG,B | b =
0] = 1− Pr[G2(λ)]. If B receives a linear tuple (b = 1 in EDLin), it simulates G3 and outputs 1 if
A outputs 1, which is the event in which G3 returns true; thus Pr[DLindGG,B | b = 1] = Pr[G3(λ)].
Together this yields

Pr[G3(λ)]− Pr[G2(λ)] = Advedlin
dGG,B(λ) . (23)

Since game G4 differs from G3 in how ~C1 is distributed, we could analogously construct an adversary

30

B′ and show that

Pr[G4(λ)]− Pr[G3(λ)] = Advedlin
dGG,B′(λ) . (24)

Eqs. (22), (23) and (24) together now yield the claim.

C Proof sketch for Theorem 5.1

In the “traditional” generic-group model group elements are represented by random strings and an
adversary M only has access to operations on them (multiplication of elements in G and GT and
pairing of elements in G) via oracles. In particular, M can only produce new group elements by
multiplying received elements.

We also need to reflect the fact that by “hashing into the group”, one can create a new group
element without knowing its discrete logarithm w.r.t. one of the received elements. We extend the
generic-group model and provide the adversary with an additional operation, namely to request
a new group element “independently of the received ones”. (And neither the adversary nor the
extractor we construct knows its discrete logarithm.)

For DH-KEA the adversary M receives the group elements (g, h0 = gx0 , h1 = gx1) and needs
to output (S0, S1, S2) where for some s0, s1: S0 = gs0 , S1 = gs1 and S2 = gs0s1 . The adversary
can produce these group elements by combining the received group elements with newly generated
(“hashed”) group elements that it has requested. We represent the latter as gxi , for i = 2, . . . k, for
some k. The extractor keeps track of the group operations performed by M and thus knows

α, µ0, . . . , µk, β, ν0, . . . , νk, γ, ξ0, . . . , ξi ∈ Zp (25)

such that M’s output (S0, S1, S2) is of the form

S0 = gα
∏k
i=0(g

xi)µi S1 = gβ
∏k
i=0(g

xi)νi S2 = gγ
∏k
i=0(g

xi)ξi

(Note that the extractor does however not know x0, . . . , xk.)

If (I) for all 0 ≤ i ≤ k : µi = 0 then the extractor outputs α. If (II) for all 0 ≤ i ≤ k : νi = 0
then the extractor outputs β. Otherwise, it aborts. It is clear that when (I) or (II) happens then
the extractor outputs the logarithm of either S0 or S1, as required.

To argue that with overwhelming probability the extractor does not abort, we show that the
probability that

S2 = g(logg S0)·(logg S1) (26)

holds but neither (I) nor (II) holds is negligible. Taking the logarithms of Eq. (26), we get

γ +
∑k

i=1 ξi xi = αβ +
∑k

i=1 ανi xi +
∑k

i=1 µiβ xi +
∑k

i,j=1 µiνj xixj ,

which we interpret as multivariate polynomials in x0, . . . , xk. If neither (I) nor (II) holds then for
some i, j we have µiνj 6= 0 and thus the polynomial on the RHS is different from that on the LHS.
Since the adversary has no information about x0, . . . , xk (except for a negligible information leak
by comparing group elements, which we ignore), the values in Eq. (25) are generated independently
of x1, . . . , xk. By the Schwartz-Zippel lemma the probability that the two polynomials evaluate
to the same for randomly chosen x1, . . . , xk is negligible, and therefore so is the probability that
Eq. (26) holds.

It follows thus that if Eq. (26) holds then with overwhelming probability the extractor succeeds,
which proves the theorem.

31

S-SND/S-ZK/S-WI

SND/ZK/WI 111 110 101 100 011 010 001 000

111 N 7 N N P1 7 P3 P5

110 7 7 7 7 7 7 7 7

101 7 7 P2 P4 7 7 P8 P9

100 7 7 7 P6 7 7 7 P7

011 7 7 7 7 P10 7 P12 P11

010 7 7 7 7 7 7 7 7

001 7 7 7 7 7 7 P13 P14

000 7 7 7 7 7 7 7 P15

Table 1: Achievability of combinations of notions (red marks impossibility, black marks achiev-
ability): “7” marks a trivial impossibility, N marks impossibility due to Thm. 4.2. Pxx marks
achievability: P1, P2, P3 are from Theorems 5.2, 5.5 and 5.6; P4–P15 are discussed here.

D Complete relations

We introduced three new security notions for NI systems: S-SND, S-ZK and S-WI and showed in
Sections 4 and 5 that some combinations of them with standard notions are impossible while others
are achievable. As there are 26 possible combinations of the notions SND, ZK, WI, S-SND, S-ZK,
S-WI, we now investigate for each of them whether they can be achieved or not. We first note
that since (S-)ZK implies (S-)WI and since the subversion-resistant notions imply their standard
counterparts, quite a few of the combinations are impossible.

We list all possible combinations in Table 1. The rows correspond to the standard notions SND,
ZK and WI and for example 110 means that the first two are satisfied while WI is not. The columns
correspond to the subversion-resistant notions S-SND, S-ZK and S-WI. A mark “7” indicates trivial
impossibility, for example the notions in row 110 cannot be satisfied as ZK implies WI.1

N indicates the combinations that after trivial exclusions would still be possible, but which we
showed impossible in Thm. 4.2, namely all combinations satisfing ZK and S-SND. P1 corresponds
to a scheme satisfying all notions except S-SND and was constructed in Thm. 5.2, P2 satisfies all
notions except ZK and S-ZK and was proved achievable in Thm. 5.5 and P3 indicates a scheme
achieving all notions except S-SND and S-ZK, which was constructed in Thm. 5.6.

We now show that the remaining combinations P4–P15 are all achievable, which completes the
picture.

P4. (“P2 w/o S-WI”) Assume the existence of IND-CPA-secure public-key encryption. Now
consider the scheme from P2 and add an encryption key to the CRS and add an encryption of the
witness to the proof. As the subvertor can decrypt the witness, the scheme is not S-WI anymore.
The scheme is still sound since verification did not change; it is still WI under WI of the original
scheme and IND-CPA of the encryption scheme.

P5. (“P3 w/o S-WI”) Similarly, we can remove S-WI from the scheme in P3: add a key for public-

1In particular from ZK⇒WI we get that all combinations (∗10, ∗∗∗) are impossible; S-ZK⇒S-WI makes (∗∗∗, ∗10)
impossible; S-SND⇒SND makes (0 ∗ ∗, 1 ∗ ∗) impossible; S-ZK⇒ZK makes (∗0∗, ∗1∗) impossible and S-WI⇒WI
excludes all combinations (∗ ∗ 0, ∗ ∗ 1).

32

key encryption to the CRS and add an encryption of the witness to the proof. SND is preserved
since verification is unchanged and ZK is preserved since the simulator can add an encryption of 0
to the ciphertext, which is still indistinguishable from real proofs by IND-CPA of the encryption
scheme.

P6. A scheme only satisfying the soundness notions is trivial to construct. Define crs ← ε, a
proof π to be the witness and verification to check R(x,w). The system is S-SND (which implies
SND) and not WI (which implies not ZK, not S-WI and not S-ZK).

P7. (“P6 w/o S-SND”) Assume the existence of a length-doubling pseudorandom generator G.
To make the scheme from P6 not satisfy S-SND, set crs←$ {0, 1}2λ, a proof to be the witness and
verification to accept if R(x,w) = 1 or crs = G(w). A subvertor can choose t←$ {0, 1}λ, define
crs ← G(t) and can then prove false theorems by sending t. Soundness still holds since an honestly
generated CRS is in the range of G with negligible probability only. Since π ← w, the system is
not WI.

P8. (“P2 w/o S-SND”) Similarly, we can make the scheme from P2 not satisfy S-SND: add
s←$ {0, 1}2λ to the CRS and let verification also accept when it is given a preimage of s under G.

P9. (“P8 w/o S-WI”) To make the above scheme violate S-WI, use the trick from P4: add a
public key to the CRS and an encryption of the witness to the proof.

P10. To guarantee S-ZK (and therefore S-WI, ZK and WI), the prover outputs π ← ε. To violate
S-SND and SND, verification always accepts.

P11. (“P10 w/o S-WI”) To make the above scheme violate S-ZK and S-WI, use the trick from
P4: add a public key to the CRS and an encryption of the witness to the proof. Note that this
preserves the notions ZK and WI.

P12. (“P3 w/o SND”) Take the scheme from P3 and change verification to always accept. The
scheme is clearly not SND. As verification is irrelevant for the ZK and WI notions, we still have
ZK, WI, S-WI but not S-ZK.

P13. (“P2 w/o SND”) Consider the scheme from P2 which is not ZK, not S-ZK, but WI and S-
WI. Define verification to always accept. The scheme is clearly not SND; as verification is irrelevant
for the ZK and WI notions, these are preserved.

P14. (“P13 w/o S-WI”) Consider the scheme from P13 and use the same trick as in P4 to
violate S-WI: add a public key to the CRS and an encryption of the witness to the proof.

P15. To violate all notions, set the proof π to be the witness and make verification always accept.

33

	Introduction
	Notation
	Security of NIZKs under CRS subversion
	NP relations and NI systems
	Notions for honest CRS: SND, WI and ZK
	Notions for subverted CRS: S-SND, S-WI and S-ZK
	2-move protocols

	Negative result: ZK and S-SND are not compatible
	Positive results
	Soundness and subversion ZK
	Subversion SND and subversion WI
	Soundness, ZK and subversion WI

	Relation of NI systems to 2-move protocols
	Additional details for the proof of Theorem 5.2
	Proof sketch for Theorem 5.1
	Complete relations

