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1 Introduction

A fully homomorphic encryption (FHE) scheme is an encryption scheme which supports computation on
encrypted data: given a ciphertext that encrypts some data µ, one can compute a ciphertext that encrypts
f(µ) for any efficiently computable function f , without ever needing to decrypt the data or know the
decryption key. FHE has numerous theoretical and practical applications, the canonical one being to the
problem of outsourcing computation to a remote server without compromising one’s privacy. In 2009,
Gentry put forth the first candidate construction of FHE based on ideal lattices [Gen09]. Since then,
substantial progress has been made [vDGHV10, SS10, SV10, BV11a, BV11b, BGV12, GHS12, GSW13,
BV14, AP14], offering various improvements in conceptual and technical simplicity, efficiency, security
guarantees, assumptions, etc; in particular, Gentry, Sahai and Waters presented a very simple FHE
(hereafter called the GSW cryptosystem) based on the standard learning with errors (LWE) assumption.

Circuit privacy. An additional requirement in many FHE applications is that the evaluated ciphertext
should also hide the function f , apart from what is inevitably leaked through the outcome of the compu-
tation f(µ); we refer to this requirement as circuit privacy [SYY99, IP07]. In the context of outsourcing
computation, a server may wish to hide its proprietary algorithm from the client. Circuit privacy is also
a requirement when we use FHE for low-communication secure two-party computation. In all existing
FHE schemes, there is a “noise” term in the ciphertext, which is necessary for security. The noise grows
and changes as a result of performing homomorphic operations and, in particular, could leak information
about the function f . The main challenge for achieving FHE circuit privacy lies precisely in avoiding the
leakage from the noise term in the evaluated ciphertext.

Prior works. Prior works achieve circuit privacy by essentially canceling out the noise term in the
evaluated ciphertext. There are two main approaches for achieving this. The first is “noise flooding”
introduced in Gentry’s thesis, where we add a much larger noise at the end of the computation; in
particular, the noise that is added needs to be super-polynomially larger than the noise that accumulates
amidst homomorphic operations, which in turn requires that we start with a super-polynomial modulus-
to-noise ratio.1 This is a fairly mild assumption for the early constructions of FHE schemes, which required
a quasi-polynomial modulus-to-noise ratio just to support homomorphic operations for circuits in NC1

(i.e., circuits of logarithmic depth). The second is to decrypt and re-encrypt the evaluated ciphertext, also
known as bootstrapping in the FHE literature. This can be achieved securely without having to know the
secret key in the clear in one of two ways: (i) with the use of garbled circuits [OPP14, GHV10], and (ii)
via homomorphic evaluation of the decryption circuit given an encryption of the secret key under itself
[DS16], which requires the additional assumption of circular security.

Both of the prior approaches have some theoretical and practical draw-backs, if we consider FHE
for NC1 circuits (the rest of the discussion also applies to leveled FHE for general circuits). First, recall
that we now have FHE for NC1 circuits under the LWE assumption with a polynomial modulus-to-noise
ratio [BV14, AP14], and we would ideally like to achieve circuit privacy under the same assumption.
Relying on noise flooding for circuit privacy would require quantitatively stronger assumptions with
a super-polynomial modulus-to-noise ratio, which in turn impacts practical efficiency due to the use
of larger parameters. Similarly, the use of bootstrapping for circuit privacy can also be computationally
expensive (indeed, the bootstrapping operation is the computational bottleneck in existing FHE schemes,
cf. [DM15, HS15]). Moreover, realizing bootstrapping via an encryption of the secret key requires an
additional circular security assumption, which could in turn also entail the use of larger parameters in
order to account for potential weaknesses introduced by circular security. Realizing bootstrapping via
garbled circuits avoids the additional assumption, but is theoretically and practically unsatisfying as it
requires encoding the algebraic structure in existing FHEs as boolean computation, and sacrifices the
multi-hop property in that we can no longer perform further homomorphic computation on the evaluated
ciphertexts.

1 Recall that LWE hardness depends on the modulus-to-noise ratio: the smaller the ratio, the harder the problem.
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1.1 Our results

Our main result is a circuit-private FHE for NC1 circuits —and a circuit-private leveled FHE for general
circuits— under the LWE assumption with a polynomial modulus-to-noise ratio, and whose efficiency
essentially matches that of existing variants of the GSW cryptosystem in [BV14, AP14]; in other words,
we avoid noise flooding or bootstrapping and obtain circuit privacy almost for free!

We obtain our main result via a conceptually different approach from prior works: instead of canceling
out the noise term in the evaluated ciphertext, we directly analyze the distribution of the noise term
(prior works on FHE merely gave a bound on the noise term). Concretely, we show that adding a small
noise in each step of homomorphic evaluation in the GSW cryptosystem already hides the computation
itself which yields circuit privacy. Along the way, we gain better insights into the algebraic structure and
the noise distribution in GSW scheme and provide new tools for analyzing noise randomization which we
believe could be of independent interest.

As an immediate corollary, we obtain a two-party protocol for secure function evaluation where Alice
holds x, Bob holds a branching program f , and we want Alice to learn f(x) while protecting the privacy
of x and f to the largest extent possible, that is, Bob learns nothing about x and Alice learns nothing
about f (apart from a bound on the size of f). Our protocol achieves semi-honest security under the
standard LWE assumption with polynomial hardness, and where the total communication complexity and
Alice’s computation are poly-logarithmic in the size of f .

The core of our analysis is a variant of the Gaussian leftover hash lemma [AGHS13, AR13]: given a
“small” vector e and any vector v, we have

eᵀ ·G−1rand (v) + y ≈s e′

where

– G−1rand (v) outputs a random short vector x satisfying Gx = v mod q according to a discrete Gaussian
with parameter r = Õ(1);

– both y and e′ are drawn from discrete Gaussians with parameter O(r · ‖e‖) (the norm of e′ will be
slightly larger than that of y).

We stress that the distribution of e′ is independent of v and that the norm of y, e′ are polynomially
related to that of ‖e‖. Indeed, a similar statement is true via noise flooding, where we pick y, e′ to have
norm super-polynomially larger than that of ‖e‖. Using this leftover hash lemma to hide the argument
of G−1rand (·) is new to this work and will be crucial in proving circuit privacy.

1.2 Technical overview

We proceed with a technical overview of our construction. We build up to our main construction in three
steps.

Generating fresh LWE samples. How do we generate a fresh LWE sample from a large but bounded
number of samples? That is, we need to randomize (A, sᵀA + eᵀ). The first idea, going back to [Reg05,
GPV08, ACPS09] is to choose x according to a discrete Gaussian with parameter r = Õ(1) and a small
“smoothing” noise y from a discrete Gaussian with parameter O(r · ‖e‖) and output

Ax, (sᵀA + eᵀ)x + y

The vector Ax is statistically close to uniform (by leftover hash lemma), and the error eᵀx + y in the
resulting sample is statistically close to a discrete Gaussian with parameter O(r · ‖e‖). We stress that the
norm of y is polynomially related to that of e, which is better than naive noise flooding. One draw-back
compared to noise flooding is that the error in the new sample leaks ‖e‖. In the case of generating fresh
LWE samples, we just need to repeat the process to generate many more samples than what we started
out with.
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Randomizing GSW ciphertexts. Next, we note that the above idea can also be used to randomize
GSW ciphertexts. Recall that a GSW encryption of a message µ is of the form

C =

(
A

sᵀA + eᵀ

)
+ µG ∈ Zn×(n log q)

q

where s ∈ Znq is the secret key and G is the “powers of 2” gadget matrix. We can randomize C to be a
fresh encryption of µ by computing

C ·G−1rand (G) +

(
0
yᵀ

)
where G−1rand (G) is chosen according to a discrete Gaussian of parameter r satisfying G ·G−1rand (G) = G
and y is again a small smoothing noise vector. Here, we need an extension of the previous lemma showing
that each coordinate in eᵀ ·G−1rand (G)+yᵀ is statistically close to a discrete Gaussian; this in turn follows
from an extension of the previous lemma where the vector x is drawn from discrete Gaussian over the
coset of a lattice (cf. Lemma 3.6). And again, the norm of y is polynomially related to that in e, which
is better than naive noise flooding.

Scaling GSW ciphertexts. More interesting, given a constant a ∈ {0, 1}, we can scale a GSW en-
cryption of µ to obtain a fresh encryption of a · µ while revealing no information about a beyond what is
leaked in a · µ. In particular, if µ = 0, then the resulting ciphertext should completely hide a. To achieve
this, we simply proceed as before, except we use G−1rand (a ·G) so that G ·G−1rand (a ·G) = a ·G. Here, we
crucially rely on the fact that the error eᵀ ·G−1rand (a ·G) + yᵀ in the resulting ciphertext is independent
of a.

Circuit-private homomorphic evaluation. The preceding construction extends to the setting where
we are given a GSW encryption C′ of a instead of a itself, so that we output

C ·G−1rand (C′) +

(
0
yᵀ

)
We can handle homomorphic encryption as in GSW; this then readily extends to a circuit-private homo-
morphic evaluation for branching programs, following [BV14, AP14].

Branching programs are a relatively powerful representation model. In particular, any logarithmic
space or NC1 computation can be carried out by a family of polynomial-size branching programs. Branch-
ing programs can also directly capture several representation models often used in practice such as decision
trees, OBDDs, and deterministic finite automaton.

The key insight from Brakerski and Vaikuntanathan [BV14] is that when homomorphically evaluating
a branching program, we will only need to perform homomorphic additions along with homomorphic
multiplications of ciphertexts Vj ,Ci where Vj is the encryption of an intermediate computation and Ci

is an encryption of the input variable xi. To obtain decryption correctness with polynomial noise growth,
they computed the product as

Ci ·G−1det(Vj),

where G−1det (·) denotes the deterministic binary decomposition, cleverly exploiting the asymmetric noise
growth in GSW ciphertexts and the fact that the noise in Ci is smaller than that in Vj . To obtain circuit
privacy, we will compute the product as

Ci ·G−1rand (Vj) +

(
0
yᵀ
j

)
.

Note that we made two modifications:

– First, we switched to a randomized G−1rand (·). The use of a randomized G−1rand (·) for homomorphic
evaluation was first introduced in [AP14], but for the very different purpose of a mild improvement
in the noise growth (i.e. efficiency); here, we crucially exploit randomization for privacy.

– Next, we introduced an additional Gaussian shift yᵀ
j .
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Interestingly, it turns out that computing the product as Ci ·G−1rand (Vj) instead of Vj ·G−1rand (Ci) is
useful not only for polynomial noise growth, but also useful for circuit privacy. Roughly speaking, the
former hides which Vj is used, which corresponds to hiding the intermediate states that lead to the final
output state, which in turn hides the branching program.

We highlight a subtlety in the analysis: Vj could in principle encode information about Ci, if the
variable xi has been read prior to reaching the intermediate state encoded in Vj , whereas to apply our
randomization lemma, we crucially rely on independence between Ci and Vj . The analysis proceeds by
a careful induction argument showing that Vj looks like a fresh GSW ciphertext independent of input
ciphertexts C1, . . . ,C` apart from some dependencies on the norm of the noise terms in the input cipher-
texts (see Lemma 5.4 for a precise statement). These dependencies mean that homomorphic evaluation
leaks the number of times each variable appears in the branching program, but that can be easily fixed
by padding the branching program.

1.3 Discussions

One draw-back of our approach is that it is specific to the GSW cryptosystem and variants there-of,
whereas previous approaches based on noise flooding and bootstrapping are fairly generic; another is
that we need to pad the branching program so that each variable appears the same number of times.
Nonetheless, we stress that the GSW cryptosystem turns out to be ubiquitous in many applications outside
of FHE, including attribute-based encryption and fully homomorphic signatures [BGG+14, GVW15]. We
are optimistic that the additional insights we gained into the noise distributions of GSW ciphertexts in
this work will find applications outside of FHE.

We conclude with several open problems pertaining to FHE circuit privacy. The first is to achieve
circuit privacy against malicious adversaries [OPP14]: namely, the result of a homomorphic evaluation
should leak no information about the circuit f , even if the input ciphertexts are maliciously generated. Our
analysis breaks down in this setting as it crucially uses fresh uniform randomness in the input ciphertexts
for left-over hash lemma, and the fact that the noise in the input ciphertexts are small (but does not
need to be discrete Gaussian). Another is to achieve circuit-private CCA1-secure FHE [LMSV12]; here,
the technique that [DS16] uses to achieve circuit privacy cannot obtain such a result since giving out an
encryption of the secret key violates CCA1-security. A third open problem is to extend the techniques in
this work to other FHE schemes, such as those in [BV11a, DM15, HS15].

2 Preliminaries

In this section we clarify our notation and recall some definitions, problems and lemmas that we are going
to use throughout the paper.

Notation. We denote the real numbers by R, the integers by Z, the integers modulo some q by Zq, and
let [N ] indicate the integer numbers {1, . . . , N}. Throughout the paper we use λ to denote the security
parameter. We say that a function is negligible in λ, and we denote it by negl (λ), if it is a f (λ) = o (λ−c)
for every fixed constant c. We also say that a probability is overwhelming if it is 1− negl (λ).
Vectors are denoted by lower-case bold letters (e.g., v) and are always in column form (vᵀ is a row
vector), while matrices are indicated by upper-case bold letters. We let (a,b) denote the vector obtained

by concatenating the two vectors, i.e.

(
a
b

)
. We also write (v1 | v2 | . . . | vk) to denote the matrix whose

columns are the vectors vi. Unless otherwise stated, the norm ‖·‖ considered in this paper is the `2 norm
and log denotes the base-2 logarithm, while ln denotes the natural logarithm.
Given two distributions X,Y over a finite or countable domain D, their statistical distance is defined as
∆ (X,Y ) = 1

2

∑
v∈D |X (v)− Y (v)|. We say that two distributions are statistically close (denoted by ≈s)

if their statistical distance is negl (λ). Given a set A, we will write a
$← A to indicate that a is sampled

from A uniformly at random. If D is a probability distribution, we will write d ← D to indicate that d
is sampled according to the distribution D. Following [MP12], we denote by G the gadget matrix, i.e.
G = gᵀ ⊗ In, where g is the vector

(
1, 2, 4, . . . , 2dlog qe−1

)
, for given parameters n, q.
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Lattices. A m-dimensional lattice Λ is a discrete additive subgroup of Rm. For an integer k < m and
a rank k matrix B ∈ Rm×k, Λ (B) =

{
Bx ∈ Rm | x ∈ Zk

}
is the lattice generated by the columns of B.

We will let Λ⊥q (B) denote {v ∈ Zm | Bᵀv = 0 mod q}.

Gaussian function. For any α > 0, the spherical Gaussian function with parameter α (omitted if 1) is

defined as ρα (x) = exp
(
−π ‖x‖2 /α2

)
, for any x ∈ Rm. Given a lattice Λ ⊆ Rm, a parameter r ∈ R and

a vector c ∈ Rm the spherical Gaussian distribution with parameter r and support Λ+ c is defined as

DΛ+c,r (x) =
ρr (x)

ρr (Λ+ c)
, ∀x ∈ Λ+ c

where ρr (Λ+ c) denotes
∑

x∈Λ+c ρr (x). Note that ρr (x) = ρ
(
r−1x

)
.

We now give an algorithm for the randomized bit decomposition G−1rand (·).

Definition 2.1 (The G−1rand (·) algorithm, adapted from [MP12], [AP14, Claim 3.1]). There
is a randomized, efficiently computable function G−1rand (·) : Znq → Zm, where m = ndlog qe such that

x← G−1rand (v) is drawn from a distribution close to a Gaussian with parameter r = Õ(1) conditioned on
Gx = v mod q, i.e. G−1rand (v) outputs a sample from the distribution DΛ⊥q (Gᵀ)+G−1

det(v),r
where G−1det (·)

denotes (deterministic) bit decomposition. We will also write X← G−1rand (M) to denote that the columns
of the matrix X ∈ Zm×p are obtained by applying the algorithm separately to each column of a matrix
M ∈ Zn×pq .

In particular, using the exact sampler in [BLP+13, Section 5] (which is a variant of the algorithm presented
in [GPV08]), G−1rand (v) outputs a sample from the discrete Gaussian

DΛ⊥q (Gᵀ)+G−1
det(v),r

Next, we recall the definition of the smoothing parameter of a lattice from [MR04]. Intuitively, this
parameter provides the width beyond which the discrete Gaussian measure on a lattice behaves like a
continuous one.

Definition 2.2 (Smoothing parameter). For a lattice Λ ⊆ Zm and positive real ε > 0, the smoothing
parameter ηε (Λ) is the smallest real r > 0 such that ρ1/r (Λ∗ \ {0}) ≤ ε, where Λ∗ := {x ∈ Rm | xᵀΛ ⊆ Z}.

We will also need the following probability results.

Lemma 2.3 (Simplified version of [Pei10, Theorem 3.1]). Let ε > 0, r1, r2 > 0 be two Gaussian
parameters, and Λ ⊆ Zm be a lattice. If r1r2√

r21+r
2
2

≥ ηε (Λ), then

∆ (y1 + y2,y
′) ≤ 8ε

where y1 ← DΛ,r1 , y2 ← DΛ,r2 , and y′ ← D
Λ,
√
r21+r

2
2

.

Lemma 2.4 ([AP14, Lemma 2.1]). There exists a universal constant C > 0, such that

Pr
[
‖x‖ > Cr

√
m
]
≤ 2−Ω(m)

where x← DZm,r.

Next, we recall the LWE problem and its hardness assumption.
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The LWE problem and assumption. The learning with errors (LWE) problem was introduced by
Regev in [Reg05] as a generalization of “learning parity with noise”. Let q ≥ 2, n and m = poly(n)
be positive integers, and let χ be a probability distribution over Zq. We define the following advantage
function for an adversary A:

Adv
LWEn,q,χ
A := |Pr [A (A, sᵀA + eᵀ) = 1]− Pr [A (A,u) = 1]|

where A
$← Zn×mq , s

$← Znq , e← χ and u
$← Zmq . The LWE assumption asserts that for any PPT adversary

A, the advantage Adv
LWEn,q,χ
A is negl (n).

Finally, we recall the definition of a homomorphic encryption scheme, evaluation correctness and semantic
security.

Homomorphic encryption scheme. A homomorphic (secret-key) encryption scheme E = (E .Setup,
E .Encrypt, E .Decrypt, E .Eval) is a quadruple of PPT algorithms as follows:

– E .Setup
(
1λ
)
: given the security parameter λ, outputs a secret key sk and an evaluation key evk

– E .Encrypt (sk, µ): using the secret key sk, encrypts a message µ ∈ {0, 1} into a ciphertext c and
outputs c

– E .Decrypt (sk, c): using the secret key sk, decrypts a ciphertext c to recover a message µ ∈ {0, 1}
– E .Eval (evk, f, c1, . . . , c`): using the evaluation key evk, applies a function f : {0, 1}` → {0, 1} to

ciphertexts c1, . . . , c` and outputs a ciphertext cf

Evaluation correctness. We say that the E .Eval algorithm correctly evaluates all functions in F if, for
any function f ∈ F : {0, 1}` → {0, 1} and respective inputs x1, . . . , x` ∈ {0, 1}` it holds that

Pr [E .Decrypt (sk, E .Eval (evk, f, c1, . . . , c`)) = f (x1, . . . , x`)] = 1− negl (λ)

where sk ← E .Setup
(
1λ
)

and ci ← E .Encrypt (sk, xi).

Semantic security. A secret key encryption scheme E is said to be semantically secure (or IND-CPA
secure) if any PPT adversary A cannot distinguish between encryptions of two known plaintexts. More
formally, let sk ← E .Setup(1λ) and Ob (µ0, µ1) = E .Encrypt (sk, µb) for b ∈ {0, 1}. Then E is IND-CPA
secure if ∣∣Pr

[
AO0

(
1λ
)

= 1
]
− Pr

[
AO1

(
1λ
)

= 1
]∣∣ = negl (λ)

where the probability is taken over the internal coins of E .Setup, E .Encrypt and A.

3 Core Randomization Lemma

Note that throughout the rest of the paper we set q to be a power of 2, and m = n log q. We discuss the
use of a modulus q that is not a power of 2 in Section 5.4.
The goal of this Section is to establish the following lemma:

Lemma 3.1 (Core randomization lemma). Let ε, ε′ > 0, r > ηε(Λ
⊥
q (Gᵀ)) be a Gaussian parameter.

For any e ∈ Zmq , v ∈ Znq , if r ≥ max

(
4
(

(1− ε) (2ε′)
2
)− 1

m

,
√

5(1 + ‖e‖)
√

ln(2m(1+1/ε))
π

)
, then

∆ ((A,Ax, eᵀx + y) , (A,u, e′)) < ε′ + 2ε

where x← G−1rand (v), A
$← Z(n−1)×m

q , u
$← Zn−1q , y ← DZ,r and e′ ← DZ,r

√
1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖
√
λ) is enough to obtain negligible statistical distance.
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Remark 1 (on the necessity of randomization). We note here that the use of randomization in G−1rand (·)
and the shift are both necessary.

First, the shift is necessary for both distributions to have the same support. For example,
eᵀG−1rand ((1, 0, . . . , 0)) and eᵀG−1rand (0) might lie in two different cosets of the lattice eᵀΛ⊥q (Gᵀ), depend-
ing on the value of e: if the first coordinate of e is odd and all the others are even, then
eᵀG−1rand ((1, 0, . . . , 0)) will be odd, while eᵀG−1rand (0) will be even, for a q even. The shift by a Gaus-
sian over Z ensures that the support of the two distributions is Z. Proving that eᵀΛ⊥q (Gᵀ) = Z with
overwhelming probability over the choice of e is still an open question that would remove the necessity
of the shift, thus proving circuit privacy for standard GSW only using randomized G−1rand (·).

Finally, the randomization of G−1rand (·) is necessary for both distributions to have the same center.
Using the same example, eᵀG−1det ((1, 0, . . . , 0)) + y and eᵀG−1det (0) + y would be two Gaussians, centered
respectively on e1 (the first coordinate of e) and on 0. Instead, using the randomized algorithm G−1rand (·),
the center of both distributions will be 0.

3.1 Additional preliminaries

Before proving Lemma 3.1, we need to recall some additional results.

Lemma 3.2 ([MR07, Lemma 3.3]). Let Λ be any rank-m lattice and ε be any positive real. Then

ηε (Λ) ≤ λm (Λ) ·
√

ln (2m (1 + 1/ε))

π

where λm (Λ) is the smallest R such that the ball BR centered in the origin and with radius R contains
m linearly independent vectors of Λ.

Lemma 3.3 ([GPV08, Corollary 2.8]). Let Λ ⊆ Zm be a lattice, 0 < ε < 1, r > 0. For any vector
c ∈ Rm, if r ≥ ηε (Λ), then we have

ρr (Λ+ c) ∈
[

1− ε
1 + ε

, 1

]
· ρr (Λ)

Lemma 3.4 ([Reg05, Claim 3.8]). Let Λ ⊆ Zm be any lattice, c ∈ Rm, ε > 0 and r ≥ ηε(Λ). Then

ρr (Λ+ c) ∈ rm

det (Λ)
(1± ε)

Generalized leftover hash lemma. We state here a simplified version of the generalized leftover hash
lemma which is sufficient for our use. The min-entropy of a random variable X is defined as

H∞ (X) = − log
(

max
x

Pr [X = x]
)

Lemma 3.5 (Generalized leftover hash lemma [DRS04]).
Let e be any random variable over Zmq and f : Zmq → Zkq . Then

∆((Xe,X, f(e)), (r,X, f(e))) ≤ 1

2

√
qn+k · 2−H∞(e) .

where X
$← Zn×mq and r

$← Znq .

3.2 Proof of Lemma 3.1

We first prove that given e, the new error term eᵀx+y is indeed a Gaussian with parameter r

√
1 + ‖e‖2.

This proof is inspired by [AR13], which in turn is an improvement of [AGHS13], but it is different in two
aspects: on one hand, in [AR13] the proof is done for the specific case where x is drawn from a Gaussian
over a coset of Zm; on the other hand, they consider the more general case of an ellipsoidal Gaussian
distribution.
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Lemma 3.6 (adapted from [AR13, Lemma 3.3]). Let ε, r > 0. For any e ∈ Zm, c ∈ Rm, if

r ≥
√

5(1 + ‖e‖) ·
√

ln(2m(1+1/ε))
π , then

∆ (eᵀx + y, e′) < 2ε

where x← DΛ⊥q (Gᵀ)+c,r, y ← DZ,r, and e′ ← DZ,r
√

1+‖e‖2 .

Asymptotically, r = Θ̃(‖e‖
√
λ) is enough to obtain negligible statistical distance. We stress that the

distribution of e′ does not depend on the coset c.

Proof. Let ê = (e, 1) ∈ Zm+1, ĉ = (c, 0) ∈ Zm+1 and Λ̂ = Λ⊥q (Gᵀ)× Z, we want to show that

∆
(
êᵀDΛ̂+ĉ,r,DZ,‖ê‖r

)
≤ 2ε

The support of êᵀDΛ̂+ĉ,r is êᵀΛ̂ + êᵀĉ = eᵀΛ⊥q (Gᵀ) + Z + eᵀc = Z. Fix some z ∈ Z. The probability
mass assigned to z by êᵀDΛ̂+ĉ,r is proportional to ρr(Lz), where

Lz =
{

v ∈ Λ̂+ ĉ : êᵀv = z
}

We define the lattice L =
{

v ∈ Λ̂ : êᵀv = 0
}

; note that Lz = L+ wz for any wz ∈ Lz. Let uz = z
‖ê‖2r ê,

then uz is clearly proportional to ê. Observe that uz is orthogonal to r−1Lz−uz, indeed for any t ∈ r−1Lz
we have êᵀ (t− uz) = 0. From this we have ρ(t) = ρ(uz) · ρ(t− uz), and by summing for t ∈ r−1Lz:

ρ(r−1Lz) = ρ(uz) · ρ(r−1Lz − uz)

Observe that we have r−1Lz − uz = r−1(L− c′) for some c′ in the vector span of the lattice L (because
Lz − ruz = L+ wz − ruz and êᵀ(wz − ruz) = 0). Thus using Lemmas 3.3 and 3.7 with r ≥

√
5(1 + ‖e‖) ·√

ln(2m(1+1/ε))
π ≥ ηε(L), we obtain

ρ(r−1Lz) = ρ(uz) · ρr(L − c′)

∈
[

1− ε
1 + ε

, 1

]
· ρr(L) · ρ(uz)

=

[
1− ε
1 + ε

, 1

]
· ρr(L) · ρ

(
z

‖ê‖2 r
ê

)

=

[
1− ε
1 + ε

, 1

]
· ρr(L) · ρ‖ê‖r(z)

This implies that the statistical distance between êᵀDΛ̂+ĉ,r and DZ,‖ê‖r is at most 1− 1−ε
1+ε ≤ 2ε. ut

In order to conclude the previous proof, we now give a bound on the smoothing parameter of the lattice
L.

Lemma 3.7. Let ε > 0. For any e ∈ Zm, let L be as defined in Lemma 3.6. Then we have:

ηε(L) ≤
√

5(1 + ‖e‖) ·
√

ln (2m (1 + 1/ε))

π

Proof. We use Lemma 3.2 to bound the smoothing parameter of L. Since Λ̂ = Λ⊥q (Gᵀ)×Z is of dimension

m + 1 and L is the sublattice of Λ̂ made of the vectors that are orthogonal to e, we have that L is of
dimension m. We thus exhibit m independent short vectors of L to obtain an upper bound on λm (L).
We first define the matrix

B =


2

−1
. . .

. . .
. . .

−1 2

 ∈ Z(log q)×(log q)
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and remark that it is a basis for the lattice Λ⊥q (gᵀ). The lattice Λ̂ is then generated by the columns of
the matrix:

B = (b1 | . . . | bm+1) =

(
In ⊗B 0

0ᵀ 1

)
∈ Z(m+1)×(m+1)

For k ≤ m let uk = bk−bm+1 · êᵀbk, since êᵀbm+1 = 1 we directly have êᵀuk = 0 and thus uk ∈ L. The
vectors u1, . . . ,um are linearly independent since span (u1, . . . ,um,bm+1) = span (b1, . . . ,bm,bm+1) =
Rm+1 (which comes from the fact that B is a basis of an (m + 1)-dimensional lattice). We now bound
the norm of uk:

‖uk‖ ≤ ‖bk‖+ ‖bm+1‖ ‖e‖ ‖bk‖

=
√

5(1 + ‖e‖)

Note that |êᵀbk| ≤ ‖e‖ ‖bk‖ since the last coefficient of bk is 0. Finally we obtain λm(L) ≤ maxk≤m ‖uk‖
≤
√

5(1 + ‖e‖) and the result. ut

The final proof of Lemma 3.1 will necessitate a call to the leftover hash lemma, so before continuing we
analyze the min-entropy of x← DΛ⊥q (Gᵀ)+c,r.

Lemma 3.8. Let ε > 0, r ≥ ηε
(
Λ⊥q (Gᵀ)

)
. For any c ∈ Rm, we have

H∞

(
DΛ⊥q (Gᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m

Proof. For any v ∈ Λ⊥q (Gᵀ) + c

DΛ⊥q (Gᵀ)+c,r(v) ≤ DΛ⊥q (Gᵀ)+c,r(v0), for v0 the point of Λ⊥q (Gᵀ) + c closest to 0

=
ρr(v0)

ρr(Λ⊥q (Gᵀ) + c)

≤ 1

ρr(Λ⊥q (Gᵀ) + c)
, since ρr(v0) < 1

≤ (1− ε) rm

det
(
Λ⊥q (Gᵀ)

) , by Lemma 3.4 since r ≥ ηε
(
Λ⊥q (Gᵀ)

)
The lattice Λ⊥q (Gᵀ) is generated by the basis In ⊗B, with B defined as above, which has determinant(
2log q

)n
= 2m. The result follows:

H∞

(
DΛ⊥q (Gᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m

ut

We are now ready to prove Lemma 3.1.

Proof. The proof is done in two steps. First, by Lemma 3.8, we know that x has min entropy at least
log(1− ε) +m log(r)−m ≥ (n+ 1) log(q)−2 log(ε′)−2. Moreover, eᵀx+y is in Zq. Applying the leftover
hash lemma 3.5, we obtain

∆ ((A,Ax, eᵀx + y) , (A,u, eᵀx + y)) < ε′

where u
$← Zn−1q . Now, using Lemma 3.6, we know that

∆ (eᵀx + y, e′) < 2ε

Summing the two statistical distances concludes the proof. ut
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3.3 Rerandomizing LWE samples

We finally describe a simple application of Lemma 3.1. Generating fresh LWE samples for a fixed secret
s from a bounded number of samples is very useful, for example to build a public key encryption scheme
from a symmetric one. It has already been shown in the succession of papers [Reg05, GPV08, ACPS09]
that multiplying a matrix of m LWE samples (A, sᵀA + eᵀ) by a discrete Gaussian x ← DZm,r and
adding another Gaussian term y ← DZ,r to the error part yields a fresh LWE sample (a′, sᵀa′+ e′) with a
somewhat larger Gaussian noise e′. Here we have shown that picking x according to a discrete Gaussian
distribution over a coset c of Λ⊥q (Gᵀ) is enough for this rerandomization process. Moreover, we show
that the distribution of the final error is independent of the coset c, which will come in handy for hiding
homomorphic evaluations. We note that this could be extended to any other lattice with a small public
basis (see the last paragraph of Section 5), but we mainly focus on Λ⊥q (Gᵀ) because this is sufficient for
our use.

4 Basic GSW Cryptosystem

In this section, we present the Homomorphic Encryption scheme introduced by [GSW13], with notation
inspired by [AP14]. We defer setting the parameters to Section 5.3. The scheme is composed of the
following algorithms:

– Setup
(
1λ
)
: samples s̄

$← Zn−1q and returns the secret key s =
(
−s̄, 1

)
∈ Znq .

– Encrypt(s, µ): given the secret key s =
(
−s̄, 1

)
and a message µ ∈ {0, 1}, samples a matrix

A
$← Z(n−1)×m

q and e ← DZm,α. The algorithm then returns C =

(
A

s̄ᵀA + eᵀ

)
+ µG ∈ Zn×mq

as the ciphertext. Notice that sᵀC = eᵀ + µsᵀG, the last column of which is close to µ q
2 .

– Decrypt(s,C): given a ciphertext C and the secret key s, computes the inner product of sᵀ and the
last column of C, and finally returns 0 if the norm of the result is smaller than q

4 , otherwise it returns
1.

We omit the original Eval algorithm since our modified version, which guarantees circuit privacy, is pre-
sented in Section 5.1.
The IND-CPA security of this scheme comes directly from [GSW13] and the LWE assumption.

In order to shorten several formulas in the rest of the paper, we slightly abuse the notation and define a
modified version of the encryption algorithm Encryptγ(s, µ), which is exactly the same as the previously
defined Encrypt(s, µ), except that e← DZm,γ . We implicitly use Encrypt(s, µ) to denote Encryptα(s, µ).

Extension to public key setting. This scheme can be easily adapted to the public key setting. We
now describe Setuppub and Encryptpub, as the other algorithms are identical to the private key setting.

– Setuppub
(
1λ
)
: given the security parameter λ, samples s̄

$← Zn−1q , A
$← Z(n−1)×m

q , e ← DZm,α. The

algorithm returns the secret key s =
(
−s̄, 1

)
∈ Znq and the public key Â =

(
A

s̄ᵀA + eᵀ

)
.

– Encryptpub
(
Â, µ

)
: given the public key Â and a message µ ∈ {0, 1}, samples a matrix

R
$← {−1, 0, 1}m×m. The algorithm then sets C = ÂR + µG and returns C ∈ Zn×mq as the ci-

phertext. Notice that sᵀC = eᵀR + µsᵀG the last column of which is close to µ q
2 .

Basic homomorphic operations. The homomorphic operations are done as follows:

– Homomorphic addition: C1 � C2 = C1 + C2

– Homomorphic multiplication: C1 � C2 ← C1 ·G−1rand (C2)

where the G−1rand (·) algorithm is the randomized bit decomposition described in Definition 2.1.

From now on and for readability, we will assume a correct choice of parameters has been made. This
setting is discussed in Section 5.3.
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4.1 Rerandomizing and scaling GSW ciphertexts

Here we describe our new technique to rerandomize GSW ciphertexts. This method allows the scaling of
GSW ciphertexts, which will be used in our circuit evaluation procedure.

We recall the form of a GSW ciphertext

C =

(
A

s̄ᵀA + eᵀ

)
+ µG

Using the rerandomization of LWE samples presented in Section 3, it is possible to generate a fresh
encryption of 0 by computing C ·G−1rand (V), where C is an encryption of 0 and V is any matrix in Zn×mq .

Lemma 4.1. Let r > 0. For any V ∈ Zn×mq , if r = Ω
(
α
√
λm logm

)
, with α being the Gaussian

parameter of fresh encryptions, then(
C ·G−1rand (V) +

(
0
yᵀ

)
,C

)
≈s (C′,C)

where C =

(
A

s̄ᵀA + eᵀ

)
← Encrypt (s, 0), C′ ← Encryptγ (s, 0), with γ = r

√
1 + ‖e‖2.

Proof. Fix v ∈ Zmq and e such that ‖e‖ ≤ Cα
√
m, where C is as in Lemma 2.4. Then by applying

Lemma 3.1 with r = Ω
(
α
√
λm logm

)
and ε′ = ε = 2−λ we have

∆ ((A,Ax, eᵀx + y) , (A,u, e′)) < 3 · 2−λ

where A
$← Z(n−1)×m

q , x← G−1rand (v) and y ← DZ,r. From this we obtain that for e← DZm,α:

∆ ((A, e,Ax, eᵀx + y) , (A, e,u, e′))

=
∑

w∈Zm
∆ ((A,Ax,wᵀx + y) , (A,u, w′)) · Pr [e = w]

≤
∑

‖w‖<Cα
√
m

3 · 2−λ Pr [e = w] +
∑

‖w‖≥Cα
√
m

Pr [e = w]

≤ 3 · 2−λ + Pr
[
‖e‖ ≥ Cα

√
m
]

≤ 3 · 2−λ + 2−Ω(λ)

In the left operand of the third equation we bound the statistical distance by 3 · 2−λ and in the right
operand we bound it by 1. To obtain the last inequality we use Lemma 2.4 and have Pr [‖e‖ > Cα

√
m]

≤ 2−Ω(m) ≤ 2−Ω(λ) since m ≥ λ. By rewriting this distance we have for any v ∈ Zmq(
C ·G−1rand (v) +

(
0
y

)
,C

)
≈s
((

u
s̄ᵀu + e′

)
,C

)
By writing V = (v1 | . . . | vm) and y = (y1, . . . , ym), we have

C ·G−1rand (V) +

(
0
yᵀ

)
=

(
C ·G−1rand (v1) +

(
0
y1

)
| . . . | C ·G−1rand (vm) +

(
0
ym

))
We define the distributions (Di)0≤i≤m in which the first i columns of C ·G−1rand (V) +

(
0
yᵀ

)
are replaced

with “fresh”

(
u

s̄ᵀu + e′

)
and we obtain through a hybrid argument that

∆

((
C ·G−1rand (V) +

(
0
yᵀ

)
,C

)
,

((
A′

s̄ᵀA′ + e′ᵀ

)
,C

))
≤ m(3 · 2−λ + 2−Ω(λ))

ut

As a direct corollary we remark that the scaling of a GSW encryption C of µ by a bit a, defined as

C ·G−1rand (a ·G) +

(
0
yᵀ

)
, where y← DZm,r, does not depend on a, but only on aµ.
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5 Our Scheme: Circuit-Private Homomorphic Evaluation for GSW

In this section, we prove that a slight modification of the GSW encryption scheme is enough to guarantee
circuit privacy, i.e. that an evaluation of any branching program does not reveal anything more than the
result of the computation and the length of the branching program, as long as the secret key holder is
honest.

First, we state our definition of circuit privacy, similar to [IP07, Definition 7], which is stronger than the
one given in [Gen09, Definition 2.1.6] in the sense that it is simulation based, but weaker in the sense
that we leak information about the length of the branching program.

Definition 5.1 (Simulation-based circuit privacy). We say that a homomorphic encryption scheme
E is circuit private if there exists a PPT algorithm Sim such that for any branching program Π of length
L = poly (λ) on ` variables, any x1, . . . , x` ∈ {0, 1}`, the following holds:(

E .Eval (evk,Π, (C1, . . . ,C`)) ,C1, . . . ,C`, 1
λ, s
)

≈s
(
Sim

(
1λ, Π (x1, . . . , x`) , 1

L, (C1, . . . ,C`)
)
,C1, . . . ,C`, 1

λ, s
)

where s← E .Setup
(
1λ
)
, Ci ← E .Encrypt(s, xi) for i ∈ [`].

We can now state our main theorem:

Theorem 5.2 (Main theorem). There exists a fully homomorphic encryption scheme for branching
programs that is circuit private and whose security is based on the LWE assumption with polynomial
noise-to-modulus ratio.

Remark 2. The aforementioned scheme is also multi-hop (see definition in [GHV10]) for branching pro-
grams, as long as the noise does not grow beyond q/4. This means that the output of an evaluation can
be used as input for further computation, while the property of circuit privacy is maintained for every
hop. More in detail, the evaluation can be carried out by multiple parties and any subset of these parties
is not able to gain information about the function applied by an evaluator which is not in the subset,
beside its length, input and output.

5.1 Homomorphic evaluation for branching programs

We first recall the branching program evaluation algorithm given in [BV14] and describe our modified
version.

Permutation branching programs. A permutation branching program Π of length L and width W
with input space {0, 1}` is a sequence of L tuples of the form

(
var (t) , πt,0, πt,1

)
where

– var : [L]→ [`] is a function that associates the t-th tuple with an input bit xvar(t)
– πt,0, πt,1 : [W ]→ [W ] are permutations that dictate the t-th step of the computation.

On input (x1, . . . , x`), Π outputs 1 iff

πL,xvar(L)
(· · · (π1,xvar(1)

(1)) · · · ) = 1.

Following [BV14, IP07], we will evaluate Π recursively as follows. We associate each t ∈ [L] with the
characteristic vector vt ∈ {0, 1}W of the current “state”, starting with v0 = (1, 0, . . . , 0). We can then
compute the w-th entry of vt (denoted by vt [w]) as follows: for all t ∈ [L], w ∈ [W ],

vt [w] = vt−1

[
π−1t,xvar(t)

(w)
]

= xvar(t) · vt−1
[
π−1t,1 (w)

]
+
(
1− xvar(t)

)
· vt−1

[
π−1t,0 (w)

]
(5.1)
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Our branching program evaluation. Here we present our Eval (Π, (C1, . . . ,C`)) algorithm (note
that it does not require any evaluation key), which homomorphically evaluates a branching program Π
over ciphertexts C1, . . . ,C`. The first state vector is encrypted without noise: the initial encrypted state
vector is V0 = (G,0, . . . ,0), i.e. V0[1] = G and V0[w] = 0, for 2 ≤ w ≤ W . Note that G and 0 are
noiseless encryptions of 1 and 0, respectively. The encrypted state vector is then computed at each step
by homomorphically applying (5.1) and adding a noise term: for t ∈ [L] and w ∈ [W ]

Vt [w]← Cvar(t) ·G−1rand

(
Vt−1

[
π−1t,1 (w)

])
+
(
G−Cvar(t)

)
·G−1rand

(
Vt−1

[
π−1t,0 (w)

])
+

(
0

yᵀ
t,w

)
(5.2)

where yt,w ← DZm,r
√
2. The output of the evaluation algorithm is VL[0] ∈ Zn×mq .

Remark 3 (Comparison with [BV14, AP14]). The differences between our homomorphic evaluation pro-
cedure and the previous ones are as follows:

– We added an additional Gaussian noise to the computation, as captured in the boxed term;
– [BV14] uses the deterministic G−1det (·) whereas [AP14] introduced the randomized G−1rand (·) for effi-

ciency. Here, we crucially exploit the randomized G−1rand (·) for privacy.

Simulator. Towards proving circuit privacy, we need to specify a simulator Sim. We first describe a
simulator that is given access to the number of times each variable is used and prove that its output
distribution is statistically close to the result of Eval (Lemma 5.5). We can then pad the branching
program so that each variable is used the same number of times. Given the security parameter λ, the
length L of the branching program Π, the number of times τi that Π uses the i-th variable, the final value
xf of the evaluation of Π on input (x1, . . . , x`), the ciphertexts Ci encrypting xi for i ∈ [`], Sim mimics
the way error grows in the states of Eval by doing τi dummy steps of computation with the i-th variable.
This gives a new encryption Âf of 0 with the same noise distribution as the ciphertext output by the

Eval procedure. Sim then adds the message part xf to this ciphertext and outputs Cf = Âf + xfG.
In other words,

Sim
(
1λ, xf , (1

τ1 , . . . , 1τ`) , (C1, . . . ,C`)
)
←
∑̀
i=1

τi∑
t=1

(
Ci ·

(
G−1rand (0)−G−1rand (0)

)
+

(
0
yᵀ
t

))
+ xfG

where yt ← DZm,r
√
2 for t ∈ [L].

We note that the sum of 2τi samples G−1rand (0) can be sampled at once using the G−1rand (·) algorithm with
a larger parameter r

√
2τi, and the sum of τi samples from DZm,r

√
2 is close to a sample from DZm,r

√
2τi

.

5.2 Proof of circuit privacy

We proceed to establish circuit privacy in two steps. We first analyze how the ciphertext distribution
changes in a single transition, and then proceed by induction to reason about homomorphic evaluation
of the entire branching program.

Step 1. We begin with the following lemma, which is useful for analyzing the output of (5.2). Roughly
speaking, this lemma says that if at step t, the state vector consists of fresh GSW encryptions with some
noise parameter ζ, then at step t+ 1, the state vector is statistically close to fresh GSW encryptions with
a somewhat larger noise which depends on the error in the input ciphertext and on ζ.

Lemma 5.3. For any x, v0, v1 ∈ {0, 1}3 the following holds:(
C ·G−1rand (V1) + (G−C) ·G−1rand (V0) +

(
0
yᵀ

)
,C

)
≈s (V′x,C)

where Vb ← Encryptγ (s, vb) for b ∈ {0, 1}, C =

(
A

s̄ᵀA + eᵀ

)
+ xG ← Encrypt (s, x), y ← DZm,r

√
2 and

V′x ← Encryptζ (s, vx), with ζ =

√
γ2 + 2r2(1 + ‖e‖2).
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Proof. We begin with a simple identity which is useful in the remainder of the proof:

C ·G−1rand (V1) + (G−C) ·G−1rand (V0) = Â ·
(
G−1rand (V1)−G−1rand (V0)

)
+ Vx

where Â =

(
A

s̄ᵀA + eᵀ

)
and V0,V1,C are as defined in the statement of the Lemma. Showing this

identity is correct just requires performing the calculations:

C ·G−1rand (V1) + (G−C) ·G−1rand (V0)

=
(
Â + xG

)
·G−1rand (V1) +

(
(1− x) G− Â

)
·G−1rand (V0)

= Â ·
(
G−1rand (V1)−G−1rand (V0)

)
+ xV1 + (1− x) V0

= Â ·
(
G−1rand (V1)−G−1rand (V0)

)
+ Vx

Then we observe that by applying Lemma 2.3 we have(
0
yᵀ

)
≈s
(

0
yᵀ
1

)
−
(

0
yᵀ
0

)
where yb ← DZm,r, b ∈ {0, 1}. Lemma 4.1 also gives(

Â ·G−1rand (Vb) +

(
0
yᵀ
b

)
,C

)
≈s (Cb,C)

where Cb ← Encryptζ′(s, 0), for b ∈ {0, 1}, with ζ ′ = r

√
1 + ‖e‖2. We now have(

C ·G−1rand (V1) + (G−C) ·G−1rand (V0) +

(
0
yᵀ

)
,C

)
≈s (C1 −C0 + Vx,C)

By additivity of variance on independent variables, we obtain that C1−C0 + Vx = V′x looks like a fresh

encryption of 0− 0 + vx = vx with parameter

√
γ2 + 2r2(1 + ‖e‖2). ut

Step 2. We now prove that, at each step of the evaluation, each entry of the encrypted state Vt looks
like a fresh GSW encryption of the corresponding entry of the state vt, even given the GSW encryptions
of the input bits, except for a small correlation in the noise.

Lemma 5.4 (Distribution of the result of Eval). For any branching program Π of length L on `
variables, we define τt,i to be the number of times the i-th variable has been used after t steps of the
evaluation, i.e. τt,i =

∣∣var−1 (i) ∩ [t]
∣∣, for i in [`] and t ∈ [L].

For any x1, . . . , x` ∈ {0, 1}`, any s̄ ∈ Zn−1q , at each step t ∈ [L], for all indexes w ∈ [W ], the following
holds: (

Vt [w] , (Ci)i∈[`]
)
≈s
(
C′t,w, (Ci)i∈[`]

)
where Ci =

(
Ai

s̄ᵀAi + eᵀ
i

)
+ xiG ← Encrypt (s, xi) for i ∈ [`], C′t,w ← Encryptrt(s,vt [w]) for

(t, w) ∈ [L]× [W ] and rt = r

√
2
∑`
i=1 τt,i

(
1 + ‖ei‖2

)
.

Proof. We prove this lemma by induction on t ∈ [L]. At step t > 1, for index w ∈ [W ] we use a series
of hybrid distributions Ht,w,k for 0 ≤ k ≤ 2 to prove that

(
Vt [w] , (Ci)i∈[`]

)
≈s

(
C′t,w, (Ci)i∈[`]

)
. In

particular Ht,w,0 =
(
Vt [w] , (Ci)i∈[`]

)
, and Ht,w,2 =

(
C′t,w, (Ci)i∈[`]

)
.

Hybrid Ht,w,0. Let wb = π−1t,b (w) for b ∈ {0, 1}. We write wβ to denote wxvar(t)
, i.e. w0 or w1,

depending on the value of the variable which is used at time t.

Ht,w,0 =
(
Vt [w] , (Ci)i∈[`]

)
=

(
Cvar(t) ·G−1rand (Vt−1 [w1]) +

(
G−Cvar(t)

)
·G−1rand (Vt−1 [w0]) +

(
0

yᵀ
t,w

)
, (Ci)i∈[`]

)
where Ci ← Encrypt (s, xi) and yt,w ← DZm,r

√
2.
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Hybrid Ht,w,1. We set

Ht,w,1 =

(
Cvar(t) ·G−1rand

(
C′t−1,w1

)
+
(
G−Cvar(t)

)
·G−1rand

(
C′t−1,w0

)
+

(
0

yᵀ
t,w

)
, (Ci)i∈[`]

)
where Ci ← Encrypt (s, xi), yt,w ← DZm,r

√
2 and C′t−1,wb ← Encryptrt−1

(s,vt−1[wb]) for b ∈ {0, 1}.
By induction hypothesis we have Ht−1,wb,0 ≈s Ht−1,wb,2 for b ∈ {0, 1}, i.e.(

Vt−1 [wb] , (Ci)i∈[`]
)
≈s
(
C′t−1,wb , (Ci)i∈[`]

)
where Ci ← Encrypt (s, xi) and C′t−1,wb ← Encryptrt−1

(s,vt−1[wb]) for b ∈ {0, 1}.
We use the fact that applying a function to two distributions does not increase their statistical distance
to obtain Ht,w,0 ≈s Ht,w,1.

Hybrid Ht,w,2. Let

Ht,w,2 =
(
C′, (Ci)i∈[`]

)
with Ci ← Encrypt (s, xi), C′ ← Encryptζ(s,vt−1[wβ ]) and ζ =

√
r2t−1 + 2r2

(
1 +

∥∥evar(t)

∥∥2).

By Lemma 5.3 we have:(
Cvar(t) ·G−1rand

(
C′t−1,w1

)
+
(
G−Cvar(t)

)
·G−1rand

(
C′t−1,w0

)
+

(
0

yᵀ
t,w

)
, (Ci)i∈[`]

)
≈s
(
C′, (Ci)i∈[`]

)
where Ci ← Encrypt (s, xi), yt,w ← DZm,r

√
2, C′t−1,wb ← Encryptrt−1

(s,vt−1[wb]) for b ∈ {0, 1} and

C′ ← Encryptζ(s,vt−1[wβ ]). Note that vt−1[wβ ] = vt[w] and rt =

√
r2t−1 + 2r2

(
1 +

∥∥evar(t)

∥∥2) = ζ from

which we have that C′ and C′t,w are identically distributed, and directly Ht,w,1 ≈s Ht,w,2.

We note that this recursive formula does not apply to step t = 0, we thus use t = 1, w ∈ [W ] as the base
case. We only describe the steps that differ from the case t > 1.

Hybrid H1,w,1. We have G−1rand (V0 [wb]) = G−1rand (v0 [wb] ·G) for b ∈ {0, 1}. Notice that we now
have exactly H1,w,1 = H1,w,0.

Hybrids H1,w,2. The proof forH1,w,1 ≈s H1,w,2 is identical to the one of Lemma 5.3 except for the fact
that the ciphertext Vx from the proof is now of the form v0[wβ ]G. The resulting ciphertext C′1,w is now

only the sum of two encryptions of 0 and v0[wβ ] and has a Gaussian parameter r

√
2
(

1 +
∥∥evar(1)

∥∥2) = r1.

This implies H1,w,1 ≈s H1,w,2. ut

We now proceed to prove circuit privacy. We will first prove the following lemma, which states that the
Eval algorithm presented in Section 5.1 only leaks the final result of the evaluation and the number of
times each variable is used.

Lemma 5.5. Let E be the scheme defined in Section 4 with evaluation defined as in this section, and Sim
be the corresponding simulator. Then for any branching program Π of length L = poly(λ) on ` variables,

such that the i-th variable is used τi times, and any x1, . . . , x` ∈ {0, 1}`, the following holds:(
E .Eval (Π, (C1, . . . ,C`)) ,C1, . . . ,C`, 1

λ, s
)

≈s
(
Sim

(
1λ, Π (x1, . . . , x`) , (1

τ1 , . . . , 1τ`), (C1, . . . ,C`)
)
,C1, . . . ,C`, 1

λ, s
)

where s← E .Setup
(
1λ
)
, Ci ← E .Encrypt (s, xi) for i in [`].
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Proof. As shown in Lemma 5.4, the final result of the homomorphic evaluation of the branching program
Π is of the form

VL [0] ≈s
(

A
s̄ᵀA + fᵀ

)
+ xfG

where A
$← Z(n−1)×m

q , f ← DZm,rL and rL = r

√
2
∑`
i=1

(
1 + ‖ei‖2

)
τi.

Now we prove that the output of Sim is statistically close to the same distribution. This proof follows from
the fact that scaling GSW ciphertexts yields a result which is independent of the argument of G−1rand (·).
Let Ai,t,A

′
i,t

$← Z(n−1)×m
q , fi,f , f

′
i,t ← DZm,r

√
1+‖ei‖

, then the joint distribution of the output of Sim and

ciphertexts (Ci)i∈[`] is

(
S, (Ci)i∈[`]

)
=

(∑`
i=1 Ci

∑τi
t=1

(
G−1rand (0)−G−1rand (0)

)
+

(
0
yᵀ
t

)
+ xfG, (Ci)i∈[`]

)
≈s
(∑`

i=1

∑τi
t=1

(
Ai,t

s̄ᵀAi,t + fi,t

)
+

(
A′i,t

s̄ᵀA′i,t + f ′i,t

)
, (Ci)i∈[`]

)
by Lemma 3.1

≈s
((

A
s̄ᵀA + fᵀ

)
, (Ci)i∈[`]

)
by Lemma 2.3 and summing uniform variables.

The result is the same as the joint distribution of the output of Eval and ciphertexts (Ci)i∈[`], thus
concluding the proof. ut

We are now ready to prove Theorem 5.2.

Proof (Main theorem). Theorem 5.2 follows from Lemma 5.5 by tweaking the Eval algorithm of E : it is
sufficient that this algorithm pads the branching program Π so that each variable is used L times. This
padding is done by using the identity permutation for all steps after the L-th. After this proof, we discuss
more efficient ways to pad branching program evaluations. It is easy to see that this step is enough to
reach the desired circuit privacy property: the only information leaked besides the final result is τi = L.

ut

Padding branching program evaluations. In order to pad a branching program Π that uses the i-th
variable τi times to one that uses the i-th variable L times, we add L− τi steps, using the identity per-
mutation at each one of these. Given VL [0] the final result of the computation, this padding corresponds
to steps t ∈ [L+ 1, 2L− τi] defined as follows:

Vt [0]← Vt−1 [0] + Ci

(
G−1rand (Vt−1 [0])−G−1rand (Vt−1 [0])

)
+

(
0

yᵀ
t,0

)
Using the same proof as Lemma 5.5 the final output will be

V2L−τi [0]← VL [0] + Ci

2L−τi−1∑
t=L

(
G−1rand (Vt [0])−G−1rand (Vt [0])

)
+

(
0

yᵀ
t,0

)

≈s VL [0] + Ci

2L−τi−1∑
t=L

(
G−1rand (0)−G−1rand (0)

)
+

(
0

yᵀ
t,0

)
Observe that by using Lemma 2.3 we have that

2L−τi−1∑
t=L

(
G−1rand (0)−G−1rand (0)

)
≈s DΛ⊥q (Gᵀ),rf

2L−τi−1∑
t=L

(
0

yᵀ
t,0

)
≈s DZm,rf
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Where rf = r
√

2 (L− τi). We can thus do all the steps at once by outputting VL [0] + Ci ·X +

(
0
yᵀ
f

)
,

where X← DmΛ⊥q (Gᵀ),rf
and yf ← DZm,rf . We note that X can be sampled using the G−1rand (·) algorithm

with parameter rf instead of r.

5.3 Setting the parameters

In this section we show that, for appropriate values of the parameters, the output of the homomorphic
evaluation VL[0] decrypts to Π (x1, . . . , x`) with overwhelming probability and guarantees circuit privacy.

We first recall the bounds on the parameters needed for both correctness and privacy. Let n = Θ (λ),
q = poly(n), m = n log q, α be the Gaussian parameter of fresh encryptions, r be the parameter of
G−1rand (·). Let B = Θ(α

√
m) be a bound on the norm of the error in fresh encryptions (using a tail cutting

argument we can show that B = Cα
√
m is sufficient to have a bound with overwhelming probability),

Lmax = poly(n) be a bound on the size of the branching programs we consider and `max = poly(n) an
upper bound on their number of variables. Let ε = O(2−λ) and ε′ = O(2−λ).
We have the following constraints:

– α = Ω (
√
m) for the hardness of LWEn−1,q,DZ,α

– r ≥
√

5 ln(2m(1+1/ε))
π for the correctness of G−1rand (·) sampling

– r ≥ 4
(

(1− ε) (2ε′)
2
)− 1

m

for the leftover hash lemma

– r ≥
√

5 (1 +B)
√

ln(2m(1+1/ε))
π for Lemma 3.7

– q = Ω
(√

mrα (mLmax `max)
1/2
)

for the correctness of decryption

We can thus set the parameters as follows:

– n = Θ(λ),
– Lmax = poly(n),
– `max = poly(n),
– α = Θ(

√
n),

– r = Θ̃ (n),
– q = Θ̃

(
n5/2 · Lmax · `max

)
, a power of 2.

Note that the ciphertext size grows with logLmax. Correctness follows directly.

Lemma 5.6 (Correctness). For any branching program Π of length L on ` variables, any

x1, . . . , x` ∈ {0, 1}`, the result of the homomorphic evaluation Cf = Eval (Π, (C1, . . . ,C`)) decrypts to
Π (x1, . . . , x`) with overwhelming probability, where Ci ← Encrypt (s, xi) for i ∈ [`] and s← Setup

(
1λ
)
.

Proof. Lemma 5.4 shows that the noise distribution of the output Cf of Eval has parameter

rf = r

√
2
∑`
i=1 τi

(
1 + ‖ei‖2

)
, that is r

√
2L
∑`
i=1

(
1 + ‖ei‖2

)
because of the padding we applied to

Π. We have rf ≤ r
√

2L` (1 + C2α2m) with C the universal constant defined in Lemma 2.4, Using
the bounds Lmax and `max we have rL = Õ

(
rα(mLmax `max)1/2

)
. Finally, by a tail cutting argument,

q = Θ̃ (rL
√
n) = Θ̃

(
n5/2Lmax`max

)
is enough for decryption to be correct with overwhelming probability.

ut

5.4 Arbitrary modulus and random trapdoor matrix

In this paragraph we show how to instantiate our proofs in a more generic setting.

Our GSW ciphertext rerandomization can be straightforwardly adapted to any matrix H and modulus
q, as long as the lattice Λ⊥q (Hᵀ) has a small public basis, i.e. a small public trapdoor. Observe that the
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conditions needed to apply GSW ciphertext rerandomization are given in Lemma 3.7, which bounds the
smoothing parameter of the lattice

L =
{
v ∈ Λ⊥q (Hᵀ)× Z : êᵀv = 0

}
and in Lemma 3.8 which gives the min-entropy of a Gaussian over Λ⊥q (Hᵀ).
Let β ≥ ‖ti‖, where T = {t1, ..., tm} is the public trapdoor of H (i.e. T is a small basis of Λ⊥q (Hᵀ)), we
show that the previous two lemmas can be proven for H and the parameter r only grows by a factor β.
First, observe that Lemma 3.7 aims to find m small independent vectors in L. By noticing that

L =
{

(v,−vᵀe) : v ∈ Λ⊥q (Hᵀ)
}

we can exhibit m small vectors ui = (ti,−tᵀi e) , i ∈ [m] which are of norm

‖ui‖ ≤ ‖ti‖ (1 + ‖e‖) ≤ β(1 + ‖e‖)

This bound is the one we obtain in Lemma 3.7 for Λ⊥q (Gᵀ) where ‖T‖ =
√

5.
Second, we show that the bound on the min-entropy of Lemma 3.8 can be expressed as a function of
β, simply by using the fact that det(T) ≤ ‖T‖m = βm. From this we have the following bound on the
min-entropy:

H∞

(
DΛ⊥q (Hᵀ)+c,r

)
≥ log (1− ε) +m log (r)−m log (β)

This bound is slightly worse that the one we obtain in Lemma 3.8 for G (where we had 2 instead of β).
However this is not a problem as it is a weaker bound than the one obtained in Lemma 3.7.
By using these two lemmas we can rerandomize GSW ciphertexts and ensure circuit privacy for arbitrary
modulus q, and any matrix H with public trapdoor by setting the Gaussian parameter of H−1 (·) to
r = Θ̃ (βn).

5.5 Extension to general circuits

We can realize circuit-private FHE for general circuits via bootstrapping using the technique of [OPP14]
by combining a compact FHE for general circuits with decryption in NC1 with our circuit-private FHE
for NC1circuits as follows: the server receives a ciphertext under the first FHE scheme, evaluates its
circuit and bootstraps to the second (circuit hiding) FHE scheme. The ensuing scheme however will not
satisfy the multi-hop requirement. Nevertheless, by using the construction given in [GHV10] it is possible
to reach i-hop circuit private FHE for any a priori chosen i by giving out i pairs of switching keys to
bootstrap from one scheme to the other and vice versa.
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of the HEAT summer school where this research started.

19



References

ACPS09. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and

circular-secure encryption based on hard learning problems. In Shai Halevi, editor, CRYPTO 2009,

volume 5677 of LNCS, pages 595–618. Springer, Heidelberg, August 2009.

AGHS13. Shweta Agrawal, Craig Gentry, Shai Halevi, and Amit Sahai. Discrete gaussian leftover hash lemma

over infinite domains. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume

8269 of LNCS, pages 97–116. Springer, Heidelberg, December 2013.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A.

Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314.

Springer, Heidelberg, August 2014.

AR13. Divesh Aggarwal and Oded Regev. A note on discrete gaussian combinations of lattice vectors. CoRR,

abs/1308.2405, 2013.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod

Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic

circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors,

EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption

without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012, pages 309–325. ACM, January 2012.

BLP+13. Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical hardness
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