
Differential Cryptanalysis of Salsa and ChaCha
– An Evaluation with a Hybrid Model

Arka Rai Choudhuri and Subhamoy Maitra

Indian Statistical Institute, Kolkata, India
arkarai.choudhuri@gmail.com, subho@isical.ac.in

Abstract. While Salsa and ChaCha are well known software oriented
stream ciphers, since the work of Aumasson et al in FSE 2008 there
aren’t many significant results against them. The basic model of their
attack was to introduce differences in the IV bits, obtain biases after a
few forward rounds, as well as to look at the Probabilistic Neutral Bits
(PNBs) while reverting back. In this paper we first consider the biases
in the forward rounds, and estimate an upper bound on the number of
rounds till such biases can be observed. For this, we propose a hybrid
model (under certain assumptions), where initially the nonlinear rounds
as proposed by the designer are considered, and then we employ their
linearized counterpart. The effect of reverting the rounds with the idea of
PNBs is also considered. Based on the assumptions and analysis, we con-
clude that 12 rounds of Salsa and ChaCha should be considered sufficient
for 256-bit keys under the current best known attack models.

Keywords: ARX Cipher, Stream Cipher, ChaCha, Salsa, Non-Randomness,
Probabilistic Neutral Bit (PNB).

1 Introduction

Salsa and ChaCha are stream ciphers designed by Dan Bernstein, with their
main design criteria are as follows. There is some nonlinear 1-1 round function
F : {0, 1}512 → {0, 1}512. Given a 512-bit input x (understood as 16 words of
32-bit each), the cipher calculates FR(x), i.e., R rounds of the function F . It
then adds x to FR(x) in the corresponding words to produce the final output.
In simple notations, x+ FR(x) is the 512-bit key-stream.

As for the structure of the input, x consists of a 256-bit secret key1 (8 words),
128-bit IV (4 words) and a 128-bit constant (4 words). Unlike the traditional
designs of stream ciphers, Salsa and ChaCha do not have different key-scheduling
and pseudo-random generator phases. Instead, these are motivated from the
concept of Pseudo Random Functions (PRFs) in block cipher paradigm.

Salsa20 [4] was designed in 2005 as a candidate for eStream [9], and its variant
Salsa20/12 was finally accepted in the software portfolio. The ChaCha [5] stream
cipher was proposed in early 2008 to provide improved diffusion in comparison

1 For 128-bit key the key-bits are repeated twice.

to Salsa. This cipher recently attracted attention due to its deployment in several
applications by Google [19].

Contribution. The security claims of commercial stream ciphers are mostly
conjectures, primarily based on existing attacks. In order to build confidence
about the designs, simple but effective tools may be considered for analysis.
The possible standardization of ChaCha makes it all the more relevant for a
more comprehensive study of the cipher. Because of only a conjectured security,
design of the ciphers are generally defensive, and hence speed is compromised to
avoid any potential pitfall. This is emphasized in [3] where Bernstein remarks,
“I’m comfortable with the 20 rounds of Salsa20 as being far beyond what I’m
able to break. Perhaps it will turn out that, after more extensive attempts at
cryptanalysis, the community is comfortable with a smaller number of rounds; I
can imagine using a smaller number of rounds for the sake of speed”.

We introduce the simple idea of a hybrid model for the evaluation of the
differential cryptanalysis of Salsa and ChaCha where the initial rounds are run
with the original non-linear function, and subsequent rounds are with the lin-
earized counterpart. This idea stems from the ease of analysing a linear structure
rather than the non-linearities arising from an ARX construction. We show, for
any function f consisting of only modular additions and XORs (as is the case in
ARX constructions), we can upper bound the absolute value of its biases with
the absolute value of the bias of its linear approximation. Next, we perform ex-
tensive calculations for bias propagation in the forward direction for both Salsa
and ChaCha. Using these, we derive bias bounds at the end of the non-linear
rounds in order to have a secure PRF in the forward direction for a desired
number of rounds.

Lastly, combining both the forward and backward biases, under certain as-
sumptions, we claim that only 12 rounds for both Salsa and ChaCha are sufficient
to provide security against certain kinds of differential cryptanalysis for 256-bit
keys.

Related Work. While to the best of our knowledge there aren’t methods similar
to our proposed hybrid model for stream cipher cryptanalysis, there are several
works that have studied the cryptanalysis of Salsa and ChaCha [8, 10, 21, 1,
11, 20, 18, 15, 14, 6]. The basic ideas in these works, which we take to be our
reference attack model, consider the following strategy: (1) Apply certain input
differences at the initial state to study significant biases at some output. (2) If
it is possible to proceed a few rounds forward as above, one may try to revert
back a few rounds from a final state to obtain further non-randomness.

Significant development has been achieved in the area of ARX toolkits[12].
While there have been applications of these toolkits towards some ARX based
ciphers to build complex differential characteristics [13], no significant success
has been reported yet in its application to Salsa and ChaCha.

2 Description of Salsa and Some Notations

In both Salsa and ChaCha, the cipher state is of 16 words, where each word is
of 32 bits, and these words can be represented as a 4 × 4 matrix. Let us first
describe Salsa. We have the following state matrix

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 ,

The matrix on the right shows the initial configuration of the state that takes
four predefined constants2 (totalling to 128 bits), 256-bit key k0, . . . , k7, 64-bit
nonce v0, v1 and 64-bit counter t0, t1. For the 128-bit version of Salsa, the key
words are repeated twice and the constant values differ slightly. In this paper,
we will focus on the 256-bit key version. Further, we will refer to the nonce and
counter words together as IV words.

For Salsa, a quarterround on (a, b, c, d) to update its values is defined as fol-
lows:

b = b⊕ ((a + d) ≪ 7),
c = c⊕ ((b + a) ≪ 9),
d = d⊕ ((c + b) ≪ 13),
a = a⊕ ((d + c) ≪ 18).

 (1)

Each round consists of two stages, the first applies quarterround to all the four
columns in the following order: quarterround(x0, x4, x8, x12), quarterround(x5, x9,
x13, x1), quarterround(x10, x14, x2, x6), and quarterround(x15, x3, x7, x11), and then
the second stage consisting of a transpose(X) as:

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

→ XT =


x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

 .

By X(R), we mean that R such rounds (each of four quarterrounds and a trans-
pose) have been applied to the initial state X(0). A keystream block of 16 words
or 512 bits is obtained as Z = X+X(R), where the addition is of the correspond-
ing 32-bit words modulo 232. While for Salsa20, R = 20, the accepted cipher in
eStream [9] software portfolio is Salsa20/12, where R = 12.

Each Salsa20 round is reversible as the state-transition operations are re-
versible, i.e., if X(r+1) = round(X(r)), then X(r) = reverseround(X(r+1)), where
reverseround is the inverse of round and consists of first transposing the state and
then applying the inverse of quarterround to each column as follows:

a = a⊕ ((d + c) ≪ 18),
d = d⊕ ((c + b) ≪ 13),
c = c⊕ ((b + a) ≪ 9),
b = b⊕ ((a + d) ≪ 7).

 (2)

2 c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574

Consider that one obtains a state X(1) after one round of Salsa (or ChaCha).
To know whether it is a valid state after one round, one needs to come back
by one reverse round and then verify whether the constants in the first row are
indeed the specified ones.

For the description of ChaCha we refer the reader to Appendix A.

Notations. Here xi is the ith word of the matrix X. Further, by xi,j , we mean
the jth bit of xi, where the 0th bit is the least significant bit.

Given two states X(r), X ′(r), we denote the differential of individual words

by ∆
(r)
i = x

(r)
i ⊕ x

′(r)
i . Extending to bits, by ∆

(r)
i,j = x

(r)
i,j ⊕ x

′(r)
i,j , we mean the

difference between two states at the jth bit of the ith word after r rounds. For

example, ‘∆
(0)
13,5 = 1’ means that we have two initial states X(0), X ′(0) that differ

at the 5th bit of the 13th word. Unless otherwise specified, the differentials at all
bit positions are defined to be 0.

From the perspective of cryptanalysis, we are interested in introducing a
difference at the initial state (call it Input Differential or ID) and then attempt
to obtain certain biases corresponding to combinations of some output bits (call
it Output Differential or OD). In this direction, one can compute

Pr(∆(r)
p,q = 1|∆(0)

i,j = 1) =
1

2
(1 + εd),

where the probability is estimated for a fixed key and all possible choices of
nonces and counter words, other than the constraints imposed due to the input
differences. Here, the bias is denoted by εd, and we will concern ourselves only
with the absolute value of the bias, |εd|.

In fact, one can consider a more general scenario as

Pr((
⊕
u

∆(r)
pu,qu) = 1|∆(0)

i0,j0
= 1, ∆

(0)
i1,j1

= 1, . . .]) =
1

2
(1 + εd),

where one may observe the biases at certain linear combination of output differ-
ences given the input differences at one or more than one position. We will be
using differential-linear biases.

3 The Hybrid Model to Estimate the Biases in the
Forward Direction

In this section, we present some ideas and propose a model to provide an upper
bound to the biases in the forward direction given any differential. Our main
assumptions, which we will try to substantiate later, are as follows:

– Given any differential at the IV bits, after a few rounds, |εd| ≤ 1 − δ, for
some pre-defined constant δ > 0.

– Consider that the cipher is run for m rounds as designed. We then run
the subsequent rounds of the cipher in two different ways: (1) As originally
designed; (2) We consider linear versions of the round functions.
We prove that the absolute value of the bias in the second case will be greater
than the first.

– We assume the evolution of the state will be quite complicated after the
initial few rounds, and hence can consider the bits to be independent, to
allow for the application of the piling-up lemma.

It is conjectured that the random functions (v, c) 7→ Salsa20/R(v, c) and
(v, c) 7→ ChaChaR(v, c) are indistinguishable from uniform [2]. In our attack
model, we would like to distinguish the keystream generated by the ciphers, by
varying the inputs to these random function to obtain a PRG, from a completely
random string of bits.

It has been well documented for Salsa and ChaCha, for low values of R, the
corresponding PRGs are not secure. These are a consequence of high biases
obtained by experiments[1, 14, 15, 8, 10, 11, 20, 21]. But there exists no security
proof as to how many rounds are required to ensure the security of the underlying
PRF. Hence, designers take the safer option of specifying a very high number of
rounds to avoid any potential pitfalls. While it might ensure safety, and make
cryptanalysis of the cipher potentially harder, it is often more than necessary
and affects the performance of the cipher in terms of speed. This was addressed
by Bernstein in [3], by proposing variants of Salsa20 to improve on the cipher
speed. Taking a similar view, we are of the opinion that ChaCha20 has excessive
number of rounds.

In an effort to address this, we introduce the Hybrid Model for cryptanalysis
for ARX based ciphers. It is essentially a two-part split of the running of the
cipher. Initially for m rounds, the cipher is run with the original function as
intended. Subsequent rounds of the cipher are run on the linear approximation
of the round function, where the addition operation is replaced by XOR. Before
we explain the rationale behind this, we state the piling-up lemma, which shall
be used extensively.

Lemma 1 (Piling-up Lemma[17]). Suppose that x1, x2, · · ·xk are indepen-
dent random variables taking values from the set {0, 1}. Let p1, p2, · · · pk be real
numbers such that ∀i, 0 ≤ pi ≤ 1, and Pr(xi = 0) = pi. The bias3 of xi is
defined to be εi = 2 · pi − 1. Let ε1,2···k denote the bias of the random variable

x1 ⊕ x2 ⊕ · · · ⊕ xk. Then, ε1,2···k =
∏k
j=1 εi.

As can be seen, −1 ≤ εi ≤ 1. But since we will concern ourselves primarily with
the magnitude, |εi| ≤ 1 Since XOR is a bitwise operation, this result can be
easily extended to variables xi ∈ {0, 1}n with the bias of each bit in resultant
the XOR calculated as above.

3 In the section we will be considering only forward biases and will drop the subscript
d, to denote the forward bias as ε.

The need for the initial non-linear rounds comes from the piling-up lemma.
Assume, from the initial round, all the round functions are replaced by its linear
approximation. Any introduced differential has an absolute value bias of 1 (or
probability of 1), and the linear structure implies we can use the piling-up lemma
to see how this bias propagates. A simple calculation shows that the absolute
value of the resultant biases will always be 1. This leads to the idea that the
absolute value of all the biases should be made strictly less than 1 before we can
apply the linear approximation. We will return to this idea shortly.

3.1 Linear Approximation

The major challenge in the cryptanalysis of the ARX based ciphers is due to the
non linearity introduced by the modular addition. Linear structures, where the
addition is replaced by XOR are easier to analyse using the piling-up lemma.
Unfortunately we cannot directly replace the modular additions directly by XOR
in the ciphers without losing valuable information.

A function f , where all the modular additions have been replaced by XOR
is said to be the linear approximation of f , say fL. But before we can apply the
piling-up lemma in this context, the independence requirement must be satisfied,
and to this end, we make the following assumption.

Assumption 1 After sufficient number of rounds, the bits of the state of the
cipher would not have significant dependencies among themselves, and can be
assumed to be independent.

Theoretically this is not true, since bits in a given round are derived from the
previous rounds. But for any good cipher, we would expect no noticeable depen-
dencies after a few rounds. This estimate seems to serve well, as is evident from
experimental results.

Using the linear approximation fL, we now derive an upper bound for the
biases of f .

Lemma 2. For any function f consisting only of XOR and modular additions,
if we consider its linear approximation fL, the biases of any bit i of the output
are related by

|εLi | ≥ |εi| (3)

Here εLi is the bias for ith bit of fL, and εi is the corresponding bias for f . The
inputs to the function are required to be independent.

Proof. Let the function f have n inputs x1, x2, · · · , xn ∈ {0, 1}l. In the case of
the ciphers we consider, l = 32.

In an effort to move to the linear structure in the original function f , we
use the concept of a carry vector. Using a carry vector, any modular addition
(between say a and b) can be represented as

z = a+ b = a⊕ b⊕ c (4)

where c is the carry vector. If we express it in terms of bits,

z[i] = a[i]⊕ b[i]⊕ c[i] (5)

where c[0] = 0, and

c[i] = a[i− 1]b[i− 1]⊕ (a[i− 1]⊕ b[i− 1])c[i− 1] for i = 1, · · · 31.

It is important to revisit the independence assumption for this particular case
before we can apply the piling-up lemma. Note that the ith bit of c, c[i], depends
not on a[i] and b[i], but on the bits of a and b preceding i (by the definition
of a carry vector). Due to the independence assumption among bits of a[i] and
b[i] stated earlier, the independence condition holds here too for a[i], b[i] and
c[i]. Note that we do not require the carry bits themselves to be independent,
and this is certainly not true as shown in [7]. Even though we have provided the
recursive formulation of c[i], it will be clear shortly that the exact formulation
of c is not necessary.

Now, let the function f contain k addition operations, with the remaining
being XOR operations. This provides a count of the number of carry vectors we
would require.

Each addition will require one carry vector, and hence let the carry vectors
be denoted as c1, c2, · · · , ck. Then the function f , rewritten using carry vectors,

s = f(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ c1 ⊕ c2 ⊕ · · · ⊕ ck

For the ith bit of s, we obtain the bias using the piling up lemma

εs[i] = εx1[i] · εx2[i] · · · εxn[i] · εc1[i] · εc2[i] · · · εck[i] (6)

Now, consider the linear approximation of f , fL

s′ = fL(x1, x2, · · · , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn

The bias here is,
εLs′[i] = εx1[i] · εx2[i] · · · εxn[i] (7)

Since we only care about the absolute value of the bias, the ratio gives∣∣∣∣∣ εs[i]εLs′[i]

∣∣∣∣∣ =
|εs[i]|
|εLs′[i]|

=
∣∣εc1[i] · εc2[i] · · · εck[i]∣∣ = |εc1[i]| · |εc2[i]| · · · |εck[i]|

Irrespective of how the vectors cj are calculated, we know |εi| ≤ 1. Hence,

|εs[i]|
|εLs′[i]|

=
∣∣εc1[i] · εc2[i] · · · εck[i]∣∣ = |εc1[i]| · |εc2[i]| · · · |εck[i]| ≤ 1 · 1 · · · 1 = 1

∴ |εs[i]| ≤ |εLs′[i]| (8)

Equality is achieved if the original function is completely linear. ut

If the independence assumption holds, the inclusion of bit-wise rotation oper-
ations in f does not alter the proof. We illustrate the above lemma with an
example in line with the quarterround function of Salsa.

Example 1. Let x1, x2, x3 ∈ {0, 1}n and f(x1, x2, x3) = x1 ⊕ (x2 + x3). Alterna-
tively, f(x1, x2, x3) = x1⊕ (x2⊕x3⊕ c) where c is the carry vector for (x2 +x3).
The corresponding linearlized function is fL(x1, x2, x3) = x1 ⊕ (x2 ⊕ x3). Now,
considering differentials, we get ∆f(∆x1, ∆x2, ∆x3) = ∆x1⊕ (∆x2⊕∆x3⊕∆c)
and fL(∆x1, ∆x2, ∆x3) = ∆x1⊕(∆x2⊕∆x3). Hence, from the piling-up lemma,

for any bit i, the ratio of the biases
|εf[i]|
|εfL[i]|

= |εc[i]| ≤ 1.

Bit Dependencies. We now proceed to look at the linear approximations
of Salsa and ChaCha and provide here the number of dependent bits in the
linear approximation for both the ciphers. For the exact bit dependencies and
bias equations, we refer the reader to Appendix C. In both Salsa and ChaCha,
the linear approximation of quarterround is obtained by replacing all modular
additions by XOR.

of dependent bits
from previous round

bit b c d a

b′[i] 1 0 1 1
c′[i] 1 1 1 2
d′[i] 2 1 3 3
a′[i] 3 2 4 6

(a) Salsa

of dependent bits
from previous round

bit a d c b

a′′[i] 2 1 1 3
d′′′′[i] 3 2 1 4
c′′[i] 4 3 2 5
b′′′′[i] 5 4 3 7

(b) ChaCha

Table 1: # of dependent bits from the previous round
When we discussed the motivation for a hybrid model earlier, we mentioned

the necessity for the initial rounds to be non-linear. This initial non-linearity is
to ensure that the absolute value of the bias at all the positions be strictly less
than 1.

We present here the assumption, and refer the reader to a sketch of a possible
proof in Appendix B.

Assumption 2 Let the bias after u rounds of the jth bit of the ith word be

denoted as ε
(u)
i,j . After some rounds (say m), of the non-linear round function,

∃δ > 0 such that ∀i, j |ε(m)
i,j | < 1− δ.

4 Calculations for Forward Biases

We use the result and assumptions stated in the previous section to provide
a bound on the number of rounds required to achieve desired security against
a distinguisher for forward biases. We like to identify the point at which the
biases become infeasible for calculation experimentally. To this effect, we present
without proof here the proposition made in [16].

Proposition 1 (Mantin and Shamir[16]). Let X,Y be distributions, and
suppose that event E happens in X with probability p, and in Y with probability
p(1 + q). Then for small p and q, O(1

pq2) samples suffice to distinguish X from
Y with a constant probability of success.

Hence, if it is the case that the absolute value of all the biases after some r
rounds are less than 2−

k
2 , where k is the size of the key, the resultant time

complexity for the distinguisher will be ≈ 2k, the same as a brute force key
search. The lowest r for which this holds true should suffice for the the cipher
in the forward direction. Intuitively, one would not expect R to be very high, as
the biases would drop pretty rapidly. We present Figure 1 to show how the high
biases after 4 rounds suddenly drops after 5 rounds. For explanations of these
biases in more details, one may refer to [14].

(a) (b)

Fig. 1: Data corresponding to biases after 4th (green) and 5th (blue) rounds of
Salsa. The X-axis represents the bits of a state, arranged linearly, and the Y -
axis represents the log2 of the observed biases. The experiments were run for 244

trials, with IDs at (a)∆
(0)
7,31 and (b)∆

(0)
8,31.

We now proceed to the calculations for Salsa using our hybrid model. Let the
bias at all positions (i, j) after m original rounds be |εSalsai,j | < 1 − δ, for some
δ > 0. Consider the linear approximation of quarterround.

Since the bias bounds are same for all the variables after round m, application
of piling-up lemma gives,

|εSalsa

b(m+ 1) | < (1− δ)3, |εSalsac(m+ 1) | < (1− δ)5, |εSalsad(m+ 1) | < (1− δ)9, |εSalsaa(m+ 1) | < (1− δ)15

We see that bound for |εSalsa

b′ | is the largest, and hence the determining factor. If
we were to stop at this point, we would require

(1− δ)3 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128

3 ≈ 0

This means, to stop after m+ 1 rounds, the variables should be almost perfectly
random after m rounds, and hence not useful to us.

Now, let us proceed to the (m+ 2)th round. Note, unlike the previous round,
the bounds for the biases are not the same throughout. Importantly, we should
also note that the state matrix undergoes a transpose before the application of
the quarterround function.

Having applied the transpose, the words taking the roles a and c remain
unchanged, while those of b and d have swapped. This follows from the definition
of the round function of Salsa. Calculating from the previously obtained biases,

|εSalsab(m+ 2) | < (1− δ)1·9+0·5+1·3+1·15 = (1− δ)27

|εSalsac(m+ 2) | < (1− δ)1·9+1·5+1·3+2·15 = (1− δ)47

|εSalsad(m+ 2) | < (1− δ)2·9+1·5+3·3+3·15 = (1− δ)77

|εSalsaa(m+ 2) | < (1− δ)3·9+2·5+4·3+6·15 = (1− δ)139

Again b has the highest bias, to stop at this point, we would require

(1− δ)27 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128
27 = 0.037402

One can observe the bias requirement is already relaxing, and if the bias is less
than 0.037402 after m rounds, we can stop after m+ 2 rounds.

For Salsa, since each bit of the word taking the role of b in every round is
dependent on the least number of bits from the previous round, the bias bound
of b is always the detrimental bias. Hence, we limit ourselves to calculating the
bias of bits of b for m+ 3 rounds.

|εSalsab(m+ 3) | < (1− δ)1·77+0·47+1·27+1·139 = (1− δ)243

The requirement to stop at this point is,

(1− δ)243 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128
243 = 0.694117

Here we only require the bias to be less that 0.694117, which is considerably
higher than the best known bias for 4 or 5 rounds of Salsa. If needed, calculations
akin to the ones discussed here can be performed further.

Calculations for ChaCha, similar to Salsa, are provided in Appendix D and
the results are summarized in the table below.

Here, it is important to note that m must be chosen such that the indepen-
dence condition is valid for subsequent rounds. For Salsa , the multi-bit differen-
tials for four rounds reported in [1] indicate dependence among the bits till the
4th round at least. We conjecture that for both Salsa and ChaCha, the indepen-
dence condition can be assumed starting with the 5th round, and hence m = 5
is a reasonable assumption. The assumption would also imply that there would
be no significant multi-bit differentials after m rounds.

bias bound requirement
after m rounds

rounds Salsa ChaCha

(m + 2) 0.037402 0.393008
(m + 3) 0.694117 0.931587
(m + 4) 0.960631 0.994635

Table 2: Summary of the bias bounds required to achieve computational indis-
tinguishability after the mentioned rounds.

5 The Effect of PNBs

So far we have studied in details the bias in the forward direction. In this section
we discuss how the idea of Probabilistic Neutral Bits (PNBs) applies to Salsa and
ChaCha. We consider the known plaintext only attack model, where the 512-bit
key stream of ChaChaR or Salsa20/R, i.e., X + X(R) is completely available to
the attacker. The 256 key bits are not available, and the remaining 256 bits of X
(i.e., the constants and IVs) are known. The strategy is to obtain the 256 secret
key bits with a key search complexity less than exhaustive search, i.e., 2256.

We have already discussed the forward biases in the previous section. We
explain with a single bit ID and single bit OD, though one can easily extend
it for more than one bits. Let X,X ′ be two valid initial states with a given

ID ∆
(0)
i,j = 1, for which we observe a high bias εd in an OD ∆

(r)
p,q after r < R

ChaCha rounds. Thus, Pr(∆
(r)
p,q = 1|∆(0)

i,j = 1) = 1
2 (1 + εd), where ∆(r) = X(r) ⊕

X ′(r). The two keystream blocks after R rounds are given by Z = X+X(R) and
Z ′ = X ′ +X ′(R).

Let us complement a particular key bit position κ, in both X and X ′, to
yield the states X and X ′ respectively. Now consider the reversal of the states
Z−X and Z ′−X ′ by R−r rounds to yield the states Y and Y ′ respectively. Let

Γp,q = Yp,q⊕Y ′p,q. Given the ID, if the bias in the event (∆
(r)
p,q⊕Γp,q = 0|∆(0)

i,j = 1)

is high, i.e., ∆
(r)
p,q = Γp,q with high probability, then we call the key bit κ a

Probabilistic Neutral Bit (PNB). If Pr(∆
(r)
p,q ⊕ Γp,q = 0|∆(0)

i,j = 1) = 1
2 (1 + γκ),

then γκ is called the neutrality measure of the key bit. One should run this
experiment for each key bit several times over randomly chosen nonces and
counter.

5.1 Identifying PNB Does Not Require Fixing IDs

The main observation here, whether κ is a PNB or not, does not require fixing
the ID. This is supported by experiment only, and this is the reason certain
independence between the biases in forward and reverse direction has been as-
sumed in [1]. We have run detailed experiments in this direction that confirm
this claim. The advantage of this observation is, while considering PNBs, such

a cipher described with a specific number of rounds can be characterized with
much less effort.

In case that this had been dependent on the IDs, for Salsa or ChaCha, we
would have been require to experiment for 2128 different IDs. However, in this
case it is not required, and we can choose random IDs and the average result
of the experiments clearly identify the PNBs corresponding to the ODs. This
underlines the positions of ODs one should try to mount the attack along the
lines of [1]. For details of the attack one may refer to Appendix E.

One may note that the parameters for studying the PNBs are as follows:

– Fix the OD after r rounds where significant forward bias can be observed.
– Fix the number of reverse rounds R− r.
– Given those, for a key bit κ, what is the value of γκ.
– Finally, how many such key bits, say n, are there so that γκ ≥ γ, for some

previously fixed value γ.

These are related to the reverse bias which is denoted by εa, though the theo-
retical relationship seems elusive. As pointed out in [1], an attack seems feasible
when εdεa > 2−

n
2 (see Appendix E).

Similar to our hybrid model for forward biases, one can consider nonlinear
reverse rounds initially and then estimate using the linearized versions of the
reverse rounds. However, we do not go for this analysis here in detail as we have
already considered the number of forward rounds so that |εd| < 2−

k
2 , where k

is the number of secret key bits and naturally n ≤ k. Further, it has been well
studied that |εa| < 1 for R − r = 4 rounds given any single bit OD for both
Salsa and ChaCha.

While there have been extensive studies for R − r = 4, we have performed
additional experiments to observe that for R − r = 5 rounds the reverse biases
reduce significantly and this we add while considering the total number of rounds
in a safe design. Further details of the experiment will be made available in the
full version of this paper.

6 Conclusion

In this paper we consider a hybrid model to evaluate Salsa and ChaCha under
certain assumptions. Experimental evidences suggest we can assume certain in-
dependence assumptions after 5 rounds and then two more rounds are enough
to reduce the biases to the order of 2−128. Using the PNBs, experimental results
suggest that one cannot obtain any significant bias for R− r = 5 reverse rounds
that can be plugged with the forward biases. Thus, a total of 5 + 2 + 5 = 12
rounds are sufficient for 256-bit security for both the ciphers. Combining these,
using out heuristic arguments, we conclude that a total of 12 rounds would be
sufficient to achieve desired security. Salsa20/12, as accepted in eStream, is of
the same number of rounds. We thus suggest that ChaCha12 is sufficiently se-
cure instead of deploying the proposed 20 rounds that substantially reduces the
speed of ChaCha20. We believe that the way forward for cryptanalysis of Salsa

and ChaCha is to show multi-bit output differentials where bits from previous
rounds cancel out and lead to better biases, but we have been unable to arrive
at a case which would lead to drastic improvements over our analysis. Another
alternative would be to demonstrate some linear dependencies among the bits
to push up the value of m. This model also can have potential applications in
other ARX based ciphers.

References

1. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, and
Christian Rechberger. New features of Latin dances: analysis of Salsa, ChaCha,
and Rumba. In Fast Software Encryption, pages 470–488. Springer, 2008.

2. Daniel Bernstein. Salsa20 security. 2005. http://cr.yp.to/snuffle/security.pdf.
3. Daniel Bernstein. Salsa20/8 and Salsa20/12. 2006. http://cr.yp.to/snuffle/

812.pdf.
4. Daniel J Bernstein. Salsa20 specification. eSTREAM Project algorithm description,

2005. http://www.ecrypt.eu.org/stream/salsa20pf.html.
5. Daniel J Bernstein. ChaCha, a variant of Salsa20. In Workshop Record of SASC,

volume 8, 2008.
6. Julio César Hernández Castro, Juan M. Estévez-Tapiador, and Jean-Jacques

Quisquater. On the salsa20 core function. In Fast Software Encryption, 15th
International Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008,
Revised Selected Papers, pages 462–469, 2008.

7. Joo Yeon Cho and Josef Pieprzyk. Multiple modular additions and crossword
puzzle attack on nlsv2. In Information Security, 10th International Conference,
ISC 2007, Valparáıso, Chile, October 9-12, 2007, Proceedings, pages 230–248, 2007.

8. Paul Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. IACR
Cryptology ePrint Archive, 2005:375, 2005.

9. The ECRYPT stream cipher project. eSTREAM portfolio of stream ciphers. http:
//www.ecrypt.eu.org/stream/.

10. Simon Fischer, Willi Meier, Côme Berbain, Jean-François Biasse, and Matthew
J. B. Robshaw. Non-randomness in eSTREAM Candidates Salsa20 and TSC-4.
In Progress in Cryptology - INDOCRYPT 2006, 7th International Conference on
Cryptology in India, Kolkata, India, December 11-13, 2006, Proceedings, pages 2–
16, 2006.

11. Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake. Latin Dances Revis-
ited: New Analytic Results of Salsa20 and ChaCha. In Information and Commu-
nications Security - 13th International Conference, ICICS 2011, Beijing, China,
November 23-26, 2011. Proceedings, pages 255–266, 2011.

12. Gaëtan Leurent. Analysis of Differential Attacks in ARX Constructions. In Ad-
vances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings, pages 226–243, 2012.

13. Gaëtan Leurent. Construction of Differential Characteristics in ARX Designs Ap-
plication to Skein. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceed-
ings, Part I, pages 241–258, 2013.

14. Subhamoy Maitra. Chosen IV cryptanalysis on reduced round ChaCha and Salsa.
IACR Cryptology ePrint Archive, 2015. http://eprint.iacr.org/2015/698.

http://cr.yp.to/snuffle/security.pdf
http://cr.yp.to/snuffle/812.pdf
http://cr.yp.to/snuffle/812.pdf
http://www.ecrypt.eu.org/stream/salsa20pf.html
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/
http://eprint.iacr.org/2015/698

15. Subhamoy Maitra, Goutam Paul, and Willi Meier. Salsa20 cryptanalysis: New
moves and revisiting old styles. In WCC 2015, the Ninth International Workshop
on Coding and Cryptography, April 13-17, 2015, Paris, France., 2015. See also
http://eprint.iacr.org/2015/217.

16. Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Fast
Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan,
April 2-4, 2001, Revised Papers, pages 152–164, 2001.

17. Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, pages
386–397, 1993.

18. Nicky Mouha and Bart Preneel. A Proof that the ARX Cipher Salsa20 is Secure
against Differential Cryptanalysis. IACR Cryptology ePrint Archive, 2013:328,
2013.

19. http://www.infosecurity-magazine.com/news/google-swaps-out-crypto-
ciphers-in-openssl/.

20. Zhenqing Shi, Bin Zhang, Dengguo Feng, and Wenling Wu. Improved Key Recovery
Attacks on Reduced-Round Salsa20 and ChaCha. In Information Security and
Cryptology - ICISC 2012 - 15th International Conference, Seoul, Korea, November
28-30, 2012, Revised Selected Papers, pages 337–351, 2012.

21. Yukiyasu Tsunoo, Teruo Saito, Hiroyasu Kubo, Tomoyasu Suzaki, and Hiroki
Nakashima. Differential Cryptanalysis of Salsa20/8, 2007.

A Description of ChaCha

X =


x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 v0 v1 v2

 .

The rightmost matrix, similar to Salsa, shows the initial state, that takes four
predefined constants c0, . . . , c3 (similar to Salsa), 256-bit key k0, . . . , k7, 32-bit
block counter t0 and 96-bit nonce v0, v1, v2. Here, again, the basic nonlinear
operation is the quarterround function. Each quarterround(a, b, c, d) consists of
four ARX rounds, each of which comprises of addition (A), cyclic left rotation
(R) and XOR (X) operation (one each) as given below:

a = a+ b; d = d⊕ a; d = d≪ 16;
c = c+ d; b = b⊕ c; b = b≪ 12;
a = a+ b; d = d⊕ a; d = d≪ 8;
c = c+ d; b = b⊕ c; b = b≪ 7;

 (9)

Each columnround works as four quarterrounds on each of the four columns of
the state matrix and each diagonalround consists of four quarterrounds on each of
the four diagonals. In ChaCha20, ten times the rowround, and ten times the di-
agonalround are applied alternatively to the initial state (total of 20 applications
of quarterround).

http://eprint.iacr.org/2015/217
http://www.infosecurity-magazine.com/news/google-swaps-out-crypto-ciphers-in-openssl/
http://www.infosecurity-magazine.com/news/google-swaps-out-crypto-ciphers-in-openssl/

In each of the odd rounds, we first apply quarterround to all the four columns
in the following order: quarterround(x0, x4, x8, x12), quarterround(x1, x5, x9, x13),
quarterround(x2, x6, x10, x14), and quarterround(x3, x7, x11, x15). This is a com-
plete columnround. In each of the even rounds, we consider the order quarterround
(x0, x5, x10, x15), quarterround(x1, x6, x11, x12), quarterround(x2, x7, x8, x13), and
quarterround(x3, x4, x9, x14). This describes a complete diagonalround.

By X(R), we mean that R such rounds have been applied (in total, alter-
natively the columnround in odd rounds and diagonalround in even rounds, the
initial round applied is considered as round 1) to the initial state X(0). For
ChaCha20, there are 20 rounds, i.e., R = 20.

Each round of ChaCha is reversible and the reverse of each quarterround is
defined as below:

b = b≫ 7; b = b⊕ c; c = c− d;
d = d≫ 8; d = d⊕ a; a = a− b;
b = b≫ 12; b = b⊕ c; c = c− d;
d = d≫ 16; d = d⊕ a; a = a− b;

 (10)

B Proof sketch for Assumption 2

The first step in this direction is to note, irrespective of the input differential,
for a cipher to be deemed secure, after the initial few rounds, there should be at
least one position with |ε| < 1. By the diffusion property of the ciphers, this bit
would affect all the other bits in the state in a few subsequent rounds. Bernstein,
in his security document on Salsa[2], illustrates a case where this happens in 4
rounds for a single bit differential. Lastly, once the absolute value of the bias
drops below 1, it cannot be reinstated to the same. These would suffice to show
that the assumption stated here is true.

An exact proof would involve considering the structure of each cipher, and
would get rather tedious and messy. We believe, for our model, the exact proof
is not of importance if the rationale behind why it should be true is understood.

C Bit Dependencies

C.1 Salsa

The exact bit dependencies for Salsa in the form of a tree, along with the bias
equations are described below.

– Any bit b′[i] is dependent on three bits from the previous round.

εb′[i] = εb[i] · εa[i−7] · εd[i−7]

– Any bit c′[i] is dependent on five bits from the previous round.

εc′[i] = εc[i] · εa[i−9] · εb[i−9] · εa[i−16] · εd[i−16]

b′[i]

b[i] a[i − 7] d[i − 7]

c′[i]

c[i] b′[i − 9]

b[i − 9] a[i − 16] d[i − 16]

a[i − 9]

– Any bit d′[i] is dependent on nine bits from the previous round.

d′[i]

d[i] c′[i − 13]

c[i − 13] b′[i − 22]

b[i − 22] a[i − 29] d[i − 29]

a[i − 22]

b′[i − 13]

b[i − 13] a[i − 20] d[i − 20]

εd′[i] = εd[i] · εc[i−13] · εa[i−22] · εb[i−22] · εa[i−29] · εd[i−29] · εb[i−13] · εa[i−20] · εd[i−20]

– Any bit a′[i] is dependent on fifteen bits from the previous round.

a′[i]

a[i] d′[i − 18]

c′[i − 31]

c[i − 31] b′[i − 40]

b[i − 40] a[i − 47] d[i − 47]

a[i − 40]

d[i − 18] b′[i − 31]

b[i − 31] a[i − 38] d[i − 38]

c′[i − 18]

c[i − 18] a[i − 27] b′[i − 27]

b[i − 27] a[i − 34] d[i − 34]

εa′[i] = εa[i] · εd[i−18] · εc[i−31] · εa[i−40] · εb[i−40] · εa[i−47] · εd[i−47] · εb[i−31]

· εa[i−38] · εd[i−38] · εc[i−18] · εa[i−27] · εb[i−27] · εa[i−34] · εd[i−34]

C.2 ChaCha

Making use of the above approximation, the bit dependency trees and the bias
equations for ChaCha are provided below.

– Any bit a′′[i] is dependent on seven bits from the previous round.

a′′[i]

a′[i]

a[i] b[i]

b′′[i]

b′[i − 12]

b[i − 12] c′[i − 12]

c[i − 12] d′′[i − 12]

d′[i − 28]

d[i − 28] a′[i − 28]

a[i − 28] b[i − 28]

ε
a′′[i] = εa[i] · εb[i] · εb[i−12] · εc[i−12] · εd[i−28] · εa[i−28] · εb[i−28]

– Any bit d′′′′[i] is dependent on ten bits from the previous round.

d′′′′[i]

d′′′[i − 8]

d′′[i − 8]

d′[i − 24]

d[i − 24] a′[i − 24]

a[i − 24] b[i − 24]

a′′[i − 8]

a′[i − 8]

a[i − 8] b[i − 8]

b′′[i − 8]

b′[i − 20]

b[i − 20] c′[i − 20]

c[i − 20] d′′[i − 20]

d′[i − 36]

d[i − 36] a′[i − 36]

a[i − 36] b[i − 36]

ε
d′′′′[i] = εd[i−24] · εa[i−24] · εb[i−24] · εa[i−8] · εb[i−8] · εb[i−20] · εc[i−20] · εd[i−36] · εa[i−36] · εb[i−36]

– Any bit c′′[i] is dependent on fourteen bits from the previous round.

c′′[i]

c′[i]

c[i] d′′[i]

d′[i − 16]

d[i − 16] a′[i − 16]

a[i − 16] b[i − 16]

d′′′′[i]

d′′′[i − 8]

d′′[i − 8]

d′[i − 24]

d[i − 24] a′[i − 24]

a[i − 24] b[i − 24]

a′′[i − 8]

a′[i − 8]

a[i − 8] b[i − 8]

b′′[i − 8]

b′[i − 20]

b[i − 20] c′[i − 20]

c[i − 20] d′′[i − 20]

d′[i − 36]

d[i − 36] a′[i − 36]

a[i − 36] b[i − 36]

ε
c′′[i] = εc[i] · εd[i−16] · εa[i−16] · εb[i−16] · εd[i−24] · εa[i−24] · εb[i−24] · εa[i−8] · εb[i−8]

· εb[i−20] · εc[i−20] · εd[i−36] · εa[i−36] · εb[i−36]

– Any bit b′′′′[i] is dependent on nineteen bits from the previous round.

b′′′′[i]

b′′′[i − 7]

b′′[i − 7]

b′[i − 19]

c′[i − 19]

c[i − 19] d′′[i − 19]

d′[i − 35]

a′[i − 35]

a[i − 35] b[i − 35]

d[i − 35]

b[i − 19]

c′′[i − 7]

c′[i − 7]

c[i − 7] d′′[i − 7]

d′[i − 23]

d[i − 23] a′[i − 23]

a[i − 23] b[i − 23]

d′′′′[i − 7]

d′′′[i − 15]

d′′[i − 15]

d′[i − 31]

d[i − 31] a′[i − 31]

a[i − 31] b[i − 31]

a′′[i − 15]

a′[i − 15]

a[i − 15] b[i − 15]

b′′[i − 15]

b′[i − 27]

b[i − 27] c′[i − 27]

c[i − 27] d′′[i − 27]

d′[i − 43]

d[i − 43] a′[i − 43]

a[i − 43] b[i − 43]

ε
b′′′′[i] = εc[i−19] · εa[i−35] · εb[i−35] · εd[i−35] · εb[i−19] · εc[i−7] · εd[i−23] · εa[i−23]

· εb[i−23] · εd[i−31] · εa[i−31] · εb[i−31] · εa[i−15] · εb[i−15] · εb[i−27] · εc[i−27]

· εd[i−43] · εa[i−43] · εb[i−43]

D Bias Calculations for ChaCha

Similar to Salsa, the bias at all positions (i, j) after m original rounds is assumed
to be |εChaCha

i,j | < 1 − δ, for some δ > 0. We use the linear approximation of
quarterround.

The bias bounds are the same for each variable after round m, hence we get,

|εChaChaa(m+ 1) | < (1− δ)7, |εChaChad(m+ 1) | < (1− δ)10, |εChaChac(m+ 1) | < (1− δ)14, |εChaCha

b(m+ 1) | < (1− δ)19

Unlike Salsa, the value of |εa(m+ 1) | is the largest and hence the determining
factor. If we were to stop at this point,

(1− δ)7 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128

7 ≈ 0

As was the case with Salsa, stopping after m + 1 rounds requires near perfect
randomness after m rounds.

We now proceed to the (m+ 2)th round, but unlike Salsa, there is no trans-
pose, and positions retain their roles irrespective of diagonalround or columnround
being applied. Subsequently, we get

|εChaChaa(m+ 2) | < (1− δ)2·7+1·10+1·14+3·19 = (1− δ)95

|εChaChad(m+ 2) | < (1− δ)3·7+2·10+1·14+4·19 = (1− δ)131

|εChaChac(m+ 2) | < (1− δ)4·7+3·10+2·14+5·19 = (1− δ)181

|εChaChab(m+ 2) | < (1− δ)5·7+4·10+3·14+7·19 = (1− δ)250

From the bias of a, we get,

(1− δ)95 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128
95 = 0.393008

As conjectured, the diffusion appears to be much faster in ChaCha than was
observed in Salsa. Repeating this for a in round (m+ 3) gives,

|εChaChaa(m+ 3) | < (1− δ)2·95+1·131+1·181+3·250 = (1− δ)1252

The requirement now is,

(1− δ)1252 ≤ 2−128 ⇒ (1− δ) ≤ 2
−128
1252 = 0.931587

A bias requirement for an upper bound 0.931587 should be achievable even with
relatively few rounds of the original function.

E Background: Details of Attack Using PNBs

We explain here the ideas related to PNBs [1] in line with [15]. One can experi-
ment this for sufficiently many samples corresponding to each key bit, which is
enough to identify the biases. Repeating this for all the 256 key bits, a subset
of the key bits can identified, which are called the PNBs. Typically, a threshold
probability 1

2 (1 + γ) is chosen to filter the PNBs. If γκ ≥ γ, then the key bit
κ is included in the set of the PNBs. Suppose the size of this subset is n and
therefore the number of non-PNB bits are m = 256− n. The main idea behind
the key recovery is to search these two sets separately.

After the set of PNBs is determined, the actual attack considers search over
the key bits which are not PNBs. By considering a distinguisher, it is possible
to identify when the correct keys have appeared. While studying the PNBs, in
X and X ′, one complements a particular key bit position κ to yield the states
X and X ′ respectively. However, for actual attack, we assign random values to
all the PNBs. That is, we guess the key values to the m non-PNB key bits and
assign random binary values to the n PNB key bits in both X and X ′ to yield
the states X̂ and X̂ ′ respectively.

Then we reverse the states Z − X̂ and Z ′ − X̂ ′ by R− r rounds to yield the

states Ŷ and Ŷ ′ respectively. Let Γ̂p,q = Ŷp,q⊕ Ŷ ′p,q and Pr(Γ̂p,q = 1|∆(0)
i,j = 1) =

1
2 (1 + ε̂). A higher absolute value of ε̂ identifies that the non-PNBs have been
chosen properly even without knowing the n PNBs.

Now consider the case when the guessed key values are correct. This is similar
to assigning random binary values to all the 256 key bits in both X and X ′ to
yield the states X̃ and X̃ ′ respectively. Then one can reverse the states Z − X̃
and Z ′ − X̃ ′ by R − r rounds to yield the states Ỹ and Ỹ ′ respectively. Let

Γ̃p,q = Ỹp,q ⊕ Ỹ ′p,q and Pr(Γ̃p,q = 1|∆(0)
i,j = 1) = 1

2 (1 + ε̃).
In actual key recovery attack, if the biases ε̂ and ε̃ can be efficiently dis-

tinguished, i.e., if the gap between the biases is significant with ε̃ ≈ 0 (as it
corresponds to a random event and should not have any bias), then we can con-
clude that the assignment X̂ yields the correct values for the non-PNB bits. This
needs to be experimented while choosing the set of PNBs.

In [1], the bias in the event (Γ̂p,q = ∆
(r)
p,q) is denoted by εa. This needs to be

studied while choosing the PNBs.
In the same work, the estimation of this bias is as follows. The key is fixed

and one can vary the nonces and the counters to calculate one εa. Then it is
possible to consider many randomly chosen keys to obtain a set of εa’s and
consequently compute the median ε∗a’s from this set. Similarly, the median ε∗d
can be estimated from the values of several εd’s corresponding to different keys.
Finally one can estimate ε∗ as the median value4 of ε’s.

It was noted in [1] that ε∗ can be approximated as ε∗d · ε∗a. This underlines
the fact that while estimating the PNBs and ε∗a, the ID has no role. Thus, if one
can come up with a set of IVs corresponding to a specific key for which εd can
be increased substantially, then ε should also increase and thus the complexity
of the attack will decrease as identified in [14].

As described in [1], given N , the number of samples used and Pfa = 2−α,
the probability of false alarm, the complexity of the attack is then given by

2m(N + 2nPfa) = 2mN + 2256−α, (11)

where the required number of samples is

N ≈

(√
α log 4 + 3

√
1− (ε∗)2

ε∗

)2

(12)

for probability of non-detection Pnd = 1.3× 10−3.
Roughly speaking, we need 2mN < 2m+n, i.e., N < 2n. Now N can be

approximated by (ε∗dε
∗
a)−2. That is, we need ε∗dε

∗
a > 2−

n
2 .

4 The idea of using median is that, one can guarantee that the estimated probabilities
will work for at least half of the keys.

	Differential Cryptanalysis of Salsa and ChaCha – An Evaluation with a Hybrid Model

