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Abstract. Non-malleable codes were introduced by Dziembowski et al.
(ICS 2010) as coding schemes that protect a message against tamper-
ing attacks. Roughly speaking, a code is non-malleable if decoding an
adversarially tampered encoding of a message m produces the original
message m or a value m′ (eventually ⊥) completely unrelated with m.
Moreover, the probability of which one of these two events happens is also
independent of m. It is known that non-malleability is possible only for
restricted classes of tampering functions. Since their introduction, a long
line of works has established feasibility results of non-malleable codes
against different families of tampering functions. However, for many in-
teresting families the challenge of finding “good” non-malleable codes
remains open. In particular, we would like to have explicit constructions
of non-malleable codes with high-rate and efficient encoding/decoding
algorithms (i.e. low computational complexity). In this work we present
two explicit constructions: the first one is a natural generalization of the
seminal work of Dziembowski et al. and gives rise to the first constant-
rate non-malleable code with linear-time complexity (in a model includ-
ing bit-wise independent tampering). The second construction is inspired
by the recent works about non-malleable codes of Agrawal et al. (TCC
2015) and of Cheraghchi and Guruswami (TCC 2014) and improves the
previous result in the bit-wise tampering model: it builds the first non-
malleable codes with linear-time complexity and optimal-rate (i.e. rate
1− o(1)).

1 Introduction

Non-malleable codes [DPW10] are a relaxation of error-correcting and error-
detecting codes that have useful applications in cryptography. For example, they
can be used to protect keys that are stored in non-robust devices against tamper-
ing attacks. Recently, they also found application to computational cryptography
(e.g. construction of non-malleable commitments [AGM+15b], domain extension
for public-key encryption schemes [CMTV15,CDTV16]). Roughly speaking, a
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coding scheme (Enc,Dec) is non-malleable with respect to the tampering func-
tion f if decoding f(Enc(m)) produces the original message m or a value m′

(eventually ⊥) completely unrelated with m. Moreover, the probability of which
one of these two events happens is also independent of m. As an illustration of
the notion, consider a key that is stored in a device. The adversary is able to
tamper with the key and gets to see the effect of using the device with the tam-
pered key inside. If the key was coded with a non-malleable code and is decoded
before use, this attack becomes useless, as the key actually used after tampering
is either unchanged or is unrelated to the original key.

Since a tampering function can always try to decode, modify the message,
and encode again, it is clear that non-malleable codes are impossible without
restrictions on the tampering function. We therefore restrict the adversary to
using functions from a specific class F . In this case, we say that we have a
non-malleable code with respect to the family F . For example, if the encoding is
made by n symbols from a finite field F, then we can restrict the tampering func-
tion to be a function with n independent components (f1, . . . , fn) (symbol-wise
independent tampering, or bit-wise independent tampering if F = {0, 1}). Other
important features of the coding scheme are the rate and the computational
complexity4. Since 2010, a line of works has established increasingly stronger re-
sults concerning the feasibility of non-malleable codes against different families
of tampering functions. However, for many interesting families the challenge of
finding “good” non-malleable codes remains open. In particular, we would like
to have explicit constructions of non-malleable codes with high rate and efficient
encoding/decoding algorithm (i.e. low computational complexity).

Many of the known constructions of non-malleable codes, such as [DPW10],
[CG14b,AGM+15a,AGM+15b] use linear secret-sharing schemes (LSSS) as one
of the main building blocks. Roughly speaking, a secret-sharing scheme is a ran-
domised algorithm that encodes a message m as a longer vector s such that
m can be computed from large enough sets of entries in s, while smaller set
give no information about m. LSSS with extra properties (uniformity and dis-
tance) are used already by Dziembowski et al. in [DPW10] where they introduce
and motivate the formal notion of non-malleable codes and also construct the
first family of non-malleable codes in the bit-wise independent tampering model.
The computational complexity of the code is quadratic in the size of the input
length. Secondly, via the probabilistic method they show that for any family
F of tampering functions such that |F| ≤ 22

αn for some constant α < 1 (n is
the length of the encoding) there exist constant-rate non-malleable codes with
respect to F . In this case, the description of the code is of exponential size, thus
the encoding and decoding algorithms are inefficient. More recently, Cheraghchi
and Guruswami [CG14a] prove that for this kind of families the optimal rate is
1−α; they construct non-malleable codes approaching this rate. Again, the con-

4 The rate of the coding scheme (Enc,Dec) is the quotient of the length of the message
m over the length of its encoding Enc(m). The computational complexity of the
scheme is maximum of the computational complexities of the two algorithm Enc and
Dec in function of the length of m.
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struction is non-explicit and gives rise to inefficient codes. For families of single
exponential size, i.e. |F| ≤ 2p(n) for some polynomial p, efficient (i.e. polynomial
time) non malleable codes were constructed in [FMVW14]. This construction is
also randomized, i.e. the construction succeeds with overwhelming probability
in providing non-malleable codes achieving optimal rate 1− o(1).

On the other hand, in [CG14b] an explicit (deterministic) construction of
non-malleable codes with rate arbitrarily close to 1 in the bit-wise independent
tampering model is given. The construction is based on the concatenation of a
linear error-correcting secret-sharing scheme of rate close to 1 and a constant-size
non-malleable code. This construction is instantiated using Reed-Solomon codes
and has thus computational complexity at least O(n log(n)) (super-linear).

Bit-wise independent tampering functions act on each bit of the encoding in-
dependently. In the more general C-split state model the encoding is partitioned
into C blocks (C is a constant) and each block can be tampered arbitrarily but
independently of the others blocks (e.g. [CKM11]). For C = 10, an efficient and
explicit construction of constant rate non-malleable codes was given in [CZ14].
Several results can be found in the recent literature when C = 2 (2-split-state
model) [LL12,DKO13,FMNV14,CG14b]. The first explicit construction of non-
malleable codes in this model [ADL14] had rate 0. Very recently Aggarwal et al.
[ADKO15] constructed the first efficient and explicit non-malleable codes in the
2-split state model achieving constant rate.

In [AGM+15a,AGM+15b], Agrawal et al. construct explicit and non-malleable
codes which are simultaneously resilient against bit-wise independent tampering
and permutations. They get optimal rate, but super-linear time.

In a recent work [JW15], Jafargholi and Wichs introduce tamper-detection
codes and use them together with leakage-resilient codes [DDV10] to construct
non-malleable codes that achieve optimal rate when |F| ≤ 22αn and efficient
encoding and decoding when |F| ≤ 2p(n). Tamper-detection codes for the sim-
ple family of additive tampering functions are called algebraic manipulation de-
tection codes (AMD) and were already introduced by Cramer et al. in 2008
[CDF+08].

In conclusion, the natural question to ask is if we can achieve the optimal
properties of linear-time complexity and rate approaching 1 simultaneously. This
is not known, even for the restricted case of bit-wise tampering, and even we
only ask for linear-time complexity5.

Our Contribution. In this paper, we study the above question and achieve
positive results.

In the first part of our work, we push forward the idea of using linear se-
cret sharing, and show that when the family of tampering functions has a clear
structure (as in the symbol-wise independent tampering model), then simple
constructions based on LSSS can achieve good results: we get constant-rate non-

5 Determining which cryptographic primitives can be instantiated in linear-time is an
interesting and challenging program started by Ishai et al. in [IKOS08].
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malleable codes with optimal computational complexity O(k), where k is the
length of the input message. To obtain this, we also use the recent results about
linear-time encodable error-correcting codes and linear-time computable univer-
sal hash functions [IKOS08,DI14].

Building on the first result, we then achieve both linear-time complexity
and optimal rate, that is rate 1 − o(1), for non-malleable codes in the bit-
wise independent tampering model. It is instructive to observe that optimal-
rate non-malleable codes with superlinear time complexity were constructed in
[CG14b,AGM+15a], and that these codes are based on secret sharing schemes
with (relatively) large privacy and reconstruction thresholds. The problem we
face is that there are no constructions of linear secret sharing schemes with
linear-time complexity for the required parameter range6. We therefore propose
a novel construction which is based on slightly weaker primitives which can be
instantiated for the rate 1− o(1) and linear-time complexity regime.

Overview of our Constructions. As mentioned, we present two determin-
istic constructions for linear-time non-malleable codes: Construction 1 can be
seen as a generalization of the original construction of [DPW10] and gives rise
to the first linear-time non-malleable codes with constant rate in the symbol-wise
independent tampering model. More generally, we prove that given a family of
tamper-detection codes with any computational complexity and rate, it is possi-
ble to explicitly construct a family of non-malleable codes with constant rate and
linear-time complexity (Theorem 2). The other ingredients of this first construc-
tion are constant-rate AMD codes and constant-rate LSSS with good privacy
(but where one needs almost all shares to reconstruct). We present linear-time
instantiations of both these primitives using the results of [DI14]. Construction
1 encodes a message m with three sequential steps: first m is encoded with an
AMD code, then the result is shared by a LSSS with privacy and finally each
share is encoded by a tamper-detection code. In particular, in Construction 1 if

Fk AMD−−−−−→ FΘ(k) LSSS−−−−−→ (F`)m TDm−−−−−→ (F`
′
)m

m 7−−−−−→ s 7−−−−−→ s

q
(s1, . . . , sm) 7−−−−−→ (c1, . . . , cm)

Fig. 1. The encoding algorithm of Construction 1

the tamper-detection code is secure against the family of tampering function F

6 A recent Monte-Carlo construction by Cramer et al. [CDD+15] can be instantiated
for a parameter range where the rate of the secret sharing scheme is bounded away
from 1 by a constant, but not for rate approaching 1.
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with constant error, then the resulting code is non-malleable respect to the fam-
ily F+ of functions (f1, . . . , fm) where each fi is a function from F , a constant
function or the identity and it has error negligible in the length of the input.
Hence, depending on how one instantiates the components of the construction,
one can handle more general tampering models than bit-wise (e.g. symbol-wise
tampering)7. A key point for the efficiency is that the shares produced by the
LSSS used are of constant size (i.e. m = Θ(k) and ` constant). This implies that
applying the tamper-detection code to all the shares results only in a constant
overhead for the computational complexity.

With Construction 2, we achieve linear-time non-malleable codes with opti-
mal rate approaching 1, still with an explicit (deterministic) construction (The-
orem 4). The most efficient constructions of optimal rate non-malleable codes
are from [CG14b,AGM+15a]. Both these constructions require a secret sharing
scheme with good privacy and non-trivial reconstruction threshold. Together
with the rate close to 1 constraint, these are challenging features to achieve in
linear-time. In our construction, we also use a secret-sharing scheme with rate
close to 1, but we do not require any reconstruction property for this scheme.
Instead, we combine the sharing scheme with other two tailored primitives, each
implementable in linear-time, and a short constant-rate non-malleable code. The
modular design of our construction makes the security proof much simpler and
more intuitive than previous constructions: each primitive takes care of a specific
property needed to prove non-malleability. The encoding is done in the follow-
ing way: first the input message is shared with a sharing scheme that has rate
1−o(1) and t-uniformity (that is, if s is the share vector of m, then each set of t
components of s are distributed uniformly on Ft). Then we use the two tailored
primitives: first, a keyed almost universal function is use to compute the first
hash of s, hk(s). Second, we compute short deterministic hash Com(s), using a
new primitive that we call a compressor. This compressed value Com(s) comes
with the guaranty of having high entropy. The two hash values and the key for
the almost universal hash function can be thought of as an “authentication tag”
of m. The final encoding is given by the share vector s and a non-malleable
encoding of this tag, this encoding does not have to be high-rate nor linear-time.

Fk sharing−−−−−→ Fk+o(k) hashing−−−−−−→ Fk+o(k) × Fo(k) × Fo(k) short NM−−−−−−−→ Fk+o(k) × Fo(k)

m 7−−−−−→ s 7−−−−−→ (s, hk(s),Com(s))

q
(s,h, c) 7−−−−−→ (s,NM(k,h, c))

Fig. 2. The encoding algorithm of Construction 2

7 Notice that the concrete instantiation we give in Corollary 3 leads to bit-wise tam-
pering.
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Structure of the paper: In Section 2, we fix the notation and give the basic defini-
tions we need further on in the paper. In Section 3 first we give linear-time con-
struction for AMD codes and LSSS with privacy, then we present Construction 1
in general and finally, we instantiate it for the binary case (bit-wise independent
tampering model). Section 4 is also divided in two parts: in the first one we
define and instantiate the primitives that are necessary for Construction 2; the
latter is described in the second part of the section together with the bit-wise
independent tampering model result.

2 Preliminaries

2.1 Notation

For an integer n, we write [n] = {1, 2, . . . , n} and, given A ⊆ [n], |A| denotes
the cardinality of A, while Ac indicates the complement set of A, i.e. Ac =
[n] \ A. With the notation (z1, . . . ,zn) we indicate an element of the n-times
cartesian product of F`, where F is a finite field of cardinality q and ` is a positive
integer. Given z = (z1, . . . ,zn) ∈ (F`)n and a subset A ⊆ [n], we will use zA
to denote the vector (zi)i∈A ∈ (F`)|A|. Given two vectors z = (z1, . . . ,zn),v =
(v1, . . . ,vn) ∈ (F`)n, the generalized Hamming Distance between z and v is
defined by d`Ham(z,v) = |{i ∈ [n] | zi 6= vi}|.

If Alg is an algorithm (randomized or not) that takes as input a value from
Fn, then the computational complexity of Alg is the number of field elementary
operations that Alg executes to compute the output.

We indicate with id the identity function. We say that a function ε is negligible
in n (ε(n) = negl(n)) if for every polynomial p there exists a constant c such
that ε(n) < 1

p(n) when n > c.

2.2 Probability

For a random variable X, the notation v ← X denotes that v is sampled ran-
domly according to X. For a set S, v ← S denotes that v is sampled uniformly
at random from S. Given two random variables X and Y with finite range S,
the statistical distance between X and Y is defined as SD(X,Y ) = 1

2

∑
i∈S |

Pr[X = i]− Pr[Y = i] |.
Let X = (X1, . . . , Xn) be a random variable with range Sn and t be a positive

integer less or equal to n. We say that X is t-wise independent if for any A =
{i1, . . . , it} subset of [n] of cardinality t and for any vector b = (b1, . . . , bt) ∈ St,
it holds that Pr[XA = b] =

∏t
j=1 Pr[Xij = bj ]. We say that X is t-wise uniform

on Sn if for any A ⊆ [n] of cardinality t, XA has the uniform distribution on St.
If t = n we simply say that X is an uniform random variable on Sn.

The min-entropy of X is defined by H∞(X) = − log2(maxb Pr[X = b]).
Note that if X = (X1, . . . , Xn) and XA is |A|-wise independent then H∞(X) ≥∑
i∈A H∞(Xi) and H∞(

∑
i∈AXi) ≥ maxi∈A H∞(Xi).
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2.3 Tamper-Detection and Non-Malleability

Let F be a finite field and n, `, k be positive integers. An `-folded n-code over
F is a non-empty subset of (F`)n; we will refer to n as the length of the code.
Given a set A ⊆ [n], with the notation CA we indicate the set {cA | c ∈ C}.
If ψ : C → Fk is a regular function, the pair (C, ψ) is called `-folded (n, k)-coding
scheme. The rate of a scheme is the ratio k/`n. If F = {0, 1}, the scheme is
called binary. If C is a vector space over F, then the code is called linear. The
dimension of a linear code is its dimension as vector space over F. Moreover, if
the map ψ is an F-linear map, also the scheme (C, ψ) is called linear.

Remark 1. Given an `-folded (n, k)-coding scheme (C, ψ) any randomized algo-
rithm Enc : Fk → C that on input m ∈ Fk outputs c ∈ ψ−1({m}) selected uni-
formly at random is called encoding algorithm. On the other side, the decoding al-
gorithm is the name used for the deterministic algorithm Dec : (F`)n → Fk∪{⊥}
that maps c to m = ψ(c) ∈ Fk if c ∈ C and to ⊥ otherwise. For convenience8,
in the following we will always identify a coding scheme (C, ψ) with the pair
(Enc,Dec).

While keeping F fixed, we will assume throughout that n = n(k). The com-
putational complexity (as a function of k) of a coding scheme is the maximum
taken over the computational complexities of Enc and Dec, respectively. We say
that a coding scheme is linear-time if both Enc and Dec have complexity O(k).

Let (Enc,Dec) be an `-folded (n, k)-coding scheme over F. Given an encoding
c ← Enc(m) for the message m ∈ Fk, tampering with c can be represented
by considering a function f : (F`)n → (F`)n that modifies the encoding c in
c̃ = f(c). The output of Dec(c̃) now depends on the original message m and
also on the tampering function f . To represent this, we consider the following
random variable Realmf .

Realmf :=


sample c← Enc(m);

compute c̃ = f(c);

output m̃ = Dec(c̃);

A simple but strong property that we can ask for is that the coding scheme is
able to detect with overwhelming probability the tampering caused by all the
functions f from a specific family F .

Definition 1 (TD Code, [JW15]). Given a family F of functions over (F`)n,
an (n, k)-tamper detection code with respect to F and with error ε is an (n, k)-
coding scheme such that Pr[Realmf 6=⊥] ≤ ε for any m ∈ Fk and any f ∈ F .

8 The two definitions are equivalent. Given the pair (Enc,Dec) such that for any m
it holds Pr[Dec(Enc(m)) = m] = 1, define C as the image of Enc in (F`)n and ψ as
the map Dec restricted to C.
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For example, any error-correcting code from coding theory with minimal
distance d is a TD code with respect to the family Fdist of functions that modify
less than d components in the input vector (i.e. d`Ham(f(x),x) < d).

The name algebraic manipulation detection (AMD) code, introduced by
[CDF+08], is used for TD codes with respect to the family Famd of additive
tampering functions. That is, functions of the form f∆(x) = x + ∆ where the
vector ∆ is a non-zero constant vector independent of x.

Unfortunately, tampering detection can not be achieved for many natural
families. For example, consider the family Fconst of all constant functions fc(x) =
c for c ∈ (F`)n; if c is a valid encoding, then Pr[Realmfc 6=⊥] = 1 for all m ∈ Fk. In
order to be able to consider larger families of tampering functions, the definition
of tampering detection needs to be relaxed. Instead of asking that the tampering
is detected, we can ask that the result of the tampering action is independent
of the original message. This property, called non-malleability is weaker than
tampering-detection, nevertheless it offers enough protection against tampering
attacks: an adversary that actively modifies encoded data can not control the
practical effect of his action on the encoded message.

Definition 2 (NM Code, [DPW10]). An (n, k)-coding scheme (Enc,Dec) is
said to be non-malleable with respect to a family F with error ε if the following
holds for any f ∈ F . There exists a random variable Df on Fk∪{⊥, same} such
that, given

Idealmf :=


sample m∗ ← Df ;

if m∗ = same then m′ = m;

otherwise m′ = m∗;

output m′;

then SD(Realmf , Idealmf ) ≤ ε for any m ∈ Fk.

In the rest of the paper we will mainly consider the family of symbol-wise
independent tampering functions. That is, if the encoding has the form c =
(c1, . . . , cn) ∈ (F`)n, then each component ci can be modified arbitrarily but
independently of the values of the others components. We will use the following
notation:

F q
`,n = {f = (f1, . . . , fn) | fi : F` → F`}

and f(c) = (f1(c1), . . . , fn(cn)). Note that if q = 2 and ` = 1, F 2
1,n is the family

considered in the bit-wise independent tampering model.

2.4 Secret-Sharing

Suppose that (Enc,Dec) is an `-folded (n, k)-coding scheme over F. Let t, r be
positive integers.

Definition 3 (t-privacy). (Enc,Dec) has t-privacy if the following holds for
each set A ⊂ [n] of F`-coordinates with |A| = t. For each m,m′ ∈ Fk, the
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distributions of (Enc(m))A and (Enc(m′))A on (F`)t are identical. The scheme
has t-uniformity if these distributions are the uniform ones on (F`)t.

Definition 4 (r-reconstruction). (Enc,Dec) has r-reconstruction if the fol-
lowing holds for each set A ⊂ [n] of F`-coordinates with |A| = r. If c, c′ ∈ C
satisfy cA = c′A, then Dec(c) = Dec(c′).

Note that any scheme has n-reconstruction. Moreover, if the coding scheme has
r-reconstruction and t-privacy, then t < r.

Remark 2. Given an `-folded linear (n, k)-coding scheme, it is easy to prove
that t-privacy and t-uniformity are equivalent to the following conditions, re-
spectively.

– (t-privacy) for each set A ⊆ [n] of F`-coordinates with |A| = t, the map that
maps c in C to the pair (Dec(c), cA) is surjective;

– (t-uniformity) the same condition as before holds and moreover CA = (F`)t.

Definition 5 (Secret-Sharing Scheme (SSS)). An `-folded (n, t, r, k)-secret-
sharing scheme over F (with uniformity) is an `-folded (n, k)-coding scheme over
F with t-privacy (t-uniformity) and r-reconstruction.

If the coding scheme is linear then we call it linear secret-sharing scheme
(LSSS).

Notice that in the existing literature, the algorithms Enc and Dec of a SSS are
often indicated with the notation Sh (sharing algorithm) and Rec (reconstruction
algorithm), respectively. Later on in the paper we will use this notation.

In this work, we will use secret-sharing schemes with different parameters and
properties as building blocks for constructing efficient NM codes. In particular,
for Construction 1 we are interested in the following aspect: what happens if the
reconstruction algorithm of a t-private LSSS is applied to a share vector where
at most t components have been tampered arbitrarily. The answer is stated in
the next lemma.

Lemma 1. Let (Sh,Rec) a t-private `-folded (n, k)-LSSS. Consider a set I ⊆ [n]
of F`-coordinates with |I| ≥ n − t and a function f = (f1, . . . , fn) ∈ F q

`,n such

that fi = id for all i ∈ I. Then there exists a random variable ∆f on (F`)n∪{⊥}
such that for any m ∈ Fk, Rec(f(Sh(m))) has the same distribution of m+∆f

(with the convention that m+ ⊥=⊥).

Proof. Clearly, f(Sh(m)) has the same distribution of Sh(m) + [f(Sh(m)) −
Sh(m)]. Since fi = id for all i ∈ I and |I| ≥ n − t, the t-privacy implies that
f(Sh(m))− Sh(m) has the same distribution of f(Sh(0))− Sh(0).
Define ∆f as the random variable that outputs Rec(f(Sh(0))− Sh(0)), then the
lemma follows from the linearity property of the map Rec. ut
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3 Constant-Rate and Linear-Time NM Codes

In this section, we describe our first main result: Construction 1 (Figure 4)
combines an AMD code, a LSSS and a TD code with constant error in order to
construct a constant-rate NM code (with negligible error) whose computational
complexity is controlled by the complexity of the two first schemes used (the
AMD code and the LSSS).

3.1 Building Blocks for Construction 1

Before describing Construction 1, we build linear-time constant-rate AMD codes
and LSSSs.

AMD Codes

We recall that a coding scheme (Enc,Dec) (with alphabet F) is an (n, k)-AMD
code with error ε if for any m ∈ Fk and any non-zero ∆ ∈ Fn, it holds that
Pr[Dec(Enc(m) +∆) 6=⊥] ≤ ε. This special family of TD codes are of particular
interest because, despite their simple definition, they can be used as basic tools of
generic constructions for coding scheme that achieve security against tampering
family larger than Famd (see for example [DPW10] and our Construction 1).
Clearly, the parameters (i.e. the rate) and the efficiency of the final schemes
depend on the ones of the AMD codes used. In particular, in order to prove our
result about constant-rate and linear-time NM codes (Theorem 2), we need to
build constant-rate and linear-time AMD codes. Our construction, presented in
the following Corollary 1, is based on the family of linear uniform functions from
[DI14].

Lemma 2 (Linear Uniform Family, Theorem 4 in [DI14]). For any pos-
itive integers c and large enough k there exist a positive constant b (b ≥ c) and
a family of functions {gk : Fk → Fck}k with k ∈ Fbk, such that the following
holds:

1. gk has computational complexity O(k);
2. gk is F-linear and gk1+k2

= gk1
+ gk2

;
3. for any y ∈ Fck and x ∈ Fk with x 6= 0, if k is chosen uniformly at random

from Fbk then Pr[gk(x) = y] = 1
qck

.

Corollary 1 (Linear-Time and Constant-Rate AMD code). For any large
enough integer k, there exists a linear-time (k′, k)-AMD code with error q−k and
k′ = Θ(k).

Proof. Given k, let G be the family from Lemma 2 with c = 1. For the sake of
simplicity we consider separately the cases b = 1 and b > 1.
First, assume that b = 1 and define

– Encamd(m) = (m,k, r, gk(m), gk(r), gr(k)), where k, r ∈ Fk are chosen uni-
formly at random.
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– Decamd(v1,v2,v3,v4,v5,v6) =

{
v1 if gv2(v1) = v4, gv2(v3) = v5, gv3(v2) = v3

⊥ otherwise

We will show that (Encamd,Decamd) is a (6k, k)-AMD code with error 1
qk

. That

is, given a non-zero error vector ∆ = (∆1, ∆2, ∆3, ∆4, ∆5, ∆6) ∈ F6k, we will
prove that Pr[Decamd(Encamd(m) +∆) 6=⊥] ≤ 1

qk
. For this purpose notice that

Decamd(Encamd(m)+∆) = Dec(m+∆1,k+∆2, r+∆3, gk(m)+∆4, gk(r)+∆5, gr(k)+∆6)

and that Pr[Decamd(Encamd(m) + ∆) 6=⊥] is equal to the probability that the
following equations are all satisfied:

gk+∆2
(m +∆1) = gk(m) +∆4

gk+∆2
(r +∆3) = gk(r) +∆5

gr+∆3
(k +∆2) = gr(k) +∆6

The above system is equivalent to
gk(∆1) = ∆4 − g∆2(m +∆1)

gk(∆3) = ∆5 − g∆2(r +∆3)

gr(∆2) = ∆6 − g∆3
(k +∆2)

(1)

If at least one among the vectors ∆1, ∆2 and ∆3 is different from zero (w.l.o.g.
assume that ∆1 6= 0) then

Pr[Decamd(Encamd(m) +∆) 6=⊥] ≤ Pr[gk(∆1) = ∆4 − g∆2
(m +∆1)] = 1/qk

where that the last inequality holds as G is a linear uniform family (property
3 in Lemma 2). On the other hand, if ∆1 = ∆2 = ∆3 = 0, then system (1) is
satisfied if and only if also ∆4 = ∆5 = ∆6 = 0. But this situation is not possible
since ∆ 6= 0. Thus, the proof in this first case is concluded.
If b > 1, the previous construction is still possible, but with worse rate. To see
this, split both the vectors r and k in b pieces of length k and, in the encoding
algorithm Encamd, substitute the vector gk(r) with the vectors gk(r1), . . . , gk(rb)
and the vector gr(k) with the vectors gr(k1), . . . , gr(kb), respectively. It is easy
to verify that in this case we obtain an (k′, k)-AMD code with k′ = (3+2b)k and
error 1

qk
. By inspection, the computational complexity of the scheme is O(k). ut

Linear Codes and LSSSs

Let D be an `-folded linear m-code of dimension k over the finite field F. The
minimum distance of D is defined as d = min{d`Ham(c, c′) | c, c′ ∈ D, c 6= c′}. If
G is a k ×m matrix over F`, we say that G is a generator matrix for the code
D if D = {m · G | m ∈ Fk}. We say the D is a linear-time encodable code if
the map m→m ·G can be computed by an algorithm that has computational
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complexity O(k).

For Construction 1, we are interested in linear-time (m, t,m, k)-LSSS with
large privacy (i.e. t > m/2) and constant-rate. Recently [CDD+15], the first
linear-time constant-rate LSSS was shown, using a construction based on a com-
bination of suitable linear codes and universal hash functions. More concretely,
while being linear over a fixed finite field and supporting an unbounded number
of players (or shares) m, there are constants εT , εt, εr with 0 < εs, εt, εr < 1
and an integer ` (the share size) such that the length k of the secret satisfies
k ≥ es`m, the privacy parameter t satisfies t ≥ εtm and the reconstruction pa-
rameter r satisfies r ≤ εrm. Moreover, both the sharing and the reconstruction
algorithm have complexity linear in m. Although here we also need constant-
rate linear-time sharing scheme, we do not use the result from for Construction
1 and instead we construct our constant-rate linear-time sharing scheme for
two reasons. First, the construction in [CDD+15] is a Monte-Carlo construction,
while in this work we are interested only in explicit (deterministic) constructions.
Second, later on (Section 4) we will require constant-rate sharing scheme with
t-uniformity (instead of only t-privacy). Our schemes from Corollary 2 have this
extra property that is not satisfied by the schemes presented in [CDD+15].

Now we present how to construct the required LSSS using linear codes. In
particular, we are going to use the explicit family of linear-time encodable codes
with good distance from [DI14]:

Lemma 3 (Linear-Time Codes, Theorem 2 in [DI14]). For any real num-
ber δ ∈ (0, 1) and large enough integer k, there exist a real number ρ ∈ (0, 1),
a positive integer ` and a code over F such that the following hold. The code
is `-folded; if m is the length of the code and d is its minimum distance, then
k
` < m ≤ k

`ρ and d ≥ δm. Furthermore, the code is linear-time encodable.

The following Lemma generalizes and rephrases Theorem 2 in [CGH+85]
asserting that LSSS with t-uniformity can be obtained from linear codes with
distance t+ 1.

Lemma 4. Let G be the generator matrix of an `-folded linear code of length m,
dimension k and minimum distance d. Assume that G = (Ik,M) where Ik is
the k× k identity matrix (systematic form of the code). Then the scheme define
in Figure 3 is an `-folded (m, d− 1,m, k)-LSSS with uniformity.

If the code is linear-time encodable, then the LSSS obtained has liner-time
complexity.

Proof. According to Remark 2, showing that the map ψA : c → (c ·G>, cA) is
surjective over Fk× (F`)d−1 for any A ⊆ [m] of size d−1 is enough to prove that
(Sh1,Rec1) (see Figure 3) has d − 1 uniformity. Clearly G (and then G>) has
rank k (over F) and the map c→ c·G> is surjective. Moreover since G generates
a code of distance d, we can remove any d−1 rows of G (i.e. d−1 columns from
G>) and the punctured matrix still has rank k (as any two distinct codewords
differ in at least d coordinates). This means that for any m we can solve in x
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Input: m ∈ Fk

Sh1(m):

x′ ← (F`)m−k

Compute x′′ = m− x′ ·M>

Output x = (x′′,x′)

Input: c ∈ (F`)m

Rec1(c):

Compute m = c ·G>
Output m

Fig. 3. Linear-time and constant-rate LSSS

the linear system x ·G> = m even when d− 1 components of x are fixed. This
trivially implies that also the map ψA is surjective and concludes the proof of
the uniformity property.
Finally, it follows directly from Tellegen’s principle (See Appendix A) that if the
underlying code is linear-time encodable, then both the algorithms Sh1 and Rec1
are linear-time. ut

Instantiating Lemma 4 with ad-hoc linear-time encodable codes provides us
with LSSS with linear-time reconstruction algorithms.

Corollary 2 (Linear-Time and Constant-Rate LSSS). For any real num-
ber δ ∈ (0, 1) and large enough k there exist a positive integer ` and a (m, k)-
coding scheme over F such that the scheme is an `-folded linear-time LSSS δm
uniformity. Moreover, m = Θ(k).

Proof. Given δ and k, let M be the generator matrix of the code of Lemma
3, then the matrix G = (Ik,M) defines a `-folded linear code of dimension k,
length m + k and distance at least δm + 1. The Corollary follows from Lemma
4. ut

3.2 Construction 1

Finally, we are ready to give the details of Construction 1 and its security proof.
All the schemes in the following are defined over the finite field F and are 1-folded
if it is not explicitly stated otherwise. Consider the following building blocks:

– Let (Encamd,Decamd) be a (k′, k)-AMD code with error ε;
– Let (Sh1,Rec1) be an `-folded (m, t,m, k′)-LSSS with privacy;
– Finally let (Enctd,Dectd) be an (`′, `)-TD codes with respect to the family F

and with error α.

The new coding scheme (ENC1,DEC1) is defined in Figure 4.

We indicate with F+ the set of tampering functions f : (F`′)m → (F`′)m in
F q
`′,m such each fi is a function from F ∪Fconst ∪{id}. That is, each block ci of

the encoding is modified by the adversary using a function fi : F`′ → F`′ , which
can be any function from F ∪ Fconst ∪ {id} provided that it doesn’t depend on
the others blocks of the encoding.
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Input: m ∈ Fk

ENC1(m)
s← Sh1(Encamd(m))
Parse s = (s1, . . . sm)
For i = 1, . . .m:

ci ← Enctd(si)
Output c = (c1, . . . , cm)

Input: c ∈ (F`
′
)m

DEC1(c)
Parse c = (c1, . . . cm)
For i = 1, . . . ,m

si = Dectd(ci)
If si =⊥ output ⊥

s = (s1, . . . , sm)
m = Decamd(Rec1(s))
Output m

Fig. 4. Construction 1

Theorem 1. If t > m
2 , then the coding scheme (ENC1,DEC1) defined in Figure

4 is an `′-folded (m, k)-NM codes with respect to the family F+ with error less
or equal to max{ε, α2t−m}.

Moreover, if ρ is the rate of (Encamd,Decamd) and ρ′ is the rate of (Sh1,Rec1),
then the rate of (ENC1,DEC1) is ρρ′ ``′ .

Proof. The correctness of the scheme (ENC1,DEC1) (i.e. Pr[DEC1(ENC1(m)) =
m] = 1 for any m ∈ Fk) and the statement about the rate are easy to verify
and follow directly from the construction (Figure 4).
Fix f = (f1, f2, . . . , fm) ∈ F+, to prove the non-malleability property, we have to
define Df as in Definition 2 and bound the error SD(Realmf , Idealmf ) for any m ∈
Fk. Let c = (c1, . . . , cm) = ENC1(m) and s = (s1, . . . , sm) = Sh1(Encamd(m)).
Notice that a valid encoding in the new scheme is a vector c = (c1, . . . , cm) of m
blocks each of which is an encoding done by the constant-size tamper-detection
code (Enctd,Dectd). Each block is independently modified by the function fi :
F`′ → F`′ (with fi ∈ F ∪ Fconst ∪ {id}). If fi 6= id, we say that the i-th block
is tampered. Since (Enctd,Dectd) is an TD code, for any block such that fi ∈ F
we know that the outputs of Dectd(fi(ci)) is ⊥ with probability greater or equal
to 1 − α. Using this and the t-privacy property, in the following we will show
that we can have enough information on the output of DEC1(f(ENC1(m))) only
looking at how may blocks have been modified by function not in F . More
precisely, define the following sets: I ⊆ [m] is the set of indices i such that fi is
the identity function, C ⊆ [m] is the set of indices i such that fi is a constant
function on F`′ and J = [m] \ (I ∪ C) = (I ∪ C)c. Consider now the following
cases:

1) Suppose that many blocks are tampered using constant functions (i.e. |C| ≥
m− t), then t-privacy determines the distribution of the blocks not touched
by a constant function, while the other blocks are fixed to a constant by the
function fi. Hence, if we define Df as
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- sample r = (r1, . . . , rm) accordingly to the distribution of Sh1(0) and
output the result of DEC1(f(r))

then because of the t-privacy we have that SD(Realmf , Idealmf ) = 0.

2) Otherwise we can assume that few blocks are tampered by constant functions
(i.e. |J |+ |I| > t) and we consider two sub-cases.

2.a) Suppose that few blocks are tampered (i.e. |I| ≥ m − t) and look at
what happens during the execution of DEC1 on input f(c). If there exists
i ∈ Ic such that Dectd(fi(ci)) =⊥, then the the entire decoding outputs
⊥. Otherwise, we have exactly the situation described by Lemma 1: in the
decoding phase the algorithm Rec1 is applied to a share vector s̃ where
at most t shares have been modified respect to the original share vector
s. It follows that Rec1(s̃) = Encamd(m) + ∆f where the distribution of
the vector ∆f is independent of m. In particular, if ∆f = 0, then the
decoding DEC1(f(c)) outputs the original message m, else it outputs ⊥
with probability grater than or equal to 1− ε because of the application
of the AMD decoding algorithm Decamd to Encamd(m) +∆f .
Thus, in this case we define Df by the following steps:

- sample r = (r1, . . . , rm) accordingly to the distribution of Sh1(0). If
there exists i ∈ Ic such that Dectd(fi(Enctd(ri))) =⊥, then output
⊥. Otherwise continue with the next step;

- compute the vector e = (e1, . . . , em) such that ei = Dectd
(
fi(Enctd(ri))−

Enctd(ri)
)
. If Rec1(e) = 0, Df outputs same; otherwise it outputs

⊥.

Because of the t-privacy, the probability that there exists i ∈ Ic such
that Dectd(fi(ci)) =⊥ is equal to the probability that there exists i ∈ Ic
such that Dectd(fi(EncT (ri))) =⊥. Moreover, the vector Rec1(e) has the
same distribution as ∆f . Finally, we have that

SD(Realmf , Idealmf ) = Pr[Decamd(Encamd(m) +∆f )) 6=⊥] ≤ ε

2.b) Else we can use the assumption on t and m and say that more than
2t−m blocks are modified by functions in F . That is, |J | > t−m+ t =
2t−m > 0. Independently for all these blocks, the tamper-detection code
outputs a message different from ⊥ with probability less than or equal to
α. Thus, DEC1(f(c)) =⊥ with probability less than or equal to α2t−m.
Therefore, in this last case we define Df to output ⊥ and we have that

SD(Realmf , Idealmf ) = Pr[Realmf 6=⊥]

≤ Pr[Dectd(fi(ci)) 6=⊥ ∀ i ∈ J ]

≤ α2t−m

ut

We are now ready to state the first of the results about linear-time NM codes
that we present in this paper:
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Theorem 2 (Linear-Time and Constant-Rate NM codes). If for infinitely
many integer b, there exists an (b′, b)-TD code with respect of a family F and
with constant error α, then there exist a positive integer `′ such that the following
holds. For any large enough integer k there exists an `′-folded (m, k)-NM code
(ENC1,DEC1) with respect of the family F+ and m = Θ(k). Furthermore, the
NM code has error negligible in k and linear-time computational complexity.

Proof. Given k, instantiate Construction 1 (Figure 4) with the (k, k′)-AMD code
given by Corollary 1 and with the `-folded (m, δm,m, k′)-LSSS given by Corol-
lary 2 (with δ > 1/2). Notice that k′ = Θ(k) and m = Θ(k′) = Θ(k) and `
is constant respect to k. Finally, use the first TD code from the family stated
in the thesis such that the input length is at least ` to complete the instanti-
ation. Let `′ be the output length of the TD code used. Notice that also `′ is
constant respect to k. It follows from Theorem 1 that the obtained scheme is
non-malleable with respect to F+ and has constant rate. Moreover, the error
ε+ α2δm−m = q−Θ(k) + α(2δ−1)Θ(k) is negligible in k. Finally, since `, `′ are con-
stant and the AMD code and the LSSS are both linear-time, the computational
complexity of the algorithms ENC1,DEC1 is O(k). ut

In [CG14b] an infinite family of TD code with respect the family F of bit-
wise tampering functions that are neither the identity nor constant functions is
given. Each code in the family has an error less or equal to 2/3.

Lemma 5 (Lemma 3.5 in [CG14b]). For any α > 0 and any large enough `
(i.e. ` ≥ `(α) = O(log2(1/α)/α)), there exists an (`, `′)-TD code respect to the
family F = F 2

1,n \ (Fconst ∪ {id}) with error 2/3.

The previous lemma together with the results we show in the previous section
(Corollaries 2 and 1) can be used to instantiate our Construction 1 and to obtain
the following result in bit-wise independent tampering model.

Corollary 3 (Binary Case for Construction 1). For any large enough inte-
ger k, there exists a linear-time binary (N, k)-NM code with respect of the family
F 2

1,N and with error negligible in k. Furthermore N = Θ(k).

4 Optimal-Rate and Linear-Time NM Codes

In this section, we will construct a linear-time non-malleable code with rate
approaching 1 (Construction 2).

4.1 Building Blocks for Construction 2

Before showing our second main result (Construction 2), we present the required
building blocks.

16



Independence Generators and Secret-Sharing Schemes

In order to achieve linear-time and optimal-rate NM codes, we will employ linear-
time (n, t, n, k)-secret-sharing schemes again, however we will need stronger as-
sumptions regarding the rate and the privacy property of the used scheme.
Namely, besides linear-time complexity, we require that the rate is not merely
constant but that it approaching 1, i.e., length of a full share-vector divided
by the length of the secret tends to 1 when the n tends to infinity. By general
bounds on secret sharing, this implies that the privacy parameter t is sublin-
ear in the number of players n and that reconstruction is essentially by the full
player set only. But that is still fine for our purposes here (as long as privacy is
nonconstant). Moreover, we note that we do not require linearity of the scheme
either. Besides, we require that any t shares are uniformly and independently
distributed over the share-space (t-uniformity). Below we show how to construct
the schemes required here by combining results on t-wise independence genera-
tors and constant-rate secret sharing.

A t-wise independence generator is a deterministic algorithm that expands a
short random seed in a longer t-uniform vector. More precisely:

Definition 6 (t-wise Independence Generator, [Gol99]). Let k, k′ and t be
positive integers. A function Gen : Fk′ → Fk is a t-wise independence generator
if the following holds. For each uniform random variable X over Fk′ (called the
seed), Gen(X) is t-wise uniform over Fk.

We will now provide a t-wise independence generator with seed-length and
independence sub-linear in the output length. The construction combines results
of Christiani and Pagh [CP14] and Siegel [Sie04]. Note that the parameter regime
we are interested in here differs from that in [CP14].

Definition 7 (Unique Neighbour Expander Graph). Let Γ = (L,R,E) be
a finite undirected bipartite graph, with left-vertex set L, right-vertex set R and
edge set E. Let n,m, d, e be positive integers. Then Γ is an (n,m, d, e)-unique
neighbour expander if the following holds. First, |L| = n and |R| = m and each
vertex v ∈ L has degree d. Second, for each set S ⊆ L of size at most e, there
exists a vertex v ∈ R that has a unique neighbour in S.

Siegel [Sie04] showed how such an expander can be used to extend the output
length of an independence generator at a constant factor loss in the indepen-
dence. Note that Precisely:

Lemma 6 (Lemma 2.6, Corollary 2.11 in [Sie04]). Let Γ = (L,R,E) be
a (n,m, d, e)-unique neighbour expander. Then there exists a F-linear function
ExpandΓ : Fm → Fn such that the following holds: if X is a (de)-wise uni-
form random variable over Fm, then ExpandΓ (X) is an e-wise uniform random
variable on Fn. Moreover, ExpandΓ has computational complexity O(n).
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Proof. (Sketch) Given Γ as in the lemma, the function ExpandΓ : Fm → Fn,
(x1, . . . ,xm) 7→ (y1, . . . ,yn) is defined by

yi =
∑
j∈Γ (i)

xi

where Γ (i) ⊆ R indicates the neighbours of i ∈ L.
Assume that A = {a1, . . . , ae} is a subset of [n] of size e. Since Γ be a

(n,m, d, e)-unique neighbour expander, there is v1 ∈ R that has a unique neigh-
bour in A, wlog we can assume that this neighbour is a1. Now we consider
A \ {a1} and applying the definition again we obtain v1 ∈ R that has a unique
neighbour a2 in A\{a1}. Continuing in this way we can prove that for any i ∈ [e]
there is vi ∈ R such that vi ∈ Γ (ai) and vi /∈ Γ (aj) for all j ≥ i+ 1.

Now let X = (X1, . . . , Xm) be a (de)-wise uniform random variable over
Fm and Y = (Y1, . . . , Yn) = ExpandΓ (X). Consider YA, because of the previous
observation, we have that Yai is independent of (Yai+1

, . . . , Yae) for any i =
1, . . . , e − 1. Indeed, Yai = Xvi + Zi for some uniform random variable Zi and
(Yai+1

, . . . , Yae) is trivially independent ofXvi because vi /∈ Γ (aj) for all j ≥ i+1.
It follows by induction that Ya1 , . . . , Yae are independent. Therefore, YA has the
uniform distribution on Fe. ut

In order to be able to use this lemma iteratively, as we will do shortly, an
explicit finite family {Γi}i is required such that ni = mi+1 and ei = dei+1 for all
indices i. Christiani and Pagh [CP14] observed that a construction of Capalbo
et al. (Theorem 7.1 in [CRVW02]) in fact has this property.

Lemma 7 (Lemma 3 in [CP14]). For each positive integer c, there are pos-
itive integers d and m′ and a real number α such that the following holds. For
any integer m ≥ m′ there exists a (cm,m, d, e)-unique neighbour expander Γ
with e ≥ αm/d. The construction of Γ is explicit, i.e. Γ can be constructed in
time poly(m).

These results give immediate rise to the t-wise independence generator, which
will be used later on in the construction of the secret-sharing scheme we require.
Note that the generator we construct here is F-linear.

Lemma 8. For each real number ε ∈ (0, 1), there exists a real number δ ∈ (0, ε)
such that the following holds. For any sufficiently large integer k there exists
an explicit t-wise independence generator Gen : Fk′ → Fk, where t = Ω(k1−ε)
and k′ = Θ(k1−δ). Moreover, Gen is a F-linear function and has computational
complexity O(k).

Proof. For concreteness, set c = 2 in Lemma 7 and let d, m′ and α be as given
in that lemma. Let ` and t be positive integers with ` ≥ 1 and t ≥ max{1/α,m′}
and define mi := 2id`t for any integer i ≥ 0; notice that mi = 2mi+1. Since
mi ≥ t ≥ m′ for any i ≥ 0, Lemma 7 implies that there exists an explicit
family {Γi}i≥0 where each Γi is a (2mi,mi, d, ei)-unique neighbour expander with
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ei ≥ αmi/d = α2id`−1t. For any 0 ≤ i ≤ `−1 define e′i := d`−1−ibαtc and notice
that e′i ≥ 1 and e′i = de′i+1; moreover, since e′i ≤ αd`−1−it ≤ α2id`−1t ≤ ei,
the graph Γi is also a (2mi,mi, d, e

′
i)-unique neighbour expander. Therefore the

family {Γi}i=0,...,`−1 has the required parameters.

Now start with a de′0-wise uniform random variable on Fm0 = Fd`t (e.g. taking
the uniform random variable on Fm0) and apply the map ExpandΓi from Lemma
6 for all 0 ≤ i ≤ `−1. In this way we obtain a bαtc-wise independence generator

Gen : Fd`t → F(2d)`t with computational complexity
∑`−1
i=0 O(2mi) = O((2d)`t).

Finally, given ε and k as in the statement of the lemma, we choose t = dk1−εe
and ` = dε log2d ke. Notice that for k large enough t ≥ max{1/α,m′}, ` ≥ 1 and
moreover, the output length of the generator satisfies (2d)`t ≥ (2d)ε log2d kk1−ε =
k and (2d)` < (2d)(2d)ε log2d k(k1−ε+1) = 2d(k+kε). Therefore, after truncating
if necessary the original output of Gen we obtain a t-wise independence generator
of output of length k and computational complexity O(k). Write z = log2d d.
The seed length k′ satisfies k′ = d`t = (2d)z`t < (2d)z(1+ε log2d k)(1 + k1−ε) =
(2d)zkzε(1 + k1−ε), which is of the order k1−(1−z)ε. Moreover, k′ = d`t =
(2d)z`t ≥ (2d)zε log2d kk1−ε = kzεk1−ε. Thus, choosing δ = (1 − z)ε concludes
the proof. ut

We show now how to use the t-wise independence generator of Lemma 8 to
build a linear-time secret-sharing scheme with t′-uniformity, t′ = Θ(t) and rate
1 − o(1). The high-level idea is simple, to share a secret m ∈ Fk we do the
following. First, we mask m using Gen(s) where s is a uniformly random seed
for Gen. Then, we share the seed s with a constant-rate sharing scheme. The
final share vector is defined by the concatenation of m + Gen(s) and the share
vector of s.

Lemma 9 (Linear-Time and Optimal-Rate LSSS). For any real number
ε ∈ (0, 1) and any large enough k, there exists a linear-time (n, t, n, k)-LSSS with
uniformity such that t = Ω(k1−ε) and n = k + o(k).

Proof. Given ε ∈ (0, 1) and k large enough, by Lemma 8 there exists a t-wise
independence generator Gen : Fk′ → Fk with t = Ω(k1−ε) and k′ = Θ(k1−δ)
(δ ≤ ε). Let (Sh1,Rec1) be the (m, t′,m, k′)-LSSS from Corollary 2. Notice9 that
m = Θ(k′) and that the scheme is t′-uniform with t′ = Θ(k′). Consider the
scheme in Figure 5 and define s = min{t, t′}. It is easy to verify that (Sh2,Rec2)
is a linear-time (n, s, n, k)-LSSS with uniformity. Moreover, s = Ω(k1−ε) and
n = k +m = n+O(k1−δ). ut

Compressors

We introduce a novel primitive, a compressor. Suppose we are given a vector
whose coordinates are t-wise independent random variables. A compressor is a

9 The family of LSSSs from Corollary 2 is ` folded, where ` is a constant respect to k′.
Thus, the scheme (Sh1,Rec1) can be “unfolded” and still it remains a constant-rate
scheme.
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Sh2(m):

Sample s← Fk
′

Output c = (m + Gen(s), Sh1(s))

Rec2(c):
Parse c = (c1, c2)
Compute s = Rec1(c2)
If s = ⊥, then output ⊥
Otherwise output c1 − Gen(s)

Fig. 5. Linear-time and optimal-rate LSSS

deterministic function that, when applying it to the given vector, results in a
shorter vector with nontrivial entropy, assuming that the original vector contains
at least t coordinates with nontrivial entropy10.

Definition 8 (Compressor). Let t, n, n′ be positive integers and r a positive
real number. A function Com : Fn → Fn′ is a (t, r)-compressor if the following
holds. Suppose that X = (X1, . . . , Xn) is a t-wise independent random variable
on Fn such that there is a set A ⊆ [n] of cardinality t and a real number c > 0
for which H∞(Xi) ≥ c for all i ∈ A. Then H∞(Com(X)) ≥ rc.

This primitive is used in the security proof of Construction 2 to handle the case of
a component-wise tampering function that has many non-constant components.
More precisely, we will use the following fact:

Lemma 10. Let f = (f1, . . . , fn) ∈ F q
1,n be a function such that least t of the

of the functions fi : F → F are non-constant. If Com : Fn → Fn′ is a (t, r)-
compressor and X is a t-wise uniform random variable on Fn, then for any

vector b ∈ Fn′ , Pr[Com(f(X)) = b] ≤
(
q−1
q

)r
.

Proof. By the conditions on f , there is a set A ⊆ [n] of cardinality t such
that, for each i ∈ A it holds that H∞(fi(Xi)) ≥ log2(q/(q − 1)). Since X is t-
wise independent, it follows by definition of compressor that H∞(Com(f(X))) ≥
r log2(q/(q − 1)). ut

The next lemma shows a simple construction of a compressor suitable for our
purposes later on.

Lemma 11. For any real number ε ∈ (0, 1) and for any large enough positive
integer n there exists an (r2, r)-compressor Com : Fn → Fn′ with r2 = Ω(n1−ε)
and n′ = o(n). Moreover Com has computational complexity O(n).

Proof. Given ε, for any n ≥ 1 define r = dn(1−ε)/2e and n′ = bn/rc. Notice that
n′r ≤ n and, if n large enough, r2 ≤ n. Consider the function Com : Fn → Fn′ ,
10 Since we require compressors to be deterministic, generic methods for privacy am-

plification do not apply here.

20



(x1, . . . ,xn) 7→ (y1, . . . ,yn′) defined by

yi =

r∑
j=1

x(i−1)r+j for i = 1, . . . , n′

Thus, a vector in the domain is viewed as comprising n′ consecutive blocks of
r coordinates and, for i = 1, . . . , n′, the sum taken over the coordinates in the
i-th block gives the i-th coordinate in the image of the vector under Com. We
now verify that Com is a (r2, r)-compressor. Suppose X = (X1, . . . , Xn) be a
r2-wise independent random variable on Fn and suppose A ⊂ [n] with |A| = r2

satisfies H∞(Xi) ≥ c > 0 for each i ∈ A. Define (Y1, . . . , Yn′) = Com(X). By the
pigeonhole principle, there exists a B ⊆ [n′] with |B| = r such that each Yi with
i ∈ B is sum of at least one Xi with i ∈ A. This, together with r2-independence
of X, implies that the corresponding random variable YB = (Yi)i∈B has the
properties that H∞(Yi) ≥ c for each i ∈ B and that the Yi’s are independent.
In conclusion, H∞(Com(X)) ≥ H∞(YB) ≥ rc. By inspection, the computational
complexity of Com is O(n). ut

Almost Universal Families

Our Construction 2 that we present later on in Section 4.2 depends in particular
on universal hash functions. For our purposes, we require that these functions
are linear-time computable and have vanishingly small key- and output-lengths.
Hence, the linear uniform family of [DI14] (see Lemma 2) does not apply directly
due to its linear key-length. Note that, besides linear-time, the uniform output
property of this particular family enables arbitrary output-length. Below we
show an easy adaptation of the family from [DI14] suitable for our purposes. It
is a µ-almost universal family. But since µ is very small, it is good enough for
our purposes.

Definition 9 (Almost Universal Family). Let µ ∈ (0, 1) be a real number
and let n,m be positive integers. Suppose H is a family of functions hk : Fn →
Fm, one for each k ∈ Fa. Then H is µ-almost universal if the following holds.
For any pair of distinct x,x′ ∈ Fn, we have |{k ∈ Fa | hk(x) = hk(x′)}| ≤ µqa.

Lemma 12. For any real number β ∈ (0, 1) and any positive integer n, there
exists a µ-universal family H = {hk : Fn → Fm}k∈Fa with a = o(n), m = o(n)

and µ = Θ(q−n
(1−β)

). Moreover, each function hk has computational complexity
O(n).

Proof. Given β ∈ (0, 1) and n ≥ 1, define k = bn1−β/2c and k′ = bn1−βc.
It is immediate to verify that in Lemma 2 the range dimension ck of the linear
uniform family G may be replaced by k′ ≤ k and the result still holds. Therefore,
we can assume that there exist a positive integer b and µ-almost universal family
G = {gk : Fk → Fk′}k∈Fbk with µ = 1/qk

′
. Moreover, gk has computational

complexity O(k). Now define n′ = dn/ke and hk : Fn → Fk′n′ as follows:

hk(x1, . . . ,xn) = (gk(y1), . . . , gk(yn′))

21



where11 yi = (x(i−1)k+1,x(i−1)k+2, . . . ,xik) for any i = 1, 2, . . . , n′.

Define m = k′n′ and a = bk. Then 0 < m < n1−β(n/k + 1), which has order
n1−β/2, and 0 < a ≤ bn1−β/2. The computational complexity of hk is n′O(k) =
O(n). Finally, for any distinct x,x′ ∈ Fn there is i ∈ [n′] such that yi 6= y′i.
Then,

|{k ∈ Fbk | hk(x) = hk(x′)}| ≤ |{k ∈ Fbk | gk(yi) = gk(y′i)}| ≤ µqbk

ut

4.2 Construction 2

Finally, we are ready to give the details of Construction 2 and its security proof.
Consider the following ingredients (all the scheme are over the finite field F):

– Let (Sh2,Rec2) an (n, t, n, k)-SSS with uniformity;
– Let Com : Fn → Fn′ be a (t, r)-compressor;
– Let H = {hk : Fn → Fm} be a µ-almost universal family with key-space Fa;
– Let (Enc,Dec) be a (b′, b)-NM code with respect to a family F with error ε.

We require that b = a+m+ n′.

Let N = n + b′, the new (N, k)-coding scheme (ENC2,DEC2) is defined in Fig-
ure 6.

Input: m ∈ Fk

ENC2(m):

Compute c(1) ← Sh2(m)
Sample k← Fa

Compute h = hk(c(1))

Compute c = Com(c(1))

Compute c(2) = Enc(k,h, c)

Output (c(1), c(2))

Input: c ∈ FN

DEC2(c):

Parse c = (c(1), c(2)) ∈ Fn × Fb
′

Compute z = Dec(c(2))
If z =⊥ output ⊥
Otherwise

Parse z = (k,h, c)

If h 6= hk(c(1)) output ⊥
If c 6= Com(c(1)) output ⊥

Output m = Rec2(c
(1))

Fig. 6. Construction 2

11 Notice that n′k ≥ n. If n′k > n, the vector yn′ is obtained from the last components
of x padded with zeros.
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Theorem 3. The coding scheme (ENC2,DEC2) is an (N, k)-non-malleable code
with respect to the family F q

1,n ×F with error less or equal to

max

{(
q − 1

q

)t
+ µ,

(
q − 1

q

)r}
+ ε

Proof. It is trivial to verify that the scheme (DEC2,ENC2) is correct. To prove
non-malleability, for each tampering function F we have to show a simulator
which only depends on F and whose output is very close to DEC2(F (ENC2(m)))
for any given m ∈ Fk. More precisely, according to Definition 2 for any F =
(f, g) ∈ F q

1,n ×F , we have to define a random variable DF and bound the error

ε′ = SD(RealmF , IdealmF ) for any m ∈ Fk.
Given m ∈ Fk and F = (f, g) ∈ F q

1,n × F , write f = (f1, . . . , fn) and

ENC2(m) = (c(1), c(2)). Notice that the left part of the encoding, c(1), is tam-
pered by the function f ∈ F q

1,n, while the right part, c(2) = Enc(k,h, c), by
the function g from F . Since (Enc,Dec) is a NM-code, there exists the random
variable Dg such that SD(Realzg , Idealzg ) ≤ ε for all z ∈ Fb. That is, we can

simulate the output of decoding the right part, Realzg = Dec(g(c(2))), given only
the function g. Thus, the first step in order to define DF is the following: sample
z∗ randomly according to Dg. The results of the sampling can be classified in
three cases: ⊥, same or some vector (k∗,h∗, c∗). The value of z∗ determines the
output z′ of Idealzg . Then, we proceed in the definition of DF in a different way
for each one of the three aforementioned cases. Moreover in each case we will
bound the conditional error

εz′ =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | Rz′ ]− Pr[IdealmF = m′ | Iz′ ] |

where Rz′ and Iz′ are short-cuts for the events Realzg = z′ and Idealzg = z′,
respectively.

1) Assume that z∗ =⊥, then z′ =⊥. In this case we define D2
F to output ⊥ and

we easily get the following error bound

ε⊥ =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | R⊥]− Pr[IdealmF = m′ | I⊥] |

=| Pr[RealmF =⊥| R⊥]− Pr[IdealmF =⊥| I⊥] |= 1− 1 = 0

2) If z∗ = same, then z′ = z = (k,h, c). Define I ⊆ [n] the set of indices i such
that fi is the identity function on F. Consider the following two situations.
• First, assume that many fi are the identity function (i.e. |I| ≥ n −
t). Then the difference f(c(1)) − c(1) has distribution independent of
m because c(1) is t-wise uniform on Fn. In particular, both the event
f(c(1)) = c(1) and its complement occur with probability independent of
the message m. If f(c(1)) = c(1), then the decoding obviously outputs
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the original message m. Otherwise, we have f(c(1)) 6= c(1) and the check
h = hk(f(c(1))) fails with probability at least 1 − µ. If the check fails,
the decoding outputs ⊥. Thus, we define DF in the following way:

- sample ri ← F for all i ∈ Ic; if fi(ri) = ri for all i ∈ Ic then outputs
same, otherwise output ⊥.

Because the t-uniformity property the event fi(ri) = ri for all i ∈ Ic

has the same probability as the event f(c(1)) = c(1) and therefore, as a
consequence of the check involving the hash function, we can bound the
error in the following way.

εz =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | Rz]− Pr[IdealmF = m′ | Iz] |

≤ 2 · Pr[RealmF 6=⊥| Rz and f(c(1)) 6= c(1)]

≤ 2 · Pr[hk(f(c(1))) = hk(c(1)) | f(c(1)) 6= c(1)] ≤ 2µ

• In the second case, assume that many fi are not the identity function
(i.e. |I| < n− t). Then, there exists a set A ⊆ Ic of size t, and it follows

from the uniformity property that the events fi(c
(1)
i ) 6= c

(1)
i with i ∈ A

are independent and each of them occurs with probability at least 1/q.
Therefore, very likely f(c(1)) 6= c(1) and DEC2 outputs ⊥ because of the
check done using the hash function hk. For this reason, in this case we
define DF to output ⊥ and we can bound the error as follows.

εz =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | Rz]− Pr[IdealmF = m′ | Iz] |

≤ 2 · Pr[RealmF 6=⊥| Rz] ≤ 2 · Pr[hk(f(c(1))) = hk(c(1))]

≤ 2 · Pr[f(c(1)) = c(1)] + 2µ

≤ 2

(
q − 1

q

)t
+ 2µ

3) If z∗ = (k∗,h∗, c∗), then we have that z′ = z∗. Let C ⊆ [n] be the set of
all indices i such that fi is a constant function on F. Consider the following
two situations.

• If many fi are constant functions (i.e. |C| ≥ n−t), then the t-uniformity
implies that the distribution of vector f(c(1)) is independent of m. In
particular, this distribution is known given the tampering function f .
Thus, we can define DF in this way:

- sample r ← Fn and output DEC2(f(r), z∗).

Because the t-uniformity property the distribution of f(c(1)) is the same
of f(r) and therefore

εz∗ =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | Rz∗ ]− Pr[IdealmF = m′ | Iz∗ ] |= 0

24



• Otherwise more than t components fi are not constant functions (i.e.
|C| < n − t) and it follows from Lemma 10 that Com(f(c(1))) is a ran-
dom variable with min-entropy at least r log2(q/(q − 1)). Moreover, the
distribution of Com(f(c(1))) is independent of c∗. Therefore in this case
the probability that the check done using the compressor is satisfied can
be bounded by

Pr[Com(f(c(1)) = c∗] ≤
(
q − 1

q

)r
Remember that if the check is not satisfied then, DEC2 outputs abort.
Thus, we can define DF to output always ⊥ and we get an error bounded
by:

εz∗ =
∑

m′∈{⊥}∪Fk
| Pr[RealmF = m′ | Rz∗ ]− Pr[IdealmF = m′ | Iz∗ ] |

≤ 2 · Pr[RealmF 6=⊥| Rz∗ ] ≤ 2 · Pr[Com(f(c(1)) = c∗]

≤ 2

(
q − 1

q

)r
To conclude the proof notice that the maximum of the bounds we have com-
puted before gives us a bound for the full error ε′. Indeed, if pz′ = Pr(Rz′) =
Pr[Realzg = z′] and qz′ = Pr(Iz′) = Pr[Idealzg = z′] with z′ ∈ {⊥} ∪ Fb, then

ε′ =
1

2

∑
m′∈{⊥}∪Fk

| Pr[RealmF = m′]− Pr[IdealmF = m′] |

=
1

2

∑
m′∈{⊥}∪Fk

|
∑

z′∈{⊥}∪Fb
Pr[RealmF = m′ | Rz′ ] · pz′ − Pr[IdealmF = m′ | Iz′ ] · qz′ |

≤ 1

2

∑
m′

∑
z′

| Pr[RealmF = m′ | Rz′ ]− Pr[IdealmF = m′ | Iz′ ] | ·pz′ + Pr[IdealmF = m′ | Iz′ ]· | qz′ − pz′ |

≤ 1

2

(∑
z′

∑
m′

| Pr[RealmF = m′ | Rz′ ]− Pr[IdealmF = m′ | Iz′ ] | ·pz′
)

+ ε

≤ ε+
1

2

∑
z′

εz′ · pz′ ≤ ε+
M

2

where M = maxz′{ε′z}. This concludes the proof. ut

We are now ready to state the main result about linear-time NM codes that we
present in this paper:

Theorem 4 (Linear-Time and Optimal-Rate NM codes). Suppose that
there exists real number α ∈ (0, 2) such that for any positive integer b there
exists a (b′, b)-NM-code (Enc,Dec) with respect of a family F , with error ε(b) =
negl(b) (the error is a negligible function of the message length) and b′ = O(bα),
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then the following holds. For any positive integer k large enough, there exists an
(N, k)-NM code (ENC2,DEC2) with respect of the family F q

1,n×F and with error
negligible in k. Furthermore N = k + o(k) and, if the computational complexity
of (Enc,Dec) is sub-quadratic in b, then (ENC2,DEC2) is linear-time.

Proof. Instantiate Construction 2 (Figure 6) with the t-uniform sharing scheme
from Lemma 9, the compressor from Lemma 11 (with ε ≤ 2

α − 1) and the
universal family from Lemma 12 (with β ≥ 2 − 2

α ). It easy to check that b =

(a+m)+n′ = O(n1−β/2)+O(n(1+ε)/2) and n = k+o(k). Thus, b′ = O(n1−β/2)α+
O(n(1+ε)/2)α = O(n). It follows from Theorem 3 that (ENC2,DEC2) is (N, k)-
NM with respect of the family F q

1,n × F and that N = n + b′ = k + o(k).

Moreover, since t, r2 = Ω(k1−ε) and b tends to infinity as k tends to infinity,
the error written in Theorem 3 is negligible in k. Finally, since all the building
blocks mentioned before are linear-time, then the computational complexity of
the new scheme is O(k) +O(bα) = O(k). ut

From the latter Theorem 4 together with the result shown in Section 3 (Corollary
3), it follows that:

Corollary 4 (Binary Case for Construction 2). For any large enough k,
there exists linear-time binary (N, k)-NM code with respect of the family F 2

1,N

and with error negligible in k. Furthermore, N = k + o(k).
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A Appendix

A.1 Tellegen’s Principle

We will briefly discuss a technique know as Tellegen’s principle. Assume that we
are given a linear algorithm T computing the function f(x) = A ·x, where A is a
m×n matrix over some ring R and x is a vector from Rn. Then we can transform
T into an algorithm T′ computing the function f ′(y) = A> · y, where y ∈ Rm
and A> is the transpose of the matrix A, which has the same computational
complexity as T. We will discuss this transformation for arithmetic circuits. We
can decompose a circuit into a sequence of elementary instructions φi, where
each φi is a linear transformation on all the wires. We can thus write the matrix
A as

A = φn · φn−1 · · ·φ2 · φ1.
Transposing A immediately yields

A> = φ>1 · φ>2 · · ·φ>n−1 · φ>n .
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Thus, we only have to consider the effect of transposition to the elementary
instructions φi.

– Instruction φi multiplies a wire x with a constant α ∈ R and writes the
output in the same register. In this case φ>i = φi, as the transformation
matrix φi is diagonal and thus symmetric.

– Instruction φi adds wire y to wire x. In this case φ>i adds wire x to wire y.

These two instructions are sufficient to implement any linear transformation. For
instance, to clear an (auxiliary) register, simply multiply it by 0. We summarize
this in the following Lemma.

Lemma 13 (Tellegen’s Principle [Tel52]). Let T(x) be a linear arithmetic
circuit or linear RAM algorithm computing the function A ·x. Then there exists
a linear arithmetic circuit T′(y) that computes the function A> · y and has the
same computational complexity as T.
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