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Abstract

We consider the adjacency graphs of linear feedback shift registers (LFSRs) with reducible

characteristic polynomials. Let l(x) be a characteristic polynomial, and l(x) = l1(x)l2(x) · · · lr(x)

be a decomposition of l(x) into co-prime factors. Firstly, we show a connection between the

adjacency graph of FSR(l(x)) and the association graphs of FSR(li(x)), 1 ≤ i ≤ r. By this

connection, the problem of determining the adjacency graph of FSR(l(x)) is decomposed to the

problem of determining the association graphs of FSR(li(x)), 1 ≤ i ≤ r, which is much easier

to handle. Then, we study the association graph of LFSRs with irreducible characteristic poly-

nomials and give a relationship between these association graphs and the cyclotomic numbers

over finite fields. At last, some applications are suggested.

Keywords: MSC(94A55), feedback shift register, adjacency graph, De Bruijn sequence, irre-

ducible polynomial, cyclotomy.

1 Introduction

A De Bruijn sequence of order n is a binary sequence of period 2n which contains all the binary n-

tuples [2]. De Bruijn sequences have many applications in cryptography and modern communication

systems [6]. It is well known that there are 22
n−1−n De Bruijn sequences of order n [2, 5]. Even

though their size is very large, we can construct only a small fraction of them efficiently by now

[1, 3–5, 11, 12, 20]. A classical method to construct De Bruijn sequences is to consider a feedback

shift register (FSR) producing several cycles which are then joined together to form a full cycle.

Such a method is called the cycle joining method proposed by Golomb [6]. For the application

of this method, we need to know the distribution of the conjugate pairs in the cycles of the FSR,

which is generally difficult to analyze.

The distribution of the conjugate pairs in the cycles of an FSR is defined to be the adjacency

graph of this FSR [9]. Until now, only some special linear feedback shift registers (LFSRs) have

been totally analyzed about their adjacency graphs, for example, the LFSRs with characteristic

polynomials of the form p(x), (1 + x)mp(x), (1 + xm)p(x) and p1(x)p2(x) · · · pk(x), where p(x) and
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pi(x), i = 1, 2, . . . , k, are primitive polynomial and m is a small positive integer [10,13–16,19]. Their

adjacency graphs were determined and De Bruijn sequences were constructed from them. Recently,

a progress was made in the LFSRs with primitive-like characteristic polynomials, i.e., the LFSRs

with characteristic polynomials of the form l(x)p(x), where l(x) is a polynomial of small degree

(< 30), and p(x) is a primitive polynomial [17]. The authors there defined the concept of association

graphs of LFSRs, and they showed how to convert the problem of determining the adjacency graph

of FSR(l(x)p(x)) to the problem of determining the association graph of FSR(l(x)).

In this paper, we further analyse the relationship between the adjacency graphs and the asso-

ciation graphs of LFSRs. Let l(x) be a characteristic polynomial and l(x) = l1(x)l2(x) · · · lr(x) be

a decomposition of l(x) into co-prime factors. Firstly, by using the theory of LFSRs, we express

the cycle structure of FSR(l(x)) in terms of the cycle structure of FSR(li(x)), 1 ≤ i ≤ r. Then

we decompose the problem of determining the adjacency graph of FSR(l(x)) to the to the problem

of determining the association graphs of FSR(li(x)), 1 ≤ i ≤ r. We show that, in the case of

gcd(per(l1(x)), l2(x), . . . , lr(x)) = 1 the adjacency graph of FSR(l(x)) is totally determined by the

association graphs of FSR(li(x)), 1 ≤ i ≤ r, and in the case of gcd(per(l1(x)), l2(x), . . . , lr(x)) 6= 1,

the adjacency graph of FSR(l(x)) is related to the solutions of a set of equations. Since the concept

of association graphs of LFSRs is of importance, we study the association graphs of LFSRs with

irreducible characteristic polynomials, and give a connection between the association graphs and

the cyclotomic numbers over finite fields. Finally, we suggest some applications of these results.

The remainder of this paper is organized as follows. In Section 2, we introduce some necessary

preliminaries. In Section 3, the cycle structure of FSR(l(x)) is analyzed. Section 4 gives a relation-

ship between the adjacency graph of FSR(l(x)) and the association graphs of FSR(li(x)), 1 ≤ i ≤ r.
Section 5 considers the association graphs of LFSRs with irreducible characteristic polynomials. In

Section 6, we present some applications. We make a conclusion on this paper in Section 7.

2 Preliminaries

2.1 Feedback Shift Registers

Let F2 = {0, 1} be the binary finite field, and Fn
2 be the nth-dimensional vector space over F2. An

n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from Fn
2 to F2.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a feedback

function F regulated by a single clock. The characteristic function of this FSR is defined to be

f = F + xn. The FSR with characteristic function f is denoted by FSR(f). At every clock pulse,

the current state (s0, s1, . . . , sn−1) is updated by (s1, s2, . . . , sn−1, F (s0, s1, . . . , sn−1)) and the bit s0

is outputted. The output sequences of FSR(f), denoted by G(f), are the 2n sequences s = s0s1 . . .,

satisfying st+n = F (st, st+1, . . . , st+n−1), or equivalently f(st, st+1, . . . , st+n) = 0, for any t ≥ 0.

It is shown by Golomb [6] that all sequences in G(f) are periodic if and only if the characteristic

function f is nonsingular, i.e., of the form f = x0+f0(x1, . . . , xn−1)+xn. In the following discussion,

all characteristic functions are assumed to be nonsingular.
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We use (s0s1 . . . sp−1) to denote the periodic sequence s = s0s1 . . . sp−1 . . . with period p. The

period of s is denoted by per(s). We define the left shift operator L on periodic sequences by

Lis = (sisi+1 . . . si−1), where the subscripts are taken modulo p. Two periodic sequences s1 and

s2 are called shift-equivalent if there exists an integer r such that s1 = Lrs2. The set G(f) are

partitioned into equivalent classes G(f) = [s1] ∪ [s2] ∪ · · · ∪ [sk] such that two sequences are in the

same equivalent class if and only if they are shift equivalent. Each equivalent class is called a cycle

of FSR(f), and the partition is called the cycle structure of FSR(f). A cycle [(s0, s1, . . . , sp−1)] can

also be represented using the state cycle form [S0,S1, . . . ,Sp−1], where Si = (si, si+1, . . . , si+n−1)

for 0 ≤ i ≤ p− 1, and the subscribes are taken modulo p. The state Si is just the state of the FSR

at the moment that the bit si is ready to be outputted.

An FSR is called a linear feedback shift register (LFSR) if its characteristic function f is

linear [21]. For a linear Boolean function f(x0, x1, . . . , xn) = a0x0 + a1x1 + · · · + anxn, we can

associate it with a univariate polynomial l(x) = a0 + a1x + · · · + anx
n ∈ F2[x]. Most of the time,

we do not discriminate between linear Boolean functions and univariate polynomials. And for

convenience, we sometimes use FSR(l(x)) to denote the LFSR with characteristic function f(x).

For an n-stage FSR, the periods of its output sequences are no more than 2n. If this value is

attained, we call the sequences De Bruijn sequences, and call the FSR maximum length FSR. The

unique cycle in a maximum-length FSR is called a full cycle. For an n-stage LFSR, the periods

of its output sequences are no more than 2n − 1. If this value is attained, we call the sequences

m-sequences, and call the FSR maximum length LFSR. It is known that, FSR(l(x)) is a maximum

length LFSR if and only if l(x) is primitive, that is, the period of l(x), denoted by per(l(x)), is

2n − 1.

2.2 Adjacency Graphs and Cyclotomy

For a state S = (s0, s1, . . . , sn−1), its conjugate is defined to be the state Ŝ = (s0, s1, . . . , sn−1),

where s0 is the binary complement of s0. Two cycles C1 and C2 are said to be adjacent if there exists

a conjugate pair (S, Ŝ) such that the state S is on C1 while its conjugate Ŝ is on C2. Conjugate

pairs can be used to join cycles. For two cycles C1 and C2 that share a conjugate pair (S, Ŝ), we

can join the two cycles into one cycle by interchanging the successors of S and Ŝ. This is the basic

idea of the cycle joining method that proposed by Golomb [6]. For the application of the cycle

joining method, we need to find out the location of conjugate pairs shared by cycles. This leads us

to the definition of adjacency graph.

Definition 1. [9, 18] For an FSR, its adjacency graph is an undirected graph where the vertexes

correspond to the cycles in it, and there exists an edge labeled with an integer m > 0 between two

vertexes if and only if the two vertexes share m conjugate pairs.

For any FSR, its adjacency graph is a connected graph, that is, we can always join the cycles in

this FSR into a full cycle. This fact follows from the statement in [5]: C is a full cycle if and only

if the existence of state S on C also implies the existence of its conjugate Ŝ on C. Every maximal

spanning tree of an adjacency graph corresponds to a maximum length FSR, since this represents
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a choice of adjacencies that repeatedly join two cycles into one ending with exactly one cycle, i.e., a

full cycle. Therefore, for a given FSR, the number of full cycles that we can get from it by using the

cycle joining method, is equal to the number of maximum spanning trees of its adjacency graph.

Let F2n be the finite field of 2n elements, and α be a primitive element in F2n . The field F2n

can be expressed as F2n = {0, α0, α1, . . . , α2n−2}. Let d ≥ 1 be a divisor of 2n − 1. The cyclotomic

classes C0, C1, . . . , Cd−1 of F2n are defined by Ci = {αi+jd | 0 ≤ j ≤ 2n−1
d − 1} for 0 ≤ i ≤ d − 1.

For two integers l and m with 0 ≤ l,m ≤ d− 1, the cyclotomic number (l,m)d over F2n is defined

as the number of elements x ∈ Cl such that 1 + x ∈ Cm. It should be noted that, the cyclotomic

number (l,m)d is not a fixed number for given l,m, d and n, but affected by the primitive element

α, that is, different primitive elements may give different cyclotomic numbers. We refer the reader

to [7, 14] for more details.

In the case that n is an even number, we have 3|2n−1. The cyclotomic numbers of order 3 over

F2n are fixed numbers (means that they are not affected by the primitive element α), and they are

given in the following lemma.

Lemma 1. [7,8,14] The cyclotomic numbers of order 3 over finite field F2n are given by (0, 0)3 =

A, (0, 1)3 = (1, 0)3 = (2, 2)3 = B, (0, 2)3 = (2, 0)3 = (1, 1)3 = C and (1, 2)3 = (2, 1)3 = D, where

A = 2n+(−2)
n
2 +1−8

9 , B = C = 2n+(−2)
n
2 −2

9 , and D = 2n+(−2)
n
2 +1+1

9 .

We refer the reader to [8] for the relationship between the adjacency graphs of LFSRs with

irreducible characteristic polynomials and the cyclotomic numbers over finite fields.

2.3 Association Graphs

The concept of association graphs of LFSRs was proposed in [17] to deal with the adjacency graphs

of LFSRs with primitive-like characteristic polynomials.

Let a = a0, a1, . . . , ai, . . . and b = b0, b1, . . . , bi, . . . be two sequences, and c be an element in

F2. The sum of the two sequences a + b and the scalar product c · a are defined to be a + b =

a0 + b0, a1 + b1, . . . , ai + bi, . . ., and c · a = ca0, ca1, . . . , cai, . . .. Let l(x) ∈ F2[x] be a polynomial of

degree n. Then there are 2n sequences in the set G(l(x)). It is well known that, the set G(l(x)) is a

vector space of dimension n over F2 when endowed with the two operations + and · defined above.

Let u be a sequence in G(l(x)). Because < G(l(x)),+ > is a group, the mapping from G(l(x)) to

itself:

γu : a 7→ u + a

is a bijection. We note that, the bijection γu is not necessarily preserve the shift equivalent property,

that is, for two shift equivalent sequences a and b, their images γu(a) and γu(b) may not be shift

equivalent. Therefore, two sequences in a same cycle of G(l(x)) may be mapped into different

cycles. This lead us to the following definition.

Definition 2. [17] Let u be a sequence in G(l(x)), [s1] and [s2] be two cycles in G(l). The

association number of [s1] and [s2] with respect to u is defined by

Ru([s1], [s2]) =
∣∣∣{(i, j) | Lis1 + Ljs2 = u, 0≤i≤per(s1)−10≤j≤per(s2)−1

}∣∣∣ .
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It is easy to see that, the association number Ru([s1], [s2]) is exactly the number of sequences

in [s1] whose image under γu is located in the cycle [s2]. In another word, Ru([s1], [s2]) = |{(a,b) |
a + b = u,a ∈ [s1],b ∈ [s2]}|. We can use a graph to characterise these relations of the cycles in

G(l(x)). It is obvious that, these relations are influenced by the sequence u.

Definition 3. [17] Let u be a sequence in G(l(x)). The association graph of FSR(l(x)) with respect

to u is an undirected graph, where the vertexes correspond to the cycles in G(l(x)), and there is an

edge labeled with Ru([s1], [s2]) between two vertices [s1] and [s2].

3 The Direct Sum Decomposition of G(l(x))

Let l(x) be a characteristic polynomial of degree n, and l(x) = l1(x)l2(x) · · · lr(x) be a decomposition

of l(x) into co-prime factors, that is, gcd(l1(x), l2(x), . . . , lr(x)) = 1. Let the degree of li(x) be mi

for 1 ≤ i ≤ r. Without lose of generality, we can assume m1 ≤ m2 ≤ · · · ≤ mr. By the theory of

LFSRs, the vector space G(l(x)) has the direct sum decomposition:

G(l(x)) = G(l1(x)) +G(l2(x)) + · · ·+G(lr(x)).

Every sequence in G(l(x)) can be uniquely written as a sum of r sequences in G(l1(x)), G(l2(x)),

· · · , G(lr(x)) respectively. Let e be the sequence generated by FSR(l(x)) with the initial state

(1, 0, . . . , 0). By the above discussion, e can be uniquely written as e = e1 + e2 + · · · + er, where

ei ∈ G(li(x)) for i = 1, 2, . . . , r. We say ei is the representative of G(li(x)) determined by l(x) for

i = 1, 2, . . . , r. We should note that, the representative of G(li(x)) relies on l(x). Different l(x)

may result in different representatives.

Theorem 1. With the above notations, the minimal polynomial of ei is li(x) for 1 ≤ i ≤ r.

Proof. It is obvious that, the minimal polynomial of e is l(x). Suppose the minimal polynomial of ei

is not li(x), but a proper divisor of li(x). Then the minimal polynomial of the sum e1+e2+ · · ·+er

would be a proper divisor of l(x), which is a contradiction.

For a given l(x) and a given decomposition l(x) = l1(x)l2(x) · · · lr(x) satisfying gcd(l1(x), l2(x),

. . ., lr(x)) = 1, the representatives e1, e2, . . . , er can be obtained by using Algorithm 1. In this

algorithm, we use FSR(l(x),S) to denote the sequence generated by FSR(l(x)) with initial state S,

and U|k to denote the first k bits of the bit string U. It is easy to see that, the time complicity of

Algorithm 1 is O(n2mi). So, we can get the decomposition e = e1 +e2 + · · ·+er in time O(n(2m1 +

2m2 + · · ·+ 2mr)). In fact the time complicity can be optimized to O(n(2m1 + 2m2 + · · ·+ 2mr−1)),

because when the r − 1 representatives e1, e2, . . . , er−1 are obtained, the representative er can be

determined by er = e + e1 + . . .+ er−1.

In the following, we consider the cycle structure of FSR(l(x)). For a periodic sequence a, we use

[a] to denote the cycle [a] = {a, La, . . . , Lper(a)−1a}. The sum of two cycles [a] and [b] is defined

to be [a] + [b] = {s + t | s ∈ [a], t ∈ [b]}. The following lemma was proved in [17].
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Algorithm 1 Generation of the representative of G(li(x))

Input: The characteristic polynomial l(x) = l1(x)l2(x) · · · lr(x).

Output: The representative of G(li(x)) determined by l(x).

1: for S ∈ Fmi
2 do

2: T← FSR(li(x),S)|n
3: U← T + (1, 0, . . . , 0)

4: U0 ← U|n−mi

5: if U = FSR(l(x)/li(x),U0)|n then

6: u← FSR(li(x),S)

7: end if

8: end for

9: return u

Lemma 2. [17] Let s1 and s2 be two periodic sequences such that their minimal polynomials are

co-prime. Let d = gcd(per(s1),per(s2)). Then [s1] + [s2] = [s1 + s2]∪ [Ls1 + s2]∪ · · ·∪ [Ld−1s1 + s2].

In particular, when gcd(per(s1),per(s2)) = 1, we have [s1] + [s2] = [s1 + s2].

This lemma can be generalised to a more general case.

Lemma 3. Let s1, s2, . . . , sr be periodic sequences such that their minimal polynomials are co-prime.

Let di = gcd(per(s1 + · · ·+ si),per(si+1)) for i = 1, 2, . . . , r − 1. Then we have,

[s1] + [s2] + · · ·+ [sr]

= ∪d1−1I1=0 ∪
d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0 [LI1+I2+···+Ir−1s1 + LI2+···+Ir−1s2 + · · ·+ LIr−1sr−1 + sr].

In particular, when gcd(per(s1),per(s2), . . . ,per(sr)) = 1, we have

[s1] + [s2] + · · ·+ [sr] = [s1 + s2 + · · ·+ sr].

Proof.

[s1] + [s2] + · · ·+ [sr]

=
(
∪d1−1I1=0 [LI1s1 + s2]

)
+ [s3] + · · ·+ [sr]

=
(
∪d1−1I1=0 ∪

d2−1
I2=0 [LI1+I2s1 + LI2s2 + s3]

)
+ [s4] + · · ·+ [sr]

· · ·

= ∪d1−1I1=0 ∪
d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0 [LI1+I2+···+Ir−1s1 + LI2+···+Ir−1s2 + · · ·+ LIr−1sr−1 + sr]

By using this lemma, we can express the cycle structure of G(l(x)) in terms of the cycle structure

of G(li(x)), 1 ≤ i ≤ r.
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Theorem 2. Let l(x) be a characteristic polynomial and l(x) = l1(x)l2(x) · · · lr(x) be a decompo-

sition of l(x) into co-prime factors. Suppose the cycle structure of G(l1(x)), G(l2(x)), . . . , G(lr(x))

are

G(l1(x)) =[s1,1] ∪ [s1,2] ∪ · · · ∪ [s1,k1 ]

G(l2(x)) =[s2,1] ∪ [s2,2] ∪ · · · ∪ [s2,k2 ]

...

G(lr(x)) =[sr,1] ∪ [sr,2] ∪ · · · ∪ [sr,kr ],

where ki is the number of cycles in G(li(x)) for 1 ≤ i ≤ r. Then we have,

1. In the case of gcd(per(l1(x)), per(l2(x)), . . . ,per(lr(x))) = 1, the cycle structure of G(l(x)) is

G(l(x)) = ∪k1i1=1 ∪
k2
i2=1 · · · ∪

kr
ir=1 [s1,i1 + s2,i2 + · · ·+ sr,ir ].

2. In the case of gcd(per(l1(x)),per(l2(x)), . . . ,per(lr(x))) 6= 1, the cycle structure of G(l(x)) is

G(l(x)) =
(
∪k1i1=1 ∪

k2
i2=1 · · · ∪

kr
ir=1

)(
∪d1−1I1=0 ∪

d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0

)
[LI1+I2···+Ir−1s1,i1 + LI2···+Ir−1s2,i2 + · · ·+ LIr−1sr−1,ir−1 + sr,ir ],

where dj = gcd(per(s1,i1 + · · ·+ sj,ij ), per(sj+1,ij+1)) for j = 1, 2, . . . , r − 1.

Proof. It is easy to see that, Item 1 is a special case of Item 2. So for the proof of this theorem,

we just need to show Item 2.

Because l1(x), l2(x), . . . , lr(x) are co-prime polynomials, we have the direct sum decomposition

G(l(x)) = G(l1(x)) +G(l2(x)) + · · ·+G(lr(x)). Then Item 2 can be shown as follows,

G(l(x)) =G(l1(x)) +G(l2(x)) + · · ·+G(lr(x))

=
(
∪l1i1=1[s1,i1 ]

)
+
(
∪l2i2=1[s1,i2 ]

)
+ · · ·+

(
∪lrir=1[s1,ir ]

)
=
(
∪l1i1=1 ∪

l2
i2=1 · · · ∪

lr
ir=1

)
([s1,i1 ] + [s1,i2 ] + · · ·+ [s1,ir ])

=
(
∪l1i1=1 ∪

l2
i2=1 · · · ∪

lr
ir=1

)(
∪d1−1I1=0 ∪

d2−1
I2=0 · · · ∪

dr−1−1
Ir−1=0

)
[LI1+I2···+Ir−1s1,i1 + LI2···+Ir−1s2,i2 + · · ·+ LIr−1sr−1,ir−1 + sr,ir ]

The last equation is valid because of Lemma 3.

4 The Adjacency Graph of FSR(l(x))

The cycle structure of G(l(x)) has been considered in Theorem 2. By the result there, in the case of

gcd(per(l1(x)),per(l2(x)), . . . ,per(lr(x))) = 1, the cycles in G(l(x)) has the form [s1 + s2 + · · ·+ sr],

where si is a sequence in G(li(x)) for i = 1, 2, . . . , r. In the case of gcd(per(l1(x)), per(l2(x)), . . .,
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per(lr(x))) 6= 1, the cycles in G(l(x)) has the form [La1s1 + La2s2 + · · · + Larsr], where si is a

sequence in G(li(x)) and ai is an integer satisfying 0 ≤ ai ≤ per(si) for 1 ≤ i ≤ r. Note that

if gcd(per(s1), per(s1), . . . ,per(s1)) 6= 1, then different arrays (a1, a2, . . . , ar) 6= (b1, b2, . . . , br) may

give the same cycle [La1s1 + La2s2 + · · · + Larsr] = [Lb1s1 + Lb2s2 + · · · + Lbrsr]. Theorem 2 can

be used to depict when this happens, because it gives a full list of the cycles in G(l(x)) without

repeating.

In this section, we consider the adjacency graph of FSR(l(x)). We will give formulas for the

number of conjugate pairs shared by cycles in G(l(x)). Our discussions are divided into two cases,

the case of gcd(per(l1(x)), per(l2(x)), . . . ,per(lr(x))) = 1 and the case of gcd(per(l1(x)), per(l2(x)),

. . . ,per(lr(x))) 6= 1.

Theorem 3. In the case of gcd(per(l1(x)), per(l2(x)), . . . ,per(lr(x))) = 1, let [s1 + s2 + · · · + sr]

and [t1 + t2 + · · ·+ tr] be two cycles in G(l(x)), where si and ti are two sequences in G(li(x)) for

any 1 ≤ i ≤ r. Then the number of conjugate pairs shared by the two cycles is

N([s1 + s2 + · · ·+ sr], [t1 + t2 + · · ·+ tr])

=Re1([s1], [t1])Re2([s2], [t2]) · · ·Rer([sr], [tr]).

Proof. Write the cycles in the state form, where each state is of length m.

[s1] =[S1,0,S1,1, . . . ,S1,per(·)−1] [t1] =[T1,0,T1,1, . . . ,T1,per(·)−1]

[s2] =[S2,0,S2,1, . . . ,S2,per(·)−1] [t2] =[T2,0,T2,1, . . . ,T2,per(·)−1]

...
...

[sr] =[Sr,0,Sr,1, . . . ,Sr,per(·)−1] [tr] =[Tr,0,Tr,1, . . . ,Tr,per(·)−1]

For simplicity, we use the notation per(·) to denote the period of the corresponding sequence. We

need to show that, there is an one-to-one correspondence between the conjugate pairs shared by the

two cycles [s1+s2+ · · ·+sr] and [t1+t2+ · · ·+tr] and the integer pairs (u1, v1), (u2, v2), . . . , (ur, vr)

satisfying

Lu1s1 + Lv1t1 = e1, L
u2s2 + Lv2t2 = e2, · · · , Lursr + Lvrtr = er. (1)

Suppose there exist pairs (u1, v1), (u2, v2), . . . , (ur, vr) satisfying Equation (1). Then we have

Lu1s1 + Lv1t1 + Lu2s2 + Lv2t2 + · · ·+ Lursr + Lvrtr = e,

which implies

S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr = E, (2)

where E = (1, 0, . . . , 0). Define

X = S1,u1 + S2,u2 + · · ·+ Sr,ur

Y = T1,v1 + T2,v2 + · · ·+ Tr,vr .
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Equation (2) shows that, (X,Y) is a conjugate pair shared by the two cycles [s1 + s2 + · · · + sr]

and [t1 + t2 + · · ·+ tr].

On the other hand, suppose (X,Y) is a conjugate pair shared by the two cycles [s1+s2+· · ·+sr]

and [t1 + t2 + · · ·+ tr]. Since X is a state on the cycle [s1 + s2 + · · ·+ sr] and Y is a state on the

cycle [t1 + t2 + · · ·+ tr], we can assume

X = S1,u1 + S2,u2 + · · ·+ Sr,ur

Y = T1,v1 + T2,v2 + · · ·+ Tr,vr .

Then by X + Y = E we get

S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr = E.

Let T be the next state operation corresponding to FSR(g). For any integer t ≥ 0, we have

T t (S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr) = T tE,

which implies

T tS1,u1 + T tT1,v1 + T tS2,u2 + T tT2,v2 + · · ·+ T tSr,ur + T tTr,vr = T tE.

Therefore, the following equation holds,

Lu1s1 + Lv1t1 + Lu2s2 + Lv2t2 + · · ·+ Lursr + Lvrtr = e.

Then by the uniqueness of the decomposition of e, we get that

Lu1s1 + Lv1t1 = e1, L
u2s2 + Lv2t2 = e2, · · · , Lursr + Lvrtr = er.

So we get the integer pairs (u1, v1), (u2, v2), . . . , (ur, vr) which satisfy Equation (1). This completes

the proof.

According to the proof of Theorem 3, the conjugate pairs shared by the two cycles [s1 + s2 +

· · ·+ sr] and [t1 + t2 + · · ·+ tr] are exactly those (S1,u1 + S2,u2 + · · ·+ Sr,ur ,T1,v1 + T2,v2 + · · ·+
Tr,vr), where the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Lu1s1 + Lv1t1 = e1, L

u2s2 + Lv2t2 =

e2, · · · , Lursr + Lvrtr = er. Hence, the problem of finding conjugate pairs shared by cycles in

G(l(x)) is decomposed into the problems of finding the association relations between the cycles in

G(li(x)) for i = 1, 2, . . . , r, which are obviously easier to handle.

We note that, in Theorem 3, we didn’t require the two cycles [s1 + s2 + · · · + sr] and [t1 +

t2 + · · · + tr] are different. When the two cycles are the same one, we get that, there are
1
2Re1([s1], [s1])Re2([s2], [s2]) · · ·Rer([sr], [sr]) conjugate pairs in the cycle [s1 + s2 + · · ·+ sr]. There-

fore, Theorem 3 considers all the adjacency relations of the cycles in FSR(l(x)).

Theorem 4. In the case of gcd(per(l1(x)),per(l2(x)), . . . ,per(lr(x))) 6= 1, let [La1s1 + La2s2 +

· · · + Larsr] and [Lb1t1 + Lb2t2 + · · · + Lbrtr] be two cycles in G(l(x)), where si and ti are two

sequences in G(fi), and ai and bi are two integers satisfying 0 ≤ ai ≤ per(si), 0 ≤ bi ≤ per(ti) for

any 1 ≤ i ≤ r. Then the number of conjugate pairs shared by the two cycles is equal to the number

of arrays (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the following three conditions:
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1. Luisi + Lviti = ei for any 1 ≤ i ≤ r.

2. gcd(ui, uj)|(ai − aj), gcd(vi, vj)|(bi − bj) for any 1 ≤ i 6= j ≤ r.

3. 0 ≤ ui ≤ per(si), 0 ≤ vi ≤ per(ti) for any 1 ≤ i ≤ r.

Proof. Write the cycles [s1], [s2], . . . , [sr], [t1], [t2], . . . , [tr] in the state form as in the proof of The-

orem 3. We need to show that there is an one-to-one correspondence between the conjugate pairs

shared by the two cycles [La1s1 + La2s2 + · · · + Larsr] and [Lb1t1 + Lb2t2 + · · · + Lbrtr] and the

vectors (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the three conditions.

Suppose there exists a vector (u1, u2, . . . , ur, v1, v2, . . . , vr) that satisfy the three conditions.

Since this vector satisfies Condition (1) we have,

Lu1s1 + Lv1t1 + Lu2s2 + Lv2t2 + · · ·+ Lursr + Lvrtr = e.

Let X = S1,u1 + S2,u2 + · · · + Sr,ur and Y = T1,v1 + T2,v2 + · · · + Tr,vr Then as we have

done in the proof of Theorem 3, we can show that (X,Y) is a conjugate pair. Since the vector

(u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Condition 2, that is, gcd(ui, uj)|(ai−aj) for any 1 ≤ i 6= j ≤ r,
the reader can verify that X is a state on the cycle [La1s1 + La2s2 + · · · + Larsr]. Similarly, since

gcd(vi, vj)|(bi − bj) for any 1 ≤ i 6= j ≤ r, Y is a state on the cycle [Lb1t1 + Lb2t2 + · · · + Lbrtr].

Therefore, (X,Y) is a conjugate pair shared by the two cycles [La1s1 + La2s2 + · · · + Larsr] and

[Lb1t1 + Lb2t2 + · · ·+ Lbrtr].

On the other hand, suppose (X,Y) is a conjugate pair shared by the two cycles [La1s1+La2s2+

· · ·+ Larsr] and [Lb1t1 + Lb2t2 + · · ·+ Lbrtr]. We can assume,

X = S1,u1 + S2,u2 + · · ·+ Sr,ur

Y = T1,v1 + T2,v2 + · · ·+ Tr,vr .

Since X is state on the cycle [La1s1 +La2s2 + · · ·+Larsr], the reader can verify that gcd(ui, uj) is

a divisor of ai − aj for any 1 ≤ i 6= j ≤ r. Similarly, since Y is state on the cycle [La1s1 + La2s2 +

· · · + Larsr], we have that gcd(ui, uj) is a divisor of ai − aj for any 1 ≤ i 6= j ≤ r. Therefore, the

vector (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Condition (2). Because (X,Y) is a conjugate pair, the

equation X + Y = E holds. This implies,

S1,u1 + T1,v1 + S2,u2 + T2,v2 + · · ·+ Sr,ur + Tr,vr = E.

Then as in the proof of Theorem 3, we can show that,

Lu1s1 + Lv1t1 = e1, L
u2s2 + Lv2t2 = e2, · · · , Lursr + Lvrtr = er,

which means that the vector (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies Condition (1). This completes

the proof.
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According to the proof of Theorem 4, the conjugate pairs shared by the two cycles [La1s1 +

La2s2+· · ·+Larsr] and [Lb1t1+Lb2t2+· · ·+Lbrtr] are exactly those (S1,u1+S2,u2+· · ·+Sr,ur ,T1,v1+

T2,v2 + · · ·+ Tr,vr), where the array (u1, u2, . . . , ur, v1, v2, . . . , vr) satisfies the three conditions.

We note that, in Theorem 4, we didn’t require the two cycles [La1s1 +La2s2 + · · ·+Larsr] and

[Lb1t1 +Lb2t2 + · · ·+Lbrtr] are different. When the two cycles are the same one, we get the number

of conjugate pairs in the cycle [La1s1 +La2s2 + · · ·+Larsr]. Therefore, Theorem 4 considers all the

adjacency relations of the cycles in FSR(l(x)).

5 Irreducible Polynomials and Cyclotomy

According to Theorems 3 and 4, the adjacency graph of FSR(l(x)) relies totally on the association

graphs of FSR(l1(x)),FSR(l2(x)), . . . ,FSR(lr(x)). So it is helpful to study the association graphs

of LFSRs. In [17], some general properties about the association graphs have been given. In

this section, we consider especially the association graphs of LFSRs with irreducible characteristic

polynomials. We will show that, their association graphs are related to the cyclotomic numbers

over finite fields.

Let g(x) be a irreducible polynomial of degree m and period p. Let q = 2m−1
p . By the theory of

LFSRs, G(g(x)) contains the zero cycle [0] and q cycles of length p. Denote the q non-zero cycles by

[s0], [s1], . . . , [sq−1], where s0, s2, . . . , sq−1 are non-zero sequences in G(g(x)) that in different cycles.

Let β be a root of g. We can construct a finite field F2m with g(x) as a defining polynomial. Let

α ∈ F2m be a primitive element satisfying αq = β, then F2m = F2(α) = {0, α0, α1, . . . , α2m−2}. It

is well known that, for any sequence a ∈ G(g), there exists a unique γ ∈ F2m such that a = (ai) =

(Tr(γβi)), where the trace function Tr is from F2m to F2 and ai is the i-th element of a. Define a

mapping,

φ : G(g)→ F2m

a 7→ γ.

Then φ is an one-to-one mapping and has the properties that, for any sequences a and b in G(g),

φ(La) = φ(a)β, φ(a + b) = φ(a) + φ(b). Define the cyclotomic classes with respect to α

C0 = {β0, β1, . . . , βp−1}

C1 = {αβ0, αβ1, . . . , αβp−1}

· · ·

Cq−1 = {αq−1β0, αq−1β1, . . . , αq−1βp−1}

The set F2m \{0} is partitioned into disjoint classes, i.e., F2m \{0} = C1∪C2∪· · ·∪Cq−1. The class

Ci is the i-th cyclotomic class of F2m with respect to α. We note that, different primitive element

α may result in different partitions of F2n \ {0}. For a cycle [si] in G(g), denote

φ([si]) = {φ(si), φ(Lsi), . . . , φ(Lp−1si)}.
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Then it is easy to see that, φ([si]) is a cyclotomic class. Different cycles in G(g) give different

cyclotomic classes. and there is an one-to-one correspondence between the cycles in G(g) and the

cyclotomic classes of F2m . Without lose of generality, in the following we assume φ([si]) = Ci for

0 ≤ i ≤ q − 1.

Theorem 5. Let s be a sequence in G(g), and let φ(s) = αaβb, where a and b are two integers

satisfying 0 ≤ a ≤ q−1 and 0 ≤ b ≤ p−1. Then the association number of [si] and [sj ] with respect

to s is

Rs([si], [sj ]) = (i− a, j − a)q,

where the two integers i− a and j − a are reduced modulo q.

Proof. Let γ be an element in F2m . We use γ + Ci to denote the set {γ + δ | δ ∈ Ci}, and γCi to

denote the set {γδ | δ ∈ Ci}. We need to prove that |(αaβb + Ci) ∩ Cj | = (i− a, j − a)q. This can

be done as follows,

|(αaβb + Ci) ∩ Cj |

=|α−aβ−b((αaβb + Ci) ∩ Cj)|

=|α−a((αa + Ci) ∩ Cj)|

=|(1 + Ci−a) ∩ Cj−a)|

=(i− a, j − a)q.

6 Applications

6.1 Applications to the product of primitive polynomials

Let p(x) be a primitive polynomial of degree n. Then G(p(x)) contains two cycles, [0] and [s],

where 0 is the zero sequence, and s is an m-sequence in G(p(x)).

Theorem 6. Let p(x) be a primitive polynomial of degree n, and G(p(x)) = [0] ∪ [s] where s is

an m-sequence in G(p(x)). The association numbers of the cycles in G(p(x)) with respect to any

m-sequence u ∈ G(p(x)) is

Ru([0], [0]) = 0, Ru([0], [s]) = 1, Ru([s], [s]) = 2n − 2.

Proof. It is easy to see that, Ru([0], [0]) = 0 and Ru([0], [s]) = 1. In the following, we show that

Ru([s], [s]) = 2n− 2. By the definition of association numbers, Ru([s], [s]) = |{s1 | u + s1 ∈ [s], s1 ∈
[s]}| = |G(p(x)) \ {0,u}| = 2n − 2.

The association graphs of LFSRs is assumed to be obtained by using the exhaustive search

method, that is, for a given polynomial l(x) of degree m and a sequence u ∈ G(l(x)), we need

time O(2m) to calculate the association graph of FSR(l(x)) with respect to u. However, when
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l(x) is a primitive polynomial, by Theorem 6 the association graph of FSR(l(x)) can be de-

rived directly. We should note that, Theorem 3 together with Theorem 6 give the adjacency

graph of G(p1(x)p2(x) · · · pr(x)), where p1(x), p2(x), . . . , pr(x) are primitive polynomials such that

gcd(deg p1(x),deg p1(x), . . . ,deg p1(x)) = 1. These adjacency graphs have been studied in [15] using

a different method. It is easy to verify that, gcd(deg p1(x),deg p1(x), . . . ,deg p1(x)) = 1 if and only

if gcd(per(p1(x)), per(p2(x)), . . . ,per(pr(x))) = 1. By Theorem 2, when gcd(deg p1(x), deg p1(x),

. . ., deg p1(x)) = 1 the cycles in G(p1(x)p2(x) · · · pr(x)) has the form [s1 + s2 + · · · + sr], where si

is a sequence in G(pi).

Corollary 1. [15] Let p1(x), p2(x), . . . , pr(x) be primitive polynomials of degrees n1, n2, . . . , nr

respectively. Suppose gcd(n1, n2, . . . , nr) = 1. Let [s1 + s2 + · · ·+ sr] and [t1 + t2 + · · ·+ tr] be two

cycles in G(p1(x)p2(x) · · · pr(x)), where si and ti are two sequences in G(pi(x)) for 1 ≤ i ≤ r. Then

the number of conjugate pairs shared by the two cycles [s1 + s2 + · · ·+ sr] and [t1 + t2 + · · ·+ tr] is

N([s1 + s2 + · · ·+ sr], [t1 + t2 + · · ·+ tr])

=

 ∏
si 6=0,ti 6=0

(2ni − 2)

 ∏
si=0,ti 6=0

1

 ∏
si 6=0,ti=0

1

 ∏
si=0,ti=0

0

 .

Proof. Let e be the sequence generated by FSR(p1(x)p2(x) · · · pr(x)) with the initial state (1, 0, . . .,

0). The sequence e has the unique decomposition e = e1 +e2 + · · ·+er such that er ∈ G(pi(x)) for

1 ≤ i ≤ r. By Theorem 1, the minimal polynomial of ei is pi(x), that is , ei 6= 0 for 1 ≤ i ≤ r. By

Theorem 3, N([s1 + s2 + · · ·+ sr], [t1 + t2 + · · ·+ tr]) = Re1([s1], [t1])Re2([s2], [t2]) · · ·Rer([sr], [tr]).

Then we can finish the proof by using the formulas in Theorem 6.

6.2 Applications to primitive-like polynomials

The primitive-like polynomials are of the form l(x)p(x), where l(x) be a polynomial of small degree

and p(x) be a primitive polynomial. Let deg l(x) = m and deg p(x) = n. For simplicity, we

consider here only the case of gcd(per(l(x)),per(p(x))) = 1. Let e be the sequence generated by

FSR(l(x)p(x)) with the initial state (1, 0, . . . , 0), and e = u+s be the decomposition of e such that

u ∈ G(l(x)) and s ∈ G(p(x)). It was shown in [15] that, the adjacency graph of FSR(l(x)p(x)) is

related to the association graph of FSR(l(x)) with respect to u. The decomposition e = u + s is

assumed to be obtained in time O(n2m) and the association graph of FSR(l(x)) is assumed to be

obtained in time O(2m). Therefore, determining the adjacency graph of FSR(l(x)p(x)) needs time

O(n2m). In fact, the time complicity can be optimized as follows.

Let l(x) = l1(x)l2(x) · · · lr(x) be a decomposition of l(x) into co-prime factors. Let the degree

of li(x) be mi for 1 ≤ i ≤ r. Without lose of generality, we assume m1 ≤ m2 ≤ · · · ≤ mr. Let

e = e1 + e2 + · · · + er + s be the decomposition of e such that ei ∈ G(li(x)) for 1 ≤ i ≤ r

and s ∈ G(p(x)). It is easy to show that, e1 + e2 + · · · + er = u. By using Algorithm 1, this

decomposition can be obtained in time O(n(2m1 + 2m2 + · · ·+ 2mr)). Then, by Theorem 3 we can

get the adjacency graph of FSR(l(x)p(x)) by analyzing the association graphs of FSR(li(x)) with
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respect to ei for 1 ≤ i ≤ r, which needs time O(2m1 + 2m2 + · · ·+ 2mr). Therefore, the total time

to determine the adjacency graph of FSR(l(x)p(x)) is O(n(2m1 + 2m2 + · · ·+ 2mr)), which can be

much smaller than O(n2m).

We use an example to explain the above discussion. The adjacency graph of FSR((1 +x+x3 +

x4)p(x)) was analyzed in [17]. Since 1 + x + x3 + x4 = (1 + x2)(1 + x + x2), instead of analyzing

the association graph of FSR(1 + x + x3 + x4) with respect to u = (000111) (see Figures 1 and 2

in [17]), we can analyze the association graphs of FSR(1 + x2) and FSR(1 + x + x2) with respect

to e1 = (10) and e2 = (101) respectively. The two mappings γe1 and γe2 are shown in Figures 1

and 2. The association graphs of FSR(1 + x2) and FSR(1 + x+ x2) with respect to e1 = (10) and

e2 = (101) respectively can be easily determined from two mappings γe1 and γe2 , and they will not

be given here.

(0)

(01)

(10)

(1)

(0)

(01)

(10)

(1)

[(0)]

[(01)]

[(1)]

Figure 1: The mapping γe1 on G(1 + x2), where e1 = (10)

(0)

(011)

(110)

(101)

(0)

(011)

(110)

(101)

[(0)]

[(011)]

Figure 2: The mapping γe2 on G(1 + x+ x2), where e2 = (101)

Let s be an m-sequence in G(p(x)). The cycle structure of G(1+x2), G(1+x+x2) and G(p(x))

are

G(1 + x2) = [(0)] ∪ [(01)] ∪ [(1)]

G(1 + x+ x2) = [(0)] ∪ [(011)]

G(p(x)) = [(0)] ∪ [s].
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By Theorem 2, the cycle structure of FSR((1 + x2)(1 + x+ x2)p(x)) is

G((1 + x2)(1 + x+ x2)p(x))

=[(0) + (0) + (0)] ∪ [(01) + (0) + (0)] ∪ [(1) + (0) + (0)]

+ [(0) + (011) + (0)] ∪ [(01) + (011) + (0)] ∪ [(1) + (011) + (0)]

+ [(0) + (0) + s] ∪ [(01) + (0) + s] ∪ [(1) + (0) + s]

+ [(0) + (011) + s] ∪ [(01) + (011) + s] ∪ [(1) + (011) + s]

=[(0)] ∪ [(01)] ∪ [(1)] + [(011)] ∪ [(000111)] ∪ [(001)]

+ [s] ∪ [(01) + s] ∪ [(1) + s] + [(011) + s] ∪ [(000111) + s] ∪ [(001) + s].

From the association graphs of FSR(1+x2), FSR(1+x+x2) and FSR(p(x)), the adjacency graph of

FSR((1+x+x2)(1+x2)p(x)) can be determined. We take the two cycles [(011)] and [(000111)+ s]

for example to show how to calculate the number of conjugate pairs shared by them. Because

[(011)] = [(0) + (011) + (0)] and [(000111) + s] = [(01) + (011) + s], by Theorem 3 the number of

conjugate pairs shared by the two cycles is

N([(011)], [(000111) + s]) = Re1([(0)], [(01)])Re2([(011)], [(011)])Rs([(0)], [s]) = 2.

6.3 Applications to irreducible-like polynomials

We call the polynomials of the form l(x)g(x) irreducible-like polynomials, where l(x) is a poly-

nomial of small degree and g(x) is an irreducible polynomial. For simplicity, we consider here

only the case of gcd(per(l(x)),per(g(x))) = 1. Let deg l(x) = m and deg g(x) = n. Suppose

l(x) = l1(x)l2(x) · · · lr(x) is a decomposition of l(x) into co-prime factors. Let the degree of li(x) be

mi for 1 ≤ i ≤ r. Without lose of generality, we assume m1 ≤ m2 ≤ · · · ≤ mr. Let e be the sequence

generated by FSR(l(x)g(x)) with the initial state (1, 0, . . . , 0), and e = e1 + e2 + · · · + er + s be

the decomposition of e such that ei ∈ G(li(x)) for 1 ≤ i ≤ r and s ∈ G(g(x)). By using Algorithm

1, this decomposition can be obtained in time O(n(2m1 + 2m2 + · · ·+ 2mr)).

According to Theorem 3, to determine the adjacency graph of FSR(l(x)g(x)) we need to analyze

the association graphs of FSR(li(x)) with respect to ei for 1 ≤ i ≤ r and the association graph of

FSR(g(x)) with respect to s. The association graphs of FSR(li(x)) for 1 ≤ i ≤ r can be determined

in time O(2m1 + 2m2 + · · ·+ 2mr). The association graph of FSR(g(x)) with respect to s is related

to the cyclotomic numbers over finite fields by Theorem 5. Let per(g(x)) = p and q = 2n−1
p . Then

G(g(x)) contains the zero cycle [0] and q nonzero cycles of length p. Denote the cycle structure by

G(g(x)) = [0] ∪ [s0] ∪ [s1] ∪ · · · ∪ [sq−1], where s1, s2, . . . , sq−1 are sequences in G(g(x)). Let β be

a root of g(x) and α ∈ F2n be a primitive element satisfying αq = β, where q = 2n−1
p and p is the

period of g(x). Without lose of generality, we assume [si] is the cycle that corresponding to the

cyclotomic class Ci = {αiβ0, αiβ1, . . . , αiβp−1} for 0 ≤ i ≤ q − 1 (see the discussion in Section 5).

To determine the association graph of FSR(g(x)) with respect to s, we have to know (1) which

cycle [si] contains the sequence s, and (2) the exact values of the related cyclotomic numbers.

Question (1) can be related to the following problem (see Problem 1). It appears to us, however,
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difficult to solve Problem 1 in time O(n). The known methods to this problem need time that

grow exponentially with n. For Question (2), only a few cyclotomic numbers are known by now

(see Lemma 1). So it seems hard to determine the adjacency graph of LFSRs with irreducible-like

characteristic polynomials in the general case.

Problem 1. Let g(x) be an irreducible polynomial of degree n, and X and Y be two states of length

n. Determine whether or not the two states X and Y belong to the same cycle of G(g(x)).

In the following, we consider the case of per(g(x)) = 3 and l(x) = 1 + x + x2 to show how to

determine the adjacency graph of FSR(l(x)g(x)). The two cycle structure of G(l(x)) and G(g(x))

are G(l(x)) = [(0)] ∪ [(011)] and G(g(x)) = [(0)] ∪ [s1] ∪ [s2] ∪ [s3], where [si] is the cycle that

corresponding to the cyclotomic class Ci = {αiβ0, αiβ1, . . . , αiβp−1} for 0 ≤ i ≤ 2. By using

Algorithm 1, we can get the decomposition e = e1 + s in time O(n), where e1 ∈ G(l(x)) and

s ∈ G(g(x)). We assume that the sequence s belongs to the cycle [s0]. The other cases can be

handled similarly. Then the association graph of FSR(g(x)) with respect to s can be determined

by using Theorem 5, and we show it in Figure 3.

[(0)] [s0]

[s1] [s2]

1
A

B

D

C

C B

Figure 3: The association graph of FSR(g) with respect to s

Then by using Theorem 3, we can get the adjacency graph of FSR((1 + x + x2)g(x)), and we

show it in Figure 4. The number of conjugate pairs shared by cycles are listed in Table 1. The

numbers A,B,C and D are from Lemma 1. We should note that, these results are based on the

assumption s ∈ [s0].

Table 1: The number of conjugate pairs shared by cycles in FSR((1 + x+ x2)g(x))
[(0)] [u0] [u1] [u2] [(011)] [(011) + u0] [(011) + u1] [(011) + u2]

[(0)] 0 0 0 0 0 1 0 0

[u0] 0 0 0 0 1 A B C

[u1] 0 0 0 0 0 B C D

[u2] 0 0 0 0 0 C D B

[(011)] 0 1 0 0 0 2 0 0

[(011) + u0] 1 A B C 2 2A 2B 2C

[(011) + u1] 0 B C D 0 2B 2C 2D

[(011) + u2] 0 C D B 0 2C 2D 2B
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[(0)]

[s0]

[s1]

[s2]

[(011)]

[(011) + s0]

[(011) + s1]

[(011) + s2]

Figure 4: The adjacency graph of FSR((1 + x+ x2)g(x))

7 Conclusion

We studied the relationship between the adjacency graphs and the association graphs of LFSRs. By

using this relationship, the problem of determining the adjacency graphs of LFSRs is decomposed

to the problem of determining the association graphs of LFSRs with small orders, which is much

easier to handle. We also studied the association graphs of LFSRs with irreducible characteristic

polynomials, and showed that these association graphs are related to the cyclotomic numbers over

finite fields. At the end, we suggested some applications of these results.
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